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Abstract

A two parameter asymptotic analysis is employed to investigate some unusual long wave

dispersion phenomena in respect of symmetric motion in a nearly incompressible elastic plate.

The plate not subject to the usual classical traction free boundary conditions, but rather has its

faces fixed, therefore precluding any displacement on the boundary. The abnormal long wave

behaviour results in the derivation of some non-local approximations, giving frequency as a

function of wave number, for symmetric motion. Motivated by these approximations, long wave

asymptotic integration is carried out and the asymptotic forms of displacement components

established.

1 Introduction

The problem of wave propagation in an infinite layer, composed of linear isotropic elastic material

with traction free faces, is a classical elasto-dynamic problem. In fairly recent times this problem

has been extended to elucidate both the influences of pre-stress and/or anisotropy, see for

example [1] and [2] in the incompressible case and [3] and [4] for the compressible case. There

have also been a small number of articles investigating the effect of different conditions on the

faces, and in particular so-called fixed face conditions whereby the boundary conditions are

taken to be those of zero dispalcement, see [5] and [6]. One motivation for this type of boundary

conditions are ceratin geophysical phenomena, particularly in respect of coal layers, see for

example [7].
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In the case of fixed face conditions it has been established that no so-called low frequency

motion is possible, resulting in the absence of either bending or extension, or their pre-stressed

counterparts. In the case of symmetric motion, some abnormal long wave dispersion phenomena

has previously been reported in respect of nearly incompressible linear isotropic elastic solids,

see [6]. In particular, non-local long wave high frequency behaviour has been observed. The

purpose of this paper is to extend this study to include the influence of pre-stress and approach

the incompressible limit from the full compressible equations, rather than by merely perturbing

the incompressible case.

This paper is orgainised as follows. In section 2 the appropriate forms of the basic equa-

tions associated with a pre-stressed compressible elastic solid are noted, together with a brief

derivation of both the symmetric and anti-symmetric dispersion relations. In Section 3, nu-

merical solutions of the dispersion relations are presented, showing frequency as a function of

wave number. In both cases, the lack of any fundamental modes is noted. Additionally, in the

symmetric case, some particularly striking long wave behaviour is observed in the case when

the plate is almost incompressible. Specifically, there is a very rapid increase in gradient and

in consequence any approximations will not be valid within the neighbourhood of the cut-off

frequencies. Any approximations will therefore have to be non-local to the cut-offs.

In Section 4 long wave approximations are derived, with particular attention focussed upon

the nearly incompressible, symmetric case. In this case, the long wave behaviour may only be

fully elucidated by considering the interaction between two small parameters, namely the wave

number and a small parameter introduced to indicate the material’s compressibility. Motivated

by these approximations, we seek to derive appropriate asymptotic approximations of the dis-

placements in each case. The appropriate asymptotic models are briefly discussed in Section

5. After this, in Section 6, appropriate scales for displacements, together with scales for spatial

variables and time, are introduced and models derived for the compressible case in respect of

symmetric motion. In Section 7, the case of a nearly incompressible plate is considered and

appropriate models derived fort symmetric motion.

2 Basic equations and the dispersion relation

We shall consider the problem of harmonic wave propagation in a compressible elastic plate, of

constant finite thickness 2h and infinite lateral extent, subjected to a pure homogeneous strain

of the form

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, (2.1)

where X and x denote the position vectors of a typical particle in a natural (un-stressed) and

statically deformed pre-stressed states B0 and Be, respectively. A Cartesian coordinate system

is chosen with axes coincident with the principal axes of deformation in Be, oriented such that

Ox2 is normal to the plane of the plate and origin O in its mid-plane. Small amplitude motions

are now superimposed upon Be, with the associated displacement such that u3 ≡ 0 and u1 and
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u2 independent of x3. The two non-trivial equations of motion are provided by

α11u1,11 + γ2u1,22 + βu2,12 = ρeü1,

γ1u2,11 + α22u2,22 + βu1,12 = ρeü2,
(2.2)

in which

αij = Aiijj , γ1 = A1212, γ2 = A2121, β = α12 + γ2 − σ2, (2.3)

where Aijkl denotes the components of the fourth order elasticity tensor and the facts that

α12 = α21 and γ1 − σ1 = γ2 − σ2 have also been taken into account. The two-dimensional form

of the strong ellipticity condition requires that

α11 > 0, α22 > 0, γ1 > 0, γ2 > 0, (2.4)

and
√

α11α22 +
√

γ1γ2 ± β > 0, (2.5)

for details of these conditions, and derivation of the equations of motion, the reader is referred

to [3] or [4].

Our specific concern is a layer with fixed faces, the boundary conditions then being

u1 = 0, u2 = 0, at x2 = ±h. (2.6)

To begin we insert solutions of the form (u1, u2) = (U, V )ekqx2eik(x1−vt) into the equations of

motion (2.2), resulting in the following quadratic equation for q2

α22γ2q
4 +

ˆ
β2 − α22(α11 − v̄2)− γ2(γ1 − v̄2)

˜
q2 + (α11 − v̄2)(γ1 − v̄2) = 0. (2.7)

Solutions for u1 and u2 may now be expressed as linear combinations for the solutions gener-

ated by (2.7). This involves eight arbitrary constants, which may be reduced to four by using

the equations of motion. Inserting these solutions into (2.6) yields a homogeneous system of

four equations in four unknowns. Due to the symmetry of the problem about the mid-plane,

this system may be decomposed into two homogeneous linear systems of two equations in two

unknowns. The condition that the first of these systems admits non-trivial solutions results in

the so-called symmetric dispersion relation

q1F(q2, v̄) tanh(q2η) = q2F(q1, v̄) tanh(q1η), (2.8)

with the second system producing the anti-symmetric counterpart

q1F(q2, v̄) tanh(q1η) = q2F(q1, v̄) tanh(q2η), (2.9)

where in both (2.8) and (2.9) η = kh denotes the scaled wave number. It is also noted that the

boundary conditions may also be employed to represent the displacement components in terms

of only one constant. In the symmetric case this enables us to express u1 and u2 in the forms

u1 = iβq1q2 [cosh(q2kh) cosh(kq1x2)− cosh(q1kh) cosh(kq2x2)] Ũ , (2.10)

u2 = [q2F(q1, v̄) cosh(q2kh) sinh(kq1x2)− q1F(q2, v̄ cosh(q1kh) sinh(kq2x2)] Ũ , (2.11)
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in which F(q, v̄) = α11− v̄2−γ2q
2 and the exponential function eik(x1−vt) has been incorporated

into Ũ . The analogous results for the anti-symmetric case are obtainable by interchanging sinh

and cosh in equations (2.10) and (2.11).

3 Numerical analysis

All numerical results will be presented in respect of the two-parameter compressible neo-Hookean

strain-energy function

W =
µ

2
(I1 − 3− 2lnJ) +

κ′

2
(J − 1)2, (3.1)

within which κ′ = κ − 2
3
µ, and where µ and κ′(oftendenotedbyλ) are the Lamé moduli and

κ is the bulk modulus of the material in the un-stressed configuration. For this strain-energy

function we have

αii = κ′J + µJ−1(1 + λ2
i ), α12 = κ′(2J − 1), γi = µJ−1λ2

i , (3.2)

where i = 1, 2 and there is no implied summation.

In Figures 1(a) and (b), plots of the dispersion relations (2.8) and (2.9), depicting the scaled

frequency ω̄ = v̄η against the scaled wave number η, are presented in respect of the two-

parameter compressible neo-Hookean strain-energy function (3.1). These graphs demonstrate

dispersion curves for both symmetric and antisymmetric motion. The parameters used for

Figure 1(a) correspond to a highly compressible case, with Figure 1(b) presenting an example

of a nearly incompressible case. In the nearly incompressible case κ >> 1 and J ∼ 1, with

the incompressible limit being realised by allowing κ → ∞ and J → 1 in such a way that the

product κ(J − 1) remains finite, see [8, p.510]. The first thing to notice in these graphes is that

there are no modes for which ω̄ → 0 as η → 0. This is in contrast to a compressible elastic plate

with traction free, rather than dispacement free, upper and lower surfaces, see [3] and [4]It is

then the case that the fixed-face boundary conditions preclude so-called low frequency motion

and there are therefore no fundamental modes. This has been previously noted in the analogous

incompressible fixed-face case, see [5].

A striking feature of Figure 1(b) is the flattening of symmetric branches in the long wave

regime. In each case they have a near zero gradient very close to the cut-off frequency, with the

gradient then rapidly becoming very steep after which the behaviour is similar to that usually

expected. Similar unusual long wave behaviour was previously noted in linear isotropic nearly

incompressible elastic plates with fixed faces, see [?]. In this article the authors considered

the perturbed equations for incompressible plate, our motivation is to generalise this study

to the pre-stressed case and in doing so use as our starting point the a general compressible,

pres-stressed elastic equations.

4



(a)

ω̄

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10

antisymmetric
symmetric

η

(b)

ω̄

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8

antisymmetric
symmetric

η

Figure 1: Scaled frequency against scaled wave number for the Neo-Hookean material with: (a)

λ1 = 1.7, λ2 = 2.0, λ3 = 1.6, µ = 1.0, k′ = 0.1; (b) λ1 = 1.1, λ2 = 0.91, λ3 = 1.0, µ = 0.7, k′ = 103.
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4 Long wave approximations

As previously mentioned, in the case of a plate with fixed faces there are no fundamental

modes, so-called low frequency motion is therefore precluded. We shall therefore begin an

analysis of long wave high frequency motion, which is characterised by the fact that as η → 0,

v̄2/γ2 ∼ O(η−2). From (2.7) it may be deduced that both q1 and q2 are in this case imaginary

and can therefore be written as q1 = iq̂1, q2 = iq̂2, where q̂1 and q̂2 are both real and positive

and

q̂2
1 =

v̄2

α22
+ Q1 + O(v̄−2), q̂2

2 =
v̄2

γ2
+ Q2 + O(v̄−2), (4.1)

in which

Q1 =
β2 − γ1(γ2 − α22)

α22(γ2 − α22)
, Q2 =

β2 + α11(γ2 − α22)

γ2(γ2 − α22)
.

In order to investigate the previously observed long wave numerical peculiarities for nearly

incompressible plates with fixed faces, we introduce the non-dimensional parameter κ in the

form

κ =
JW33

γ2
. (4.2)

This parameter depends on the compressibility of the material and tends to infinity for incom-

pressible materials. Note, that κ is included within the following material parameters

αij = α̃ij + γ2κ, i, j ∈ 1, 2, (4.3)

where α̃ij/γ2 is assumed O(1).

4.1 Compressible case

We begin our investigation of the long wave region and consider symmetric and anti-symmetric

motion separately.

4.1.1 Symmetric motion

In the long wave region the symmetric dispersion relation (2.8) may be rewritten as

q̂1F(q2, v̄) tan(q̂2η) = q̂2F(q1, v̄) tan(q̂1η), (4.4)

with

F(qi, v̄) = α11 − v̄2 + γ2q̂
2
i , i = 1, 2. (4.5)

As η → 0, we deduce from (4.4) that either tan(q̂2η) ∼ η−2 or tan(q̂1η) ∼ η2. The former case

implies that at the leading order q̂2η = (n− 1/2)π ≡ Λs
sh. For this type of motion it is possible

to use (2.10) and (2.11) to establish that u1 >> u2. The associated scaled frequencies, given by

ω̄2 = γ2(Λ
s
sh)2, are commonly referred to as the thickness shear resonance frequencies. Similarly,

the case tan(q̂1η) ∼ η2, from which we may deduce that u1 << u2, defines thickness stretch

resonance, with the associated resonance frequencies given by ω̄2 = γ2χ−
2(nπ)2 ≡ γ2(Λ

s
st)

2,

where χ2 = γ2/α22. We shall now consider motion within the vicinities of the thickness shear
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and stretch resonance frequencies in turn.

(a) Motion in the vicinity of the thickness shear resonance frequencies

In this case (η → 0, tan(q̂2η) À 1) we seek the following forms of expansion

q̂2η = Λs
sh + φη2 + O(η4), tan(q̂2η) = − 1

φη2
+ O(1), (4.6)

where the correction term φ may be found by inserting the approximations (4.6) into (4.4) and

equating like powers of η, yielding

φ =
β2 cot(χΛs

sh)

(α22 − γ2)2χ(Λs
sh)2

. (4.7)

It is now possible to deduce that in the long wave region

ω̄2 = γ2(Λ
s
sh)2 + Cs

shη2 + O(η4), (4.8)

within which

Cs
sh = γ2

„
−Q2 +

2β2 cot(χΛs
sh)

(α22 − γ2)2χΛs
sh

«
. (4.9)

(b) Motion in the vicinity of the thickness stretch resonance frequencies

Making use of the fact that tan(ηq̂1) ¿ 1 as η → 0, we obtain the following expansion forms

q̂1η = χΛs
st + ψη2 + O(η4), tan(q̂1η) = ψη2 + O(η4). (4.10)

Substituting expansions (4.10) into the symmetric dispersion relation (4.4), we obtain the cor-

rection term ψ, given by

ψ = − β2 tan(Λs
st)

(α22 − γ2)2χ(Λs
st)

2
. (4.11)

For motion in the vicinity of the symmetric thickness stretch resonance frequencies, an expansion

for the appropriate frequencies ω̄ associated with the nth harmonic may now be obtained, namely

ω̄2 = γ2(Λ
s
st)

2 + Cs
stη

2 + O(η4), (4.12)

where

Cs
st = −α22

„
Q1 +

2β2 tan(Λs
st)

(α22 − γ2)2Λs
st

«
. (4.13)

Good agreement between numerical and asymptotic results near the first thickness shear and

stretch resonance frequencies, see (4.8) and (4.12), respectively, is demonstrated in Figure 2.

4.1.2 Antisymmetric motion

A similar analysis to that just carried out in respect of the symmetric case may be performed for

antisymmetric motion. Analogous results may be obtained from their symmetric counterparts

by putting Λa
sh, Λa

st, Ca
sh and Ca

st instead of Λs
sh, Λs

st, Cs
sh and Cs

st, respectively, where

Λa
sh = nπ, Λa

st =

„
n− 1

2

«
π

χ
, n = 1, 2, ..., (4.14)

Ca
sh = −γ2

„
Q2 +

2β2 tan(χΛa
sh)

(α22 − γ2)2χΛa
sh

«
, (4.15)

Ca
st = −α22

„
Q1 − 2β2 cot(Λa

st)

(α22 − γ2)2Λa
st

«
. (4.16)
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Figure 2: Scaled frequency against scaled wave number for the Neo-Hookean material with the same

parameters as Figure 1(a) (a) near the first thickness shear resonance frequency; (b) near the first

thickness stretch resonance frequency.
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4.2 Nearly incompressible case

In the nearly incompressible case, κ À 1, we note from the definitions of Λs
st and Λa

st that the

frequencies of of both symmetric and anti-symmetric stretch resonance tend to infinity as the

material becomes incompressible. This result is what might be expected in view of the fact that

the corresponding incompressible case is characterised by the absence of such motion, see [5].

Within the dispersion relations (2.8) and (2.9) for a layer with fixed faces we therefore have now

two small parameters, namely η and κ−1, with the asymptotic long wave structure dependent

on the relative magnitude of these two parameters.

4.2.1 Symmetric case

In the symmetric case, the appropriate form of the dispersion relation (2.8) is given by

q̂1

`
α̃11 + γ2κ + q̂2

2 − v̄2´ tan(q̂2η) = q̂2

`
α̃11 + γ2κ + q̂2

1 − v̄2´ tan(q̂1η). (4.17)

Case 1: κη2 ∼ 1

We first consider the nearly incompressible case, characterised by κη2 ∼ 1, and for which

approximations for q̂2
1 and q̂2

2 take form

q̂2
1 =

v̄2

γ2
− δ̃ + O(η2), q̂2

2 = −1 +
v̄2

γ2κ
+ O(η2), (4.18)

where

δ̃ =
α̃11 + α̃22 − 2β̃ − γ2

γ2
. (4.19)

We remark that as previously v̄/γ2 ∼ η−1. Using equations (4.18) we are able to deduce that

tan(q̂1η) = tan

„
ω̄√
γ2

«
+ O(η2), tan(q̂2η) = q̂2η + O(η3). (4.20)

It is now possible to insert approximations (4.18) and (4.20) into the dispersion relation (4.17)

to establish that ω̄ satisfies the following transcendental equation

γ2κ
„

ω̄ −√γ2 tan

„
ω̄√
γ2

««
η2 = ω̄3. (4.21)

We remark that in the nearly incompressible case characterised by κη2 ¿ 1, we may infer from

the above equation that tan(ω̄/
√

γ2) À 1, from which we deduce that at leading order

ω̄2 = γ2Λ
2
sh +

2κη2

Λ2
sh

. (4.22)

This result is also obtainable from (4.8) on the assumption that κη2 ¿ 1 while κ is not less than

of order O(1). The non-local long wave approximation (4.21) offer an excellent approximation

to the numerical solution, as is illustrated in Figure 3 for the first two symmetric harmonics.
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Figure 3: Scaled frequency against scaled wave number for the Neo-Hookean material with the same

parameters as Figure 1(b), showing the first two symmetric harmonics.

Case 2: κη4 ∼ 1

In this case appropriate approximations for q1 and q2, obtained from (2.7) are given by

q̂2
1 =

v̄2

γ2
− δ̃ +

δ̃ − γ1

v̄2
+ O(η4), q2

2 = 1 +
δ̃ − γ1

v̄2
− v̄2

γ2κ
+ O(η4). (4.23)

Inserting expansions (4.23) into (4.17) we establish that ω̄2 = Λ2
0 + O(η2), where Λ0 satisfies

Λ0√
γ2

= tan

„
Λ0√
γ2

«
. (4.24)

We note that (4.24) is a transcendental equation and this is an equation of the type previously

found to define the cut-off frequencies in the corresponding incompressible case, see [?]. The

occurrence of such an equation to define the cut-off frequencies is unusual. Specifically, this

situation arises for symmetric motion through a combination of both the fixed face bound-

ary conditions and the fact that the plate is essentially incompressible. An expansion for the

frequency is then sought in the form

ω̄2 = Λ2
0 + P0η

2 + O(η4). (4.25)
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Using this approximation it is possible to establish appropriate approximations for q̂1, q2, and

tan(q̂1η) in the forms

q̂1 =
Λ0√
γ2η

+
η

2
√

γ2Λ0

“
P0 − γ2δ̃

”
+ O(η3), (4.26)

q2 = 1 +
(δ̃ − γ1)η

2

2Λ2
0

− Λ2
0

2γ2κη2
+ O(η4), (4.27)

tan(q̂1η) = tan

„
Λ0√
γ2

«
+

η2

2
√

γ2Λ0

“
P0 − γ2δ̃

”(
1 +

»
tan

„
Λ0√
γ2

«–2)
+ O(η4). (4.28)

Inserting these approximations into the dispersion relation (4.17) and equating leading order

powers of η firstly re-affirms (4.24) and then enables us to determine P0, yielding

P0 = γ2

„
−2

3
+ δ̃ − 2Λ2

0

γ2κη4

«
. (4.29)

The definition of P0 implies that it may take positive or negative values. However, in the case

of a linear isotropic layer this coefficient is positive for all material parameters, see [6]. We

therefore infer that in a pre-stressed plate the group velocity v̄g = ∂ω̄/∂η = P0 may be positive

or negative, depending on the material parameters and pre-stress. Figure 4 shows numerical

solutions of the symmetric dispersion relation (2.8) and both the non-local approximation (4.21)

and approximation (4.25) in the vicinity of the cut-off frequencies of the incompressible plate.

Two sets of parameters are used in order to demonstrate positive (P0 > 0) and negative (P0 < 0)

group velocities.

4.2.2 Antisymmetric case

In the antisymmetric case, the dispersion relation (2.9) may be recast in the form

q̂1

`
α̃11 + γ2κ + γ2q̂

2
2 − v̄2´ tan(q̂1η) = q̂2

`
α̃11 + γ2κ + γ2q̂

2
1 − v̄2´ tan(q̂2η), (4.30)

In the case κη2 ∼ 1, it is readily established that tan(q̂1η) ∼ q̂−1
1 , indicating that q̂1η ≈ Λa

sh. In

this case it is possible to show that

ω̄2 = γ2(Λ
a
sh)2 + γ2(δ̃ − 2)η2 + O(η4). (4.31)

We remark that this result is obtainable by taking the appropriate limit of Ca
sh, defined in (4.15).

In this case the result is not changed when κη2 À 1, for example when κη4 ∼ 1. It is then clear

that abnormal dispersion behaviour is a feature only of symmetric motion.

5 Asymptotic model

Our aim now is the derivation of one-dimensional asymptotic models for long wave high fre-

quency motion in a layer with fixed faces. We require these models to be consistent with our

previous asymptotic analysis of the appropriate dispersion relations. In the case of a layer with

fixed faces, symmetric motion is of particular interest, due to the previously discussed behaviour

of the branches in the long wave regime. Derivation of asymptotic models for the compressible
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Figure 4: Scaled frequency against scaled wave number for the Neo-Hookean material with: (a) the

same parameters as Figure 1(b); (b) λ1 = 0.9, λ2 = 1.4, λ3 = 1.0, µ = 0.7, k′ = 104.
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case, in which the parameter κ ∼ 1, is very similar to a layer with free faces. In this case, we

readily obtain models for motion in the vicinity of thickness shear and stretch resonance frequen-

cies. However, in the symmetric nearly incompressible case (κ À 1) we require introduction of a

term p0 = κ(u1,1 + u2,2), analogous to the hydrostatic pressure associated with incompressibil-

ity. Investigation of the relative magnitudes of u1, u2 and p0 motivates appropriate re-scalings

in each case. After recasting the equations of motion, and appropriate boundary conditions in

terms of new variables, we derive a system of governing equations at various orders.

6 Compressible layer with fixed faces

Due to the similarity of derivation of asymptotic models for antisymmetric and symmetric

motion, we will discuss only the latter case in detail.

6.1 Relative orders of displacements

We shall now use previously established approximations to determine the relative magnitudes

of u1 and u2 in the vicinity of the shear and stretch resonance frequencies in the compressible

case κ ∼ 1. For the shear case, expansions (4.1) for q1 and q2, together with approximations

(4.6)-(4.8), may be used in equations (2.10) and (2.11), establishing that

u1 ≈ iβχ
(Λs

sh)2

η2
cos (χΛs

sh) cos
“
Λs

sh
x2

h

”
Ũ , (6.1)

u2 ≈ β2χ

γ2 − α22

Λs
sh

η
cot(χΛs

sh)
h
sin (Λs

sh) sin
“
χΛs

sh
x2

h

”
− sin (χΛs

sh) sin
“
Λs

sh
x2

h

”i
Ũ , (6.2)

where we recall that Λs
sh = (n−1/2)π, n = 1, 2, .... From equations (6.1) and (6.2) it is deduced

that if κ ∼ 1, the in-plane displacement u1 is asymptotically leading in respect of motion in the

vicinity of the shear resonance frequencies. Moreover, we may then conclude that

u1 ∼ 1

η
u2. (6.3)

In the case of motion in the vicinity of the stretch resonance frequencies, approximations (6.1)

and (6.2) are replaced by

u1 ≈ iβχ
(Λs

st)
2

η2

h
cos (χΛs

st) cos
“
Λs

st
x2

h

”
− cos (Λs

st) cos
“
χΛs

st
x2

h

”i
Ũ , (6.4)

u2 ≈ χ2(α22 − γ2)
(Λs

st)
3

η3
cos (Λs

st) sin
“
χΛs

st
x2

h

”
Ũ , (6.5)

where Λs
st = nπ/χ, n = 1, 2, .... For motion within the vicinity of the stretch resonance frequen-

cies we therefore infer that

u2 ∼ 1

η
u1. (6.6)

6.2 Shear resonance frequencies

We first aim to derive an asymptotic model for symmetric motion near the thickness shear

resonance frequencies. Noting the previously obtained relative orders of displacements (6.3), we

13



introduce scaled non-dimensional displacement components in the form

u1 = lu∗1, u2 = lηu∗2. (6.7)

Appropriate non-dimensional spatial and time variables are also defined as

x1 = lξ, x2 = lηζ, t = lη

r
ρe

γ2
τ. (6.8)

For motion in the vicinity of the thickness shear resonance frequencies we assume that

u∗k,ττ + (Λs
sh)2u∗k ∼ η2u∗k, k = 1, 2. (6.9)

The equations of motion (2.2), subject to fixed boundary conditions u1 = u2 = 0 at x2 = ±h,

may now be recast in terms of new variables. Solutions of this boundary value problem are

sought in the form

(u∗1, u
∗
2) =

mX

l=0

η2l(u
(2l)
1 , u

(2l)
2 ) + O(η2m+2). (6.10)

Inserting solutions (6.10) into the system in terms of new variables, and taking into account

conditions (6.9), we derive a system of equations at different orders m

γ2u
(2m)
1,ζζ + γ2(Λ

s
sh)2u

(2m)
1 + α11u

(2m−2)
1,ξξ + βu

(2m−2)
2,ξζ

− γ2η
−2
h
u

(2m−2)
1,ττ + (Λs

sh)2u
(2m−2)
1

i
= 0,

α22u
(2m)
2,ζζ + βu

(2m)
1,ξζ + γ2(Λ

s
sh)2u

(2m)
2 + γ1u

(2m−2)
2,ξξ

− γ2η
−2
h
u

(2m−2)
2,ττ + (Λs

sh)2u
(2m−2)
2

i
= 0,

u
(2m)
1 = u

(2m)
2 = 0 at ζ = ±1,

(6.11)

with m = 0, 1, 2, ....

6.2.1 Leading order problem

The leading order problem, associated with m = 0, is given by

u
(0)
1,ζζ + (Λs

sh)2u
(0)
1 = 0,

α22u
(0)
2,ζζ + βu

(0)
1,ξζ + γ2(Λ

s
sh)2u

(0)
2 = 0,

u
(0)
1 = u

(0)
2 = 0 at ζ = ±1,

(6.12)

with a solution readily obtainable in the form

u
(0)
1 = u

(0,0)
1 sin(Λs

shζ),

u
(0)
2 = v

(0,0)
2 cos(Λs

shζ) + V
(0,0)
2 cos(χΛs

shζ),
(6.13)

where

v
(0,0)
2 =

βu
(0,0)
1,ξ

Λs
sh(α22 − γ2)

, V
(0,0)
2 = − β cos(Λs

sh)u
(0,0)
1,ξ

Λs
sh(α22 − γ2) cos(χΛs

sh)
. (6.14)

The solution (6.14) provides leading order solutions for the displacement components in terms of

an essential parameter, u
(0,0)
1 , which is a function of ξ and τ . An equation for u

(0,0)
1 is obtainable

from the second order problem.
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6.2.2 Second order problem

In order to derive an equation for u
(0,0)
1 , we need to consider the following second order equation

and boundary condition

γ2u
(2)
1,ζζ + γ2(Λ

s
sh)2u

(2)
1 + α11u

(0)
1,ξξ + βu

(0)
2,ξζ − γ2η

−2
“
u

(0)
1,ττ + (Λs

sh)2u
(0)
1

”
= 0,

u
(2)
1 = 0 at ζ = ±1.

(6.15)

The solution for u
(2)
1 is expressible in the form

u
(2)
1 = u

(2,0)
1 sin(Λs

shζ) + v
(2,1)
1 ζ cos(Λs

shζ) + U
(2,0)
1 sin(χΛs

shζ), (6.16)

within which

v
(2,1)
1 = − 1

2Λs
sh

h
η−2

“
u

(0,0)
1,ττ + (Λs

sh)2u
(0,0)
1

”
+ Q2u

(0,0)
1,ξξ

i
, (6.17)

U
(2,0)
1 = − β2 cos(Λs

sh)u
(0,0)
1,ξξ

χ(Λs
sh)2(α22 − γ2)2 cos(χΛs

sh)
, (6.18)

with the governing equation for u
(0,0)
1 given by

γ2η
−2
“
u

(0,0)
1,ττ + (Λs

sh)2u
(0,0)
1

”
− Cs

shu
(0,0)
1,ξξ = 0. (6.19)

We note that Q2 and Cs
sh have been previously defined, see directly after (4.1) and equation

(4.9). Introducing a new function u[0](x1, t) = u
(0,0)
1 (ξ, τ), we may recast the above equation in

terms of original variables

1

h2
γ2(Λ

s
sh)2u[0] + ρe

∂2u[0]

∂t2
− Cs

sh
∂2u[0]

∂x2
1

= 0. (6.20)

Consistency may be verified by direct substitution of the wave form u[0] = ũ[0]eik(x1−vt) into

equation (6.20), resulting in the expansion (4.8) for ω̄.

6.3 Stretch resonance frequencies

The appropriate relative orders of displacement components (6.6) lead to the following re-scaling

u1 = lηu∗1, u2 = lu∗2, (6.21)

which will be employed together with the following non-dimensional space and time variable

scalings

x1 = lξ, x2 = lηζ, t = lη

r
ρe

α22
τ. (6.22)

For consistency with the asymptotic analysis of the dispersion relation we assume that for motion

near the thickness stretch resonance frequencies that

u∗k,ττ + χ2(Λs
st)

2u∗k ∼ η2u∗k, k = 1, 2. (6.23)

Rewriting the equations of motion (2.2) and boundary conditions (2.6) in terms of new variables,

substituting solutions in the series form (6.10), and taking into account relations (6.23), we arrive
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at the system of governing equations at various orders m

γ2u
(2m)
1,ζζ + βu

(2m)
2,ξζ + γ2(Λ

s
st)

2u
(2m)
1 + α11u

(2m−2)
1,ξξ

− α22η
−2
h
u

(2m−2)
1,ττ + χ2(Λs

st)
2u

(2m−2)
1

i
= 0,

α22u
(2m)
2,ζζ + γ2(Λ

s
st)

2u
(2m)
2 + γ1u

(2m−2)
2,ξξ + βu

(2m−2)
1,ξζ

− α22η
−2
h
u

(2m−2)
2,ττ + χ2(Λs

st)
2u

(2m−2)
2

i
= 0,

u
(2m)
1 = u

(2m)
2 = 0 at ζ = ±1,

(6.24)

with m = 0, 1, 2, ....

6.3.1 Leading order problem

For m = 0, we arrive at the leading order equations of motion

γ2u
(0)
1,ζζ + βu

(0)
2,ξζ + γ2(Λ

s
st)

2u
(0)
1 = 0,

α22u
(0)
2,ζζ + γ2(Λ

s
st)

2u
(0)
2 = 0,

(6.25)

subject to the appropriate boundary conditions

u
(0)
1 = u

(0)
2 = 0 at ζ = ±1. (6.26)

Solutions for this leading order problem are provided by

u
(0)
1 = u

(0,0)
1 sin(χΛs

stζ) + U
(0,0)
1 sin(Λs

stζ),

u
(0)
2 = v

(0,0)
2 cos(χΛs

stζ),
(6.27)

where the functions u
(0,0)
1 and U

(0,0)
1 are expressed as

u
(0,0)
1 =

βv
(0,0)
2,ξ

χΛs
st(α22 − γ2)

, U
(0,0)
1 = − β sin(χΛs

st)v
(0,0)
2,ξ

χΛs
st(α22 − γ2) sin(Λs

st)
. (6.28)

Thus we have obtained leading order solutions in terms of the essential function v
(0,0)
2 , which

is a function of ξ and τ . A governing equation for this function may be derived from the next

order problem.

6.3.2 Second order problem

At second order, we consider only those equations required to derive an equation for v
(0,0)
2 .

Accordingly, we consider only the following equation of motion with appropriate boundary

condition

α22u
(2)
2,ζζ + γ2(Λ

s
st)

2u
(2)
2 + γ1u

(0)
2,ξξ + βu

(0)
1,ξζ − α22η

−2(u
(0)
2,ττ + χ2(Λs

st)
2u

(0)
2 ) = 0,

u
(2)
2 = 0 at ζ = ±1.

(6.29)

The solution for u
(2)
2 may be written as

u
(2)
2 = v

(2,0)
2 cos(χΛs

stζ) + u
(2,1)
2 ζ sin(χΛs

stζ) + V
(2,0)
2 cos(Λs

stζ), (6.30)
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within which

u
(2,1)
2 =

1

2χΛs
st

h
η−2

“
v
(0,0)
2,ττ + χ2(Λs

st)
2v

(0,0)
2

”
+ Q1v

(0,0)
2,ξξ

i
, (6.31)

V
(2,0)
2 = − β2 sin(χΛs

st)v
(0,0)
2,ξξ

χ(Λs
st)

2(α22 − γ2)2 sin(Λs
st)

, (6.32)

with the governing equation for v
(0,0)
2 taking the form

α22η
−2
“
v
(0,0)
2,ττ + χ2(Λs

st)
2v

(0,0)
2

”
− Cs

stv
(0,0)
2,ξξ = 0, (6.33)

where constants Q1 and Cs
st were defined previously, see directly after (4.1) and (4.13). In-

troducing a function v[0](x1, t) = v
(0,0)
2 (ξ, τ), the above equation may be written in terms of

original variables, yielding

1

h2
γ2(Λ

s
st)

2v[0] + ρe
∂2v[0]

∂t2
− Cs

st
∂2v[0]

∂x2
1

= 0. (6.34)

We remark that consistency may again be readily established.

7 Nearly incompressible layer

In view of the abnormal dispersion behaviour associated with symmetric long wave motion, we

shall now examine the asymptotic structure of the governing equations in more detail.

7.1 Relative magnitudes of displacement and pressure

We first define p0 = κ(u1,1 + u2,2), where p0 is a term analogous to the arbitrary hydro-static

pressure known to occur in incompressible elasticity, see for example [8]. Moreover, in the

incompressible limit it is known that κ →∞, (u1,1 + u2,2) → 0 in such a way that the product

tends to the dynamic part of the hydro-static pressure term. It is possible to use equations

(2.10) and (2.11) to establish that

p0 = −κkq1q2 [(F(q1, v̄)− β) cosh(q2η) cosh(kq1x2) + (β −F(q2, v̄)) cosh(q1η) cosh(kq2x2)] Ũ .

(7.1)

We shall now establish the relative long wave magnitudes of u1 and u2 in the three cases κ ∼ 1,

κη2 ∼ 1 and κη2 À 1, with the similar relative order of p0 given when appropriate.

7.1.1 Case 1: κη2 ∼ 1

In this case it is possible to substitute the approximations (4.18)-(4.21) into equations (2.10),

(2.11) and (7.1) to show that

u1 ≈ −i
κ
η

ω̄√
γ2

q̂2

»
cos

„
ω̄√
γ2

x2

h

«
− cos

„
ω̄√
γ2

«–
Ũ , (7.2)

u2 ≈ −κq̂2

»
sin

„
ω̄√
γ2

x2

h

«
− ω̄√

γ2

x2

h
cos

„
ω̄√
γ2

«–
Ũ , (7.3)

p0 ≈ − κ
η3

kq̂2
ω̄3

√
γ2

cos

„
ω̄√
γ2

«
Ũ . (7.4)
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It is now possible to use (7.2)-(7.4) in order to establish that for the case κη2 ∼ 1

u1 ∼ k−1η2p0, u2 ∼ k−1η3p0. (7.5)

7.1.2 Case 2: κη2 À 1

In the case κη2 À 1 it is possible to establish that approximations for u1, u2 and p0 are given by

(7.2)-(7.4), with ω̄ replaced by Λ0. Hence, the asymptotic structure in this case is the same as

that shown in (7.5). We note that the nearly incompressible case may in general be characterised

by κ ∼ η−2mθ, with θ an O(1) quantity and m > 0. Motivated by the appropriate dispersion

relation approximations previously established, we consider the two cases m = 1 and m = 2.

Before proceeding it is convenient to re-write the equations of motion (2.2) in the form

α̃11u1,11 + γ2u1,22 + β̃u2,12 + p0,1 = ρeü1, (7.6)

γ2u2,11 + α̃22u2,22 + β̃u1,12 + p0,2 = ρeü2, (7.7)

in which p0 = κ(u1,1 + u2,2). In this case the scales introduced in (6.7), (6.8), supplemented

with p0 = η−2p∗, may now be used to re-cast (7.6), (7.7) and the definition of p0 as

γ2u
∗
1,ζζ − γ2u

∗
1,ττ + p∗,ξ + η2

“
α̃11u

∗
1,ξξ + β̃u∗2,ξζ

”
= 0, (7.8)

p∗,ζ + η2
“
α̃22u

∗
2,ζζ + β̃u∗1,ξζ − γ2u

∗
2,ττ

”
+ η4γ2u

∗
2,ξξ = 0, (7.9)

p∗ = η2κ
`
u∗1,ξ + u∗2,ζ

´
, (7.10)

which must be solved subject to the boundary conditions

u∗1 = 0, u∗2 = 0, at ζ = ±1. (7.11)

7.2 Case 1: m = 1, η2κ = θ

In the case in which η2κ = θ, we are essentially very close to the resonance frequency and may

therefore consider the stationary case, for which ∂/∂τ ≡ iω̄. The appropriate leading order

problem may therefore be written as

γ2u
(0)
1,ζζ + ω̄2u

(0)
1 + p

(0)
,ξ = 0, p

(0)
,ζ = 0, p(0) = θ

“
u

(0)
1,ξ + u

(0)
2,ζ

”
. (7.12)

The general solution of this system of equations may be represented in the from

p(0) = v(0,0)
p ,

u
(0)
1 = U

(0,0)
1 cos

„
ω̄ζ√
γ2

«
+ v

(0,0)
1 ,

u
(0)
2 = U

(0,0)
2 sin

„
ω̄ζ√
γ2

«
+ ζv

(1,0)
2 .

(7.13)

Inserting these general solutions into equations (7.12)1,3, results in the following equations

v(0,0)
p = θ

“
v
(0,0)
1,ξ + v

(1,0)
2

”
,

U
(0,0)
1,ξ +

ω̄√
γ2

U
(0,0)
2 = 0,

ω̄2v
(0,0)
1 + v

(0,0)
p,ξ = 0,

(7.14)
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with the boundary conditions also requiring that

U
(0,0)
1 cos

„
ω̄√
γ2

«
+ v

(0,0)
1 = 0,

U
(0,0)
2 sin

„
ω̄√
γ2

«
+ v

(1,0)
2 = 0.

(7.15)

The system of equations (7.14) and (7.15) may be used to obtain solutions for U
(0,0)
2 , v

(0,0)
1 , v

(1,0)
2

and v
(0,0)
p in terms of U

(0,0)
1 , thus

U
(0,0)
2 = −

√
γ2

ω̄
U

(0,0)
1,ξ , v

(0,0)
1 = −U

(0,0)
1 cos

„
ω̄√
γ2

«
,

v
(1,0)
2 =

√
γ2

ω̄
U

(0,0)
1,ξ sin

„
ω̄√
γ2

«
,

(7.16)

and

v(0,0)
p = θ

»√
γ2

ω̄
sin

„
ω̄√
γ2

«
− cos

„
ω̄√
γ2

«–
U

(0,0)
1,ξ . (7.17)

Additionally, a governing equation for U
(0,0)
1 is also readily obtainable, being expressible as

ω̄3

√
γ2

U
(0,0)
1 + θ

»
ω̄√
γ2
− tan

„
ω̄√
γ2

«–
U

(0,0)
1,ξξ = 0. (7.18)

7.3 Case 2: m = 2, η4κ = θ

In order to derive an appropriate asymptotic model in this case we may utilise equations (7.8)-

(7.11).

7.3.1 Leading order problem

The leading order problem in this case is given by

γ2u
(0)
1,ζζ + Λ2

0u
(0)
1 + p

(0)
,ξ = 0, p

(0)
,ζ = 0, u

(0)
1,ξ + u

(0)
2,ζ = 0, (7.19)

which, subject to u
(0)
1 = u

(0)
2 = 0 at ζ = ±1, has solution

p(0) = v(0,0)
p ,

u
(0)
1 = U

(0,0)
1 cos

„
Λ0ζ√

γ2

«
+ v

(0,0)
1 , (7.20)

u
(0)
2 = U

(0,0)
2 sin

„
Λ0ζ√

γ2

«
+ ζv

(1,0)
2 .

The general solution of this system takes the same form as shown in (7.13), with Λ0 replacing

ω̄, which may then be used to establish that

√
γ2U

(0,0)
1,ξ + Λ0U

(0,0)
2 = 0, v

(0,0)
1,ξ + v

(1,0)
2 = 0, v

(0,0)
p,ξ + Λ2

0v
(0,0)
1 = 0, (7.21)

with the boundary conditions also requiring that

U
(0,0)
1 cos

„
Λ0√
γ2

«
+ v

(0,0)
1 = 0, U

(0,0)
2 sin

„
Λ0√
γ2

«
+ v

(1,0)
2 = 0. (7.22)
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It is now possible to use four of the five equations shown in (7.21) and (7.22) to represent

v
(0,0)
1 , U

(0,0)
1 , U

(0,0)
2 and v

(1,0)
2 in terms of v

(0,0)
p , thus

v
(0,0)
1 = −v

(0,0)
p,ξ

Λ2
0

, U
(0,0)
1 =

v
(0,0)
p,ξ

Λ2
0 cos(Λ0/

√
γ2)

, (7.23)

U
(0,0)
2 = −

√
γ2v

(0,0)
p,ξξ

Λ3
0 cos(Λ0/

√
γ2)

, v
(1,0)
2 =

v
(0,0)
p,ξξ

Λ2
0

, (7.24)

with the fifth equation merely confirming that

tan

„
Λ0√
γ2

«
=

Λ0√
γ2

, (7.25)

as expected in light of (4.24).

7.3.2 Second order problem

The second order governing equations may be expressed in the form

γ2u
(2)
1,ζζ + Λ2

0u
(2)
1 − η−2

“
γ2u

(0)
1,ττ + Λ2

0u
(0)
1

”
+ p

(2)
,ξ + α̃11u

(0)
1,ξξ + β̃u

(0)
2,ξζ = 0, (7.26)

p
(2)
,ζ + α̃22u

(0)
2,ζζ + β̃u

(0)
1,ξζ + Λ2

0u
(0)
2 = 0, p(0) = θ

“
u

(2)
1,ξ + u

(2)
2,ζ

”
. (7.27)

The general solution of this system of equations is given by

u
(2)
1 = U

(0,2)
1 cos

„
Λ0ζ√

γ2

«
+ U

(1,2)
1 ζ sin

„
Λ0ζ√

γ2

«
+ v

(0,2)
1 + ζ2v

(2,2)
1 , (7.28)

u
(2)
2 = U

(0,2)
2 sin

„
Λ0ζ√

γ2

«
+ U

(1,2)
2 ζ cos

„
Λ0ζ√

γ2

«
+ ζv

(1,2)
2 + ζ3v

(3,2)
2 , (7.29)

p(2) = P (0,2) cos

„
Λ0ζ√

γ2

«
+ v(0,2)

p + ζ2v(2,2)
p . (7.30)

These general solutions may be inserted into the governing equations (7.26) and (7.27), resulting

in the following equations

v(0,0)
p = θ

“
v
(0,2)
1,ξ + v

(1,2)
2

”
, v

(2,2)
1,ξ + 3v

(3,2)
2 = 0, (7.31)

U
(0,2)
1,ξ +

Λ0√
γ2

U
(0,2)
2 + U

(1,2)
2 = 0,

√
γ2U

(1,2)
1,ξ − Λ0U

(1,2)
2 = 0, (7.32)

α̃11v
(0,0)
1,ξξ + β̃v

(1,0)
2,ξ + 2γ2v

(2,2)
1 + v

(0,2)
p,ξ + Λ2

0v
(0,2)
1

− η−2
“
γ2v

(0,0)
1,ττ + Λ2

0v
(0,0)
1

”
= 0, (7.33)

v
(2,2)
p,ξ + Λ2

0v
(2,2)
1 = 0, 2v(2,2)

p + Λ2
0v

(1,0)
2 = 0, (7.34)

α̃11U
(0,0)
1,ξξ + β̃

Λ0√
γ2

U
(0,0)
2,ξ + 2

√
γ2Λ0U

(1,2)
1 + P

(0,2)
,ξ

− η−2
“
γ2U

(0,0)
1,ττ + Λ2

0U
(0,0)
1

”
= 0, (7.35)

√
γ2Λ0P

(0,2) + α̃22Λ
2
0U

(0,0)
2 +

√
γ2β̃Λ0U

(0,0)
1,ξ − γ2Λ

2
0U

(0,0)
2 = 0, (7.36)

with the boundary conditions dictating that

U
(0,2)
1 cos

„
Λ0√
γ2

«
+ U

(1,2)
1 sin

„
Λ0√
γ2

«
+ v

(0,2)
1 + v

(2,2)
1 = 0, (7.37)

U
(0,2)
2 sin

„
Λ0√
γ2

«
+ U

(1,2)
2 cos

„
Λ0√
γ2

«
+ v

(1,2)
2 + v

(3,2)
2 = 0. (7.38)
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In (7.31)-(7.38), there exist 11 equations from which both all quantities within the general

solutions (7.28)-(7.30), other than v
(0,2)
p , may be represented in terms of v

(0,0)
p and v

(0,2)
p and

a governing equation for v
(0,0)
p obtained. In order to do this, we first use (7.34)1,2, (7.31) and

(7.36), together with the leading order solutions (7.24), to establish that

v(2,2)
p = −1

2
v
(0,0)
p,ξξ , v

(2,2)
1 =

v
(0,0)
p,ξξξ

2Λ2
0

, v
(3,2)
2 = −v

(0,0)
p,ξξξξ

6Λ2
0

, (7.39)

P (0,2) =
v
(0,0)
p,ξξ

Λ2
0 cos(Λ0/

√
γ2)

“
α̃22 − β̃ − γ2

”
, (7.40)

with equations (7.35) and (7.32)2 then used to show that

U
(1,2)
1 =

√
γ2

2Λ3
0 cos(Λ0/

√
γ2)

»
−δ̃v

(0,0)
p,ξξξ + η−2

„
v
(0,0)
p,ξττ +

Λ2
0

γ2
v
(0,0)
p,ξ

«–
, (7.41)

U
(1,2)
2 =

γ2

2Λ4
0 cos(Λ0/

√
γ2)

»
−δ̃v

(0,0)
p,ξξξξ + η−2

„
v
(0,0)
p,ξξττ +

Λ2
0

γ2
v
(0,0)
p,ξξ

«–
. (7.42)

It is now possible to use equation (7.34)1, together with (7.33), and obtain

v
(0,2)
1 = − 1

Λ4
0

»
v
(0,2)
p,ξ Λ2

0 + v
(0,0)
p,ξξξ

“
γ2 + β̃ − α̃11

”
+ γ2η

−2

„
v
(0,0)
p,ξττ +

Λ2
0

γ2
v
(0,0)
p,ξ

«–
, (7.43)

in which use has also been made of the equation (7.25). Finally, equation (7.31)1 is employed

to establish that

v
(1,2)
2 =

1

Λ4
0

»
v
(0,2)
p,ξξ Λ2

0 + v
(0,0)
p,ξξξξ

“
γ2 + β̃ − α̃11

”
+ γ2η

−2

„
v
(0,0)
p,ξξττ +

Λ2
0

γ2
v
(0,0)
p,ξξ

«–

+
v
(0,0)
p

θ
.

(7.44)

We are now in a position to derive a governing equation for v
(0,0)
p . Specifically, this is done by

inserting U
(0,2)
1 and U

(0,2)
2 from the boundary conditions into (7.32)1, using previously obtained

solutions and a little algebraic manipulation, to obtain

η−2θ

„
v
(0,0)
p,ξξττ +

Λ2
0

γ2
v
(0,0)
p,ξξ

«
+ θ

„
δ̃ − 2

3

«
v
(0,0)
p,ξξξξ + 2Λ2

0v
(0,0)
p = 0. (7.45)

We remark that derived one-dimensional model is consistent with asymptotic analysis of the

exact dispersion relation.

8 Some concluding remarks

The dispersion of small amplitude waves, in a plate composed of pre-stressed, compressible elas-

tic material, has been investigated. In contrast with the classical case, the upper and lower faces

of the plate are assumed fixed and the displacement on these faces zero. In the case of symmet-

ric motion rather unusual long wave behaviour has been noted. A two parameter asymptotic

analysis has been carried out, both to derive long wave approximations of the dispersion relation

and establish corresponding asymptotic forms of the displacement components.
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