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Abstract

This paper is concerned with 2D localised vibration in incompressible pre-stressed

fibre-reinforced elastic solids and the closely related problem of surface wave propaga-

tion in such materials. An appropriate constitutive model is derived and its stability

discussed within the context of the strong ellipticity condition. Surface wave propaga-

tion in an associated half-space is considered, with the particular cases of propagation

along a principal direction of primary deformation and that of almost inextensible

fibres also investigated. The problems of free and forced edge vibration of a semi-

infinite strip are analysed, revealing a link between the natural edge frequencies and

the associated Rayleigh surface wave speed.
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1 Introduction

The problem of localised dynamic phenomena in elastic bodies has a long history. It

was Lord Rayleigh [1] who first considered the propagation of waves localised near the

edge of an elastic half-space. Surface wave propagation has been extensively studied in

various types of media, including pre-stressed elastic media, see e.g. Hayes and Rivlin [2],

Chadwick and Jarvis [3], Dowaikh and Ogden [4]. The problem of edge vibration and edge

resonance is relatively fresh compared to that of Rayleigh wave propagation. Shaw[5] was

the first to observe the phenomena of edge vibrations in the case of a barium titanate

disk. A considerable amount of effort resulted in a series of publications in this area, see

e.g. Gazis and Mindlin [6], Gregory and Gladwell [7], Torvik [8], Roitberg et al. [9]. Our

approach reveals a link between the edge eigenspectrum and the Rayleigh wave speed,

seemingly first noted in the case of a semi-infinite cylindrical shell, see Kaplunov et al.

[10]. Using this approach, two of the present authors have also previously contributed

to the problems of 2D edge vibration of a pre-stressed isotropic elastic semi-strip and 3D

edge waves in a semi-infinite plate, see Kaplunov et al. [11] and [12], respectively.

We remark that despite the previously mentioned research effort in this area, to date

edge vibration modes have only been shown to exist for elastic materials with very specific

types of boundary conditions. A full 3D treatment and a complete understanding of the

precise class of boundary conditions which may support such modes remains beyond reach

at this time. Additionally, for certain other types of material, for example piezo-elastic,

questions relating to the uniqueness of surface waves are still unresolved. Bearing in mind

the aforemention link between the edge eigenspectrum and the surface wave speed in

the elastic case, extension of the treatment to other types of material offers significant

challenge and leaves a number of open questions.

In the present paper we extend previous work to investigate the existence of edge vi-

bration modes in a semi-infinite strip composed of a pre-stressed fibre-reinforced material.

The corresponding constitutive model was seemingly first established by Prikazchikov and

Rogerson [13]. We first obtain the propagation condition and make some remarks concern-

ing stability within the context of the strong ellipticity condition. It is demonstrated that

in the special case of the fibres being collinear with the principal axes the strong ellipticity

conditions reduce to a form similar to the well-known form obtained by Ogden[14] for

incompressible elastic solids.
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We then consider surface wave propagation in a 2D half-space, composed of an incom-

pressible fibre-reinforced pre-stressed elastic material. The surface wave speed equation

is derived, and a numerical analysis reveals its dependence on the normal Cauchy stress

in the pre-stressed equilibrium state. The special case of the fibre direction lying along

the principal in-plane direction is analysed, and it is shown that the surface wave speed

equation then takes a form similar to that first obtained by Dowaikh and Ogden [4]. The

case of almost inextensible fibres is also analysed.

We then proceed with an investigation of edge vibration of a semi-infinite strip. A link

between the eigenspectrum and the surface wave speed is noted and numerical plots of the

displacement eigenmodes are presented for both the free and forced vibration problems.

The two special cases, namely the cases when the density of edge spectrum is increasing

rapidly, and the case when the edge resonance phenomena is totally removed, are also

studied with corresponding numerical illustrations provided. These scenarios are associ-

ated with the vanishing of the surface wave speed and degeneration into a body wave,

respectively. Finally, we present results in respect of almost inextensible fibres.

The study is motivated by a number of considerations. Firstly, we aim to further

elucidate the combined effects of pre-stress and material anisotropy on the existence of

surface waves. Secondly, we highlight, for certain fibre orientation, that the frequencies of

free edge vibration of a thin semi-infinite strip are functions of the corresponding Rayleigh

surface wave speed. Finally, we demonstrate that knowledge of the influence of pre-stress

on the existence of surface waves is enough to predict the degeneration of edge vibration as

well as explicate various resonance phenomena. Understanding dynamic edge phenomena

has potential applications in non-destructive evaluation. Moreover, there are a number of

modern applications of thin structures, within which the ideas in this paper might offer

some insight into the understanding the dynamic behaviour of thin structural components.

A perhaps obvious example is aircraft wings, however in recent time the stability of ice

sheets and artificial floating bodies such as floating runways, and the possible development

of floating airports, have all received quite a bit of attention in the literature, see for

example Oppenheimer [19], Inoue et al. [20] and Suzuki and Yoshida [21]. Although the

boundary conditions associated with the last two examples are by nature more complex

than those considered in this paper, the ideas within this paper hopefully point a way

forward.
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2 Governing equations

We consider an incompressible transversely isotropic pre-stressed elastic material. The

coordinate axes are chosen to coincide with the principal axes of primary deformation and

the principal stretches are denoted by λ1, λ2 and λ3, with the incompressibility constraint

dictating that λ1λ2λ3 = 1. In passing we remark that the squared stretches, λ2
1, λ

2
2 and

λ2
3 are the eigenvalues of both the left and right Cauchy-Green strain tensors. In order to

simplify the analysis, a plane-strain assumption will be adopted throughout this paper,

with the displacement component u2 = 0, and u1 and u3 being independent of x2. The

fibre direction a in the pre-stressed equilibrium state is orientated at an angle φ with Ox1

with the linearised equations of motion and the incompressibility condition presented as

B1111 u1,11 + 2B1131 u1,13 + B3131 u1,33 + B1113 u3,11 + (B1133 + B1331) u3,13

+B3133 u3,33 − p∗,1 = ρü1,

B1113 u1,11 + (B1133 + B1331) u1,13 + B3133 u1,33 + B1313 u3,11 + 2B1333 u3,13

+B3333 u3,33 − p∗,3 = ρü3,

u1,1 + u3,3 = 0,

(1)

where Bij kl are components of the fourth order elasticity tensor, ρ denotes the material

density, and p∗ is the incremental pressure.

For the type of material considered we assume a general strain-energy function of the

form

W ∗ = W ∗(I1, I2, I3, I4) + p (J − 1), (2)

depending on the invariants

I1 =Cii, I2 =
1
2

{
CiiCjj−CijCij

}
, I3 =aiCijCjkak, I4 =aiCijaj , J =detF, (3)

where F is the gradient deformation tensor, C = FTF is the right Cauchy-Green tensor

and p is the pressure associated with the incompressibility constraint. We emphasise both

that the strain energy function (2.2) is the most general form of strain energy associated

with an incompressible, transversely isotropic elastic material and that we are working

within a continuum framework. A tacit assumption of our continuum theory is that the

fibres are assumed an inherent material property, rather than some form of inclusion.

Moreover, within the continuum assumption the constitutive theory is an exact theory.

The associated non-zero components of the fourth-order elasticity tensor, together with
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its definition, are given explicitly in Appendix A. For further details concerning either the

continuum assumption, or the calculation of the tensor components, the reader is referred

to Spencer [18].

The linearised incremental traction τ (n) (n = 1, 3) components associated with surface

with the outward unit normal vector along x1 and x3 are given explicitly by

τ
(1)
1 = (B1111 + p̄) u1,1 + B1131 u1,3 + B1113 u3,1 + B1133 u3,3 − p∗,

τ
(1)
3 = B1113 u1,1 + (B1331 + p̄) u1,3 + B1313 u3,1 + B1333 u3,3,

τ
(3)
1 = B1131 u1,1 + B3131 u1,3 + (B1331 + p̄) u3,1 + B3133 u3,3,

τ
(3)
3 = B1133 u1,1 + B3133 u1,3 + B3133 u1,3 + (B3333 + p̄) u3,3 − p∗.

(4)

3 Propagation condition and stability

We now proceed with an investigation of the propagation condition and stability within

the framework of the strong ellipticity condition. This condition ensures real body wave

speeds in all directions and is often taken as an indication of physically realistic dynamic

response. Usually three waves propagate in any direction within an elastic solid. However,

in the case of incompressibility this is reduced to two. The solutions for general wave

propagation within the (x1, x3)-plane are given by

(u1, u3, p
∗) = (U,W, kP ) eik(x1n1+x3n3−vt), (5)

where n = (n1, 0, n3) is an arbitrary unit vector in the (x1, x3)-plane. Substituting solu-

tions (5) into the equations of motion and the incompressibility condition (1), we arrive

at three homogeneous algebraic simultaneous equations in U,W and P , which possess

non-trivial solutions provided

v̄2 = γn4
3 − 2µn1n

3
3 + 2βn2

1n
2
3 − 2δn3

1n3 + αn4
1, (6)

where

v̄2 = ρv2, α = B1313, 2β = B1111 + B3333 − 2B1133 − 2B1331,

γ = B3131, µ = B3133 −B1131, δ = B1113 −B1333.
(7)

Thus, the strong ellipticity condition, ensuring real wave speeds in all directions, may be

formulated as

γχ4 + 2µχ3 + 2βχ2 + 2δχ + α > 0, (∀χ ∈ R). (8)
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The condition (8) in general can hardly be simplified, though as we will show later it is

sufficient to enable us to satisfy the decay conditions. However, in the two special cases

of the fibre lying parallel or perpendicular to the direction of propagation, it reduces, due

to the fact that µ = δ = 0, to the well-known incompressible form, see Ogden [14],

α > 0, γ > 0, β +
√

αγ > 0. (9)

4 Surface wave propagation

We now proceed to the problem of surface wave propagation in a semi-infinite plane

composed of an incompressible pre-stressed transversely isotropic elastic material. The

domain of the half-plane is given by −∞ < x1 < ∞, 0 ≤ x3 < ∞. Solutions for the

displacements and the pressure increment are sought in the form

(u1, u3, p
∗) = (U,W, kP )eik(x1−vt)e−ikqx3 , (10)

where =(q) < 0 ensures decay away from the boundary x3 = 0.

By substituting (10) into the governing equations of motion and the incompressibility

condition (1), we arrive at a linear homogeneous system of algebraic equations in respect

of the constants U,W and P . The condition that this system yields non-trivial solutions

leads to the following equation for q

γq4 + 2µq3 + (2β − v̄2)q2 + 2δq + α− v̄2 = 0, (11)

where α, β, γ, δ and µ were defined in (7). We remark that the strong ellipticity condition

(8) ensures that the roots of (11) corresponding to v̄2 = 0 are either imaginary or complex

conjugates. As v increases, the roots of (11) will remain complex until v̄ = v̄L, at which

point at least one pair of roots coalesce and become real. The value of speed, v̄ = v̄L say,

is often referred to as the limiting speed and in general surface waves are only possible for

v̄ < v̄L.

The displacements and the pressure increment may now be expressed as linear combi-
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nations of solutions decaying away from the edge x3 = 0, namely

u1 =
2∑

m=1

Ume−ikqmx3eik(x1−vt),

u3 =
2∑

m=1

Wme−ikqmx3eik(x1−vt),

p∗ =
2∑

m=1

kPme−ikqmx3eik(x1−vt),

(12)

where Um,Wm and Pm (m = 1, 2) form a set of disposable constants, and q1 and q2 are the

roots (11) which satisfy the decay condition =(q) < 0. Using the equations of motion and

the incompressibility condition, solutions (12) may be presented in terms of two constants

Wm (m = 1, 2) as

u1 =
2∑

m=1

qmWme−ikqmx3eik(x1−vt),

u3 =
2∑

m=1

Wme−ikqmx3eik(x1−vt),

p∗ =
2∑

m=1

ikP(qm, v̄2)Wme−ikqmx3eik(x1−vt),

(13)

with P(q, v̄2) = B1113 + q(B1111 −B1133 −B1331 − v̄2) + q2(B3133 − 2B1131) + B3131q
3.

Substituting solutions (13) into the traction-free edge boundary conditions

τ
(3)
1 = 0, τ

(3)
3 = 0 at x3 = 0, (14)

gives a homogeneous linear algebraic system in Wm (m = 1, 2), namely

2∑

m=1

T1(qm)Wm = 0,
2∑

m=1

T2(qm, v̄2)Wm = 0, (15)

where

T1(q) = γq2+µq−(γ−σ3), T2(q, v̄2) = γq3+2µq2+(γ−σ3−v̄2+2β)q+δ, (16)

and σ3 is the normal Cauchy stress in the pre-stressed equilibrium configuration, which is

related to p̄ through

σ3 = B3131 −B1331 − p̄, (17)

see Ogden[14].

The surface wave speed equation is then obtained from (15) as a condition for the

existence of non-trivial solutions for W1 and W2, namely

T1(q1)T2(q2, v̄
2)− T1(q2)T2(q1, v̄

2) = 0. (18)
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Equation (18) is in fact quadratic in σ3, indicating that the surface wave speed crucially

depends on the normal Cauchy stress. An illustration of a relation between v̄2 and σ3 for

various angles of the fibre direction is presented on Figure 1. For the purposes of numerical

illustration, we assume the linear strain-energy function

W ∗ = W ∗
1 (I1 − 3) + W ∗

2 (I2 − 3) + W ∗
3 (I3 − 1) + W ∗

4 (I4 − 1) + p (J − 1), (19)

where W ∗
i (i = 1, .., 4) are the material parameters. As may well be expected, the curves

v̄2

0

1

2

3

4

5

6

7

8

9

-15 -10 -5 0 5 10 15

σ3

Figure 1: Surface wave speed against the normal Cauchy stress for the linear strain-energy

function (19) with λ1 = 1.3, λ2 = 0.7 and W ∗
1 = W ∗

2 = W ∗
3 = W ∗

4 = 0.5: φ = 10 (solid

curve), φ = 300 (dashed curve), 600 (dotted curve) and 890 (dotted and dashed curve).

are generally of parabolic type, allowing real surface wave speed only within a certain

interval of σ3. Such curves are a generic feature of surface waves in pre-stressed elastic

media.

4.1 Special angles of the fibre.

In this subsection we consider the two special cases of the fibres being along the principal

directions, corresponding to φ = 0 and φ = π/2. As mentioned in the previous section,

in this case the analysis simplifies significantly due to the fact that µ = δ = 0. As a

consequence, equation (11) is now a bi-quadratic in q, namely

γq4 + (2β − v̄2)q2 + α− v̄2 = 0, (20)
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from which we obtain

γ(q2
1 + q2

2) = v̄2 − 2β, γq2
1q

2
2 = α− v̄2. (21)

Expressions for the incremental traction components also take simpler forms

τ
(1)
1 = (B1111 + p̄)u1,1 + B1133 u3,3 − p∗, τ

(1)
3 = (B1331 + p̄) u1,3 + B1313 u3,1,

τ
(3)
1 = B3131 u1,3 + (B1331 + p̄) u3,1, τ

(3)
3 = B1133 u1,1 + (B3333 + p̄) u3,3 − p∗.

(22)

Substituting solutions (13) into the traction free boundary conditions (14) and following

a procedure similar to that used in the general case, we obtain the surface wave speed

equation

T1(q1)T2(q2, v̄
2)− T1(q2)T2(q1, v̄

2) = 0, (23)

where now

T1(q) = γq2 − (γ − σ3), T2(q, v̄2) = γq3 + (γ − σ3 − v̄2 + 2β)q. (24)

Using the sum and product of the roots of the secular equation (20) which satisfy the

decay condition, and introducing

γη2 = α− v̄2, (25)

equation (23) may now be transformed to the rather well-known form

η3 + η2 +
(

2γ + 2β − 2σ3 − α

γ

)
η −

(
γ − σ3

γ

)2

= 0, (26)

see Dowaikh and Ogden [4] for a full analysis of this equation. Equation (26) is formally

identical to the one obtained in the cited paper and is shown there to have a unique

positive root for η.

4.2 Almost inextensible case

Let us now consider an important special case when the the material is assumed to be

almost inextensible along the fibre direction. An appropriate strain-energy function may

then be introduced in the form

W ∗ = W ∗
0 (I1, I2, I3) +

1
8
E (I4 − 1)2 − p (J − 1). (27)

In equation (27) the strain energy function is obtained by use of a Taylor series expansion

appropriate to the case in which (I4− 1) is small. It may be shown that nothing is gained
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by inclusion of a linear term in (I4 − 1) and that E is an extensional modulus along the

fibre direction, see Rogerson and Scott [15] and Scott [16]. We will assume that E is much

larger than any other material constant and is O((I4 − 1)−1), so that in the inextensible

limit E →∞ and (I4− 1) → 0 in such a way that the product E(I4− 1) → 2T0, where T0

is an arbitrary tension along the fibre direction.

The elasticity tensor may then be represented in the form

Bijkl = B̃ijkl + T0δjlaiak + E aiajakal, T0 =
E (I4 − 1)

2
, (28)

where tilde denotes dependence only on the three invariants I1, I2, I3 with the non-zero

elasticity tensor components given by

B1111 = B̃1111 + T0c
2
φ + Ec4

φ, B1113 = B̃1113 + Ec3
φsφ, B1131 = B̃1131 + T0cφsφ + Ec3

φsφ,

B1133 = B̃1133 + Ec2
φs2

φ, B1313 = B̃1313 + T0c
2
φ + Ec2

φs2
φ, B1331 = B̃1331 + Ec2

φs2
φ,

B1333 = B̃1333 + T0cφsφ + Ecφs3
φ, B3131 = B̃3131 + T0s

2
φ + Ec2

φs2
φ,

B3133 = B̃3133 + Es3
φcφ, B3333 = B̃3333 + T0s

2
φ + Es4

φ .

v̄2

0

1

2

3

4

5

6

7

8

9

-100 -50 0 50 100

σ3

Figure 2: Surface wave speed against the normal Cauchy stress for the almost inextensible

strain-energy function (27) with λ1 = 1.3, λ2 = 0.7 and W ∗
1 = W ∗

2 = W ∗
3 = 0.5 for φ = 10:

E = 10.0 (solid curve), E = 100.0 (dashed curve), E = 1, 000.0 (bold dotted curve) and

E = 10, 000.0 (dotted curve).
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v̄2
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Figure 3: Surface wave speed against the normal Cauchy stress for the almost inextensible

strain-energy function (27) with λ1 = 1.3, λ2 = 0.7 and W ∗
1 = W ∗

2 = W ∗
3 = 0.5 for φ = 300:

E = 10.0 (solid curve), E = 100.0 (dashed curve), E = 1, 000.0 (bold dotted curve) and

E = 10, 000.0 (dotted curve).

Some graphical illustrations of the surface wave speed for various angles of the fibre

and several values of the extensional modulus are presented in Figures 2 and 3. It may

be observed that Figure 2 demonstrates the typical type of behavior previously noted

by Prikazchikov and Rogerson [17]. The curves of Figure 3, however, reveal some new

features, namely that the point of degeneration of the surface wave speed into a body

wave at the limiting speed vL, the maximum speed, clearly depends on the value of the

extensional modulus E. It is also worth remarking that the range of σ3 within which a

surface wave is possible increases as E increases. However, as E becomes large the surface

wave degenerates into a body wave.

5 Edge vibration of a semi-infinite strip

This section is devoted to the study of free and forced edge vibrations of a semi-infinite

strip subject to some mixed face boundary conditions. For simplicity, we assume that the

fibres are parallel or perpendicular to the propagation direction. This will allow us to later

decouple the problem and separate the transverse variable x1. The domain occupied by
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the semi-strip is given by

−h ≤ x1 ≤ h, 0 ≤ x3 < ∞. (29)

There are three types of mixed boundary conditions which may be imposed at the faces

x1 = ±h, for more details see Kaplunov et al. [11]. Here we will restrict our attention

to one of those, namely to the case of a so-called “frictionless enclosure”, in which the

transverse displacements are precluded. This may be interpreted physically as the strip

being surrounded by a stiff and frictionless enclosure. The face boundary conditions may

then be written as

u1 = τ
(1)
3 = 0 at x1 = ±h. (30)

The other two cases of mixed boundary conditions given in Kaplunov et al. [11] may be

treated similarly, however the details are not included in this paper.

5.1 Free vibrations of a semi-infinite strip

In the case of the free vibration problem, edge boundary conditions may be expressed as

τ
(3)
1 = 0, τ

(3)
3 = 0 at x3 = 0. (31)

The governing equations of motion are taken in the form

B1111u1,11 + (B1133 + B1331)u3,13 + B3131u1,33 − p∗,1 = ρü1, (32)

B1313u3,11 + (B1133 + B1331)u1,13 + B3333u3,33 − p∗,3 = ρü3, (33)

which must be solved together with the linearised incompressibility condition

u1,1 + u3,3 = 0. (34)

The solution for the displacements and pressure increment may be assumed to be in the

form of two families

(u1, u3, p∗) = (U sin p1x1,W cos p1x1, p1P cos p1x1) e−iqIx3eiωt, (35)

(u1, u3, p∗) = (U cos p2x1,W sin p2x1, p2P sin p2x1) e−iqIIx3eiωt. (36)

We note that solutions (35) and (36) satisfy the mixed face boundary conditions (30)

provided

p1 =
Λn

s,(1)

h
, Λn

s,(1) = nπ, p2 =
Λn

s,(2)

h
, Λn

s,(2) =
(2n− 1)π

2
, (37)
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with n = 1, 2, 3, ... .

We will consider the problem for the first family of solutions in detail and only present

the main results for the second family. Substituting solutions (35) into the equations of

motion and the incompressibility condition we arrive at a homogeneous system of equations

in U,W and P , from which it is possible to obtain the condition for this system to yield

non-trivial solutions in the form

γ(q̂I)4 +
{

2β − Ω̂2
1

}
(q̂I)2 +

{
α− Ω̂2

1

}
= 0, q̂I =

qIh

Λn
s,(1)

, Ω̂1 =
√

ρωh

Λn
s,(1)

. (38)

Using the equations of motion and the incompressibility condition, we may now present

solutions for the displacements and the pressure increment as

u1 =

{
2∑

k=1

iq̂I
kW

(k)e
−iq̂I

kΛn
s,(1)

ζ

}
sin

(
Λn

s,(1)ξ
)

eiωt,

u3 =

{
2∑

k=1

W (k)e
−iq̂I

kΛn
s,(1)

ζ

}
cos

(
Λn

s,(1)ξ
)

eiωt, (39)

p∗ =

{
2∑

k=1

ip1q̂
I
kW

(k)H(q̂I
k,Ω

2
1)e

−iq̂I
kΛn

s,(1)
ζ

}
cos

(
Λn

s,(1)ξ
)

eiωt,

where q̂I
k (k = 1, 2) are the two roots of the secular equation (38), which satisfy the decay

condition =(q) < 0 and

x1 = hξ, x3 = hζ, H(q̂, Ω̂2) = q̂2B3131 + (B1111 −B1133 −B1331)− Ω̂2. (40)

Substituting solutions (39) into the traction free edge boundary conditions (31), we

arrive at a homogeneous system in W (1) and W (2), namely

2∑

k=1

T1(q̂I
k) W (k) = 0,

2∑

k=1

T2(q̂I
k, Ω̂

2
1) W (k) = 0, (41)

where the functions T1(q) and T2(q, Ω2) were defined in (24). The condition that this

system possesses non-trivial solutions may be written as

S1s(q̂I
1 , q̂

I
2 , Ω̂

2
1) ≡ T1(q̂I

1)T2(q̂I
2 , Ω̂

2
1)− T1(q̂I

2)T2(q̂I
1 , Ω̂

2
1) = 0. (42)

Using the sum and product of the roots of the secular equation (38), taking note of the

decay condition and introducing

η =

√
α− Ω̂2

1

γ
, (43)
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it is possible to rewrite (42) as

η3 + η2 +
(

2γ + 2β − 2σ3 − α

γ

)
η −

(
γ − σ3

γ

)2

= 0, (44)

which is precisely equation (26), possessing a unique positive solution for η, see Dowaikh

and Ogden [4].

Thus, we have established a link between the edge spectrum of the semi-strip with the

speed of the Rayleigh-type wave localised near the edge x3 = 0, namely

Ω(n)
1 =

Λn
s,(1)cR

h
, (45)

where cR denotes the Rayleigh wave speed value. The corresponding eigenfunctions may

be obtained as

u1 =
{
T2(q̂I

2 , Ω̂
2
1) iq̂I

1e
−iq̂I

1Λn
s,(1)

ζ − T2(q̂I
1 , Ω̂

2
1) iq̂I

2e
−iq̂I

2Λn
s,(1)

ζ
}

sin(Λn
s,(1)ξ)W̃0,

u3 =
{
T2(q̂I

2 , Ω̂
2
1) e

−iq̂I
1Λn

s,(1)
ζ − T2(q̂I

1 , Ω̂
2
1) e

−iq̂I
2Λn

s,(1)
ζ
}

cos(Λn
s,(1)ξ)W̃0, (46)

p∗ = ip1

{
−T2(q̂I

2 , Ω̂
2
1)H(q̂I

1 , Ω̂
2
1)q̂

I
1e
−iq̂I

1Λn
s,(1)

ζ + T2(q̂I
1 , Ω̂

2
1)H(q̂I

2 , Ω̂
2
1)q̂

I
2e

i−q̂I
2Λn

s,(1)
ζ
}
×

cos(Λn
s,(1)ξ)W̃0,

where the variation in time has been included in W̃0. Some typical graphical illustrations,

depicting the displacement eigenmodes decaying away from the edge x3 = 0, are presented

in Figure 4. The dependence of the transverse displacement eigenmodes on the longitudinal

variable x3 is shown on Figure 4(a). It may be observed that the displacement is localised

near the edge x3 = 0 and decays rapidly away from the edge. It is also clear from (46)

that it decreases more rapidly as the mode number n increases. Similar features may be

observed for the longitudinal displacement presented in Figure 4(b).

Analogous results can be obtained for the second family of solutions (36). The solutions

for the displacements and the pressure increment may first be obtained as

u1 =

{
2∑

k=1

−iq̂II
k W (k)e

−iq̂II
k Λn

s,(2)
ζ

}
cos

(
Λn

s,(2)ξ
)

eiωt,

u3 =

{
2∑

k=1

W (k)e
−iq̂II

k Λn
s,(2)

ζ

}
sin

(
Λn

s,(2)ξ
)

eiωt, (47)

p∗ =

{
2∑

k=1

ip2q̂
II
k W (k)H(q̂II

k , Ω̂2
2)e

−iq̂II
k Λn

s,(2)
ζ

}
sin

(
Λn

s,(2)ξ
)

eiωt,
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Figure 4: (a) The imaginary part of u1, showing decay away from the edge in respect of

the linear strain-energy function (19) with λ1 = 1.3, λ2 = 0.7 and W ∗
1 = W ∗

2 = W ∗
3 =

W ∗
4 = 0.5: First mode (solid curve), second mode (dashed curve), third mode (dotted

curve).

(b) The imaginary part of u2, showing decay away from the edge in respect of the linear

strain-energy function (19) with λ1 = 1.3, λ2 = 0.7 and W ∗
1 = W ∗

2 = W ∗
3 = W ∗

4 = 0.5:

First mode (solid curve), second mode (dashed curve), third mode (dotted curve).
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where q̂II
k (k = 1, 2) are the decaying roots of

γ(q̂II)4 +
{

2β − Ω̂2
2

}
(q̂II)2 +

{
α− Ω̂2

2

}
= 0, q̂II =

qIIh

Λn
s,(2)

, Ω̂2 =
√

ρωh

Λn
s,(2)

, (48)

with ξ, ζ and H(q̂, Ω̂2) defined in (40).

Substituting solutions (47) into the traction free edge boundary conditions (31), we

arrive at a homogeneous system in W (1) and W (2)

2∑

k=1

T1(q̂II
k ) W (k) = 0,

2∑

k=1

T2(q̂II
k , Ω̂2

2) W (k) = 0, (49)

from which we obtain the edge wave speed equation as a condition of this system possessing

non-trivial solutions

S2s(q̂II
1 , q̂II

2 , Ω̂2
2) ≡ T1(q̂II

1 )T2(q̂II
2 , Ω̂2

2)− T1(q̂II
2 )T2(q̂II

1 , Ω̂2
2) = 0. (50)

After some small algebraic manipulations it can be presented as

η3 + η2 +
(

2γ + 2β − 2σ3 − α

γ

)
η −

(
γ − σ3

γ

)2

= 0, (51)

where

η2 =
α− Ω̂2

2

γ
. (52)

Thus, once again a link between the edge spectrum of the semi-strip with the speed of

the associated Rayleigh-type wave may be established in the form

Ω(n)
2 =

Λn
s,(2)cR

h
. (53)

The corresponding eigenfunctions may be obtained as

u1 =
{
−T2(q̂II

2 , Ω̂2
2) iq̂II

1 e
−iq̂II

1 Λn
s,(2)

ζ + T2(q̂II
1 , Ω̂2

2) iq̂II
2 e

−iq̂II
2 Λn

s,(2)
ζ
}

cos(Λn
s,(2)ξ)W̃0,

u3 =
{
T2(q̂II

2 , Ω̂2
2) e

−iq̂II
1 Λn

s,(2)
ζ − T2(q̂II

1 , Ω̂2
2) e

−iq̂II
2 Λn

s,(2)
ζ
}

sin(Λn
s,(2)ξ)W̃0, (54)

p∗ = ip2

{
−T2(q̂II

2 , Ω̂2
2)H(q̂II

1 , Ω̂2
2)q̂

II
1 e

−iq̂II
1 Λn

s,(2)
ζ + T2(q̂II

1 , Ω̂2
2)H(q̂II

2 , Ω̂2
2)q̂

II
2 e

−iq̂II
2 Λn

s,(2)
ζ
}

× sin(Λn
s,(2)ξ)W̃0,

where the variation in time has been included in W̃0.
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5.2 Forced vibration of a semi-infinite strip

We now consider the problem of forced vibration. In the case of the first family of solutions

(35), illustrative edge boundary conditions are taken in the form

f(x1) = τ
(3)
1

∣∣
x3=0

= 0,

g(x1) = τ
(3)
3

∣∣
x3=0

= σ0

(
1
3
− x2

1

h2

)
eiωt or g̃(ξ) = σ0

(
1
3
− ξ2

)
eiωt.

(55)

This type of loading allows g̃(ξ) to be expanded as a Fourier series in respect of the

eigenfunctions, namely

g̃(ξ) =
4σ0

π2

∞∑

n=1

(−1)n+1 cos(Λn
s,(1)ξ)

n2
eiωt. (56)

Using (39), it is now possible to represent the boundary conditions as

∞∑

n=1

{
T1(q̂I

1)W
(1)
n + T1(q̂I

2)W
(2)
n

}
= 0, (57)

∞∑

n=1

{
T2(q̂I

1 , Ω̂
2
1)W

(1)
n + T2(q̂I

1 , Ω̂
2
1)W

(2)
n

}
= 4σ0h

∞∑

n=1

(−1)n+1

[Λn
s,(1)]

3
. (58)

From these two equations it may be deduced that

W (1)
n =

4iσ0hT1(q̂I
2) (−1)n+1

[Λn
s,(1)]

3S1s(q̂I
1 , q̂

I
2 , Ω̂

2
1)

, W (2)
n =

4iσ0hT1(q̂I
1) (−1)n

[Λn
s,(1)]

3S1s(q̂I
1 , q̂

I
2 , Ω̂

2
1)

. (59)

Appropriate solutions for the displacement components and pressure increment associated

with the nth harmonic are provided by

u
(n)
1 =

{
2∑

m=1

iq̂I
mW (m)

n e
−iq̂I

mΛn
s,(1)

ζ

}
sin

(
Λn

s,(1)ξ
)

eiωt, (60)

u
(n)
3 =

{
2∑

m=1

W (m)
n e

−iq̂I
mΛn

s,(1)
ζ

}
cos

(
Λn

s,(1)ξ
)

eiωt, (61)

p∗(n) =

{
2∑

m=1

−ip1 q̂I
mW (m)

n H(q̂I
m, Ω̂2

1)e
−iq̂I

mΛn
s,(1)

ζ

}
cos

(
Λn

s,(1)ξ
)

eiωt. (62)

Kaplunov et al.[11], in the context of an incompressible pre-stressed isotropic elastic

semi-strip, have shown that pre-stress may crucially effect the edge resonance phenom-

ena. Here we will also demonstrate this phenomena in the case of a strip composed of a

fibre-reinforced pre-stressed elastic material. It is known that a surface wave propagates

provided the normal Cauchy stress σ3 is in the interval of

σ3 = γ −√γα + d
√

2
√

γα(β +
√

γα), d ∈ [−1..1], (63)
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Figure 5: (a) The displacement u1 as the surface wave speed tends to zero for the linear

strain-energy function (19) with λ1 = 1.3, λ2 = 0.7 and W ∗
1 = W ∗

2 = W ∗
3 = W ∗

4 = 0.5 and

d = −0.5,

(b) The displacement u1 as the surface wave speed tends to zero for the linear strain-energy

function (19) with λ1 = 1.3, λ2 = 0.7 and W ∗
1 = W ∗

2 = W ∗
3 = W ∗

4 = 0.5 and d = −0.95.
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see Dowaikh and Ogden [4]. Furthermore, the ends of the stability interval, where d = 1

and d = −1, provide a standing wave. In the case when the surface wave speed tends

to zero, the phenomena of edge spectrum density increase may be observed. A clear

confirmation of this may be noticed from Figure 5. Figures 5(a) and (b) are plotted for

different values of normal Cauchy stress such that the surface wave speed tends to zero.

Figure 5(a) corresponds to d = −0.5 and Figure 5(b) is produced for d = −0.95. It may

be observed that as d → −1 the density of resonances increases and in the limit they will

all merge into zero.

Another possible feature of pre-stress is that the surface wave may degenerate into a

body wave. It is known from Dowaikh and Ogden [4] that the value of σ3 = γ corresponds

to degeneration of the surface wave into a body wave. The four displacement modes

presented on Figure 6 are calculated for σ3 = γ + ∆ with ∆ tending to zero from (a) to

(d). It is anticipated that the amplitude of the resonances should vanish as the body wave

speed is approached, and this is readily observed from Figure 6. One point worth remarking

in respect of Figures 5 and 6 is the applicability of the linearised theory when such large

resonance-type displacements are present. Such a theory, based upon a small amplitude

assumption, is not able to accurately determine stresses and other field quantities within,

or close to, resonance-type states. It is however, perfectly capable of establishing the set

of circumstances when this type of phenomena will occur. Moreover, our intention in

presenting these figures is to demonstrate the role played by pre-stress in the on-set or

removal of such potential resonance-type phenomena.

Similar results may readily be obtained for the second family of solutions (5.8). We

now suppose

f(x1) = τ
(3)
1

∣∣
x3=0

= σ0

(
1
3
− x2

1

h2

)
eiωt or f̃(ξ) = σ0

(
1
3
− ξ2

)
eiωt,

g(x1) = τ
(3)
3

∣∣
x3=0

= 0.

(64)

The function f(x1) may now be expanded as a Fourier series to reveal

f̃(ξ) =
32σ0

π3

∞∑

n=1

(−1)n cos(Λn
s,(2)ξ)

(2n + 1)3
eiωt. (65)
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Figure 6: The displacement u1 for different stress values as the surface wave speed degen-

erates into a body wave for the linear strain-energy function (19) with λ1 = 1.3, λ2 = 0.7

and W ∗
1 = W ∗

2 = W ∗
3 = W ∗

4 = 0.5 and σ3 = γ + ∆ for (a) ∆ = 1.5, (b) ∆ = 1.0, (c)

∆ = 0.5, (d) ∆ = 0.1.

The boundary conditions may then be represented in the form

∞∑

n=1

{
T1(q̂II

1 )W (1)
n + T1(q̂II

2 )W (2)
n

}
= 4σ0h

∞∑

n=1

(−1)n+1

[Λn
s,(2)]

4
, (66)

∞∑

n=1

{
T2(q̂II

1 , Ω̂2
2)W

(1)
n + T2(q̂II

2 , Ω̂2
2)W

(2)
n

}
= 0, (67)

from which the constants W
(1)
n and W

(2)
n may be expressed as

W (1)
n =

4σ0hT2(q̂II
2 , Ω̂2

2) (−1)n+1

[Λn
s,(2)]

4S2s(q̂II
1 , q̂II

2 , Ω̂2
2)

, W (2)
n =

4σ0hT2(q̂II
1 , Ω̂2

2) (−1)n

[Λn
s,(2)]

4S2s(q̂II
1 , q̂II

2 , Ω̂2
2)

. (68)

Appropriate solutions for the displacement components and pressure increment, associated
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with the nth harmonic, are given by

u
(n)
1 =

{
2∑

m=1

−iq̂II
m W (m)

n e
−q̂II

m Λn
s,(2)

ζ

}
cos

(
Λn

s,(2)ξ
)

eiωt, (69)

u
(n)
3 =

{
2∑

m=1

W (m)
n e

−iq̂II
m Λn

s,(2)
ζ

}
sin (Λn

2ξ) eiωt, (70)

p∗(n) =

{
2∑

m=1

−ip2 q̂II
m W (m)

n H(q̂II
m , Ω̂2

2)e
−iq̂II

m Λn
s,(2)

ζ

}
sin

(
Λn

s,(2)ξ
)

eiωt. (71)

5.3 Edge vibration of a nearly inextensible semi-infinite strip

We now examine the free and forced edge vibration problems in case of the fibres being

almost inextensible. We consider the strain-energy function of the form given in (27). Let

us now specify the fiber direction as φ = 0 and the propagation direction along x1. The

associated non-zero elasticity tensor components take form

B1111 = B̃1111 + T0 + E, B1133 = B̃1133, B1313 = B̃1313 + T0,

B1331 = B̃1331, B3131 = B̃3131, B3333 = B̃3333,

and hence

α = α̃ + T0, γ = γ̃, 2β = 2β̃ + T0 + E,

where as previously the values with over-tilde denote their dependence only on the invari-

ants I1, I2 and I3.

This allows us to perform a simple analysis of (38), from which we deduce that

q̂2
1 + q̂2

2 = O(E), q̂2
1 q̂

2
2 = O(1), (72)

which implies without loss of generality that

q̂2
1 = O(E), q̂2

2 = O(E−1). (73)

The free displacements and the pressure increment eigenmodes are provided by expres-

sions (46) and (54) for the first and second families of natural frequencies, respectively.

Let us now illustrate the dependence of the displacement eigenfunctions on the value of

extensional modulus E by considering the first family of solutions. It may be deduced

from (46) that in case of large E the displacements will not decay exponentially. However

u1 will tend to zero as E tends to infinity. The dependence of the in-plane displacement on
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Figure 7: The displacement u1 against the longitudinal variable x3 for different values of

extensional modulus in case of the strain-energy function (27) with λ1 = 1.3, λ2 = 0.7 and

W ∗
1 = W ∗

2 = W ∗
3 = W ∗

4 = 0.5: E = 10.0 (solid curve), E = 100.0 (dashed curve) and

E = 1, 000.0 (dotted curve).
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the longitudinal variable x3 is illustrated in Figure 7 for different values of the extensional

modulus E. It seems natural from the corresponding illustrations for surface wave, in

Figure 2, that as E increases the localisation effect weakens up to its disappearance as

the surface wave tends to a body wave. The confirmation of this may be observed from

Figure 7. The in-plane displacement u1 is small of order O(E−0.5), whereas the other

displacement u3 is relatively large in comparison and is not localised near the edge due to

the fact that it represents a body wave.

Let us now discuss briefly the forced vibration problem. The resonance amplitude is

anticipated to vanish as E tends to infinity due to the fact that a surface wave degenerates

into a body wave. A numerical investigation quickly confirms this. We remark that the

illustrations look very similar to those on Figure 6 and therefore are not presented in this

paper.

6 Conclusions

The problem of surface wave propagation in pre-stressed, incompressible, transversely

isotropic elastic media has been investigated, together with the closely related problem of

localised edge vibration of a semi-infinite strip composed of similar material. It has been

shown that there exists a very simple relationship between the edge vibration frequencies

and the Rayleigh surface wave speed. For certain pre-stressed states the Rayleigh surface

wave speed may approach either zero or the limiting body wave speed. These cases are

associated with quasi-static surface deformations and degeneration of a surface wave into

a body wave, respectively. Both of these types of pre-stressed state have been shown to

greatly influence the edge spectrum, with the former yielding a large increase in spectrum

density and the former removing the localised vibrations completely.

The study lays the foundation for more detailed investigations to fully elucidate the

class of boundary conditions, material anisotropy and pre-stress which can support such

vibration modes. As we have established in the case of pre-stress, the existence of such

localised phenomena cannot be taken for granted. It is envisaged that having the ability to

predict the existence of such localised phenomena will have application to non-destructive

evaluation. Moreover, the specific application within thin structures has direct relevance

to understanding the dynamic behaviour of thin structural components. This paper helps

provide the basis for various examples of thin structures, many of which will require very
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delicate treatment of the boundary conditions.

Acknowledgement

The work of D.A. Prikazchikov was supported by a London Mathematical Society grant

and also by the University of Salford. These awards are very gratefully acknowledged.

References

1. Lord Rayleigh, “On waves propagated along the plane surface of an elastic solid,” Proc.

Lond. Math. Soc., 17, 4–11 (1885).

2. M. A. Hayes, and R. S. Rivlin, “Surface waves in deformed elastic materials,” Arch.

Ration. Mech. Analysis, 8, 358–380 (1961).

3. P. Chadwick, and D. A. Jarvis, “Surface waves in a pre-stressed elastic body,” Proc.

Roy. Soc. Lond., Ser. A, 366, 517–536 (1979).

4. M. A. Dowaikh and R. W. Ogden, “On surface waves and deformations in a pre-stressed

incompressible elastic solid,” IMA Jl. Appl. Math., 44, 261–284 (1990).

5. E. A. Shaw “On the resonant vibrations of thick barium titanate disks,” J. Acoust. Soc.

Am., 28, 38–50 (1956).

6. D. C. Gazis and R. D. Mindlin, “Extensional vibrations and waves in a circular disk

and a semi-infinite plate,” J. Appl. Mech., 27, 541–547 (1960).

7. P. J. Torvik, “Reflection of wave trains in semi-infinite plates,” J. Acoust. Soc. Am.,

41, 346–353 (1967).

8. R. D. Gregory and I. Gladwell, “The reflection of a symmetric Rayleigh-Lamb wave at

the fixed or free edge of a plate,” J. Elasticity, 13, pp. 185–206 (1983).

9. I. Roitberg, D. Vassiliev and T. Weidl, “Edge resonances in an elastic semi-strip,” Quart

Jl. Mech. Appl. Math., 51, 1–13 (1998).

10. J. D. Kaplunov, L. Yu. Kossovich and M. V. Wilde, “Free localized vibrations of a

semi-infinite cylindrical shell,” J. Acoust. Soc. America 107, 1383–1393 (2000).

11. J. D. Kaplunov, D. A. Prikazchikov and G. A. Rogerson, “Edge vibration of a pre-

stressed semi-infinite strip with traction-free edge and mixed face boundary conditions,”

Jl. Appl. Math. Phys. (ZAMP), 55, 701–719 (2004).

24



12. J. D. Kaplunov, D. A. Prikazchikov and G. A. Rogerson, “On 3D edge waves in a

semi-infinite plate,” J. Acoust. Soc. America, 118(5), pp.2975-2983, 2005.

13. D. A. Prikazchikov and G. A. Rogerson, “Some comments on the dynamic properties

of anisotropic and strongly anisotropic pre-stressed elastic solids,” Int. Jl. Eng. Sci., 41,

149–171, (2003).

14. R. W. Ogden, Non-linear elastic deformations. Dover: Ellis Horwood (1984).

15. G.A. Rogerson and N. H. Scott, “Wave propagation in singly constrained and nearly

constrained elastic materials,” Quart Jl. Mech. Appl. Math., 45, 77–99 (1992).

16. N. H. Scott, “Waves in homogeneously pre-strained incompressible, almost inextensi-

ble, fibre-reinforced elastic material,” Proc. Roy. Irish Acad., 92, pp. 9–36 (1992).

17. D. A. Prikazchikov and G. A. Rogerson, “On surface wave propagation in incompress-

ible, transversely isotropic, pre-stressed elastic half-spaces”. Int. Jl. Eng. Sci., 42, pp.

967-986 (2004).

18. A. J. M. Spencer, Deformations of fibre-reinforced materials. Clarendon Press, Oxford

(1972).

19. Oppenheimer, M, “Global warming and the stability of the West Antarctic Ice Sheet,”

Nature, 393, p 325 (1998).

20. Inoue, Y, Arai, M, Tabeta, S and Nakazawa, K, “Dynamic Behaviour of a Float-

ing Airport and Its Effects on Ocean Current”,Proc. International Offshore and Polar

Engineering Conference, 3, pp406–413 (1995).

21. Suzuki,H. and Yoshida,K. “A Consideration on the Dynamic Behaviour and the Struc-

tural Design of Large Scale Floating Structure”, Journal of the Society of Naval Architects

of Japan, 178, pp.473–483 (1995).

Appendix A

The components of the fourth order elasticity tensor are given by

Bmilk = FmAFiB
∂2W ∗

∂FkB∂FiA

and evaluated in the pre-stressed equilibrium state. The specific components of this tensor

are obtained by inserting the strain energy function (2.2) into the above definition, with
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the non-zero components taking the following forms

B1111 = 2λ2
1 [W1 + W2Σ23] + 4λ4

1

[
W11 + 2W12Σ23 + W22Σ2

23

]

+ 4λ2
1c

2
φ

[
3W3 + 4λ2

1

{
W31 + W32Σ23 + W33c

2
φ

}
+ 4W34c

2
φ

]

+ 2c2
φ

[
W4 + 2W44c

2
φ + 4λ2

1 {W41 + W42Σ23}
]
,

B1113 = 2s2φ

[
λ2

1

{
W3 + Σ13

(
W31 + W32Σ23 + 2W33c

2
φ

)
+ W41 + W42Σ23

}

+c2
φ(W34(2λ2

1 + Σ13) + W44)
]
,

B1131 = s2φ

[
(2λ2

1 + Σ13)(W3 + 2W34c
2
φ) + 2λ2

1(W41 + W42Σ23) + W4 + 2W44c
2
φ

+2λ2
1Σ13

{
W31 + W32Σ23 + 2W33c

2
φ

}]
,

B1133 = 4λ2
1λ

2
3 [W2 + W11 + W12(Σ12 + Σ23) + W22Σ12Σ23] + 4W41(λ2

1s
2
φ + λ2

3c
2
φ)

+ 8λ2
1λ

2
3

[
W31 + W32(Σ12c

2
φ + Σ23s

2
φ)

]
+ s2

2φ

[
W44 + 2W34Σ13 + 4W33λ

2
1λ

2
3

]

+ 4W42

[
λ2

1λ
2
3 + λ2

2(λ
2
1s

2
φ + λ2

3c
2
φ)

]
,

B1313 = 2λ2
1(W1 + W2λ

2
2) + 2W3(λ2

1 + Σ13c
2
φ) + 2W4c

2
φ + s2

2φ

[
W33Σ2

13 + 2W34Σ13 + W44

]
,

B1331 = −2W2λ
2
1λ

2
3 + 2W3(λ2

1s
2
φ + λ2

3c
2
φ) + s2

2φ

[
W33Σ2

13 + 2W34Σ13 + W44

]
,

B1333 = s2φ

[
(Σ13 + 2λ2

3)(W3 + 2W34s
2
φ) + W4 + 2W44s

2
φ

+2λ2
3

{
Σ13(W31 + 2W33s

2
φ) + Σ12 (W42 + W32Σ13)

}]
,

B3131 = 2λ2
3(W1 + W2λ

2
2) + 2W3(λ2

3 + Σ13s
2
φ) + 2W4s

2
φ

+ s2
2φ

[
W44 + 2W34Σ13 + W33Σ2

13

]
,

B3133 = 2λ2
3s2φ

[
W3 + W41 + W42Σ12 + Σ13

{
W33s

2
φ + W32Σ12

}]

+ 2s2
φs2φ

[
W44 + W34(Σ13 + 2λ2

3)
]
,

B3333 = 2λ2
3 [W1 + W2Σ12] + 4λ4

3

[
W11 + 2W12Σ12 + W22Σ2

12

]

+ 4λ2
3s

2
φ

[
3W3 + 4λ2

3

{
W31 + W32Σ12 + W33s

2
φ

}
+ 4W34s

2
φ

]

+ 2s2
φ

[
W4 + 2W44s

2
φ + 4λ2

3 {W41 + W42Σ12}
]
,

where

Wk =
∂W

∂Ik
, Wnm =

∂2W

∂In∂Im
, k,m, n = 1, 2, 3, 4,

cφ = cosφ, sφ = sin φ, s2φ = sin 2φ, Σij = λ2
i + λ2

j , 1 ≤ i 6= j ≤ 3.
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