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An expression for the electromagnetic field energy density in a dispersive lossy left-handed metamaterial,
consisting of an array of split-ring resonators and an array of wires, is derived. An electromagnetic field with
general time dependence is considered. The outcome is compared with previously published results. In the
absence of losses, agreement with the general result for the energy density in a dispersive material is obtained.
The formulae are verified using the finite-difference time-domain numerical method. The applicability of two
commonly used permeability models to the problem of calculating the energy stored in an array of split-ring
resonators is discussed.
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I. INTRODUCTION

There is now a strong interest in the properties of the
left-handed metamaterials �LHM�.1–3 Because of this, formu-
lating the electromagnetic field energy density in such mate-
rials has been addressed several times,4–7 and a number of
different methods have been deployed.

As already pointed out,4 it ought to be the case that any
conclusions that can be drawn concerning the electromag-
netic energy density in a lossy dispersive material can be
found easily in the literature. However, it appears that a pre-
cise answer is difficult to find, and this is because there are
no general formulations, that are valid for arbitrary materials.
In the presence of dispersion and losses, a knowledge of the
permittivity and permeability functions alone is insufficient
to provide an expression for the stored electromagnetic en-
ergy density.7 This is because a very detailed model of the
microstructured medium under investigation is needed. Un-
fortunately, this means that the problem of finding the energy
density has to be solved separately for every material.

A long time ago, Loudon8 provided a beautiful discussion
on how to include loss in the electromagnetic field energy. In
this age of metamaterials, it is important to see to what ex-
tent the arguments put forward by Loudon can still be used.
In addition to the question of loss, it is also important to
demonstrate that even a metamaterial of the kind that is often
called left-handed will still have a positive energy, and avoid
the possibility that a negative energy—which is unacceptable
physically—might appear.4 To address all of these issues, a
new discussion of the energy density in metamaterials is pre-
sented here. It not only makes contact with the original work
of Loudon,8 but also with a recent and exciting work in the
field.7

Specifically, Loudon8 considered dielectrics with Lorentz
type of dispersion, and this has been generalized to include a
material in which both the permittivity and the permeability
are Lorentz type.5,6 The closed-form expressions that have
emerged, coupled to the numerical calculations, show that
the energy density is always causal and always positive.

Physically speaking, however, the arrays of split-ring
resonators that provide the negative permeability in LHM
cannot be considered as a Lorentz type of medium.9,10 To

move the axiomatic Lorentz restriction, a recent approach
has produced another expression for the energy density for
such arrays.7 This progress has been achieved, however, un-
der conditions of time-harmonic excitation. The general case,
using electromagnetic fields with arbitrary time dependen-
cies �e.g., short pulses� has not been considered yet; so this
provision is one of the principle aims of the present study.
The other one is to find a way of discussing the electromag-
netic energy in LHM that is internally consistent, in the sense
that it is robust with respect to low loss and high loss limits.

In this paper, the Loudon approach8 permits the derivation
of an expression for the energy density in an LHM consisting
of a split-ring resonator array9,10 and an array of wires.3 An
arbitrary time dependence of the electromagnetic field is as-
sumed. The energy density is then compared to the previ-
ously reported7 time-harmonic electromagnetic field case and
to the result for the energy density in Lorentz media.5–7 It is
shown that in a lossless dispersive material, the result de-
rived here reproduces the general formula for the electro-
magnetic energy density.11 The new result for the energy
density associated with the split-ring resonator array is used
in conjunction with finite-difference time-domain �FDTD�
solutions of Maxwell’s equations to show that energy con-
servation is satisfied to a high degree of accuracy.

II. ELECTROMAGNETIC ENERGY DENSITY
IN A LEFT-HANDED METAMATERIAL

The artificial molecules that make up a metamaterial, of
the kind that have been labeled left-handed, are often com-
posed of split- rings and metal wires. The latter provides the
negative relative permittivity behavior, while the former has
the precise behavior of an equivalent LCR circuit under the
restriction that the radius r of the ring is much less than the
electromagnetic wavelength �. It is interesting that this
is actually a very old problem and that the principal result,
concerning the electromagnetic response of such an array,
was published many years ago.9 The recent popularity and
applicability, however, has been driven by the work of
Pendry et al.10 Provided that the inequality r�� is substan-
tially obeyed, the treatment of the artificial molecule as an
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LCR circuit �where L stands for inductance, C for capaci-
tance, and R for resistance� retains its validity. However, an
actual metamaterial is a composite arrived at through a pro-
cess of homogenization. To achieve this outcome, a split-ring
array must be, initially, thought of as being part of particular
lattice. Hence, if it is assumed that the rings are on a lattice
with cubic symmetry, the final outcome is an isotropic
metamaterial. For simplicity, this is the symmetry assumed
here, without loss of generality. A composite isotropic
metamaterial, consisting of an array of split-ring resonators
�SRRs� and an array of wires,12 can be precisely investigated
with an equivalent LCR circuit. The final outcome is a rela-
tive scalar permeability

���� = 1 +
F�2

�0
2 − �2 − i��

, �1�

and a relative scalar permittivity3,9,10

���� = 1 −
�p

2

��� + i��
, �2�

where � is the excitation angular frequency, �p is the effec-
tive plasma frequency, �0 is the resonant frequency, and �
and � are the loss parameters. Note that Eq. �2� is used to
model the behavior of a cold electron plasma. Equation �1�
describes the response of an array of SRRs to an external
magnetic field.9,10 It is important to reemphasize that Eq. �1�
can only be used provided that the ring radius is much less
then the wavelength and this fits into the concept of a
metamaterial as a composite of artificial subwavelength
“molecules.”13 The consequence of this assumption is that it
permits the conduction current to dominate the displacement
current. This physical situation is referred to in electromag-
netics as a quasistatic approximation.11 It is clear that Eq. �1�
does not provide a description of very high-frequency behav-
ior, because as �→�, the permeability �→1−F, while it is
�→1 that should be expected physically. There is straight-
forward physical way to see this by recognizing that the con-
cept of an inductor and capacitor break down at very high
frequencies. It does not mean, however, that the expression
�1� is wrong just because of this limitation on its frequency
behavior. Indeed, it has been suggested14–18 that a Lorentz
model,

���� = 1 +
F�0

2

�0
2 − �2 − i��

�3�

is a suitable form for the relative permeability. Such a model,
however, is axiomatic, since it is not proven by any micro-
scopic considerations. At present, the literature is populated
by both models without apparent difficulty: Some
studies14–18 use Eq. �3� while others7,19,20 use Eq. �1�. This is
easily explained by the fact that the frequency range, that is
interesting for applications, maps onto the resonance region
���0 and this is precisely where both models have similar
behavior. Away from the resonance, the model described in
Eq. �1� fails as �→� because it leads to a relative perme-
ability of �→1−F. On the other hand, the Lorentz model
fails as �→0 leading to an incorrect relative permeability of
1+F. Indeed, the electromotive force driving the current

through the ring and producing the magnetic response of the
ring tends to zero as �→0. Besides that, at low frequencies,
the capacitive gap of the SRR prevents any current from
flowing and, hence, there can be no magnetic response from
the SRR array. This means that the limit �→1 as �→0 is
the correct one in full accordance with Eq. �1�. Thus, the
asymptotic behavior away from the resonance does not make
the model described in Eq. �1� incorrect and does not make
the Lorentz model correct. Neither Eq. �3� nor Eq. �1� alone
cover the entire range of frequencies from zero to infinity.

The electromagnetic energy density for a Lorentz type of
media �3� has been derived earlier.5–8 The corresponding ex-
pression, stemming from the low-frequency model �1� de-
rived here is a complementary one, since its validity covers
both the resonance region and the low-frequency region.

The magnetic induction B�r , t� and the electric displace-
ment D�r , t� vectors can be introduced through the following
constitutive relationships in the time domain

B�r,t� = �0H�r,t� + M�r,t� �4�

and

D�r,t� = �0E�r,t� + P�r,t� , �5�

where r is a spatial vector and t is time. In Eqs. �4� and �5�
�0, �0, H, E, M, and P are the free-space permeability and
permittivity, magnetic and electric-field vectors, magnetiza-
tion, and polarization, respectively. Note that in Eq. �4�, the
magnetization is introduced in a slightly different way, com-
pared to the standard definition B�t�=�0�H�t�+M�t��.11

From Eqs. �1�, �2�, �4�, and �5� the “equation of motion” for
the magnetization is

�2M

�t2 + �
�M

�t
+ �0

2M = − �0F
�2H

�t2 , �6�

and for the polarization, it is

�2P

�t2 + �
�P

�t
= �0�p

2E . �7�

Poynting’s theorem11 implies that

div�E 	 H� = −
�

�t
��0H2

2
+

�0E2

2
� − H ·

�M

�t
− E ·

�P

�t
.

�8�

The material properties enter the electromagnetic field en-
ergy density through the last two terms.

Hence, at this stage, a number of paths can be taken. The
most recent one involves an equivalent circuit �EC�
approach7 to calculating the energy. The latter yields a solu-
tion that does not demand any transformations and integra-
tions of the type that will be done below. An approach in-
volving equivalent circuits is not necessary, however, so
Maxwell’s equations and their consequences can be pro-
cessed directly. By adopting this strategy, which will be re-
ferred to here as the electrodynamic �ED�, the development
will follow the path highlighted by Loudon. One of the
points of interest is to see whether there is both qualitative
and quantitative agreement between the two approaches.
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Using the auxiliary field

C = M + �0FH , �9�

Eq. �6� can be rewritten as

�0
2�0FH

�M

�t
=

1

2

�

�t
�� �C

�t
�2

+ �0
2C2 − �0

2�0
2F2H2�

+ ��� �C

�t
�2

− �0F
�H

�t
·
�M

�t
− �0

2F2� �H

�t
�2� .

�10�

Using Eq. �7� now leads to5,6

�p
2�0E ·

�P

�t
= �� +

1

2

�

�t
�� �P

�t
�2

. �11�

After introducing the electromagnetic field energy density

w = wE + wM , �12�

where wE and wM are the energy densities associated with the
electric and magnetic fields, respectively, the use of Eqs.
�8�–�11� leads to the energy conservation law

div�E 	 H� = −
�wE

�t
−

�wM

�t
− PL, �13�

where PL is the power loss. In Eq. �13�, the energy density of
the electric field is5–7

wE�t� =
�0

2
E2 +

1

�p
2�0

� �P

�t
�2

. �14�

The new result is that the energy density of the magnetic
field is

wM�t� =
�0�1 − F�H2

2
+

1

2�0
2�0F

�� �M

�t
+ �0F

�H

�t
�2

+ �0
2�M + �0FH�2� . �15�

This shows that the magnetic part of the energy density is
strictly positive. Finally, the power-loss term is

PL =
�

�p
2�0

� �P

�t
�2

+
�

�0
2�0F

� �M

�t
+ �0F

�H

�t
� ·

�M

�t
.

�16�

III. TIME-HARMONIC ELECTROMAGNETIC FIELD

Equations �14�–�16� are considerably simplified by adopt-
ing a time-harmonic electromagnetic field. This step intro-
duces complex amplitudes through the definition

A�r,t� =
1

2
„Ã�r,��exp�− i�t� + c .c . … , �17�

where, � is an angular frequency, A stands for each of the

quantities H, E, M, and P, and the phasor Ã is the corre-
sponding complex amplitude. The time-averaged electric and

magnetic energy densities that follow directly from Eqs. �14�
and �15� are

�wE	 =
�0

4
�1 +

�p
2

�2 + �2�
Ẽ
2 �18�

and

�wM	 =
�0

4
�1 + F

�2��0
2�3�0

2 − �2� + �2�2�
�0

2���0
2 − �2�2 + �2�2�

�
H̃
2, �19�

respectively, where �.	 denotes a time average. Equation �18�
is the time-averaged electric component of the energy. The
latter is just a special case of the Lorentz type of
dielectric.5–8 Equation �19� quantifies the ability of a SRR
array, with a permeability function given by Eq. �1�, to store
magnetic energy. Thus, it provides a measure of the response
of the array. Note that �wE	 and �wM	 are strictly positive at
all frequencies, regardless of the values of ���� and ���� at
the operating frequency �. This conclusion has been derived
from the ED approach, but it can also be drawn from the EC
approach.7 Nevertheless, as will be shown below, the ED
approach not only has this property but it leads to the con-
sistent limit in a dispersive lossless material.

If the losses are negligible, the time-averaged energy den-
sity, for a quasi-monochromatic �narrow-band� electromag-
netic field, is11

�w	 =
�0

4

�„�����…
��


Ẽ
2 +
�0

4

�„�����…
��


H̃
2. �20�

Setting �=0 in Eq. �1� and �=0 in Eq. �2�, and using Eq.
�20�, leads to

�w	 =
�0

4
�1 +

�p
2

�2�
Ẽ
2 +
�0

4
�1 + F

�2�3�0
2 − �2�

��0
2 − �2�2 �
H̃
2.

�21�

This is exactly the same result as that obtained by setting �
=0 in Eq. �18� and �=0 in Eq. �19�, which shows that, when
the losses are negligible, the result derived here is consistent
with the general formula for �w	.

For a SRR array with a permeability given by Eq. �1�, the
EC approach7 gives the magnetic component of the time-
averaged energy density in the form

�wM	 =
�0

4
�ef f
H̃
2, �22�

where �eff is the effective energy coefficient

�eff = 1 + F
�2��0

2 + �2�
��0

2 − �2�2 + �2�2 . �23�

On the other hand, the ED approach gives the following

�eff = 1 + F
�2��0

2�3�0
2 − �2� + �2�2�

�0
2���0

2 − �2�2 + �2�2�
. �24�

For a material with Lorentz type of permeability, given by
Eq. �3�, the effective energy coefficient is5–8
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�eff = 1 + F
�0

2��0
2 + �2�

��0
2 − �2�2 + �2�2 . �25�

The time-averaged power �PL�t�	 absorbed by the SRR array,
per unit volume, is

�PL�t�	 =
�0

4

eff�
H̃
2, �26�

where 
eff is the effective energy loss coefficient. Using Eq.
�16� �obtained from the ED approach to Eq. �1�� gives


eff =
F�4

��0
2 − �2�2 + �2�2 . �27�

The same quantity, obtained from the Lorentz model �3� is


eff =
F�2�0

2

��0
2 − �2�2 + �2�2 . �28�

Eqs. �23�–�25�, �27�, and �28� are plotted in Fig. 1. As Figs.
1�a� and 1�b� show, the effective energy coefficients �24�
�obtained from the ED approach to the model �1�� and the
expression �25�, originating from the Lorentz permeability
model Eq. �3�, are in agreement near the resonance ���0,
as is expected. The difference between the two becomes evi-
dent away from the resonance region. As already pointed out
in the low-frequency region, ���0, preference should be
given to Eq. �24� since the Lorentz model �3� does not have
the correct low-frequency limit. On the other hand in the
high-frequency region, ���0, the Lorentz permeability
model, and its consequence Eq. �25� are expected to provide
an adequate description. It has been pointed out7 that the
upper frequency limit above which model �1� is no longer
valid is the frequency at which the effective energy coeffi-

cient Eq. �24� becomes smaller then one. Neglecting the
losses, Eq. �24� yields ��
3�0. The result obtained from
the EC approach, Eq. �23� indeed gives �ef f =1 at �=0, as
Eq. �23� and Fig. 1 show. Note, however, that even in the
resonance region, where Eqs. �24� and �25� are in agreement
with each other, the difference between Eqs. �24� and �25�,
on one hand, and Eq. �23�, on the other, is significant as can
be seen by examining the logarithmic scale. As Figs. 1�c�
and 1�d� show the relative difference between the loss coef-
ficients �27� and �28� �resulting from Eqs. �1� and �3�, respec-
tively� is significant away from the resonance �=�0.

As pointed out earlier, in a dispersive, lossless material
Eq. �23� is not compatible with the magnetic part of Eq.
�21�.7 This has been attributed to the fact that Eq. �1� is valid
in the quasistatic limit only. But, as shown here, the expres-
sion for the magnetic energy density �19� and the magnetic
part of Eq. �21� are in perfect agreement in a dispersive
lossless material. It can be concluded, therefore, that Eq.
�19�, �or, equivalently, Eq. �24��, obtained with the ED ap-
proach, are more internally consistent.

IV. NUMERICAL RESULTS

The validity of Eqs. �14� and �15� can be checked by
considering the system shown in Fig. 2. It consists of a cy-
lindrical Pendry lens3 and a wire dipole antenna. It has been
shown recently21 that a pair of dipole antennae, coupled by a
“perfect” lens form an electromagnetic system that has a
number of interesting properties.

Figure 2 shows an azimuthally symmetric arrangement
consisting of a disk made of a LHM placed near a wire
dipole antenna. This type of source is very convenient be-
cause it allows a direct connection between the voltage ap-
plied at the antenna terminals and the energy stored in the
disk to be established easily. Assuming that the voltage is
switched on at the time t=0, integrating Eq. �13� over the
volume V of the disk and over the time interval �0, t� the
energy conservation law becomes

FIG. 1. �Color online� Energy coefficient �eff��� as given by
Eqs. �23�–�25� for �a� � /�0=0.006 and �b� � /�0=0.3. The three
curves are labeled “EC,” “ED” and “Lorentz,” respectively. The
value of the parameter F is F=0.6. Power loss coefficient 
eff��� as
given by Eqs. �27� �“ED”� and �28� �“Lorentz”� for �c� � /�0

=0.006 and �d� � /�0=0.03.

FIG. 2. �Color online� A disk of thickness D and radius RL,
made of a dispersive and lossy LHM, irradiated by a center-fed wire
dipole antenna, of length LD. The distance between the center of the
antenna and the surface of the disk is D /2. The voltage feeding the
dipole is U�t�.
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WIN = W + WL, �29�

where

WIN = − �
0

t �
S

�E 	 H · dS�dt�, �30�

is the energy input to the disk �S is the surface of the disk�,

W = �
V

�wE�t� + wM�t��dV �31�

is the electromagnetic energy stored in the disk and

WL = �
0

t �
V

PL�t��dV dt� �32�

is the energy loss. The computational results given here use
the FDTD method22 and a thin-wire model23 of the wire
dipole, together with a feeding voltage in the form

U�t� = �1 − exp�−
�t

4

��sin��t� . �33�

This corresponds to a sinusoidal wave form, of angular fre-
quency �=2
 /T, being slowly switched on.

The set of equations, solved with the FDTD method, is

�0
�E

�t
= � 	 H − J , �34�

�J

�t
+ �J = �p

2�0E , �35�

�0
�H

�t
= −

1

1 − F
�� 	 E + K� , �36�

�K

�t
+ �0

2M = −
�

1 − F
�F � 	 E + K� , �37�

and

�M

�t
=

1

1 − F
�K + F � 	 E� . �38�

Equation �35� results from Eq. �7� by introducing the electric
current density J= �P

�t in the latter. Equation �37� is obtained
from Eq. �6� where the effective “magnetic current density”
K= �C

�t has been introduced. Equations �34� and �36� are the
Maxwell’s curl equations. Equation �38� is obtained from the
definition of the parameter C given by Eq. �8� and the sub-
sequent use of Eq. �36�. The set �34�–�38� gives the complete
time-domain description of an electromagnetic field propa-
gating in a dispersive and lossy LHM with the permittivity
and the permeability of the latter given by Eqs. �2� and �1�,
respectively.

The results obtained from the solution of the set �34�–�38�
are presented in Fig. 3. The selected values of the resonant
frequency and the plasma frequency are �0 /2

=836.709 MHz and �p /2
=1.414 GHz. These ensure that
at the operating frequency � /2
=1 GHz, the values of the

FIG. 3. �Color online� �a� The left- and the right-hand side of the
energy conservation law �Eq. �29�� for the lensing arrangement
from Fig. 2. The antenna feeding voltage is given by Eq. �33� �b�
magnetic part of the stored energy obtained by integrating Eq. �22�
over the volume of the lens with �eff given by Eqs. �23� �“EC”�
and �24� �“ED”�. The same result obtained by time-averaging
and subsequently integrating Eq. �15� over the volume of the disk
is also shown �“Eq. �15�, time averaged”�. �c� magnetic field
distribution H��R ,Z� �mA/m� at the end of the computer run
t=120T. The image of the antenna is easy to see. D=44.85 cm,
RL=1.12 m, LD=13.45 cm, � /2
=1 GHz, � /2
=5 MHz, �=0,
�0 /2
=836.709 MHz, �p=
2�, F=0.6.
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permittivity and the permeability functions are ����=−1 and
����=−1+0.0556i. As Fig. 3�a� shows, the energy conser-
vation law �29�, with the magnetic part of the stored energy
calculated from Eq. �15� is satisfied to a high degree of ac-
curacy, with the maximum relative error being less than 3%.
Equation �19� is in an excellent agreement with the time-
averaged version of Eq. �15�, as can be seen from Fig. 3�b�.

This is because the electromagnetic field is, in fact, mono-
chromatic. Expression �23�, resulting from the EC approach
in this case, overestimates the magnetic part of the stored
energy by 50%, as Fig. 3�b� shows. The dynamics of the
stored energy, presented in Fig. 2, show that while the am-
plitude of the feeding voltage reaches a stationary state for
about 10 periods of the carrier frequency, the duration of the
relaxation period for the stored energy is more than 60 peri-
ods. This feature is related to the finite size of the lens and
depends on the losses.24 Therefore, the formation of a sta-
tionary electromagnetic field distribution inside the lens and,
consequently, the formation of the image �Fig. 3�b�� can be
regarded as a “slow” process.

Figure 4�a� shows the energy conservation law for a short
pulse form of feeding voltage

U�t� = exp�− �t/T − 20�2�sin�2
�t/T − 20�� , �39�

centered at t=20 T. The overlap between the pulse spectrum
Fig. 4�c� and resonant curve shown in Fig. 1�a� is strong in
this case. As in Fig. 3�a�, the energy conservation law is
satisfied again to a high degree of accuracy. The correspond-
ing electric and magnetic energies are shown in Fig. 4�b�.
The magnitude of the magnetic stored energy is larger than
the magnitude of the electric energy, which is consistent with
the resonant structure of ����.

V. CONCLUSIONS

Expressions for the energy density and energy losses in a
dispersive and lossy LHM, consisting of an array of wires
and an array of SRRs, are derived. An electromagnetic field
with arbitrary time dependence is considered. Under condi-
tions of negligible losses, the result for the magnetic part of
the energy �the energy stored in the SRR array� obtained here
is in full agreement with the general formula, valid for a
lossless dispersive material. In the resonance region, the new
result for the magnetic part of the stored electromagnetic
energy is shown to map quantitatively onto the result ob-
tained from the Lorentz permeability model. The power-loss
terms, resulting from the two permeability models consid-
ered, however, quickly diverge away from the resonance.
Exact FDTD solutions of Maxwell’s equations show that the
energy conservation law is satisfied to a high degree of ac-
curacy, thus validating the analytical results obtained.
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