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ABSTRACT 

A novel spatial soliton-bearing wave equation is introduced, the Helmholtz-Manakov 

(H-M) equation, for describing the evolution of broad multi-component self-trapped 

beams in Kerr-type media.  By omitting the slowly-varying envelope approximation, 

the H-M equation can describe accurately vector solitons propagating and interacting 

at arbitrarily large angles with respect to the reference direction.  The H-M equation 

is solved using Hirota’s method, yielding four new classes of Helmholtz soliton that 

are vector generalizations of their scalar counterparts.  General and particular forms 

of the three invariants of the H-M system are also reported. 

 

PACS numbers:  42.65.Tg (optical solitons), 42.79.Ta (optical computers), 

94.05.Fg (Solitons and solitary waves), 05.45.Yv (solitons, nonlinear dynamics of) 
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I. INTRODUCTION 

Vector solitons are well known in Optics [1,2].  They are multi-component, 

localized structures that can become dominant modes of a system when linear broad-

ening effects are offset by non-linearity.  During pulse propagation, on the one hand, 

vector solitons can arise when dispersion is balanced by self- and cross-phase modula-

tion.  Spatial soliton beams, on the other, can result if diffractive spreading is opposed 

by medium self- and mutual-focusing.  Many years ago, Manakov [3] proposed a vec-

tor extension of the scalar Non-Linear Schrödinger (NLS) equation [4] to describe 

multi-component pulse/beam evolution in the presence of positive Kerr non-linearity.  

Using inverse-scattering theory, he was able to derive an exact analytical 2-

component sech-type soliton solution.  

 

In birefringent optical fibres, vector solitons play a central role in describing 

polarization-division multiplexing (PDM) configurations, where light coupled into the 

fibre is polarized along two transverse orthogonal axes [5].  Over sufficiently long 

distances, birefringence can average out stochastically to zero, and the model captur-

ing evolution is the (temporal) Manakov equation [6].  In spatial contexts, multi-

component solutions for a defocusing (negative) Kerr non-linearity have been re-

ported [7].  These new solutions have a more complicated (topological) structure than 

their more familiar sech-type counterparts in the focusing regime [3].  Manakov-like 

solitons, comprising two orthogonal transverse field components, have been observed 

in birefringent Kerr-type planar waveguides [8].  Multi-component spatial solitons in 

( )2χ  [9] and ( )3χ -like [10] photorefractive media have also received attention, and 

new types of structures such as multi-hump [11] and holographic [12] solitons have 

been predicted. 
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Recently, it has been shown that collisions between Manakov solitons are ine-

lastic, and that there is a redistribution of energy between the interacting components 

[13].  Such an intrinsic effect has no analogue in scalar (i.e. NLS) theory, where the 

energy and momentum of each constituent soliton is preserved [4].  It has been sug-

gested [14] that this unique property of the Manakov system could provide the basis 

for optical computing with solitons [15].  The energy-exchange process was found to 

depend critically upon the angle between the interacting beams.  It is therefore desir-

able to have a model capable of capturing arbitrary angles. 

 

The main interest in this Article lies with the oblique propagation of multi-

component spatial solitons in Kerr planar waveguides.  In this geometry, there is a 

longitudinal (reference) and a single effective transverse dimension that, in uniform 

media, are physically equivalent.  We propose the novel Helmholtz-Manakov equa-

tion as a 2-component generalization of the scalar Non-Linear Helmholtz (NLH) 

equation [16].  This model is appropriate for capturing the propagation [17] and inter-

action [18] of broad vector-soliton beams at arbitrary angles with respect to the refer-

ence direction.  Here, we present four new families of exact analytical soliton solution 

to the H-M equation, and derive the corresponding conservation laws. 

 

II. HELMHOLTZ NON-PARAXIALITY 

The NLH and H-M equations provide a full description of oblique (off-axis) 

evolution for broad optical beams of moderate intensity [16-18].  Under these condi-

tions, the polarization-scrambling term in Maxwell’s equations can be neglected [19-

21] and this leads to two important simplifications: (i) in uniform media, the associ-

ated refractive-index distributions may be treated within the scalar approximation, and 
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(ii) the electric field may be regarded as being purely transverse (we can ignore the 

longitudinal component).  For NLH solitons, one typically considers a TE mode po-

larized in the plane of the waveguide [18].  For vector solitons, the electric field can 

have two orthogonal polarization components [3].  In this particular context, the H-M 

equation is a valid model when birefrigence can be neglected [22].  Alternatively, the 

H-M model can describe the interplay between two incoherently-coupled fields shar-

ing the same polarization state where, typically, both are TE modes [18].  This latter 

consideration could be extended to the case of N components [23].  

 

  The oblique evolution of broad beams context defines the Helmholtz non-

paraxial scenario [16-18], which is physically and mathematically distinct from the 

narrow-beam regime considered by other authors.  Perturbative narrow-beam correc-

tions to the governing equation [19-21,24], derived from single-parameter order-of-

magnitude analyses of Maxwell’s equations, are both unnecessary (we consider only 

broad beams) and invalid (off-axis effects are not quantified solely by a single small 

parameter) in Helmholtz non-paraxality.  The accurate description of obliquely-

propagating and interacting beams, relative to the reference direction, requires one to 

respect the equivalence of the transverse and longitudinal dimensions in uniform me-

dia.  This is achieved by avoiding the slowly-varying envelope approximation 

(SVEA); NLH and H-M models then arise as natural governing equations [17,18].  

 

In a normalized form, the H-M equation is given by 

                 ( )
2 2

†
2 2

1
2

iκ
ζζ ξ

∂ ∂ ∂
+ + ± =

∂∂ ∂
U U U U U U 0 ,                           (1) 
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where the  sign flags a focusing (+) or a defocusing (–) Kerr non-linearity.  ±

02x wξ =  and Dz Lζ =

0w

 are the scaled transverse and longitudinal coordinates, 

normalized to the waist  and diffraction length 2
0 2DL kw=  of a reference Gaus-

sian beam, respectively.  The column vector  is the dimensionless electric field in U

( ) ( ), , p (ex )0x z E x z z= ikE U , where 0n2k π λ= , λ  is the optical wavelength,  is 

the linear refractive index at the optical frequency, 

0n

( )1 2
0 0 2 DE n k n L=  and  is the 

Kerr coefficient.  

2n

( ) ( )21= =

]

2 2 2
0 0w nλ 04πkwκ  is the inverse beam-width parame-

ter.  In the case of two field components, one has that U , where T denotes 

the transpose, and  is the Hermitian adjoint of U .  A further generalization to N 

components then involves including further entries in .  

[ , TA B=

†U

U

 

The restoration of spatial symmetry in the governing equation [17] leads to 

several novel features absent from paraxial theory.  Firstly, there is no physical dis-

tinction between transverse (x) and longitudinal (z) coordinates and light is allowed to 

diffract in both these dimensions.  Secondly, inclusion of ζζκ∂  leads to a dispersion 

relation that supports both travelling- and standing-wave solutions [18].  This is in 

contrast to the NLS [4] and Manakov [3] equations, where the SVEA breaks the 

symmetry between not only x and z, but also between +z and –z, (backward-travelling 

waves are not supported).  Thus, paraxial wave equations are subjected to the physical 

limitation of describing beams that are either axial or very nearly axial. 

 

The inherent bi-directionality of NLH-based models leads to angular beam 

broadening (see Fig.1).  This effect arises from considering two descriptions of the 
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same beam from different frames of reference, and is a requirement based on geome-

try [16].  The Helmholtz non-paraxial formalism also allows for a well-defined con-

nection between the soliton velocity V in the ( ),ξ ζ  frame and the propagation angle 

θ  (relative to the z axis) in the unscaled ( ),x z  frame through [16-18] 

       tan 2 Vθ κ= .                     (2) 

Equation (2) verifies that the (purely geometrical) Helmholtz correction  may 

assume an arbitrarily large value, even for beams with 

22 Vκ

0κ .  During off-axis evolu-

tion, one can have a regime where ( )2V Oκ2 ~ , while simultaneously respecting 

 because the beam is always broad.  This possibility demonstrates that de-

scriptions based solely upon -type expansions of Maxwell’s equations are inappro-

priate for capturing the angular type of non-paraxiality [19-21,24].  Indeed, the domi-

nant Helmholtz correction to paraxial theory, embodied in Eq. (2), is determined 

solely by the beam’s propagation angle and can be of any order irrespective of the size 

of . 

1

( )1Oκ

κ

κ

  

III. HELMHOLTZ-MANAKOV SOLITONS 

A. Solitons in self-focusing Kerr media  

For a focusing Kerr medium, the simplest case to consider is that of a vector 

beam with two forward-propagating constituent components, each with a symmetric 

sech-type profile.  The most straightforward method of obtaining such solutions is to 

use an ansatz approach to seek the on-axis solution, and then apply a rotational trans-

formation [25] to seek the more general off-axis beam.  The resulting bright-bright H-

M solution is 
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     ( ) ( ) 2

22

1 2, sech exp exp ,
2 21 21 2

V
i V

VV

η ξ ζ
iκη ζξ ζ η ξ ζ

κ κκκ

  + +    = − +    +     +   
U C − 


  (3a) 

where,           
( )
( )

1

2

cos

sin

i

i

e

e

δ

δ

α

α

 
=  
  

C .                                    (3b) 

C  is a complex column vector obeying † 1=C C , while η  defines the amplitude and 

 the transverse velocity.  The free parameter V α  determines the strength of the exci-

tation in each component, and jδ  ( 1, 2j = ) are the component phases.  The choice of 

values of α  and the jδ ’s allows a wide variety of soliton states to be constructed. 

 

The second class of vector beam that a focusing Kerr medium can support is 

the bright-dark soliton, for which the forward-propagating solution is 

       

( ) ( )

( )

2 2 2
0 2

2 2

2

, cos sech
1 2

1 2 2
                                 exp exp ,

1 2 2 2

a W
A B a

W

a
i W

W

ξ ζ
ξ ζ φ

κ

κ χ ζ ζξ i
κ κ κ

 +
= +  

+ 
 + +    × − +   +   
 

− 


   (4a) 

        

( ) ( )
0 2

2

2

, cos tanh sin
1 2

1 4                                        exp exp ,
1 2 2 2

a W
B B i

W

i V i
V

ξ ζ
ξ ζ φ φ

κ

κχ ζ ζξ
κ κ κ

  +
= +  

+   
 +   × − +   +     

− 


         (4b) 

This structure comprises a Helmholtz bright soliton [25] in one component, and a 

dark-type topological excitation in the other.  The tanh component (4b) is generally 

grey, and has an intrinsic velocity, 

( )0 2 2 2

tan

1 2 2 tan

aV
a

φ

κ χ φ
=

+ −
.               (5) 
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This velocity depends upon both the non-paraxial parameter κ  and the plane-wave 

background intensity 2
0
2Bχ ≡ .  When , the dark component is null and one 

recovers the Helmholtz Kerr scalar bright soliton [25].  The net velocity W of the vec-

tor beam (4) is then given by 

0 0B →

 0

01 2
V V

VVκ
W −

=
+

.                    (6) 

As in the case of the scalar Helmholtz dark soliton [26], W has the physical interpreta-

tion of velocity summation in the unscaled reference frame.     

 

B. Solitons in defocusing Kerr media 

When seeking a general dark soliton of the defocusing NLH equation [26], an 

ansatz approach cannot determine the full solution (geometrical considerations also 

have be to made).  Similar difficulties arise in the vector case.  Thus, Hirota’s method 

[27] has been used to solve the defocusing H-M equation.  The forward-propagating 

dark-bright vector soliton solution is given by 

      

( ) ( )
0 2

2

2

, cos tanh sin
1 2

1 4                                              exp exp ,
2 21 2

a W
A A i

W

i V
W

ξ ζ
ξ ζ φ φ

κ

κχ ζ ζξ i
κ κκ

  +
= +    +  

 −    × − +  +     

− 


  (7a) 

               

( ) ( )

( )

2 2 2
0 2

2 2

2

, cos sech
1 2

1 2 2
                            exp exp .

1 2 2 2

a W
B A a

W

a
i W

W

ξ ζ
ξ ζ φ

κ

κ χ
iζ ζξ

κ κ κ

 +
= −  

+ 
 + −    × − +   +   
 

− 


       (7b) 

The grey component (7a) has an intrinsic velocity 

      
( )

0 1 22 2 2

tan

1 2 2 tan

a

a
V φ

κ χ φ
=
 − + 

,                      (8) 
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where , and the net velocity W is given by Eq. (6).  The dark-bright soliton is 

constrained by the condition .  When the equality is satisfied, the bright 

component vanishes and the remaining component (i.e., the primary component) re-

covers an exact non-paraxial dark soliton [26]. 

2
0Aχ ≡

2 2
0 cosA φ ≥ 2a

 

The bright-dark and dark-bright solutions are characterized by three velocities, 

V,  and W, which are associated with the propagation angles 0V tan 2 Vθ κ= , 

0 0tan 2 Vθ κ=  and ( )0tan 2 Wθ θ κ− =

κ

 [20] (note that any two velocities can be 

chosen independently).  However, it is important to note that these solutions are not 

equivalent.  When the dark components have the same parameters (i.e. background 

intensities and values of , a and φ ), the soliton intensity profiles different slightly 

from one another due to their different intrinsic velocities, given by Eqs. (5) and (8), 

respectively (see Fig. 1).  Another distinction between dark-bright and bright-dark so-

lutions is that the primary component (that which can propagate stably when the other 

component is not excited) is a dark soliton in the former, and a bright soliton in the 

latter. 

 

The secondary component of these mixed-pair (that is, bright-dark and dark-

bright) beams possesses anti-guiding properties, a phenomenon seen also with Mana-

kov solitons [7].  For the dark-bright soliton, the bright (secondary) component, 

propagating in the waveguide induced by the dark (primary) component, has an inten-

sity maximum at its centre.  The presence of such a maximum in a defocusing me-

dium leads to a lowering of the refractive index at the beam centre, thus weakening 

the overall guiding effect.  The subsequent propagation can be thought of as a com-
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petitive process between the non-linear refractive index changes brought about by the 

individual dark and bright components.  When these processes are balanced precisely, 

an equilibrium state is formed and a vector soliton may propagate.  These refractive 

index changes are reversed for the bright-dark soliton in a focusing medium, but the 

underlying physics remains the same. 

 

The (forward-propagating) dark-dark vector soliton of the defocusing H-M 

equation has also been found using Hirota’s method 

            

( ) ( )
0 1 12

2

12
1

, cos tanh sin
1 2

1 4                                       exp exp ,
2 21 2

a W
A A i

W

i V i
V

ξ ζ
ξ ζ φ φ

κ

κχ ζ ζξ
κ κκ

  +
= +    +  

 −    × − +  +     

− 


    (9a) 

            

( ) ( )
0 2 22

2

22
2

, cos tanh sin
1 2

1 4                                        exp exp ,
2 21 2

a W
B B i

W

i V
V

ξ ζ
ξ ζ φ φ

κ

iκχ ζ ζξ
κ κκ

  +
= +    +  

 −    × − +  +     

− 


2
0

   (9b) 

where  is the total (incoherent) intensity of the vector beam.  The ex-

pressions for the intrinsic velocities are 

2 2
0A Bχ ≡ +

                 
( )

0 1 22 2 2

tan

1 2 2 tan

j
j

j

a

a
V

φ

κ χ φ
=
 − + 

,                      (10) 

where , and there is a dependence not only on the non-paraxial parameter 1, 2j = κ  

but also on 2χ .  The soliton parameters are connected by the implicit relationship 

 that removes a degree of freedom from the system.  The 

two components necessarily have the same net velocity W, but their plane-wave back-

2 2
0 1A Bφ 2 2

0 2cos os φ 2a=c+

 
 10. 



grounds may travel in different directions.  Note that Eq. (9) for the dark-dark soliton 

is formally identical to Eq. (8) for the dark-bright solution.  

Paraxial solitons of the NLS [4] and Manakov [3] equations can have arbitrar-

ily large values of phase angle 2φ π< .  In contrast, H-M solitons possess a maxi-

mum “greyness” denoted by maxφ .  For the defocusing non-linearity, maxφ  is defined 

by 

    
2

max 2
1 4tan

2 a
κχφ

κ
−

= ,                                (11) 

where  for the dark-bright soliton, and 2
0Aχ ≡ 2 2

0
2 2

0A Bχ ≡ +  in the dark-dark case.  A 

similar expression can be derived for the bright-dark solution (4).  This limit corre-

sponds to a physical constraint on the largest intrinsic velocity that a dark soliton may 

possess, depending on the background intensity.   When maxφ φ→ , the intrinsic veloc-

ity diverges and the dark component propagates in a direction perpendicular to that of 

the background plane wave, 0 2θ π→ ±  [26]. 

 

IV. CONSERVED QUANTITIES 

Knowledge of the invariants is of fundamental importance.  They are also use-

ful tools for testing the integrity of any numerical scheme used in computer simula-

tions [28].  The H-M equation (1) may be regarded as the Euler-Lagrange equation of 

motion corresponding to a Lagrangian density L, from which one defines a pair of ca-

nonically-conjugate momentum variables, π  and π : 

            ( ) ( )
† † † 2† † †1 1, ,

2 2
iL κ

ζ ζ ζ ζ ξ ξ
 ∂ ∂ ∂ ∂ ∂ ∂

= − − − + ∂ ∂ ∂ ∂ ∂ ∂ 

U U U U U UU U U U U U
2

    (12a) 

whereby 
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         †

2
L i

ζ
κ

ζ
 ∂ ∂

≡ = − + ∂ ∂ 
U

U
π ,    † 2

L i

ζ

κ
ζ

∂
≡ = − ∂∂  

U
U

π
∂


U

,           (12b) 

and .  It is then straightforward to calculate the conserved quantities [29].  

The fundamental quantity is the energy-flow E, which arises from invariance of L un-

der a global phase transformation. The second conserved quantity is the linear mo-

mentum M of the system, found from invariance under an infinitesimal translation in 

ζ ζ≡ ∂U

ξ .  The third conserved quantity is the Hamiltonian H, derived from consideration of 

translations in the evolution variable, ζ . 

           
†

† †E d iξ κ
ζ ζ

+∞

−∞

  ∂ ∂
= − −  ∂ ∂ 

   
∫

U UU U U U ,                      (13) 

          
† † †

† ,
2
iM dξ κ

ξ ξ ζ ξ ξ ζ

+∞

−∞

   ∂ ∂ ∂ ∂ ∂ ∂
= − − +   ∂ ∂ ∂ ∂ ∂ ∂    
∫

U U U U U UU U




              (14) 

                     ( )
† † 2†1

2 2
H dξ κ

ξ ξ ζ ζ

+∞

−∞

 ∂ ∂ ∂ ∂
= − − ∂ ∂ ∂ ∂ 
∫

U U U U U U1 .                  (15) 

Equations (13)-(15) also apply to the scalar NLH equation, by allowing one of the 

field components to be null.  For bright-bright H-M solitons, it is found that: 

     22 1 2E η κη= + ,                (16a) 

   
2

2

2 3 4
3 1 2

M V
V

κηη
κ

+
=

+
,           (16b) 

               
2

2
2

3 41 2
3 1 2

H
V

η η κηκη
κ κ κ

+
= + −

+
.               (16c) 

These results are exactly the same as for the scalar bright Helmholtz soliton [25].  As 

expected they reduce to their paraxial counterparts in the multiple limit , 

 and  [1,2].  It is interesting to note that 

0κ →

2 0κη → 2 0Vκ → H M V∂ ∂ =  (as in the 

paraxial case).  For other classes of H-M soliton, possessing at least one dark compo-
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nent, the invariant integrals (13)-(15) can be strongly divergent.  A renormalization 

procedure is thus necessary to remove such infinities. 

 

V. CONCLUSION 

In this Article, we have considered broad multi-component spatial beams in 

uniform planar waveguides, placing particular emphasis on the inherent spatial sym-

metry of such systems.  The novel Helmholtz-Manakov equation, which generalizes 

our earlier work on scalar beams [16-18,25,26,30], has been introduced and its 2-

component solutions (localized, mutually-trapped structures) have been derived using 

Hirota’s method.  The new solutions uncover explicit physical dependencies of novel 

quantitative and qualitative features.  In a following publication, we will present the 

results of a perturbative analysis, which has tested and verified the stability properties 

of each new soliton family. 

 

We expect the H-M equation and its soliton solutions to be relevant in other 

optical contexts, such as photorefractives [9,10], multi-hump [11] and holographic 

[12] solitons.  It is also likely to provide a key analytical platform in the understand-

ing of vector-soliton interactions (both co- and counter-propagating scenarios) at arbi-

trarily large angles [18].  We expect new doors of investigation to be opened by lifting 

the angular restrictions of current paraxial models.  This has particular importance, for 

example, in the field of optical computing [14,15]; it may also find application in op-

tical contexts involving feedback [31].  Helmholtz generalizations offer broad physi-

cal insight into a wide variety of angular geometries by taking full account of the role 

spatial symmetry plays in diffraction/self-focusing processes. 
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FIGURE CAPTIONS 

 

FIG. 1 (color on-line).  Characteristic angular beam-broadening effects associated 

with Helmholtz solitons for (a) bright-dark, and (b) dark-bright cases.  Solid line: 

( ),0A ξ ; dashed line: ( ),0B ξ

410κ −=

.  Dotted lines correspond to paraxial solutions.  For a 

non-paraxial parameter , a transverse velocity of V 70.71≈  yields a physical 

propagation angle 45θ = °  so that ( )22 V Oκ =

0.5a

1  and one has a strongly non-paraxial 

regime.  Other solution parameters are = , 6φ π= , 0 1B =  [in (a)] and  

[in (b)].  

0 1A =

 
 15. 



FIGURE 1 

J. M. Christian et al. 

Submitted to Physical Review E 

 

 

 

 

 

 

 
 16. 



___________________________________________________________________________________ 

[1] Y. S. Kivshar, Opt. Quant. Elect. 30, 517 (1998). 

[2] Y. S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81 (1998). 

[3] S. V. Manakov, Sov. Phys. JETP 38, 248, (1974). 

[4] V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972); 37, 823 

(1973). 

[5] C. R. Menyuk, J. Opt. Soc. Am. B 5, 392 (1988); IEEE J. Quantum Electron. 

QE-23, 174 (1987); Opt. Lett. 12, 614 (1987). 

[6] J. Yang, Phys. Rev. E 65, 036606 (2002); 64, 026607 (2001). 

[7] A. P. Sheppard and Y. S. Kivshar, Phys. Rev. E 55, 4773 (1997). 

[8] J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhmediev, Phys. Rev. 

Lett. 76, 3699 (1996); J. U. Kang, G. I. Stegeman and J. S. Aitchison, Opt. Lett. 

21, 189 (1996). 

[9] C. Hou and L. Wang, Optik 115, 405 (2004); D. N. Christodoulides, S. R. 

Singh, M. I. Carvalho, and M. Segev, Appl. Phys. Lett. 68 1763 (1996); Z. 

Chen, M. Segev, T. Coskun, and D. N. Christodoulides, Opt. Lett. 21, 1426 

(1996). 

[10] C. Hou, Z. Zhou and X. Sun, Optical Materials 27, 63 (2004).  

[11] E. A. Ostrovskaya and Y. S. Kivshar, J. Opt. B: Quant. Semiclass. Opt. 1, 77 

(1999); E. A. Ostrovskaya, Y. S. Kivshar, D. V. Skryabin, and W. J. Firth, Phys. 

Rev. Lett. 83, 296 (1999). 

[12] J. R. Salgueiro, A. A. Sukhorukov, and Y. S. Kivshar, Opt. Lett. 28, 1457 

(2003); O. Cohen et al., Opt. Lett. 27, 2031 (2002). 

[13] R. Radhakrishnan, M. Lakshmanan and J. Hietarinta, Phys. Rev. E 56, 2213 

(1997). 

[14] C. Anastassiou et al., Phys. Rev. Lett. 83, 2332 (1999). 

 
 17. 



[15] K. Steiglitz, Phys. Rev. E 63, 016608 (2003); M. H. Jakubowski, K. Steiglitz, 

and R. Squier, Phys. Rev. E 58, 6752 (1998). 

[16] P. Chamorro-Posada, G. S. McDonald, and G. H. C. New, J. Mod. Opt. 45, 1111 

(1998). 

[17] P. Chamorro-Posada, G. S. McDonald, and G. H. C. New, J. Opt. Soc. Am. B 

19, 1216 (2002). 

[18] P. Chamorro-Posada and G. S. McDonald, “Spatial Kerr soliton collisions at ar-

bitrary angles,” to be published in Phys. Rev. E.  

[19] M. Lax, W. H. Louisell and W. B. McKnight, Phys. Rev. A 11, 1365 (1975). 

[20] S. Chi and Q. Guo, Opt. Lett. 20, 1598 (1995). 

[21] A. Ciattoni, P. Di Porto, B. Crosignani, and A. Yariv, J. Opt. Soc. Am. B 17, 809 

(2000). 

[22] V. Boucher, R. Barille and G. Rivoire, J. Opt. Soc. Am. B 20, 1666 (2003); L. 

Friedrich et al., Opt. Commun. 186, 335 (2000).  

[23] M. Soljačić et al., Phys. Rev. Lett. 90, 254102 (2003); F. T. Hioe, Phys. Rev. 

Lett. 82, 1152 (1999). 

[24] B. Crosignani, A. Yariv, and S. Mookherjea, Opt. Lett. 29, 1254 (2004); A. Ciat-

toni, B. Crosignani, S. Mookherjea, and A. Yariv, Opt. Lett. 30, 516 (2005); A. 

Ciattoni, B. Crosignani, P. Di Porto, J. Scheuer and A. Yariv, Opt. Express 14, 

5517 (2006). 

[25] P. Chamorro-Posada, G. S. McDonald, and G. H. C. New, J. Mod. Opt. 47, 1877 

(2000). 

[26] P. Chamorro-Posada and G. S. McDonald, Opt. Lett. 28, 825 (2003). 

[27] R. Hirota, J. Math. Phys. 14, 805 (1973). 

 
 18. 



[28] P. Chamorro-Posada, G. S. McDonald, and G. H. C. New, Opt. Commun. 192, 1 

(2001).  

[29] H. Goldstein, Classical Mechanics, 2nd Ed. (Addison Wesley, Philippines, 

1980), Chap. 12, p. 588. 

[30] J. M. Christian, G. S. McDonald and P. Chamorro-Posada, “Helmholtz solitons 

in power-law media,” submitted to J. Opt. Soc. Am. B. 

[31] T. Carmon, M. Soljačcć and M. Segev, Phys. Rev. Lett. 89, 183902 (2002). 

 
 19. 


	Helmholtz-Manakov solitons
	J. M. Christian, G. S. McDonald and P. Chamorro-Posada
	
	Accepted in Physical Review E, 21st September 2006

	ABSTRACT
	III. HELMHOLTZ-MANAKOV SOLITONS
	V. CONCLUSION
	
	ACKNOWLEDGEMENTS




