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Abstract—In the recent years, the use of motion tracking systems
for acquisition of functional biomechanical gait data, has received
increasing interest due to the richness and accuracy of the mea-
sured kinematic information. However, costs frequently restrict the
number of subjects employed, and this makes the dimensionality
of the collected data far higher than the available samples. This
paper applies discriminant analysis algorithms to the classification
of patients with different types of foot lesions, in order to estab-
lish an association between foot motion and lesion formation. With
primary attention to small sample size situations, we compare dif-
ferent types of Bayesian classifiers and evaluate their performance
with various dimensionality reduction techniques for feature ex-
traction, as well as search methods for selection of raw kinematic
variables. Finally, we propose a novel integrated method which
fine-tunes the classifier parameters and selects the most relevant
kinematic variables simultaneously. Performance comparisons are
using robust resampling techniques such as Bootstrap 632+ and
k-fold cross-validation. Results from experimentations with lesion
subjects suffering from pathological plantar hyperkeratosis, show
that the proposed method can lead to 96% correct classification
rates with less than 10% of the original features.

Index Terms—Bootstrap, classification, discriminant analysis,
feature extraction/selection, foot kinematics, gait, genetic algo-
rithm, hyperkeratosis, regularization.

I. INTRODUCTION

THEanalysisofgait isofparamount importanceto theassess-
ment of a multitude of human pathologies associated with

kinesiological performance, the evaluation of their necessitated
remedial procedures, and also the understanding of the intrinsic
propertiesof thegenerativehumanbiomechanicalmodel.Theuse
of increasingly sophisticated gait sensors for kinematic, kinetic,
electromyographic and anthropometric measurements in the re-
centyears,has initiatedacommensurate sophistication in thepos-
sibilities and needs for tools to model and assess the human gait.
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Because traditional approaches cannot address complex
issues, the fields of machine learning and intelligent pattern
analysis [1] have received a increasing interest in gait science
over the last decade. The recent reviewing texts of [2] and [3],
for example, summarize a multitude of works using techniques
such as fuzzy analysis, multivariate statistics, neural networks,
and signal processing for modeling, classification and prediction
of gait variables. Other representative examples include [4] who
used support vector machines (SVMs) for the classification of
age groups using kinetic and kinematic gait data. Feedforward
neural networks were applied to the prediction of electromyo-
graphic (EMG) activity from kinematic patterns in [5], while
in [6] they were used to estimate motor unit parameters from
surface detected action potentials. A dynamic recurrent neural
network was employed in [7] to predict kinematic variables from
EMG data. Principal component analysis (PCA) was used in [8]
to identify muscle activation patterns using surface EMG, and in
[9] to assess gait normality in children using sagittal plane joint
data. Additional examples include [10] who employed cluster
analysis to identify abdominal and erector spinae muscle activity
patterns, and [11] who used linear discriminant analysis (LDA)
to differentiate between normal and flat foot subjects through the
use of force measurements. Furthermore, wavelets coupled with
a kinematic model were used in [12] for detecting postural and
walking patterns in the elderly, while [13] applied fuzzy logic to
the detection of gait events in functional electrical simulation.

This paper provides a thorough analysis for robust classifica-
tion of dynamic gait data, with particular attention to a number of
well-known issues. First, as pointed out in [2] the rich data that
contemporary sensor arrays generate, yields a very high degree
of dimensionality. Such a problem strongly dictates a dimension-
alityreduction, inorder to improveclinical interpretabilityaswell
as reduce costs. Unfortunately, the high dimensionality is further
aggravated by insufficient data due to the fact that gait data col-
lection is costly, laborious and time consuming; this gives rise to
the well-known statistical small sample size issue [14]. Another
concern with small samples is that complicated machine learning
algorithms may not be the most suitable ones. Neural networks
[15] for instance, may have low generalization ability, often need
fine-tuning of many parameters, are more cumbersome to imple-
ment, and prone to local minima. Classifiers with simple decision
surfaces (see Section III-A) can lead to more robust performance
and better decision interpretation.

We investigate and compare the performance of different types
of Discriminant Analysis designed to operate on small data sam-
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TABLE I
ELEMENTS OF THE CAPTURED AND PREPROCESSED MOTION DATA. (A) JOINTS AND THEIR CORRESPONDING RIGID BODY SEGMENTS USED TO CALCULATE THE

EULER ANGLES. (B) THE SEVEN STANCE EVENTS SELECTED FROM THE MOTION ANGLES

ples.Moreover,differentdimensionalityreductiontechniquesfor
generation as well as selection of kinematic features are exam-
ined. Finally, we propose a flexible method to perform simul-
taneous classifier fine-tuning and feature selection, in order to
achieve robust performance on a subset of the raw kinematic vari-
ables. Despite the application of the proposed algorithms to a spe-
cific problem, they are not problem specific, but are rather generic
and applicable to gait data afflicted by the aforementioned issues.

This paper aims to use foot motion data to predict which of
two patterns of plantar pressure lesions a patient belongs to.
Specifically, we apply the above techniques to the classifica-
tion of kinematic gait patterns for pathological plantar hyper-
keratosis (PPH), a debilitating pathology which causes thick-
ening of the stratum corneum of the skin [16]. We have designed
a novel system for automated in vivo kinematic data acquisi-
tion which, unlike previous motion tracking-based designs that
use mostly frontal or sagittal plane projections, is capable of
recording angular joint data in all three planes. While, previous
works have modeled the foot statically [17], [18] and as a single
segment [19], we have proposed a multisegment model of the
lower leg and foot, which enables us to measure relative move-
ments between segments and estimate three-dimensional (3-D)
joint displacement angles during gait dynamically. Additionally,
we employ mathematical pattern analysis methods in order to
investigate the existence of intrinsic statistical dependencies be-
tween foot function and PPH, in the context of elementary kine-
matic behavior. Doing so also enables the assessment of the sen-
sitivity and accuracy of the proposed multisegment foot model.

Two subject groups are employed, one (henceforth denoted
by ) with PPH under the metatarsal heads one and five,
and another with PPH under metatarsal heads two, three
and four (normal subjects cannot be used in this study, due to
the uncertainty of currently undergoing PPH formation). By
establishing a mathematical mapping denoted by between a
set of kinematic measurements and the different PPH groups

, we can verify the premise [20] that (confined or inordinate)
variations of rearfoot motion are the primary cause of PPH.
Such a claim can provide the basis for a potential patient
screening and prevention plan prior to developing PPH. Since,
to the best of our knowledge, there are no other previous works
examining the link of kinematic foot function and PPH to use
as a basis for comparison, we experiment with a large set
of algorithms with different characteristics. The originality of
this paper is summarized by the successful combination of a
multisegment foot model and pattern recognition techniques to
examine for any relationship between functional biomechanics
and PPH.

This paper is structured as follows. Section II summarizes
the data capture procedures and defines the problem at hand.
Sections III-A–D outline the basics of Bayesian classification
and describe techniques for dimension reduction and regulariza-
tion, Section III-E presents the model error estimators we use,
and Sections III-F and G discuss feature extraction and auto-
mated classifier design. The experimentation setups and their
results are presented in Section IV, while Section V concludes
the article.

II. KINEMATIC MODELLING OF THE LOWER LEG AND FOOT

AND DATA ACQUISITION

To describe the motion of the leg and foot, a multisegment
foot/ankle model comprising the lower leg, heel, midfoot,
first metatarsal and the proximal phalanx of the hallux [20]
was used. Table I(a) summarizes the joints and their defining
segment pairs.

Reflective spheres (6-mm-diameter) were mounted on rigid
plastic plates and attached to the leg, heel, midfoot, first
metatarsal, and hallux (see Fig. 1). An infrared-camera-based
motion tracking system was used to capture the 3-D motion
of the reflective spheres during the gait cycle, at a sampling
frequency of 100 Hz.

We used the calibrated anatomical systems technique [21],
[22] to ensure that the description of foot/ankle joint motion
from the reflective spheres related to the cardinal anatomical
planes of motion. The kinematic variables measured were 3-D
Euler angle displacements between segments in the Frontal (F),
Transverse (T), and Sagittal (S) planes of motion. Seven clini-
cally relevant kinematic events during the gait cycle were used
as a means of extracting discrete kinematic data values from the
time series data for each joint. These seven events are impor-
tant characteristic events in the normal walking cycle. We de-
veloped [20], [23], [24] novel preprocessing algorithms to nor-
malize the data to the stance boundaries of heel contact (HC)
and toe off (TO), and subdivide the remaining data using five
discrete timing events which occur between HC and TO [or-
dered in Table I(b)]. Finally, the captured data were referenced
to the subjects’ static relaxed anatomical position, so that zero
degrees in the kinematic data relates to the position of that seg-
ment when the subject was standing relaxed. Fig. 2 exemplifies
the acquired data for the joint of one subject. A 16th order 20-Hz
cutoff Butterworth filter was used for noise reduction.

Twenty-seven subjects with PPH were recruited for this study
(Table II summarizes the demographics) and their written in-
formed consent was obtained. Each subject walked in a straight
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Fig. 1. (a) Front and (b) back views of the constructed marker sets and bases.

line and 6 full gait cycles were recorded for each limb. The kine-
matic data from these 6 trials were averaged to produce single
measurements for each limb of each subject. As we have treated
each foot as an individual measurement, there are a total of

measurements with . We have two PPH
groups denoted by (for PPH under metatarsal heads 1 and 5)
and (under 2, 3, and 4), with corresponding sizes
and patterns (3 subjects had PPH only on one foot).
The use of 7 events, for each of the 3 planes and for 7 joints,
yields a total of 147 individual angle variables. We define each
of the patterns to consist of these 147 measurements together
with the 5 stance events ex-
pressed in stance time percentage. Thus, we have di-
mensions, and the sought classification mapping can be denoted
by , which maps a given measurement

to its true target label . For convenience, we also
denote the entire data set as a collection of patterns and labels

.

III. DISCRIMINANT ANALYSIS AND DIMENSIONALITY

REDUCTION

A. Gaussian Maximum-Likelihood Classification

Given a measurement , one way of establishing the
means for classification is through the posterior probability

Fig. 2. Example of kinematic angular data showing the frontal, transverse and
sagittal motions for the ankle joint complex of a 2-3-4 PPH subject. The mean
refers to an averaging over six cycles. The seven stance events described in
Table I(b) are indicated by vertical lines.

TABLE II
STATISTICS OF THE 27 PPH SUBJECTS EMPLOYED IN THE STUDY. PPH
STANDS FOR THE FOOT SIDE WITH PPH, AND ! =! FOR GROUPS WITH

PPH AT METATARSAL HEADS 1-5/2-3-4

and the Bayes rule
where is termed the conditional likelihood, the
prior for class and the evidence. When these quantities
are known for all classes, can rely on the Bayes decision
rule to minimize the average decision risk by classifying as
member of class if for all
(assuming equal risks and benefits for incorrect and correct
classifications). Typically, it is assumed that the likelihoods
follow multivariate Gaussian distributions

(1)

with mean and covariance matrix for each . This is be-
cause Gaussians have good computational tractability and can
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model adequately a wide range of situations. Employing a max-
imum-likelihood formulation [15], [25], the unbiased estimates
can (for the particular distribution) be defined as

and

(2)

The final decision rule can make use of the following discrim-
inant function:

(3)

which enables to classify as when ,
. It can be shown [25] that forms linear pairwise decision sur-

faces when all covariances are equal to a pooled covariance ma-
trix , where is the
total number of classes. In this case, (3) refers to linear discrimi-
nant analysis (LDA). When the covariances are individual as in
(2), the decision boundaries are hyperquadric surfaces. In this
case, we obtain quadratic discriminant analysis (QDA). The
(asymptotically optimal) estimate of (2) gives a covari-
ance matrix of rank up to . The fact that PPH
[16], [20] (refer to Sections I and II for background, problem
definition, and data collection details) sample sizes and are
much smaller than the number of kinematic variables ,
causes singularity to and ; this implies that the data lies
in subspaces of and makes non identifiable.

It should be noted that, although for large samples QDA may
outperform LDA, for small samples LDA is controlled by fewer
parameters and can be less susceptible to model violations.
This effect occurs despite the fact that the classes may actually
have significantly different covariances. Similar considerations
may justify the use of other more restrictive arrangements (e.g.,
spherical or diagonal covariances). Analogously, compared
to more complex classifiers, such as neural networks [15],
the linear/quadratic decision surfaces of L/QDA can be more
suitable for certain problems. This is because the particular
data supports simpler decision boundaries to yield more stable
model estimations, rather than the assumptions of Gaussian
densities or restrictive covariance structures being correct [26].
This observation is also reflected in the well-known bias-vari-
ance tradeoff, where the increased bias of simpler classification
boundaries can often be compensated by the lack of much
higher variance exhibited by complicated classifiers.

B. Variance-Based Dimension Reduction

An effective method to tackle the singularity or ill-condi-
tioning of the covariances, is to reduce dimensionality to
via principal component analysis [27], [28]. PCA employs a
linear transform of a feature to a feature

(assuming zero-mean data). The principal idea is to choose
an orthogonal matrix such that the new covariance

is diagonal. If we define to be the modal matrix of
(the matrix with columns the eigenvectors of ) and

its Spectral matrix (the diagonal matrix with the corresponding
eigenvalues ) we obtain

(4)

Geometrically, the eigenvectors represent the principal axes
of the hyperellipsoidal data distribution. By keeping the com-
ponents with the largest eigenvalues, we ignore the directions
with the smallest data variance, since as shown by (4) the vari-
ance along the component is equal to . Thus, by substi-
tuting with a matrix with columns the first eigen-
vectors (assuming an order of ), the infor-
mation loss incurred by projecting onto the subspace spanned
by the eigenvectors is minimal in the residual mean square
error (r.m.s.e.) sense

(5)

C. Separability-Based Dimension Reduction

The dimensionality reduction of PCA does not necessarily
lead to retaining the most useful data directions. In fact, re-
moving a low-variance subspace may result to loss of significant
discriminatory information [15], [28]. An alternative method is
to reduce dimensionality by maximizing an explicit measure of
class separability. Such a measure can be expressed in terms of
the total within-class and between-class scatter matrices

(6)

with and being the global and the th group’s mean, respec-
tively, as the ratio of their determinants

(7)

Since the determinant of a scatter matrix corresponds to the
product of variances along the principal data directions,
takes higher values when the classes exhibit better mean separa-
tion and smaller overall variances. This method is called linear
fisher discriminant (LFD) [14], [15], [25] and projects each
to with dimensions,
in a way such that the so called Rayleigh quotient

is maximized for a sought projection
. It turns out that is the matrix consisting of the

generalized eigenvectors of with the largest
eigenvalues from , and also, that this cor-
responds to an optimal linear discriminant in the mean square
error sense.

Unlike PCA, LFD utilizes effectively class information to lo-
cate the most discriminating directions, but the drastic dimen-
sionality reduction (since for our
two-class problem) may lose important information. Neverthe-
less, at the presence of insufficient data, LFD is not always su-
perior [29].
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D. Covariance Regularization

Apart from covariance singularity the small sample sizes
often cause ill-conditioning, and make the low variance
subspace give rise to biased estimations. Using (4) the in-
verse of the class covariance estimate can be written as

. This shows that small variances yield
significant contributions to the discriminant of (3). To
remedy this, an alternative route to that of PCA and LFD is
Regularization [15], [26], [30], [31], which attempts to increase
the bias of the classifier while reducing its variance by changing
the parameters away from their theoretical estimates.

Regularized discriminant analysis (RDA) [32] is a Bayesian
classification method like LDA and QDA which replaces the
covariance estimate of (2) with a regularized estimate
controlled by a mixing parameter and an eigenvalue shrinkage
parameter both within . First, each individual

and the pooled scatter matrices are cal-
culated. Then, each is given by the convex combination

(8)

controls the degree of regularization of the individual covari-
ances toward the pooled estimate. yields QDA,
LDA, while other values yield intermediate arrangements less
strict than LDA. Subsequently, a shrinking of toward a
user-defined symmetric positive-definite matrix is obtained
via

(9)

The effect of this step is to alter the eigenvalue profile of
toward the one dictated by . A typical choice for is

the identity matrix ; in this case the second sum of the right-side
of (9) corresponds to a spherical covariance of radius relative to
the mean within-class variance. From other possible choices
[32], experimentation showed better performance using the di-
agonal matrix of the global variances
(which is equivalent to a data standardization). Increasing values
of strengthens the unbiasing effect of the sample estimates.
The special case where yields discriminants
acting as a minimum Euclidean distance classifier (for equal
priors and standardized data), while for and a
quadratic classifier based on covariances weighted with the av-
erage within-class variances.

E. Model Error Estimations

The error rate of a classifier , which is defined as the
probability of misclassification , for some pat-
tern and its class label , is important for both model se-
lection (i.e., choosing the best from a set of available ) and
model assessment (i.e., evaluating generalization performance
of the final ). Due to the finiteness of the data samples, various
methods to calculate estimates for the true error exist [1],
[14], [26], [30].

The Resubstitution (or apparent) error which uses all
available data for both training and testing is far too op-
timistically biased for practical use with small samples. The
Hold-Out method, which uses a portion of data for training
and the rest for testing, is pessimistically biased as only part is

utilized for training. The k-fold Cross-Validation(k ) error
estimate is calculated by first splitting the data set to
folds , for , of approximate size and
then repeating the experiment times, each using folds
for training, while testing on the remaining one. Formally, if

denotes the decision of designed with a set and
tested on , then the error estimate is defined as

(10)

where the 0–1 loss function is 1 iff .
Although Leave-One-Out (LOO) is a very popular instance
of (for ) due to its simplicity and its near zero
prediction error bias, its large variance makes it inappropriate,
particularly in small sample situations [33]. Moderate, however,
values for have been found in [33], [34] to exhibit acceptably
low levels of bias and variance. In this paper, we employ 10CV
for model selection. As it is not possible to run a complete

which requires all possible arrangements, in order to

reduce the sensitivity, we use the average for 10 repetitions of
10CV using different fixed permutations.

Bootstrap is a resampling technique more suitable for small
samples and of lower variance than kCV. It forms different
samples each of size , where data is chosen from with
replacement. Because the standard bootstrap estimator, de-
fined by

(11)

is pessimistically biased, it can be combined with Resubstitution
to produce the corrected B632 estimate

[35]. Nevertheless, can have largely optimistic
bias associated to overfitting situations where [33], [34].
Because in this work, due to the low ratio and the model
order optimization the classifiers used may overfit, we employ
a robust bootstrap variation, the estimator, capable of
low bias and variance, defined as

(12)

Unlike B632, the combination weight
now depends dynamically on an estimate of

the relative overfitting rate. Thus, adjustment between the two
extremes of no overfitting and maximum relative overfitting,
allows a variation of . Full details of
the method can be found in [36], while a recent comparison
study for biomedical data in [37]. In this paper, we use
for assessment of the final models, using resamplings,
but also report other estimators.

It should be noted that errors estimated for model selection,
cannot be reported as final generalization errors, as they are al-
most certainly optimistic. The reason is that model selection is a
methodical optimization procedure which unavoidably exploits
the structure of training/testing data of the error estimator. For
example, as discussed in [38], a common mistake is to report the
minimum error of selecting the optimal number of hidden nodes
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in a neural network as an estimate of its generalization accuracy.
In this paper, since the small sample sizes do not allow for any
training-testing-validation setups, we use 10CV for model se-
lection and for model assessment in order to increase
objectivity of comparisons.

F. Feature Selection

Dimensionality reduction can be achieved with either fea-
ture extraction, (i.e., the projection of the existing variables to
a new hopefully more useful subspace, as in PCA and LFD
discussed earlier), or feature selection [39]–[41] which refers
to the selection of a subset of relevant attributes from the ex-
isting raw sensor measurements. Although feature extraction
can be more powerful due to the possible incorporation of sta-
tistical problem properties within the applied projection, fea-
ture selection can allow for better problem understanding (sim-
pler clinical gait analysis), sensor cost reduction (not all joints
or planes or gait events will need processing) and faster exe-
cution times. It should be noted, that although theoretical anal-
ysis shows that the inclusion of additional independent features
reduces the Bayes error rate, in practice it may lead to worse
performances due to optimistic model assumptions and/or inad-
equate data samples [25].

If we define a subset of indexes of the existing features
and denote with a reduced form of the data

set with all the components of its elements not contained in
removed, there are two critical factors in establishing a fea-

ture selection methodology. The former is the search procedure
for finding , which can be realized by algorithms such as ex-
haustive search, branch-and-bound, genetic and tree search, se-
quential and floating search methods [40], [42]. The latter factor
concerns the quality measurement criterion for . Two gen-
eral methodologies exist [39], [40]; wrappers, which employ the
classifier as a black box so that the sought minimizes an
estimation of the misclassification error, and filters, which in
order to be faster they assess the statistical properties of
such as class distance or separability which usually do not re-
late to directly.

G. Automated Classifier Design

Although for the current problem, we could use a method
such as the Sequential Forward Floating Selection (SFFS)
method [43] which has been shown in [42] to be a rapid and
robust selector, or its extension [44], we propose the use of
genetic algorithms (GAs), due to their high flexibility, which is
needed in the current work as will be explained later. GAs [45],
[46] are simple, directed, stochastic optimizers, which exhibit
considerable robustness in the exploration of complex solution
spaces, without the need for restrictive assumptions of other
optimization methods, such as continuity, differentiability,
unimodality or low combinatorial properties. GAs require a
memory structure, the population of individuals, which con-
tains a finite quantity of potential solutions (phenotypes). Each
solution is encoded by a well-defined data-structure (genotype)
allowed to evolve through specific genetic operations, such as
recombination and mutation. Simulated evolution based on the
doctrine of survival of the fittest, forces the better solutions
to disseminate their genes to the subsequent generations more

frequently. The higher the fitness of an individual, the greater
the chance it has to breed and pass on its sound genome, while
the less fit individuals are progressively doomed to extinction.

GAs have been used successfully for feature processing in
different ways. Recent works include [47] where features are
extracted via optimal rotations preceded by PCA-based dimen-
sionality reduction using nearest distance classification. In [48]
an optimal feature scaling is sought together with a feature se-
lection scheme, applied to a k-nearest neighbor (kNN) classi-
fier. Concerning feature selection, [49] performed a comparison
of different types of GAs using the Naive Bayes classifier, [50]
successfully applied GAs to a colonography application using
an SVM committee, while [51] applied GAs to EEG channel
selection for brain computer interfaces with SVMs.

The reason for requiring the modeling flexibility and imple-
mentational simplicity of GAs, is that we design an integrated
classifier, which in addition to feature selection simultaneously
fine-tunes the various hyperparameters of the classifier (for ex-
ample, the regularization parameters and for RDA). Such a
scheme allows a straightforward training procedure which ex-
ploits properties of the data set as well as properties of the clas-
sifier in a unified manner. An analogous approach was adopted
successfully in [48] where for the kNN classifier the parameter

was encoded in the chromosome together with feature pro-
cessing information.

In order to reflect the classification accuracy directly into the
feature selection process, we use a wrapper style quality assess-
ment for . This makes use of (10) to minimize the tenfold CV
error estimate measured on the reduced data set . Addi-
tionally, in order to drive the selector toward the fast recovery of
a few relevant variables, we impose a second objective that max-
imizes feature sparsity. In essence, the implemented GA solves
the following mixed-integer maximization problem:

(13)

where is a user-defined weight to scalarise the two ob-
jectives of accuracy and sparsity , and another
weight to force a rapid nonlinear feature decrease. Each popu-
lation solution is encoded in two parts. In the feature selection
part bits are used to signify the use or elimination of each fea-
ture. In the variable part, bits are used, where is the
number of bits used per variable and the number of classi-
fier variables. For real-to-binary mapping we use a Gray-coding
scheme [45] to have positional continuity between the two rep-
resentations. For all real parameters we use bits, which
give discrete steps of . The extremely high size of
the combined solution space is evident, when, for fea-
tures and variables, the algorithm has to scan efficiently

possible solutions.
The algorithm is implemented according to the mod-GA

scheme [46], also found to work efficiently for more com-
plicated type of problems [52]. At every generation, from a
population of a total of members, offspring are
created and survivors are selected probabilisti-
cally depending on their fitness values. Algorithm components
include, linear ranking to control the selective pressure via a
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parameter [45], an elitism operator that copies the best
member to the next generation, and a no-duplicates scheme
for better allotment of population slots. The two operators of
crossover and mutation are applied independently with prob-
ability and , respectively. When mutation is chosen,
each allele is flipped with probability proportional to the
chromosome length. We use a uniform crossover to randomly
choose bits from either parent, and terminate evolution when
the top member fitness evaluation from (13) stagnates for
generations.

The typical procedure is to initialize the
population matrix in random. However, for the left part,
we make use of an informed scheme to assign a bit value of 1
to the th gene of each chromosome according to a probability
value . This is calculated using a class separability information

(14)

where and are the mean and variances of the th
feature for class ; note, that this is a one-dimensional (1-D)
analogue of (7). Subsequently, all are sorted and are
assigned through a linear scaling within . This initial-
ization scheme has been shown to accelerate feature selection
in [53], where a divergence measure was used instead of
with a naive Bayes classifier.

IV. EXPERIMENTATIONS AND RESULTS

A. Testing LDA and QDA

The first methods to evaluate are the LDA and QDA. As
the entire set of features is used, the associated
covariances become singular. In these cases, a small number
is added to the zero eigenvalues, large enough to permit stable
inversion in (3). Equal priors are used in all the
experiments of this section. As can be seen in Table III(a), both
methods behave as random decision makers. This shows the
need for dimensionality reduction to eliminate redundant and
noisy features and increase numeric stability. For comparisons
within Table III, we mainly use the estimation, while

is typically used for model selection (where denoted by
“ ”) or reported for completeness. The pessimistic and
the optimistic are also reported for completeness. For
reasons discussed in Section III-E we consider the to
be the most objective one for comparisons, while use
for model selection. Note, that because they have different
properties, such as the higher variance of , there is not
always high correlation between bootstrap and errors, and
this is accentuated by the small sample sizes. In any case, we
keep model selection and model evaluation estimators separate
in order to avoid introduction of bias (see also discussions [38],
[40]). Alternatively, we could use different partition number

with for the two tasks.

B. Evaluation of Feature Extraction

Table III(b) reports the error of LDA and QDA using PCA for
feature extraction. However, as PCA can be used to eliminate
more dimensions than the zero-variance ones, such as those
considered redundant or noisy, we run a model search to

TABLE III
MISCLASSIFICATION RATE (%) ESTIMATIONS FOR ALL IMPLEMENTED

METHODS IN SIX GROUPS. THE FIRST THREE COLUMNS REPORT BOOTSTRAP

ESTIMATIONS FOR 500 RESAMPLINGS. THEB632+ ERRORS (BOLDFACED) ARE

USED FOR FINAL MODEL COMPARISONS. THE LAST COLUMN REPORTS THE

10-FOLD CV ERROR AVERAGED OVER 10 DISTINCT SAMPLE PERMUTATIONS.
ASTERISKS DENOTE CV ERRORS MINIMIZED IN A MODEL SELECTION SEARCH

select those that minimize the r.m.s.e. in (5). In this
case, the new features become the coefficients of expressing
the gait angles and times as linear combinations of the
principal directions. The search is depicted in Fig. 3(a), where
the errors for the first dimensions are
evaluated. The optimum model, that is the one with the lowest

, is at and 1 for the LDA and QDA respectively.
It can be seen that PCA-based reduction is not adequate
as accuracy is still less than 65%. This shows, that for the
particular problem, the removal of low-variance subspace does
not increase discriminatory information (see also Sections III-B
and III-C).

The more promising dimensionality reduction method LFD,
projects each PPH pattern to a 1-D space since we have
PPH groups. Subsequently, we subject these projections to a
nearest (Euclidean) class mean classifier. However, because of
the small sample size issue, the within-class scatter defined
in (6) is singular with a maximum rank of and
prevents solution of the eigensystem (see Sec-
tion III-C). This well-known LFD drawback has received great
attention to other research areas, such as face image recognition,
and has resulted to the derivation of various correction schemes.
To provide a comparison between such schemes, we have im-
plemented ten variants that cope with singularity. Table IV
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Fig. 3. "̂ plots for varying model parameters, with the optimal ones pointed by arrows. (a) LDA and QDA classifiers for different feature cardinalities b
extracted via PCA. The exponentially decreasing r.m.s.e. is also shown. (b) LFD and LFD projection methods for different values of the regularizer �.

TABLE IV
THE IMPLEMENTED LFD VARIANTS DESIGNED FOR HANDLING INSUFFICIENT DATA

outlines these variants and their fundamental algorithmic char-
acteristics.

From these variants, only the and are
parametric as they depend on a user-defined regularization pa-
rameter . As before, we fine-tune the model by seeking the
value that minimizes the misclassification rate . Fig. 3(b)
plots the error for varying within . It can be seen
that the best models are the ones corresponding to values of

and for and , respectively.
Final errors for all LFD variants are shown in Table III(c). The
fact that the error of is half the
error of , shows that for the particular problem,
regularization toward a spherical covariance is more beneficial
than regularization restricting the Frobenius norm.

and both give a high error, as
both discard the nullspace of , which is apparently impor-
tant for discrimination [58], [59]. is (as expected) the

worst with an error of 32.82%, since the dimensionality loss
from the nullspace removal is very high as

. , , , and
produce equal low error rates of 16.6% as they are similar in
the sense of taking into account the nullspace of in var-
ious ways despite some fundamental algorithmic differences
(equality of their error rates is owed to the small number of data
classes). Finally, also produces a small error, as the
existence of two classes does not leave margin for much loss
of discriminatory information (one dimension reduced addition-
ally to the nullspace of ). Overall, from this comparison, it
can be seen that nullspace methods are better, and without the
need to fine-tune any parameters. Overall, LFD methods achieve
considerable dimensionality reduction from 152 to 1 dimension
only along a direction that maximizes class separability, but this
seems adequate for PPH discrimination with best accuracies of

.
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Fig. 4. Error surface of RDA using the entire d = 152 features with varying
values of � and 
 . The minimum occurring at (�; 
) = (0:3; 0:1) is pointed
by the arrow.

C. Testing Regularization

The positive effect of tackling covariance singularity and ill-
positioning via regularization, is visible in Table III(d), where
despite the use of all raw features the misclassifica-
tion rate remains at a reasonably low level of 21.67%. Model
selection is performed by error estimation on each point
of a 21 21 uniformly spaced grid (when
caused instability it was replaced by a small quantity of ).
Fig. 4 shows the entire error surface with its lowest elevation

at .
We also test the potentially beneficial effect of combining re-

duced feature extraction and regularization. To do this, we add
to the previous setup an external loop that preapplies PCA with
varying number of eigenvectors . To accelerate
computation, a smaller 11 11 grid is used for

. RDA PCA in Table III(d) has an error of 16.50%
which is lower than RDA. Fig. 5(a) plots the best error and the
associated and values, for each slice of the search space,
where the overall minimum occurs at .
Fig. 5(b) shows the entire surface at slice .

Finally, we test two more RDA implementations, which
employ the GA in the outer loop to estimate and . In the
first one, , the two parameters take resolution
much higher than the previously used grids. The 10-bits en-
coding (see Section III-G) allows resolution at .
As shown in Table III(d) both and are slightly
lower, as the GA has a larger search space for minimization.
The optimum parameters now are
which are near the previously found RDA ones. The second
version, , uses the same resolution, but in addition
we have allowed separate and values for each th class.
Traditionally, RDA uses common regularization parameters
for efficiency [32]. The optimum values for
are (0.5445,0.2972, 0.1505,0.1574). The fact that the error
of 20.15% is slightly better than and RDA
shows that decoupling the parameters may give slightly better
performance for the particular problem. To allow for maximum
flexibility, in all GA-based searches used henceforth we encode
4 parameters for RDA.

D. Evaluation of Feature Selection

As mentioned in Section III-F, due to the high combinato-
rial complexity of selecting a subset from the features var-
ious fast search techniques exist. Here, we have implemented
for comparison three different search methods [28], [42], [43].
ScFS is the simplest one and performs scalar filter search by
sorting all features according to a class separability measure.
Equation (14) is used for this measure, and the features with
the highest scores are taken to form each subset. The second
method, the sequential forward search (SFS) one, iteratively
adds the next feature which together with all previously selected
ones maximizes a score. For the evaluation of this score, we
have used LDA and QDA in a wrapper approach. To alleviate
the nesting effect of SFS (once a feature is added it cannot be
removed), we also implemented the sequential floating forward
search (SFFS) method, which employs backtracking to reassess
and replace past decisions.

Fig. 6(a) plots the class separability scores for all features in-
dividually, where only a small fraction of the features has rela-
tively high scores. When the output of ScFS for an increasing
portion of selected features is subjected to LDA and QDA in
Fig. 6(b), it can be seen that the addition of more than one fea-
tures increases misclassification rate. This shows that features
cannot be examined independently and that a filter-based cri-
terion cannot reflect the classification performance. However,
one feature only can manage classification accuracy in
Table III(e); this is the angle of the Rearfoot Complex joint
at Foot Flat event on the Sagittal plane (see Table I). The re-
sults for LDA/QDA SFS and LDA/QDA SFFS are shown
in Table III(e). The optimum number of selected features are
shown by the arrows in Fig. 6(b). Overall SFFS gives better re-
sults, which is expected as its search is more thorough than SFS
due to nesting avoidance. The lowest error so far is that of LDA

SFFS with , for features. Despite
the low of QDA the errors remain high. Further
tests showed that the correlation between the two estimators is
very poor for LDA and especially for QDA which is more nu-
merically susceptible to small samples due to the separate pa-
rameterization each class requires.

E. Results of Feature Selection With Regularization

Here, we test the proposed RDA GA method (Sec-
tion III-G) which uses RDA to regularise the covariance
estimates, and a GA to select the optimal feature subset and
the four RDA parameters. Table V contains the GA parameters
used. The tradeoff between maximizing classification rate
and sparsity within (13) is regulated by . Table III(f)
presents four distinct Pareto solutions for different values of

with 4, 7, 9 and 12 features ( in denotes
the final ). The general observation from our experiments
is that lower values obtain more features but with better
accuracy. However, this holds for small as the existence of
many features reduce the generalization rates.

Overall the resulting classifiers outperform the previous
ones. Even with 4 features, has an accuracy
of 91.01%, which is better than the previously best LDA
SFFS with 90.73% accuracy and 19 features. Experimentation
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Fig. 5. (a) Plot of the minimum "̂ and its associated � and 
 values of RDA preceded by PCA. The optimum model is shown by the arrow at b = 33
dimensions with (�; 
) = (0:6; 0:1) and an error of 10.98%. (b) Error surface plot at slice b = 33, where the arrow points at the optimum (0:6;0:1).

Fig. 6. (a) Measures of class separability for each feature individually. (b) Error plots for LDA and QDA preceded by feature selection via ScFS, SFS, and SFFS
for varying number of selected features. The best models are shown by arrows annotated by the number of optimal dimensions.

also showed the appealing fact that the use of small feature
subsets in conjunction with regularization increases the cor-
relation between bootstrap and CV error estimators, and also
decreases overfitting ratios as the difference between B632 and

in Table III(f) becomes small. The best classifier, the
with 12 features and an accuracy of 95.93%,

uses a smaller to give lower optimization weight to
sparsity and more to accuracy . Table VI contains the exact
features for the four solutions, their regularization parameters

, , , , and the weights.
Fig. 7 shows statistics from the gradual reduction of features

and errors over the optimization course for ex-
periments, where the speed of the convergence in under 100
generations is apparent. Fig. 8 shows the population matrices
of the best individuals from all generations and the initial pop-
ulation. It can be seen that the initial sparsity achieved by the
heuristic of initializing the genes using (14) manages a dramatic
speed acceleration. The figure also illustrates the different types
of search deployed in the left and right part of the population

TABLE V
THE GA PARAMETERS USED FOR ALL EXPERIMENTS

matrices, where the 152 feature bits and the 40 bits for and ,
respectively, are encoded.

V. CONCLUSION

This paper has tested an extensive range of dimensionality re-
duction and robust classification techniques for linking PPH and
functional biomechanical foot data. As expected, the classical
Discriminant Analysis techniques LDA and QDA performed
very poorly because of the large ratio of measurement variables
over available data samples; hence, they do not seem very suit-
able for such situations. The PCA and LFD methods that re-
duce dimensions by extracting new linear features performed
better, since they eliminate redundant information and make the
parameterization of the classifiers more tractable. The fact that
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TABLE VI
EXAMPLES OF FEATURES AND PARAMETERS FOUND BY THE PROPOSED RDA + GA METHOD FOR DIFFERENT VALUES OF w . EACH SELECTED FEATURE IS

IDENTIFIABLE BY ONE OF THE 147 JOINT-EVENT-PLANE TRIPLETS (SEE TABLE I) OR ONE OF THE FIVE EVENT TIME PERCENTAGES

Fig. 7. Plots of the best, average, and worst values of the maximizing objective f = f +w � f for each of the 130 generations ofRDA+GA . The (scaled
by 1.2 for clearer presentation) accuracy (f ) and sparsity (f ) objectives of the top member are also shown.

LFD techniques outperformed PCA-based discrimination, was
also expected since LFD reduce the data by choosing more dis-
criminant subspaces, while as mentioned in Section II, PCA
simply retains high variance subspaces. Overall, from all the
tested nonparametric LFD variations, the nullspace ones per-
form better which is a reasonable behavior since nullspace in-
formation has to be exploited while selecting the discriminant
subspaces (see LFD references for theory details). However,
the availability of only two classes cannot distinguish further
between them as they give similar results. On the other hand,
RDA (using either a grid search or a GA for model selection)
also performed better than its unregularized counterparts LDA
and QDA, which is sensible as RDA deviates from the theo-
retical covariance estimates of LDA and QDA in an attempt to
improve classification. Additionally, RDA is shown to be fur-
ther improving with a preapplication of PCA. This is owed to
the combined benefit of the two and shows that regularization
on reduced subspaces is more responsive. In this way, RDA be-
comes equivalent to the best LFD methods. Overall, the feature
selection techniques ScFS, SFS and SFFS which retain specific

variables, are very promising since they present a much sim-
pler problem to the classifier without the need for manipulation
of all available variables. For this reason, the best one, LDA
SFFS, shows improved performance over either feature extrac-
tion or regularization both of which process in different ways
all available variables. All feature selection methods work better
with LDA, probably because QDA provides unnecessarily more
complex decision boundaries than LDA. The SFFS is better than
ScFS and SFS since it treats the available features more glob-
ally. The RDA GA method we proposed achieved the highest
classification accuracy. It was shown to manage an ac-
curacy with less than 10% of the available features. The reason
for its higher accuracy is that its search space is much broader
than other methods, such as LDA SFFS. On its own, RDA is a
general case of LDA or QDA, and the GA a general case of SFS
or SFFS with the additional capability of fine-tuning the RDA
parameters. Thus, theoretically RDA GA has more chances of
producing better results by combining algorithmically the power
of corrected covariance estimates via regularization and pattern
space simplification via variable reduction.
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Fig. 8. Population matrices where black pixels denote genes set to 1. Solutions are represented by 152 bits for the feature set F and 40 for the RDA parameters
� and 
 . (top) the 130� 192 matrix with the ith row containing the best chromosome of the ith generation. (bottom) the 100� 192 matrix with the ith row
containing the ith member of the sorted initial (generation 0) population.

The experimented and proposed methods are generic and ap-
plicable to gait investigations, other than the lesion classifica-
tion and the type of kinematic data employed here. This is be-
cause the work was focused toward providing a robust classifica-
tion analysis for small sample size situations, which is common
in biomechanical and gait sciences. Additionally, the employed
feature selection incurs a sensor reduction which is important,
not only because it reduces the costs and accelerates the data
collection procedures, but also because it provides a simpler
clinical model for examining and understanding the intercon-
nections between gait and pathology, through the specification
of a few key variables.

In the context of PPH, we have provided some original find-
ings, that establish a correlation between the foot pressures in-
duced by irregularities of the foot motion and PPH formation.
This has the following benefits. First, the link of theoretical in-
terest between foot kinematics and PPH is demonstrated; this
reinforces the claim of causal relationship between motion and
PPH formation. Second, from the biomechanical point of view,
the proposed multisegment foot model is ascertained for its sen-
sitivity and richness of kinematic information, which may be
valuable for other types of gait analyses. Third, concerning the
clinical factors, it provides promising directions for constructing
automated patient screening systems which detect lesions prior
to their observable formations. This can have significant impact
to the danger assessment and prevention of other types of de-
bilitating lesions, such as neuropathic diabetic foot ulcerations
which can lead to limb amputation.
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