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1 INTRODUCTION  

There are many situations where it is desirable to be able to ef fectively sculpt sound waves or convert 
them from one shape to another. For example, professional audio line array  loudspeakers of ten 

include waveguides intended to receive plane waves f rom one or more compression drivers at circular 
apertures and produce near plane waves at the waveguide mouth, which is of ten slot-like. The 
acoustical design of  such wave shaping waveguides is complex. Achieving high ef f iciency and  precise 

directivity control, while also minimizing acoustical resonance and response irregularity , is extremely 
challenging. But this complex design problem has considerable application in the audio industry , and 

many contrasting approaches are seen in dif ferent products1,2. 

A recent paper by Dodd and Oclee-Brown3 describes a new class of  wave-shaping waveguides. Their 
approach is applicable to waveguides that are thin in one dimension. This feature allows corrugations 

and thickness variations to be applied to the waveguide geometry, which can modify the acoustical 
waves propagating through the device. It also minimises acoustic resonances and encourages 
coherent wave propagation over a wide bandwidth. Dodd and Oclee-Brown provide an overview of  

the steps required to construct such devices and show three example waveguides where the required  
corrugations have been manually calculated; a process they described as “time-consuming and 

intricate”. 

This paper investigates an approach for automatically calculating the required corrugations and 
thickness corrections based on numerical analysis of  an initial smooth “prototype” waveguide. The 

approach is based on two numerically calculated metrics that characterize the acoustical path-length 

and ef fective area continuously throughout the prototype waveguide.  

The main research questions this paper investigates are: 

• How ef fective are the metrics at characterising problematic regions within a waveguide? 

• How much correlation is there between the error shown by the metrics and the acoustic  

performance of  a waveguide? 

• How useful are the metrics as guides for modifying a waveguides geometry to make it more 

capable of  supporting coherent wave propagation? 

• How well does the pathlength equalisation technique outlined in ref . 3 work for reducing 

dif ferences in the relative pathlength through a device? 

Section 2 outlines core mathematical theory that the techniques and analysis is based on, including 

1P waves, Laplace’s equation, and the waveguide metrics. Section 3 discusses the methodology for 
calculating the waveguide metrics and tracing streamlines through an FEA mesh.  Section 4 presents 
simulations of  the metrics on a test domain and discusses their meaning, then section 5 explores 

correcting the relative pathlength by distorting the 2D mesh to form corrugations. Section 6 extends 
the model to 3D and studies the acoustic performance with and without pathlength and area 

corrections. Finally, section 7 draws conclusions on the research questions and methodology used. 
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2 THEORY 

This section reviews the core concepts and mathematical theory on which the proposed technique is 

based, such as 1P waves, Laplace’s solution, and the waveguide metrics.  

2.1 1P Waves 

An acoustic f ield satisfying single parameter (1P) wave propagation is one in which the pressure 
depends on only a single spatial coordinate, which also happens to be the distance the wave has 
travelled. This means that there is equal pressure magnitude across each entire wavefront. A 

waveguide that supports 1P wave propagation should be f ree of  acoustic resonances and dif fraction, 

allowing coherent wave propagation.  

Geddes4 explains that “If  the wave f ronts are not 1P, then the waves, as they propagate down the 
horn, will not move parallel to the bounding contours but instead will be forced to either intersect the 
waveguide contour, ref lecting of f the walls as they travel; o r cease to remain in contact with the walls, 

propagating f reely into space, unconstrained and uncontrolled”.  

Through rigorous mathematical analysis, Putland5 def ined the necessary conditions for 1P wave 

propagation. He showed that the only shapes which support exact 1P wave propagation are the 
cartesian, cylindrical, and spherical coordinates systems, which create planer, cylindrical, and 

spherical wave shapes respectively, and that no new 1P horn geometries remain to be discovered.  

However, if  a waveguide can be designed to support close to 1P wave propagation over a range of  
f requencies, it will have predictable organised wavefronts in this bandwidth. This leads to controlled 

directivity and good coupling capabilities as there are no cross modes or dif f raction3. For these 
reasons, a geometry that produces more organised 1P-like wave propagation over a wide range of  

f requencies is assumed to have ‘better’ performance for the purposes of  this paper. 

2.2 Stretch and Flare Metrics  

Laplace’s equation, sometimes referred to as the heat equation, is a second order partial dif ferential 

equation that is commonly used to simulate steady state heat conduction. Laplace’s equation is : 

 ∇2𝑢 =  0. (1) 

Laplace’s equation can be used to model an equilibrium situation that is non-oscillatory. Laplace’s 

equation is also a special case of  Helmholtz’ equation with wavenumber 𝑘 = 0. The solution will 
depend on the geometry and the boundary conditions. The Dirichlet boundary condition, which is 

used in the simulations in this paper, specif ies the value of  𝑢 on a boundary. 

We propose an extension to Putland’s work that arises through applying it to solutions of  Laplace’s 
equation. This is a reasonable approach because 1P solutions of  the Laplace and Helmholtz 
equations have closely related forms. Furthermore, we propose two metrics – ‘stretch’ and ‘f lare’ – 

that quantify deviation of  a solution 𝑢 f rom Putland’s conditions for 1P waves.  

The stretch metric 𝑠 is related to the relative pathlength through a domain. Non-unity in 𝑠 indicates 
regions of  a domain which will be poor at supporting 1P wave propagation as the relative pathlength 

through the domain is too short or too long. The ‘stretch’ metric 𝑠 is def ined mathematically as: 

 𝑠 =  |∇𝜉|, (2) 

where 𝜉 (def ined by Putland5) is a coordinate computed f rom 𝑢 that measures cumulative path length. 

This is measured along a path that follows ∇𝑢, so therefore runs perpendicular to planes of  constant 

𝑢.  𝑠 ≠ 1 means the surfaces of  constant 𝜉 are either too close together or too far apart compared to 

the norm. The mapping between 𝑢 and 𝜉 is found through integration: 
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 𝜉(𝑢) = ∫
𝑑𝑢

|∇𝑢|
 (3) 

Using Putland’s conditions for 1P waves, it can be shown that the f lare rate term f rom Websters horn 

equation6 is equal to: 

 𝑓 =  
1

𝑆

𝑑𝑆

𝑑𝜉
= −

𝐞𝑢 ∙ ∇|∇𝑢|

|∇𝑢|
. (4) 

Here 𝐞𝑢  is the unit vector in the direction of  ∇𝑢. The f lare rate indicates how the f lare (𝑑𝑆 𝑑𝜉⁄ ) changes 
with cross sectional area. Another identity for the f lare metric can be found  using logarithmic 

dif ferentiation: 

 𝑓 =  
1

𝑆

𝑑𝑆

𝑑𝜉
=

𝑑

𝑑𝜉
ln 𝑆 (5) 

By rearranging the right-hand side of  eq. (5) the cross-sectional area through the domain can be 

calculated to be: 

 𝑎𝑓 =  e∫ 𝑓 𝑑𝜉 . (6) 

Because this involves integrating 𝑓 down a 𝜉 path, 𝑎𝑓  can be thought of  as the comparative change 

in cross-sectional area (relative to the start geometry) that a 1P wave feels as it propagates through 
a domain. Notably, it can dif fer f rom the physical change in cross sectional area through a domain. In 

this paper, 𝑎𝑓  is therefore referred to as the ‘felt area’. 

 

3 METHODOLOGY 

To calculate the waveguide metrics over an arbitrary shaped domain, the FEA package PAFEC7 was 

used to compute the solution to Laplace’s equation, 𝑢. The solver allowed calculations of  𝑢 – and 
therefore the metrics – on 2D meshes, 3D meshes, and shell meshes. The latter of  these can be 

useful in situations where a thin 3D geometry can be well approximated by using an inf initely thin 

shell of  2D elements in a 3D space. Dirichlet boundary conditions with values 𝑢 = 0 and 𝑢 = 1 were 
used to represent the entrance and exit of  the waveguide respectively. Thus, the Laplace solution 

climbs f rom 𝑢 = 0 at the entrance of  the waveguide to 𝑢 = 1 at the exit. The nodal 𝑢 data was then 

imported to MATLAB where it was used in the computation of  the metrics 𝑠, 𝑓, and 𝑎𝑓 . 

To f ind paths on which 𝜉 could be computed, streamlines of  steepest ascent through 𝑢 were traced 
on the FEA mesh using a Runge-Kutta 4 (RK4) method modif ied to work in three dimensions. The 
general concept of  tracing streamlines is to iteratively step through a domain using the vector quantity 

sampled at each step to direct the algorithm towards its next sampling position, similar to how ordinary 
dif ferential equations are sometimes solved numerically.  On each streamline tracing step, a Newton-
Raphson numerical technique8 was used to inverse map the global coordinates to the local element  

coordinates – this was chosen because it is a f lexible technique that works well with complex high 
order elements. The nodal ∇𝑢 data was then interpolated to the RK4 sampling location using the 

element shape functions so the step could be traced and the next start point found. 

The streamlines allow integration with respect to 𝜉, as is required to compute 𝑎𝑓  (see eq. (6)). The 

integration was performed starting f rom the entrance using the cumulative trapezoid rule. Data was 

then mapped between the nodes and streamline points using a global shape function matrix. 

To evaluate the acoustic performance of  the 3D domain, the Helmholtz wave equation was simulated 

in PAFEC using FEA. These simulations used did not include any nonlinearities or viscous losses, 
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which could inf luence the performance of  a real waveguide, particularly at high SPL or if  the geometry 

is extremely thin. 

4 UNDERSTANDING THE METRICS 

The metrics in section 2 measure how much a Laplace solution computed for a specif ied geometry 
deviates f rom Putland’s 1P conditions. They therefore indicate how ef fective regions of  a domain are 

at supporting 1P wave propagation. This section demonstrates the waveguide metrics on a test case 

geometry and shows how streamlines of  the vector f ield ∇𝑢 are used to calculate them. 

To make this section clearer to the reader, dif ferent colour scales have been used to plot the three 

waveguide metrics. Table 1 shows which colours represent which quantities. 

Table 1: Waveguide metric colour guide 

 
𝑢 −  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 𝐿𝑎𝑝𝑙𝑎𝑐𝑒′𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

 
𝑠 − 𝑠𝑡𝑟𝑒𝑡𝑐ℎ  

 
𝑎𝑓 − 𝑓𝑒𝑙𝑡 𝑎𝑟𝑒𝑎  

 

4.1 Test geometry  

For this paper a single test case geometry is examined . This is termed the “sine-curve” and it was 

chosen to help illustrate the metrics and waveguide correction technique. However, the same process 
could be applied to many dif ferent shapes and designs.  The test geometry was constructed by adding 

8cm of  width to a single period (50cm) of  a sinusoidal curve with 5cm amplitude.  

 
Figure 1: Solution to Laplace’s equation 𝒖 on sine-curve geometry  

with 50 isolines of constant 𝒖 overlayed 

Figure 1 shows the solution to Laplace’s equation on the test shape with 50 isolines of  constant 𝑢 

overlayed. The geometry has no expansion in area f rom the entrance to exit, so no change in 𝑎𝑓  is 

expected. The shape can be thought of  as two connected bends which curve in opposite directions. 
Each bend causes a change in the relative pathlength through the domain, but at opposing sides, 

which makes it a good test case to demonstrate the stretch metric 𝑠. 
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The entrance is on the boundary near 𝑥 = 0 and the exit is on the boundary near 𝑥 = 0.5. At these 
𝑢 = 0 and 𝑢 = 1 respectively. The distance between the isolines is related to ∇𝑢 and illustrates how 

there is a steeper (higher) ∇𝑢 close to the inside edge of  each curve. 

 

Figure 2: Curvature 𝜿 of the central line through the geometry 

Figure 2 shows the curvature of  the central line through the geometry. The curvature is at a maximum 

at the peak and trough of  the sinusoid shape (𝑥 = 0.125, 0.375 (𝑚)), and goes to zero in the middle, 
start, and end. It shall be seen that the curvature of  a channel of  constant width has an interesting  

ef fect on the waveguide metrics.  

4.2 Stretch  

Stretch 𝑠 measures the gradient of  𝑢. In a Helmholtz problem, this measures relatively how fast a part 
of  the wave has to travel in order to keep up with the rest of  the wavefront it is part of . Waves at the 

outside of  a bend would somehow have to travel faster than those at the inside of  a bend if  they are 
all to emerge together. But for the Laplace problem its meaning is rather arbitrary – the main thing 
that def ines it is the length of  the duct. Because of  this, relative stretch compared to a reference path 

is instead considered. Once a reference path through the domain is chosen, the relationship of  arc 

length 𝜉 to the solution to Laplace’s equation 𝑢 can be used to analyse the rest of  the geometry. The 
rest of  the domain is compared to the reference 𝜉 path, so depending on the 𝜉 path chosen dif ferent 

values of  𝑠 will be obtained, which may be greater or less than one depending on whether the path is 

shorter or longer (giving steeper or less steep gradients in 𝑢 respectively). 

 
Figure 3: Streamlines of the vector field 𝛁𝒖 traced through the sine-curve geometry 

Streamlines that trace the steepest ascent of  ∇𝑢 were traced through the domain, starting on the 

entrance boundary where 𝑢 = 0.  Because the streamlines follow ∇𝑢 they are 𝜉 paths following 

Putland’s conditions5. Figure 3 shows 10 streamlines of  ∇𝑢 traced through the sine-curve geometry.  
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By def inition, a 𝜉 path follows ∇𝑢 so is always perpendicular to surfaces of  constant 𝑢. This means 
that a rigid edge boundary is always a 𝜉 path since it is parallel to ∇𝑢. A boundary edge therefore 

makes a straightforward choice of  reference path. The arc length 𝜉 along the reference path is found 

by integration, then this value was mapped to all nodes in the domain with matching 𝑢 (since Putland 

def ined path-length 𝜉(𝑢) to be a function of  𝑢) and the stretch 𝑠 metric was calculated as |∇𝜉|. 

 
Figure 4: stretch metric 𝒔 on sine-curve geometry 

In Figure 4 the bottom boundary was used as the reference 𝜉 path to calculate 𝑠. Therefore, on this 
boundary 𝑠 = 1, indicating no error in relative pathlength. For the f irst half  of  the curve the reference 

edge is on the inside edge of  the curve, so the longer opposing boundary has 𝑠 > 1, indicating how 
a wavefront there would need to travel faster to ‘keep up’. Then on the second curve the channel 

bends in the other direction so 𝑠 < 1, indicating that the relative pathlengths are shorter than the 

reference edge. 𝑠 also highlights how the areas with biggest path length dif ference are around the 
middle of  each bend where the curvature is highest (see Figure 2). This makes sense because it is 

also where the channel turns the tightest corner.  

It is far easier to add pathlength to a waveguide than it is to take it away. Ref . 3 gives an example of  

how to do this. In Figure 4 the f lat domain could be distorted somehow to add pathlength when 𝑠 < 1, 
but a problem arises when the domain is too long, i.e. when 𝑠 > 1, since no mechanism exists to take 
pathlength away. In other words, the stretch metric is most useful when it shows how much shorter 

part of  the domain is compared to the longest part at that position, as the domain can then be modified 
to add pathlength to these regions to compensate. A method of  normalisation is therefore required 

that uses the longest part of  the domain at each point as the reference 𝜉 path. 

To achieve the required normalisation, the stretch metric was calculated multiple times using each of  

the traced rays as the reference 𝜉  path, and then taking the minimum calculated stretch value at each 

node. This yielded a minimum-normalised stretch metric 𝑠𝑛. This method of  normalisation means that 
an abstract reference 𝜉 path is constructed, which comprises sections of  whichever streamlines have 

the longest relative pathlength (or biggest 𝑑𝜉 𝑑𝑢⁄ ) in each region of  the domain. 

Figure 5 shows normalised stretch 𝑠𝑛 on the sine-curve geometry. A maximum value of  one is found 
on the outside edge of  each curved section. This is where the reference path has fallen since it has 
the longest relative path length. This is a useful result because pathlength can be added to the domain 

in areas where 𝑠 < 1. It is interesting to note how 𝑠𝑛 → 1 in the middle at the intersection between the 

two curved sections.  
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Figure 5: Minimum-normalised stretch 𝒔𝒏 on sine curve geometry 

Since the normalisation acts as a scaling, the ratio of  the maximum and minimum values of  stret ch 

on a surface normal to the ∇𝑢 (a wavefront) will always be the same regardless of  it. For example, 
comparing 𝑠 on Figure 4 and Figure 5, the ratio of  𝑠 between the top to bottom boundaries at 𝑥 = 0.13 

is around 1.78 in both cases. 

4.3 Felt area 𝒂𝒇 – the area metric 

The relative change in cross sectional area or felt area 𝑎𝑓  was calculated f rom f lare 𝑓 using Eq. (6).  

The integration was performed down the streamlines in the same direction as ∇𝑢, therefore the 

entrance surface (with Dirichlet boundary condition of  𝑢 = 0) always has 𝑎𝑓 = 1 and 𝑎𝑓  indicates how 

the relative cross-sectional area changes through the geometry f rom entrance to exit.  

 
Figure 6: felt area 𝒂𝒇 on sine-curve geometry 

Figure 6 shows 𝑎𝑓  on the sine curve geometry. Interestingly, the change in curvature through the 

shape causes 𝑎𝑓  to indicate a decrease in area close to the inside edge and an increase close to the 

outside edge of  each bend. The domain has a constant width, so the physical cross-sectional area 

does not change - it suggests that for a wave travelling through a duct of  constant width, the change 

in curvature causes an apparent change in area which varies across the width of  the channel. 

5 EQUALISING THE RELATIVE PATHLENGTH  

In a thin channel, one method of  equalising the relative pathlength dif ference shown by 𝑠𝑛 is to distort 

the geometry in areas where the domain is too short (𝑠𝑛 < 1). This concept of  distorting a thin domain 
to equalise the relative pathlength is outlined in ref . 3. This section automates that approach and uses 
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corrugations that are a function of  𝑠𝑛 to equalize the relative pathlength; the process should scale arc 

length by a factor of  1/𝑠𝑛. Sinusoidally shaped corrugations were used, but other prof iles are possible. 

The corrugations have two parameters: amplitude 𝐴 and repeat length 𝐿. The relationship between 
these and added arc length is not linear. The lef t-hand side of  Figure 7 show how sinusoidal curves 

with a smaller period require less amplitude for the same extension. These curves all have an arc  

length of  7.64, but dif fering choice of  𝐿 (2𝜋 3⁄ , 𝜋, 2𝜋) has meant dif fering amplitudes 𝐴 achieve this. 

The right-hand side shows the relationship between extension factor (1/𝑠𝑛), corrugation amplitude 
(𝐴) and period (𝐿). This non-linear function is used to f ind the required amplitude 𝐴 f rom 𝑠𝑛. This  
allows tailored corrugations to be added throughout a domain which have the correct amplitude – and 

therefore arclength – to equalise pathlength through the geometry. 

  
Figure 7: left: corrugation curves all with an arc length of 7.64, 

right: non-linear relationship between extension (𝟏/𝒔𝒏) and corrugation amplitude 𝑨 

Figure 8 shows a shell mesh of  the test geometry where sinusoidal corrugations have been used to 

correct relative pathlength. The corrugation amplitude 𝐴 was computed f rom 𝑠𝑛 (shown in Figure 5) 
using the relationship in Figure 7. This causes the largest corrugations to be close to the inside 

boundary of  each bend where 𝑠𝑛 is lowest, and the channel curvature is highest. 

𝑢 was used as the coordinate system with which to build the periodic corrugations and move through 
the domain f rom entrance to exit. This ensured that the corrugations were always perpendicular to 

the edges of  the domain and parallel with surfaces of  constant 𝑢. Using 𝑢 as the coordinate system 
in which to build the periodic corrugations means that the spatial period (wavelength) of  each 

corrugation changes depending on 𝑠𝑛. This ef fect was accounted for when calculating the 𝑠𝑛 to 

amplitude relationship. 

In the example in Figure 8, a small stretch of fset 𝑠𝑜 = 0.01 was subtracted f rom 𝑠𝑛 before building the 
corrugations. This adds a small amount of  corrugation everywhere and helps avoid having heavily  
distorted elements close to the outside edges of  each bend, where the corrugation amplitude would 

otherwise fade to zero. 
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Figure 8: sine-curve geometry with corrugations to equalise the relative pathlength 

To quantify whether the corrugations have helped equalise pathlength, the new geometry was re-

analysed. But instead of  using stretch normalised to the longest 𝜉 path, the average normalised 

stretch 𝑠𝑎 was used; this is the ratio of  the pathlength to the mean pathlength through the domain. It  

highlights regions where too much or too little pathlength has been added by the corrugations.  

 
Figure 9: average normalised stretch 𝒔𝒂 on the corrugation-corrected sine curve geometry 

Figure 9 shows 𝑠𝑎 on the corrugated shell mesh. 𝑠𝑎 is much closer to unity on the corrugated shell 
mesh than on the original 2D f lat domain in Figure 4 (note dif ferent colour limits), which indicates that 
the dif ferences in the relative pathlength through the geometry have been reduced and the design 

will therefore be better at supporting 1P wave propagation. The most intense spots in 𝑠𝑎 are at the 
peaks and troughs of  the largest corrugations. There are also periodic patterns in 𝑠𝑎 because sine 

wave shape corrugations add pathlength in a cyclic manner. 

 
Figure 10: felt area 𝒂𝒇 on the corrugation-corrected sine curve geometry 

Figure 10 shows the ef fect of  pathlength equalisation on the felt area metric 𝑎𝑓 . Interestingly, the 

range of  𝑎𝑓  is signif icantly less than in the non-corrugated geometry (Figure 6), which shows that 

correcting the relative pathlength through a domain also reduces the change in area indicated by 𝑎𝑓 . 

It is worth noting that because the elements are inf initely thin on a shell mesh, the metrics in Figure 

9 and Figure 10 only analyse the domain parallel to the surface and not perpendicular too it.  
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6 THREE-DIMENSIONAL GEOMETRY  

Unlike an inf initely thin 2D planer or shell domain, a 3D domain has a third dimension (its thickness) 
that can be used to adjust the cross-sectional area and correct changes indicated by the felt area 

metric 𝑎𝑓 . This is referred to as area correction. This chapter investigates the acoustic performance 

of  the geometry with and without pathlength and area correction. 

Converting a shell mesh into a 3D mesh was achieved by computing vectors normal to the surface at 
each node and then lof ting equally in the positive and negative direction to extrude into a 3D domain. 
This means the central surface is the same as the original shell mesh. Figure 11 shows the corrugated 

sine-curve geometry extruded into 3D with a base thickness 𝑡𝑏 of  5mm. 

 
Figure 11: 3D corrugated sine-curve geometry 

When extruding into 3D, the base thickness 𝑡𝑏 could also be adjusted spatially by using 𝑎𝑓  f rom the 

2D model (Figure 6) to get a corrected thickness 𝑡𝑐 . 

 
𝑡𝑐 =

𝑡𝑏

𝑎𝑓
 (7) 

The ef fect on the acoustic performance with and without this area correction is explored in Figure 13. 

To understand the ef fectiveness of  the pathlength and area correction techniques, FEA simulations 

of  the Helmholtz wave equation were performed on the 3D geometry. The domain was excited by a 

constant velocity over the entrance surface and was terminated with a 𝜌0 𝑐 boundary condition on the 

exit surface. 

Figure 12 shows the pressure distribution at 20kHz, with and without pathlength and area correction. 

On the original f lat geometry, the bends cause the pressure to intensify close to the outside edges, 

and the pressure distribution at the exit (𝑥 = 0.5) is visibly uneven. In contrast the model with 
pathlength and area correction has much more aligned wavefronts throughout the geometry. 

However, there are slight f luctuations in the pressure visible across some of  the wavefronts. 

The maximum range of  the SPL over all the nodes on the exit surface of  the geometry was used to 
characterise the acoustic performance over a wide range of  f requencies. If  the range of  the SPL is 
zero it implies that the pressure wave at the mouth is completely uniform and coherent and therefore 

no cross-modes have been excited.  

Figure 13 shows the range of  SPL across the mouth with dif ferent correction techniques. Frequencies 

lower than 2kHz have not been included as the larger wavelengths mean the uncorrected design 

already has close to plane wave propagation. 

The two models with pathlength correction perform signif icantly better than the original f lat geometry 
over most f requencies.  The geometry with both pathlength and area correction performs best, with 
a maximum range in SPL of  around 4dB at 5kHz. These results suggest that the best technique is to 

correct both the pathlength and the area (𝑠𝑛 and 𝑎𝑓 ) together.  
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Figure 12: acoustic pressure distribution at 20kHz, top: original flat geometry, bottom: 

geometry with pathlength and area correction 

 

Figure 13: range of SPL across exit surface with and without pathlength and area correction 
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7 DISCUSSION AND CONCLUSIONS 

This paper has tested the hypothesis that metrics based on Laplace’s equation can be used to modify 
waveguides to better support 1P acoustic waves. Results show a geometry with judiciously added 

corrugations to have signif icantly less pathlength discrepancy than the original planar geometry. 
Acoustic simulations back this up, showing wavefronts that are much more aligned and a signif icantly 
smaller range of  SPL over the mouth, indicating the geometry better supports 1P wave propagation. 

Hence, this hypothesis appears to hold for the test case simulated, suggesting the corrugation-based 

pathlength correction technique3 can be a useful tool for ref ining designs of  acoustic waveguides. 

Although the performance of  the waveguide is signif icantly improved, it is not perfect. Fundamentally, 
the limitation on the performance of  the modif ied waveguides is related to the f indings by Putland 5, in 
which he describes mathematically how there are only three coordinate systems which will support 

perfect single parameter waves. This is important as the prototype geometric surfaces studied in this 
project are not of  these shapes, so will never support 1P wave propagation perfec tly for all f requencies 
no matter how well the correction works (except for the unlikely scenario where the correction 

procedure creates one of  Putland’s isolated cases). However, through reduc tion of  non-unity in 𝑠𝑎 

and 𝑎𝑓 , the designs become closer to supporting 1P wave propagation over a limited bandwidth.   

The extend of  this bandwidth is limited by the accuracy of  the pathlength correction (and therefore 

reduction in non-unity of  𝑠𝑛), and the thickness of  the thin corrugated domain, which should be less 

than one wavelength to avoid ref lections of  the propagating waves f rom the boundaries 

7.1 Further Research 

While the test case geometry used in this paper is useful for illustrating and investigating the metrics 
and correction technique, the methods could be used to design waveguides or acoustic lenses for 

many dif ferent situations. It would be interesting to tackle some more complex real-world acoustic 

wavefront manipulation problems, such as the circle to slot adapter used in line array sources.  
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