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Abstract: With the widespread use of IoT applications, malware has become a difficult and sophis-
ticated threat. Without robust security measures, a massive volume of confidential and classified
data could be exposed to vulnerabilities through which hackers could do various illicit acts. As a
result, improved network security mechanisms that can analyse network traffic and detect malicious
traffic in real-time are required. In this paper, a novel optimized machine learning image-based IoT
malware detection method is proposed using visual representation (i.e., images) of the network traffic.
In this method, the ant colony optimizer (ACO)-based feature selection method was proposed to get
a minimum number of features while improving the support vector machines (SVMs) classifier’s
results (i.e., the malware detection results). Further, the PSO algorithm tuned the SVM parameters of
the different kernel functions. Using a public dataset, the experimental results showed that the SVM
linear function kernel is the best with an accuracy of 95.56%, recall of 96.43%, precision of 94.12%, and
F1_score of 95.26%. Comparing with the literature, it was concluded that bio-inspired techniques, i.e.,
ACO and PSO, could be used to build an effective and lightweight machine-learning-based malware
detection system for the IoT environment.

Keywords: IoT; malware detection; machine learning; bio-inspired optimization; ACO; PSO; SVM

1. Introduction

Internet of Things (IoT) technologies have found various applications, including health,
industry, smart cities/homes, and education [1]. As reported in [2], in the next two years,
it is estimated that more than 75.44 billion IoT devices will be embedded in applications.
The work in [1,2] confirms that the next important phase in the dream of connecting the
world will be establishing a network of connected smart gadgets. This technology, however,
brings with it new security and privacy concerns. Considering the nature of IoT networks,
it is obvious that they typically consist of low-cost sensors and/or devices (surveillance
cameras, different types of sensors such as CO2 or temperature). Such sensors/devices
are not only remotely located but also have constrained resources (i.e., processing capacity
and low-power sources) [1]. These constraints make it difficult to carry out complicated
security activities on those devices, thus allowing the attackers to exploit these devices and
threaten the network by abusing the integrity and/or the network’s security [3].

In late 2019, a study by Avast [4] revealed that two out of five IoT devices are vulnerable
to hackers [4]. It is also found that botnet attacks are the most prevalent kind of attack.
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Such attacks can conduct devastating DDOS (Distributed Denial of Service), which use
vulnerable IoT devices to mount major security breaches. A well-known example of these
attacks is the Mirai botnet [5]. In late 2016 [6], the Mirai attack blocked the Internet by
knocking out hundreds of services, including DNS providers, Twitter, Netflix, GitHub,
Amazon, Reddit, etc. Unlike other botnets, Mirai is mostly made up of IoT devices such
as digital cameras, DVR players, temperature sensors, and so on [6,7]. According to
investigations, this devastating DDoS attack (Mirai) featured over 400,000 compromised
IoT devices, making it the most powerful DDoS attack ever.

Malware is defined as software designed to cause damage to a computer system, smart
appliances, or Internet-connected devices, typically with the aim of stealing data or causing
damage to a network. Malware is considered one of these dangerous attacks embedded
with IoT devices that make the detection of such malware extremely challenging. Malicious
software only works on the system for which it was written. A Linux system’s executable
ELF files are functionally equivalent to Windows’ PE files (.exe, .obj, .dll, etc.). Most IoT
devices run a modified version of Linux based on the Debian distribution, but their CPU
architectures vary widely (ARM, MIPS, ×86, etc.). There is a significant increase in the
number of zero-day malware variants on a daily basis. As a result, personally analyzing
each assault occurrence will become increasingly difficult. That is why it is crucial to create
a malware detection methodology for threats aimed squarely at the infrastructure and
devices of the internet of things [8,9].

Most malware detection systems for such attacks depend on a signature-based mal-
ware detection approach, which compares incoming traffic to a stored signature of pre-
viously known malware to identify potential attacks [10]. While these techniques are
extremely precise and effective in detecting known attacks, they frequently fail to detect
new attacks/threats without signatures [10,11]. Additionally, they need considerable re-
sources and manual intervention to update attack signatures [11]. As a result, they cannot
detect zero-day attacks. Significant work has been invested in overcoming these constraints,
with various techniques concentrating on behavior analysis or anomaly detection [12,13].

Several papers [14–17] used a visual representation of the network traffic to detect
malware issues. However, there are two main limitations in the literature. Firstly, the
accuracy measure was the only evaluation metric used to assess the performance of the
proposed solution. The accuracy alone is not enough of a measure to assess the false and
positive alarm rates. Secondly, deep learning models were used and showed that they
could improve performance, but this comes at a massive computational cost that may not
be visible/sustainable for IoT-based systems with limited computational capabilities [18].

Although applying transfer learning to image classification is well known, the pro-
posed model used classical machine learning to classify the converted PCAP into images
into normal or abnormal classes. The disadvantages of transfer learning for image classifi-
cation are the reason for using traditional machine learning [19]. One limitation is what
is known as a negative transfer which occurs when transfer learning decreases the new
model’s performance or accuracy. Transfer learning works well if both models’ beginning
and target problems are comparable [19]. If the new task uses a set of training data that is
too different from the previous task, the trained models may perform poorly. Even if devel-
opers think two pieces of training data are similar, algorithms may disagree. No standards
exist for what activities are connected or how algorithms decide, making negative transfer
difficult to solve. Another problem of transfer learning discovering optimum AI models. If
the initial layers are removed, the dense layers’ trainable parameters will be changed too.
Further, dense layers can be a good place to start cutting layers but determining how many
to drop to avoid overfitting is time-consuming. Overfitting limits practically all prediction
methods. It is a major data bias. In transfer learning, overfitting occurs when a new model
learns features and noise from training data that affect its outputs [19,20].

In this paper, to address the above limitations, a method of IoT malware detection
was proposed. Still, shallow machine learning (SML) with a visual representation of the
network traffic is proposed. Moreover, a bio-inspired optimization algorithm is used to
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select the best features using ACO and tune the SVM parameters using PSO to get the best
performance of the proposed solution. The proposed method leveraged the benefits of two
popular bio-inspired techniques to first reduce the data dimensions (done by ACO) and
then improve the performance of the SVM classifier (done by PSO for parameter tuning).
The two algorithms are applied to malware features represented as images rather than
normal numerical features. As a result, based on traditional machine learning, the proposed
method can detect malware with high accuracy and low processing time, and it can thus
be deployed in any IOT environment that uses limited capability resources efficiently and
effectively. The proposed model is considered a form of early warning for any IoT-based
system, keeping sensitive data secure and protected.

The proposed method consists of various stages. Firstly, the network Pcap files
are converted into 2D RGB images. Secondly, the images are transferred to numerical
vectors, then features are extracted using various statistical texture features that fully
capture the original image’s spatial distribution of intensity variations. Thirdly, a feature
selection process was proposed using ACO to minimize processing time, thus addressing
the IDS limitation of IoT applications. This process removes superfluous and unnecessary
features as noisy data can negatively impact the accuracy of the malware detection process.
Therefore, an efficient feature selection method would minimize the dimensionality of
the feature space and enhance the efficiency as well as the performance of IDS. Fourthly,
the next stage includes presenting the selected features to the detection process where the
selected features are classified as normal or attack network flow. In this detection phase,
the PSO was employed to select the best parameter values of the SVM classifier to find the
most accurate solution.

The contribution of this paper is as follows:

• Employing the ACO algorithm as a feature selection technique, i.e., selecting a mini-
mum number of features while improving the classification results of an image-based
malware detection system using the SVM classifier.

• Determining the best SVM kernel function gives the best results of the proposed method.
• Utilizing the PSO algorithm for tuning the SVM parameters of the best-determined

kernel function.
• Integrating bio-inspired and ML techniques in proposing a malware detection ap-

proach can be effectively used in the IoT environment.
• Evaluating the proposed approach in terms of various evaluation metrics: accuracy,

recall, precision, and F1-score and comparing it with the most related published work.

The rest of the paper is organized as follows. Section 2 gives a detailed survey about
IoT malware detection using a visual representation of the network traffic. Section 3 gives
an overview of the algorithms/techniques used in the proposed malware detection system.
Section 4 presents the proposed system, while Section 5 reports the results, discussion, and
comparison with the literature. Finally, the conclusion is given in Section 6.

2. Literature Review

Malware classification is used to decide if a software program is malicious or benign.
Using signature-based algorithms for malware detection fails when facing zero-day attacks
or advanced malware attacks. In addition, different techniques (e.g., obfuscation, poly-
morphism, encryption, and meta-morphism) can be used to deceive the malware detectors
built using the signature-based approach. Machine learning techniques (such as supervised
ANN, Decision tree, MLP, SVM, and deep learning) are adopted to mitigate the bad effects
of malware on individuals and industries. Machine learning techniques can identify zero-
day and new malware attacks. Malware detectors based on advanced machine learning
approaches can be effectively adopted in IoT environments because cloud services can
accommodate the heavy computation of machine learning methods. The learning stage can
be processed on a cloud server, and the trained model is transferred to the IoT devices with
limited resources to execute it locally.
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There are two methods of applying machine learning techniques to detect and classify
malware: Feature-based technique and Image-based technique. The former method extracts
different features from malware file samples to train the classifier. The latter method uses
image processing for malware classification. This method transforms binary malware in-
stances into images, and then malware detection is accomplished using image classification
techniques that take the image representation of the malware as their input. In this section,
we highlight a few malware detection and classification works based on the representation
of the malware as images, which are closely related to ours.

Machine learning-based malware detection: Nataraj et al. [21] were the first to employ
byte plot visualisation as grayscale images for automatic malware detection. They trans-
formed the structure of packed binary samples into 2D grayscale images. They extracted
global image features (i.e., GIST features) from images, and then they performed classifica-
tion using the K-nearest neighbor algorithm and applied Euclidean distance as the distance
metric. With the Euclidean distance, they achieved a 97.18% accuracy rate. One limitation
of their approach is that it has a high computational overhead since the GIST algorithm is
time-consuming. Another limitation is the ability of an attacker to defend itself against the
system due to its dependability on the global features of images.

Naeem et al. [15] proposed an image-based malware detection system that represents
images globally and locally. First, the proposed technique converts a malware file to a
grayscale image and then extracts local descriptors (D-SIFT) and global descriptors (GIST)
from the malware image. Finally, a Linear SVM model is trained to perform malware
classification. They reported 97.4% accuracy. The drawback of the proposed system is
that they applied an analysis method that involves only malware that assaults windows.
This limitation makes it difficult to prove the system’s performance on heterogeneous
malware images. Furthermore, the used approach is extremely complex due to the texture
feature analysis.

Su et al. [16] proposed a lightweight neural network framework to differentiate be-
tween DDoS malware and goodware in IoT applications. The system converted program
binaries to grayscale images. They used a data set of 500 samples of image size (64 × 64).
They achieved a 94% classification accuracy. One limitation of this approach is the very
limited dataset, both in size and diversity. Another limitation is that they did not try any
other image size variations. Makandar et al. [22] proposed Support Vector Machine (SVM)
malware classification using images as input. They used wavelet transform and GIST to
build effective texture feature vectors from the malware images. They used KNN and SVM
for classification. They achieved an accuracy rate of 98.84% and 98.88% for KNN and SVM,
respectively. Liu et al. [23] used ensemble learning to detect malware effectively based
on grayscale images. The method constructs disassembled files from malware executable
files. After that, disassembly files are transformed into grayscale images. The dimensions
of grayscale images are reduced using the local mean approach. An ensemble learning
method that combines K-means and bagging algorithms is applied for classification and
achieves an accuracy of 98.2% on grayscale images and 94.20% on n-grams.

Han et al. [17] analysed malware using entropy graphs with bitmap images to classify
malware files. The method converts malware binaries into bitmap images, then calculates
the similarities by converting images into entropy graphs. The limitation of this approach
is that it can be applied only to Windows portable executable files because the proposed
system depends on the PE header’s information to identify the converted sections. Ad-
ditionally, the applied entropy graph method cannot detect packed malware samples.
Turker et al. [24] proposed a model for malware classification using hybrid features. The
model used singular value decomposition, a local binary pattern, and a new local ternary
pattern network to extract features. Next, Principal Component Analysis is applied to
reduce the set of attributes. Finally, the obtained features are fed to the linear discriminant
analysis for classification. The applied method achieved an 88.08% accuracy rate.

Deep learning-based malware detection: Malware can be classified based on its texture,
text, or a combination of both. Furthermore, some researchers have used a CNN model to
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classify malware images without using unique characteristics with descriptors. AdStop,
a machine learning-based technique for detecting malware in network traffic, was first
presented in [25] by Alani et al. Textual features and a multi-layer perceptron were used in
the suggested technique to accurately categorise malware. By combining latent Dirichlet
allocation and hierarchical clustering, Acharya et al. [26] established a method for extracting
clusters. They relied on a Convolutional Neural Network (CNN) model that has a 98.3%
accuracy rate to categorise malware. Texture features have been incorporated in the CNN
and TCN models for malware classification in [26–29]. Without first picking out the
unique features using descriptors, the suggested deep learning models gather the malware
images directly for classification. Classification of malware based on textual features has
been explored using the multi-layer perceptron (MLP), gradient boosting, and ensemble
approaches [25,30,31]. We present here different techniques for malware classification that
make use of different image-based features.

Robert et al. [32] proposed a method for malware traffic analysis using NN and binary
visualization. The system is used to classify new zero-day malware in less time. They
employed CNN as a classifier. The system consists of three subsystems: first, sniffer-based
network traffic collection. Secondly, an ASCII-based 2D traffic visualisation of collected
traffic. Finally, TensorFlow NN traffic analysis was used to analyse the produced images
against the trained module. They employed the MobileNet algorithm for the training
phase. The problems with this approach are the limited training and testing that used
samples and did not consider encrypted traffic. They achieved an accuracy of 91.32%.
Bendiab et al. [14] employed a deep learning and visual representation approach to identify
malicious network traffic in the IoT environment quickly. They applied transfer learning
with a 50-layer CovNet. They evaluate the system on 1000 pcap files representing normal
and malware traffic. The pcap files are converted images with the aid of the Binvis visualizer
tool. They achieve an accuracy of 94.5%. The limitation is the low predictive accuracy rate
due to small test and training samples.

Kalash et al. [33] designed a deep CNN model for malware categorization from mal-
ware binary files. First, the malware binaries are visualised as grayscale images, and then a
CNN architecture is applied for classification. The applied method randomly selects 10% of
instances per cycle to evaluate the malware family. On the Malimg and Microsoft datasets,
their proposed model achieved 98.52% and 99.97% accuracy, respectively. Cui et al. [34]
proposed a framework that detects malicious code using CNNs. The proposed method
converted malicious code binaries into fixed-size grayscale images. Then, the CNNs are
utilised to classify the mapped images. A genetic-based sorting algorithm is employed
to overcome dataset imbalance in malware files. Experiments report 97.6% classification
accuracy. Akarsh et al. [35] proposed a malware categorization technique that is based on a
feedforward deep learning architecture (CNN) and a recurrent neural network architecture
(LSTM). The proposed method converted malware into images. Then, the images are
flattened to be transformed into one-dimensional vectors. The vectors act as an input to
the CNN layer, followed by an LSTM layer and a fully connected classification layer. The
results obtained showed an accuracy of 94.4%.

Wang et al. [36] applied a method that helped in lowering the cost of feature engineer-
ing and improving the malware analysis ecosystem for detecting zero-day threats. The
attacker uses several evasion methods and recycles the code to create new forms of poly-
morphic and metamorphic malware. Deep learning-based detection models are developed
by first extracting and processing low-level image characteristics based on intensity and
textual information.

Moti et al. [37] proposed a framework for discovering and creating new malware sam-
ples from the raw byte code at the edge layer of IoT networks. High-level characteristics
were extracted using a Convolutional Neural Network (CNN), and new mal-ware samples
were generated using a boundary-seeking Generative Adversarial Net-work approach.
They used an attention-based model, comprised of CNN and LSTM, to identify the fea-
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tures’ temporal dependence. Standard Windows malware and Internet of Things malware
datasets are used to test the suggested technique.

Asam [38] proposed an architecture to detect malware based on CNN (iMDA) which
integrates numerous feature learning strategies in blocks, including edge exploration and
smoothing, channel squeezing and boosting in CNN, and multipath dilated convolutional
operations, in order to learn a wide collection of features. Edge and smoothing techniques
are used to understand the local structural differences that exist within malware classes,
while its global structure is detected by the multi-path dilated convolutional technique.

Marin et al. [39] released research with the goal of removing designed characteristics
and, by extension, the requirement for domain experts. They reintroduced two methods for
detecting malware based on packet content: raw packets and raw flows. To get there, they
fed raw byte-streams from pcaps into a deep learning model they were training. The ML
model they used was a hybrid of LSTM and a 1D convolutional neural network. Compared
to the byte-stream of a packet, the raw byte-stream of flow fared better (98.6 percent
accuracy). Conventional feature-based models and raw byte-based models were tested
side by side in a comparison experiment. The standard model was trained with a random
forest (RF) using data from 200 incoming features. Each of the raw-byte-based models
outperformed RF. For the purpose of classifying malware based on network-to-image
relationships, the Falcon technique was presented by Xu et al. [40]. When it comes to
categorising network traffic, each network packet is handled as a two-dimensional image.
They processed two-dimensional images using a bidirectional LSTM network in order to
produce significant vectors for the categorization of malware. The suggested technique
yields a categorization of malicious software that is 97.16% accurate.

Ullah et al. [41] presented a transfer learning-based malware detection system. Their
detection method uses textual and visual characteristics. The Bidirectional Encoder Rep-
resentations from Transformers (BERT) model was pre-trained to extract trained textual
characteristics. Second, the malware-to-image conversion technique would visualise net-
work byte streams. FAST and BRIEF were also utilised to effectively extract and mark
significant characteristics. Third, the training and texture features were mixed and balanced
using Synthetic Minority Over-Sampling (SMOTE), and then the CNN network mined deep
features. The ensemble model classified and detected malware using balanced features.
Additionally, Ullah et al. [42] improved prediction time and accuracy by using a hybrid
multimodel image representation for malware classification. —Their multimodel strategy
achieved between 98% and 99.4% accuracy across two distinct collections of malware
samples. They used textual and texture aspects of network traffic to maximise their ben-
efits. Transfer learning initially extracts trained vocabulary from network flow. For data
traffic visualisation, the malware-to-image technique visualises network bytes. Following
that, malware image texture features (ORBs) are extracted using scale-invariant feature
transformations (SIFTs) and oriented fast and rotated brief transforms. A CNN also extracts
deep features from learned vocabulary and texture characteristics. Finally, a textual-texture
ensemble model classifies and detects malware.

Saridou et al. [43] proposed a fast binary visualisation approach using the Fuzzy Set
theory and the H-indexing space-filling curve to detect malware. Their technique assigns
distinct colour tones to a byte, allowing it to be impacted by neighbouring values while
retaining optimal locality indexing. GRNET’s High-Performance Computing services tested
the applied technique. It was also compared to binary-visualized machine learning-based
detection applications. Despite poor tuning, SAGMAD achieved 91.94% accuracy, 90.63%
precision, 92.7% recall, and an F-score of 91.61%.

From the above discussion and Table 1, it could be concluded that there are two main
problems in the literature. Firstly, accuracy was the only evaluation metric used to evaluate
the proposed methods; see [15,17,22,23]. To evaluate malware detection systems, accuracy
could be misleading. Other evaluation metrics, such as recall, precision, and F1-score,
should be used to thoroughly evaluate such systems. Secondly, other papers [15,16,32–35]
have used deep learning models. However, most recently, a study [28] showed that deep
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learning-based solutions could improve performance, but this came at a massive computa-
tional cost. Given the limited computational capabilities of the IoT-based systems compared
with the business systems, deep-learning-based solutions would not be sustainable in IoT
environments such as smart cities, smart homes, smart hospitals, etc. Additionally, transfer
learning models suffer from two problems for image classification: negative transfer and
overfitting applications, as discussed in the Introduction section.

Table 1. Literature review summary.

Reference Year Feature
Extraction Classifier Dataset Testing Results Limitation

Nataraj [21] 2011 GIST KNN

Host-Rx Reference,
Host-Rx Application,
Malhuer Reference,

Malheur Application, VXHeavens

97.18%
accuracy

High computational
overhead can be beaten

by attackers.

Robert [32] 2019 CNN CNN Self-collected dataset 91.32%
accuracy

Limited samples did
not consider encrypted

traffic

Bendiab [14] 2020 CNN CNN Self-collected dataset 94.5%
accuracy Low accuracy rate

Naeem [15] 2018 D-SIFT and GIST SVM Collected from the vision research lab of the University
of California

97.4%
accuracy

Windows-based
malware, high

computation time

Su [16] 2018 CNN CNN IoT DDoS malware dataset newly collected by IoTPOT 94%
accuracy

The limited dataset in
size and diversity

Makandar [22] 2017
GIST and Discrete

Wavelet
Transform

SVM and KNN Malimg
Dataset

98.84% and
98.88%

accuracy
Limited samples

Liu [23] 2016 Local mean

Ensemble
learning based on

K-means and
bagging

Self-collected
dataset

98.2%
accuracy

Cannot deal with
packet encryption,

compression,
deformation

Han [17] 2015 Entropy Graphs
The similarity

between Entropy
Graphs

Self-collected dataset from VX Heavens
http://vx.netlux.org/index.html (accessed on 1

December 2022)
97.9% accuracy

Works for windows PE
files, cannot deal with

packed samples

Kalash [33] 2018 CNN CNN Malimg and Microsoft
Datasets

98.52%
accuracy

The network
architecture of

CNN(VGG16) requires
a long training time.

Cui [35] 2019 CNN CNN Image dataset from Vision Research Lab. 97.6%
accuracy

Not appropriate with
bigger scale images,
long training time

Akarsh [35] 2019 CNN-LSTM CNN-LSTM Malimg
dataset

94.4%
accuracy

Low accuracy rate,
result comparison

based on one literature.

Turker [25] 2021 hybrid
LBP-SVD-LTPNet LDA Malimg

dataset
88.08%

accuracy

Lower accuracy rate
compared with

CNN+LSTM model.

Wang [36] 2021 CNN CNN
Malimg dataset,

Microsoft malware classification challenge dataset (BIG
2015)

97.3%
accuracy No data balancing

Moti [37] 2021 GAN with CNN CNN, LSTM Standard Windows and IoT malware datasets.
accuracy:

97.56
F1 score:

97.61

Computational training
time complexity

Asam [39] 2022 CNN CNN Self-collected IoT dataset

accuracy: 97.93%,
F1-Score: 93.94%,
precision: 98.64%,

recall: 88.73%,

Low recall and F1 score
values

Marin [39] 2021 1D-CNN + LSTM 1D-CNN + LSTM [44] 98.60% Large number of
features

Xu [40] 2021 LSTM RF Android Malware CICMal2017 97.16% Long time feature
preparation

Ullah
[41] 2022

Features from
Accelerated

Segment Test+
Binary Robust
Independent
Elementary

Features + CNN

Ensemble model CICMalDroid 2020
CIC-InvesAndMal2019

97.76%
98.44%

complex multi-stage
feature engineering

Ullah
[42] 2022

(SIFTs) and
oriented fast and

rotated brief
transforms +

CNN

Ensemble model CIC-AAGM2017 CICMalDroid 2020 94.11%
99.00% No data augmentation

Saridou
[43] 2022

Hilbert BinVis
+ H-curve
SAGMAD

CNN Self-collected and combined dataset 94.50% Low detection
performance

This research effort has gone further than a prior study that suggested an optimized-
based machine learning framework for malware detection. This work is distinct from other

http://vx.netlux.org/index.html
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research work that has been done in the past. We presented a novel and unified approach
to the categorization of input packets into normal and malicious classes. In order to detect
unknown malware samples, our technique leveraged a fine-tuned machine learning model
that utilised different hand-crafted statistical methods for feature extraction, the ACO
algorithm for feature selection, and PSO-based SVM classification. The model was trained
using an image-based dataset [14]. The findings of our experiments demonstrated that the
proposed model achieved acceptable detection performance, taking different indicators
such as accuracy, F1 score, precision, and recall into consideration.

3. Work Preliminaries

This section gives an overview of the algorithms and techniques (Ant Colony Opti-
mization (ACO), Particle Swarm Optimization (PSO), and Support Vector Machine (SVM))
used in the proposed malware detection system.

3.1. Ant Colony Optimization

Ant colony optimization (ACO) [45] is one of the well-known metaheuristic opti-
mization algorithms. Its main idea is based on the food-gathering behavior of ants, and
it is a branch of swarm intelligence. Ants can identify the shortest path between food
and their nest without direct communication or visual information. The ant deposits a
chemical substance called a pheromone to mark its route between the food source and the
nest. Probabilistically, each ant chooses to travel in a direction with a lot of this chemical.
After some time, however, the pheromone degrades, leaving less of it on less widespread
roads. Additionally, the fundamental factor that allows real ants to locate the shortest paths
over time is mostly due to pheromone deposition. The shortest route will be reinforced
over time, while the others will be weakened until all ants take the same shortest way.
The ACO algorithm is a highly successful method for determining the optimal subsets in
feature selection problems. The ant colony optimization feature selection works as follow:
There are initially an infinite number of ants (k), each with a random starting feature. To
traverse the search space, each ant must follow the probabilistic transition rule described in
Equation (1):

aij =

[
τij

]α .
[
ηij

]β

∑ lεNi
[
τij

]α .
[
ηij

]β
∀ j ∈ Ni (1)

Here, the ant is in node i, ηij is the heuristic desirability of choosing feature j when at
feature i, τij is the amount of pheromone in the i to j path, Ni is the set of neighboring nodes
from the node i, and parameters α and β are constants that establish a pheromone’s relative
importance and heuristic information, respectively. To choose which node j to visit after
node i, the kth ant uses the likelihood of moving between nodes as. Shown in Equation (2):

pk
ij(t) =

aij(t)

∑ lεNiaij(t)
(2)

ηij is the heuristic information and it is given by Equation (3):

ηij =
1

dij
(3)

where dij represents the distance between node i and node j.
The pheromone values are updated after each iteration by the k ants that have created

solutions during that iteration. The pheromone τij, which is linked to the path between
vertices i and j, is updated as shown in Equation (4):

τij ← (1− ρ)τij +
m

∑
k=1

τij
k (4)



Electronics 2023, 12, 708 9 of 21

where ρ is the evaporation rate, k is the number of ants, and (τij)k is the quantity of
pheromone laid on edge (i,j) by ant k, where τij

k is defined in Equation (5):

τij
k =

{
Q/lk i f ant used edge (i , j)in its tour

0 otherwise
(5)

where Q is constant, and Lk is the length of the tour established by ant k.

3.2. Particle Swarm Optimization (PSO)

PSO is another effective metaheuristic optimization algorithm frequently employed to
address optimization problems [46]. PSO solves such problems by iteratively optimizing a
solution in terms of some quality metric by generating a swarm of particles to randomly
probe the search region. Particle swarm optimization (PSO) techniques find the best answer
through communication and cooperation between a collection of particles. In PSO, a group
of particles is called a “swarm”. Currently known position, velocity, and best-guess position
are all stored in the vector representation of each particle. Each particle’s position and
velocity are initialized, and then their current position and performance score are calculated.
After calculating the position and the current global ideal location, the next iteration adjusts
each particle’s velocity based on those data. Next, the particles move along the new vectors
of velocity. If the iterations fail to converge or terminate according to some predetermined
condition, they will be repeated until they accomplish this [46].

3.3. Support Vector Machines

The Support Vector Machine [47] is a well-known classifier from the linear machine
learning approach. It is designed based on the statistical learning theory. Even though
it does not require prior knowledge, SVM demonstrates excellent generalization abilities.
Furthermore, it is not affected by the local minimum and can deal with noisy datasets,
among other things. These characteristics make the SVM classifier a good machine-learning
technique for creating an effective malware detection system.

After training on labeled inputs of two classes, for each given input, the SVM can
classify (using a binary linear classifier) them into two possible classes as output. Figure 1
shows an example of the SVM classification technique. As illustrated in Figure 1, an SVM
model shows the instances as points in space, arranged to divide the individual categories
by a distinct gap as large as feasible. Such that stars, triangles, and parallelogram shapes
represent points belongs to different categories. Then, new examples are plotted into the
same space and assigned to a category based on which side of the gap they lie on. SVMs
may also efficiently conduct nonlinear classification by utilizing the kernel method. SVM
predicts whether fresh data belongs to the attack group or the normal data group [47].
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4. The Proposed IoT Malware Detection System

The proposed image-based IoT malware detection method using machine learning con-
sists of four phases: pre-processing, feature extraction, feature selection, and classification.
These phases are briefly described in Figure 2 below.
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4.1. Pre-Processing Phase

To prepare the data for detection, two processes have been done. Firstly, the network
traffic is converted into a Pcap format, and using the Binvis tool [35], the Pcap file is
converted into 2D RGB images. Figure 3 shows an example of normal and abnormal
pcap files [16]. Secondly, the imbalance problem of the data was addressed. Generally,
malware detection is one of the application domains where the data is not balanced [48]. As
described below in Section 5.1, the used dataset is not balanced where the normal images
(338 images) are nearly 70% of the malicious images (512 images). Using such unbalanced
data would lead to biased learning during the classification process. As reported in [44,48],
it is possible that such biased learning would result from training on unbalanced data. We
used the SMOTE algorithm [49] to handle the imbalanced data to address this problem.
The SMOTE algorithm is used during the training phase only.
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Generally, the imbalanced data problem could be solved at the data level in two
ways: undersampling or oversampling. In random under-sampling, samples are randomly
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deleted from the majority class until there is a balance between this class and the minority
class. This will lead to data loss, i.e., knowledge will not be used to its maximum potential.
On the other hand, the minority class will be increased by randomly replicating its samples
in random oversampling. However, this could cause an overfitting problem. The SMOTE
algorithm is used in this study to avoid these two problems because it duplicates samples
in the minority class and augments this class with new samples, thus addressing the
overfitting problem.

The training data (i.e., 80%) has been given to the SMOTE algorithm to handle the
imbalanced data (i.e., to increase the number of training sets for minority classes to alleviate
class imbalance). The imbalanced data were first divided into 80% and 20% training
and testing sets, respectively. Then the training was conducted, and its results were
reported later.

4.2. Feature Extraction Phase

One of the essential approaches used in the study and classification of images display-
ing repetition or quasi-repetition of key features is texture analysis, a fundamental step in
the comprehension and description of natural imagery. The extraction of texture features
that fully encompass information about the spatial distribution of intensity variations in the
original image is the first and most critical stage in texture analysis. Normal and malicious
photos share texture characteristics. Malware image features contain black (Null Bytes)
or white areas (Spaces) predominate, as shown in Figure 3. On the other hand, normal
traffic can be identified by spreading ASCII characters or colors over the image. Each
of the 858 malware images was subjected to a set of four statistical texture features: an
intensity histogram, a gray-level co-occurrence matrix (GLCM), a gray-level run-length
matrix (GLRLM), and invariant moments.

4.3. Feature Selection Phase

Feature Selection (FS) is a typical stage in machine learning, particularly when a high-
dimensional space of features is involved [50]. As the name suggests, feature selection aims
at lowering the dimensionality of the whole extracted features by discovering the most
significant features subset without compromising the accuracy of the classification pro-
cess [51]. In other words, the classification rate may be improved by adding more features
but selecting the most relevant features to your model is more important. Furthermore,
as the number of features increases, the number of training samples required to train a
classifier to a specific degree of accuracy grows exponentially. As a result, unnecessary
features must be removed, and the most appropriate features must be chosen. We used Ant
colony optimization for feature selection. We selected 23 features from 46 features.

4.3.1. Feature Selection Using ACO

The main purpose of ACO algorithm is to choose more informative features from the
extracted feature set and lower the problem space’s dimension. With the ACO algorithm,
we can probe the space of all possible feature subsets. To assess how well various feature
subsets perform in classification tasks, we run an evaluation function on the constrained
feature set [52,53]. Figure 4 depicts the full feature selection procedure for ACOs. The
procedure begins with the generation of a number of ants, m, which are then distributed
arbitrarily around the graph; each ant is given a single random trait at the beginning.
Another possibility is that there are as many ants on the graph as there are features in the
data, with each ant beginning its path creation somewhere distinct from the others. This
probabilistic traversal continues until a stopping condition is met. As a result of these
iterations, subsets are generated and gathered for evaluation. The process continues until
the optimal subset is found or a predefined number of iterations are reached. Then the
resulting optimal feature subset will be used for the classification stage. In case none of
these conditions are satisfied, the pheromone is updated, and the process continues with a
newly generated set of ants.
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4.3.2. Fitness Function

Evaluating the ant’s feature subset is a crucial part of the ACO feature selection
procedure. In order to maximise the classifier’s predictive power, it is important to evaluate
how well it does that task. To weigh the pros and cons of the ants’ chosen traits, a fitness
function is developed. The fitness value is calculated based on the test set’s mean of square
error (MSE). The fitness function is shown in Equation (6), where f (x) is the fitness value, yk
is the model’s output, zk is the reference output, and N denotes the test set samples.

f (x) =
1
N

N

∑
1
(yk − zk)

2 (6)

4.4. PSO-Based SVM Classification Phase

Recently, the Support Vector Machine has become one of the most prominent algo-
rithms for anomalous malware detection as a result of its ability to overcome the curse of
dimensionality. A further advantage of SVM is that it is effective for locating a global mini-
mum of the significant risk through structural risk reduction since it generalizes well with
kernel techniques even in high-dimensional spaces under conditions of limited training
samples. One of the SVM classifier’s strong advantages is that it allowed us to circumvent
the challenge of over-fitting because of its strong generalisation capabilities. Moreover,
the SVM performs well when there is a reasonable gap in dissimilarity across classes. The
SVM’s Convex Optimization nature also aids in achieving the best possible outcomes. The
SVM can identify malware in real-time, hence the speed of the SVM is one of its primary
advantages for IDS. SVMs may learn a bigger collection of patterns and scale better since
classification difficulty is not dependent on the size of the feature space. SVMs are also
capable of dynamically updating training patterns if a new pattern is encountered during
classification [54].

For the aforementioned advantages, SVM is the classification algorithm applied in our
method. After the feature extraction process from the images, the SVM uses the features
selected as input. A support vector machine is utilized to perform image categorization,
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and this is done by finding a hyperplane that separates positive and negative classes. Kernel
functions are used to translate the training data to a higher-dimensional space. Support
Vector Machine (SVM) finds the hyperplane with optimum separation between classes in
the new higher-dimensional space.

The optimal combination of SVM parameters plays a crucial role in the way that
samples are distributed across a particular search space. The penalty parameter C and
the kernel function parameter, such as gamma, have significant effects on the SVM’s
performance. In our proposed methodology, we used PSO to optimize SVM detection
capability. To select the hyperparameters of an SVM using PSO, a cost function must
be created [55]. The primary objective of hyperparameter selection is to increase the
performance of SVM classification. The cost function therefore should be a performance
metric, such as accuracy or F1-score. As the SVM is more likely to categorize all samples
in the positive class (to enhance specificity) or the negative class (to increase sensitivity),
sensitivity and specificity are unsuitable measurements (to improve sensitivity) [55,56].
Then. we utilized accuracy as the cost function in this work. An accuracy of 1 denotes ideal
classification; hence, PSO selects hyperparameters that optimize the SVM accuracy.

5. Experiments and Results

This section presents the experiments designed to evaluate the proposed method
above. Firstly, it describes the dataset, evaluation metrics, conducted experiments, results,
and discussion.

5.1. Dataset Description

The converted Pcap images are imported from a publicly available dataset [14]
which, consists of 858 Binvis images (in binary visualization format, .PNG) of legitimate
(338 images) and malicious (512 images) traffic obtained from various network traffic
sources. The legitimate PCAP files contain a portion of the regular traffic recorded through-
out the Cyber-trust project’s development network, as well as additional sources. The
malware’s pcap files contain authentic malicious traffic created due to several forms of
attacks, including trojans, botnets, attacks against the Internet of Things (OS scans, spy-
ware, DDoS, Key loggers), backdoors, and so forth. For more details about the dataset [14].
Figure 5 shows the percentage of malicious traffic samples of the whole dataset.
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5.2. Evaluation Metrics

Four evaluation metrics are used to test the performance of the proposed method.
The accuracy, precision, recall, and F-score are the evaluation metrics used. The accuracy
metric refers to the proportion of successfully categorized samples that are either normal or
malicious. Precision (P) indicates the proportion of positive samples labeled as positive.
The recall metric indicates the proportion of normal samples categorized correctly, whereas
the F-score is the precision and recall weighted average.
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To compute these metrics, True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) are used. TP refers to instances that are correctly classified as
malware traffic. TN denotes samples that are correctly identified as normal traffic. FP
denotes the instances which are incorrectly organized as malware traffic. Finally, FN refers
to occurrences that are incorrectly identified as normal traffic. The equation for each of
these metrics is shown in Table 2.

Table 2. Evaluation Metrics.

Metric Equation

Accuracy (A) A = TP+TN
TP+TN+FP+FN

Precision (P) P = TP
TP+FP

Recall (R) R = TP
TP+FN

F-score (F1) F1 = 2× P×R
P+R

5.3. Results and Discussion

The dataset is divided 80–20% for training and testing, respectively. Then, three
experiments were designed and conducted, and the results obtained in the training and
testing are summarized in the relative tables below. The k-fold validation method has been
used in all training and testing experiments.

Feature selection impact: In the first experiment, to investigate whether the perfor-
mance of the proposed method would improve using a feature selection technique, we
designed two sub-experiments: one without any feature selection and one with feature
selection (i.e., ACO). The results of the first experiments, without any feature selection, are
given in Tables 3 and 4, while the effects of using ACO as a feature selector are summarized
in Tables 5 and 6.

Table 3. Training results without Feature Selection on balanced data.

Method Accuracy Recall Precision F1_Score

linear 84.59% 78.97% 74.81% 82.90%
quadratic 85.82% 80.00% 76.05% 84.27%

polynomial 90.63% 89.10% 88.64% 90.43%
rbf 86.19% 80.88% 77.53% 84.86%

Table 4. Testing results without feature selection.

Method Accuracy Recall Precision F1_Score

linear 92.22% 92.98% 88.24% 89.55%
quadratic 86.67% 85.48% 73.53% 80.65%

polynomial 90.56% 96.12% 94.12% 88.28%
rbf 91.67% 93.69% 89.71% 89.05%

Table 5. Training results using ACO as a feature selection technique on balanced data.

Method Accuracy Recall Precision F1_Score

linear 85.20% 79.42% 75.31% 83.56%
quadratic 87.18% 81.86% 78.77% 85.98%

polynomial 90.75% 89.13% 88.64% 90.54%
rbf 87.05% 81.95% 79.01% 85.91%
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Table 6. Testing results using ACO as a feature selection technique.

Method Accuracy Recall Precision F1_Score

linear 93.89% 94.69% 91.18% 91.85%
quadratic 95% 95.58% 92.65% 93.33%

polynomial 91.67% 97.09% 95.59% 89.66%
rbf 92.22% 93.75% 89.71% 89.71%

From Table 3, we can conclude that using the polynomial kernel achieved an accuracy
of 90.63%, recall of 89.10%, precision of 88.64%, and an F1 score of 90.43% after data
balancing. While Table 4 shows the result without data balance and the results show
an accuracy of 92.22%, recall of 92.98%, precision of 88.24%, and an F1 score of 89.55%
using the linear kernel. Table 5 summarises the results of our proposed system after data
balancing, and the results show that using a polynomial kernel achieved 90.75%, 89.13%,
88.64%, and 90.54%, respectively, while Table 6 shows results without data balancing as
95%, 95.58%, 92.65%, and 93.33% using a quadratic kernel for accuracy, recall, precision,
and F1 score in both balanced and unbalanced data. From the results of the above tables,
the following remarks can be noticed. Firstly, generally, the use of the ACO-based feature
selection method has improved all results. This means that our method is also an IoT-
friendly method of computing power. With fewer features, i.e., less power consumption,
malware can be detected. The quadratic function achieved the best results among all SVM
kernel functions. Comparing the results of our proposed method and the work in [14],
which used the same dataset, it is clear that our method achieved better results while [14]
did not handle the imbalance of the dataset as we did.

SVM parameters selection based on PSO: In the second experiment, we aim to find
the best values of the SVM parameters using the PSO (Particle swarm optimization).
The performance of machine learning (ML) algorithms can be improved by choosing the
best parameters’ values that affect their training outcome. This stage inputs the best set
of features produced by the feature selection stage using the ant colony optimizer. The
parameters selection stage precedes building the ML model, which indicates the significance
to get high-accuracy results. This includes selecting the parameters of the ML model, which
maximizes the model’s accuracy.

There are different optimization techniques to tune ML models, such as Grid Search,
Random Search, Hyperband, and Bayesian Optimization. Swarm-based techniques are
another family of optimization approaches to select ML models’ parameters, which are
inspired by the social behavior of natural species [57]. This paper utilized Particle swarm
optimization (PSO) for ML algorithms parameter selection. A simple technique that models
the swarm behavior of birds flocking is used to direct the particles while searching for the
optimal solution at the global level [57].

For the parameter values selection, the PSO algorithm works for multiple iterations
as follows: firstly, an initial random combination of parameters is generated; secondly,
each set of parameters is represented by a particle, then the training process starts; thirdly,
the performance of the ML algorithm is evaluated, and the result is reported. The PSO
algorithm reaches the optimal solution after a predetermined set of iterations with the
help of particle communication. The optimal solution is identified by the parameters that
achieve the model’s highest performance.

To thoroughly assess the parameters (Gamma, Cost, and kernel functions) of the
SVM classifier, we applied the PSPSO package [58], a PSO-based tool implemented by
python, to select the best ML algorithms parameters. We utilized the PSPSO tool to select
the support vector machine’s parameters (SVM). The tool uses the Area under the Curve
(AUC) and accuracy for model performance assessment. There are three parameters for the
SVM algorithm to be optimized: the kernel function, the gamma parameter (g), and the
cost parameter (c). The gamma parameter is ignored if the linear function is selected as
the kernel function. The polynomial kernel function includes an extra degree parameter
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ignored by all kernels [58]. The initial values of the SVM parameters that we used are
shown in Table 7.

Table 7. Initial values of SVM parameters.

SVM Parameter Min Value Max Value

C 1 50
gamma 1 10
degree 0 6
kernel [linear, rbf, poly]

The hyperparameter tuning experiments are performed using 5 particles and 10 iterations
on the features selected by the ACO. This experiment showed that the best results, shown
in Table 8, are obtained when the C = 21, Gamma = 3, and the kernel function = Linear.
Comparing the results in Tables 6 and 8, two remarks can be noticed. Firstly, using the PSO
in determining the best values of the SVM classifier can help to improve its performance by
around 2% in all evaluation metrics when using the linear function as its kernel. Secondly,
SVM with linear function gave better results than with quadratic function, which gave the
best without using PSO (Refer to Table 6).

Table 8. Results using PSO-SVM Hyperparameter Tuning.

Method Accuracy Recall Precision F1_Score

SVM-linear 95.56% 96.43% 94.12% 95.26%

5.4. Comparison with Literature

We compared the related work summarized in Table 1 to further evaluate our proposed
method. The comparison was in terms of two factors: used evaluation metrics and used
machine learning approach (either deep learning or traditional machine learning).

To evaluate malware detection systems, accuracy could be misleading. Therefore,
other evaluation metrics, Recall, Precision, and F1-score, are used to evaluate such a system
thoroughly. The recall is a measure that finds the percentage of known harmful packets
or files already detected by an intrusion/malware detection system. Precision is another
measure that aims to quantify the effectiveness of a malware detection system to recognize
malicious packets/applications/files that are malware. The F1-score is a measure that takes
recall and precision as inputs and then equally weights them. A good malware detection
system can maximize both of them simultaneously rather than making one exceptionally
good and poor on the other.

Authors in [15,22] have used machine learning algorithms, i.e., SVM, and achieved
accuracy better than our proposed method. However, they did not use other important
measures (Recall, Precision, and F1-score) to evaluate the effectiveness of the proposed
methods. The cost of a false positive may be different from the cost of a false negative in
the used dataset. When they coincide, opting for precision is preferable. However, if they
are different, we must look at the F1-score. Precision is also an important performance
metric that needs to be considered since it is utilized to determine how well the model can
identify positive values. Recall is also mandatory because it measures the capability of a
classifier to correctly label all instances that belong to a given category. As shown in Table 8,
the accuracy, recall, Precision, and F1-score have been used in our method. The results of
these measures are around 95% which shows there is harmony between these measures.
Consequently, proving the effectiveness of our proposed method over the work in [15,22].
This also implies that our algorithm balances false negatives and false positives. The rest
of the work, which used machine learning algorithms, i.e., [17,23], did not use the metrics
recall, recall, precision, and F1-score, to evaluate the effectiveness of the proposed methods.
So, it is hard to fairly compare them with our method, which used these measures as shown
above. Table 9 presents a summary of this comparison.
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Table 9. Comparison with ML-based methods in terms of evaluation metrics results.

Reference Feature Extraction Classifier Evaluation Metrics

[5] D-SIFT and GIST SVM 97.4% (accuracy)

[7] GIST and Discrete Wavelet Transform SVM and KNN SVM 98.84% (accuracy) and
KNN 98.88% (accuracy)

[8] Local mean Combination of Bagging and
K-means 98.2% (accuracy)

[9] Entropy Graphs The similarity between
Entropy Graphs 97.9% (accuracy)

Proposed system Statistical texture features SVM with a linear kernel
function

95.56% (accuracy)
96.43% (Recall)

94.12% (Precision)
95.26% (F1-score)

5.5. Deep Learning vs. Classical Machine Learning in IDS

Deep learning has many applications, such as image recognition, prediction, medical
imaging, and so on, where it has been shown to improve performance significantly more
than traditional machine learning. However, recently this year (2021), a study [18] showed
that the improvement in performance (i.e., accuracy) comes at a massive computational
cost. It was reported that traditional businesses, such as European supermarkets, have
relinquished deep-learning-based systems due to the high computational power needed
to train and run these systems [18]. Given the limited computational capabilities of the
IoT-based systems compared with the business systems, deep-learning-based solutions
would not be sustainable in IoT environments such as smart cities, smart homes, smart
hospitals, etc. This means that machine-learning-based systems would be more suitable
and sustainable for the IoT environment. The main focus would then be on how to improve
the performance of these systems.

As the main goal of most malware detection models is to increase detection accuracy,
there are other factors to consider when detecting malware in an IoT environment. A
trade-off exists between accuracy and time complexity (i.e., better convergence necessitates
longer times), between accuracy and analysis speed (i.e., larger times imply slower pace),
between analysis speed and computational resources (i.e., faster analysis requires using
more resources), and between computational resources and financial cost (more resource
devices has a cost). Using n features as an example, it has been proven that increasing the
number of n features improves the accuracy of the analysis, but at the expense of the feature
space, which grows exponentially with n. A high degree of accuracy may also be achieved
by using more data in general to train machine learning models. Our method maintains
the traditional trade-offs between anomaly detection accuracy, runtime, analysis speed,
and computational resource requirements. It is crucial to track and investigate the relations
between n features, accuracy, and speed of execution. The proposed method leverages
the lightweight nature of the optimised machine learning approach, compared to a deep
learning approach, with a reduced feature set to improve the performance of detection.
This makes the proposed approach suitable for highly constrained and compromised
IoT devices.

Additionally, applying classical methods for feature extraction using algorithms such
as intensity histogram, gray-level co-occurrence matrix (GLCM), gray-level run-length
matrix (GLRLM), and invariant moments in our case, highlight certain features in data,
and not image-type specific; rather, they are quite generic in nature. Deep neural network
features, on the other hand, are highly dependent on the quality of the training dataset and
are unlikely to generalize well to new images [59].
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As shown earlier, the proposed malware detection method achieved an accuracy of
95.56%, a sensitivity of 96.43%, a specificity of 94.12%, a precision of 94.12%, and an F1 score
of 95.26%. After turning its PSO algorithm parameters, these results were accomplished
using the traditional machine learning technique (i.e., SVM). Compared with all the related
deep learning work summarized in Table 1, it could be remarked that our proposed method
achieved better than the work in [14,16,32,35]. There are two studies [33,34] that achieved
better results (i.e., accuracy) than ours. However, in addition to using the heavy technique
(deep learning), the work in [33] only used the accuracy metric to measure the performance,
and this would not be enough to judge the performance of a malware detection system.
Although the work in [34] used the metrics of recall and precision, our results are better
than those using these metrics.

6. Conclusions

This paper proposed a novel malware detection method for the IoT environment using
a visual representation of the network traffic. This method employed a statistical feature
extraction method and an ACO-based feature selection approach, which helped to improve
the classification results using SVM. Further, the PSO algorithm was used to find the best
values of the parameters of the SVM classifier, which further improved the classification
performance. Experiments and comparisons with all SVM kernel functions revealed that
the quadratic kernel function performed the best in detecting malware network traffic
represented as images, with an overall accuracy of 95%. When the PSO algorithm tuned
SVM parameters, it was found that the linear function is the best with an accuracy of
95.56%, a recall of 96.43%, a precision of 94.12%, and an F1 score of 95.26%. These results
are comparable with the literature using deep learning techniques but better in terms of the
computational cost as the proposed method only adopted traditional machine learning, i.e.,
SVM. The main limitation of this work is that the experiments are conducted on a single
dataset and not using a deep learning approach as a feature selector method. In the future,
the proposed method could be tested on different forms of image-based datasets which
include colored and grey-scale transformed images. Additionally, a deep learning approach
could be used to extract features that are then used by classical shallow machine learning
algorithms to detect malware network traffic. Numerical features can also be compared
with image-based features for deeper analysis.
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