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Regulation of p73 activity by post-translational
modifications
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The transcription factor p73 is a member of the p53 family that can be expressed as at least 24 different isoforms with pro- or
anti-apoptotic attributes. The TAp73 isoforms are expressed from an upstream promoter and are regarded as bona fide tumor
suppressors; they can induce cell cycle arrest/apoptosis and protect against genomic instability. On the other hand, DNp73
isoforms lack the N-terminus transactivation domain; hence, cannot induce the expression of pro-apoptotic genes, but still can
oligomerize with TAp73 or p53 to block their transcriptional activities. Therefore, the ratio of TAp73 isoforms to DNp73 isoforms
is critical for the quality of the response to a genomic insult and needs to be delicately regulated at both transcriptional and post-
translational level. In this review, we will summarize the current knowledge on the post-translational regulatory pathways
involved to keep p73 protein under control. A comprehensive understanding of p73 post-translational modifications will be
extremely useful for the development of new strategies for treating and preventing cancer.
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Facts

� p73 is expressed as multiple isoforms with opposing
pro- and anti-apoptotic attributes.

� p73 isoforms that contain the transactivation domain
(TAp73) can induce cell cycle arrest and apoptosis.

� p73 isoforms that lack the transactivation domain (DNp73)
act as inhibitors of TAp73 and p53 function.

� The ratio of pro- and anti-apoptotic p73 species is critical for
the response to genomic insult.

� Besides its functions in regulation of cell cycle arrest and
apoptosis, p73 is a critical regulator of neural stem cell
maintenance.

Open Questions

� When and where each p73 isoform is expressed at protein
level during development and adult life.

� Other key molecular pathways that regulate TAp73:DNp73
ratio in different cancers.

� How can the TAp73:DNp73 ratio be modulated for
improved targeted therapy of different cancers?

Since its discovery in 1997, p73 became one of the most
extensively studied genes, owing to the possibility to
compensate for the loss of p53 function because of the
remarkable homology between the two proteins.1 Indeed,

subsequent research demonstrated that p73 can transacti-
vate many p53 transcriptional targets efficiently and therefore
there is substantial redundancy in the pro-apoptotic functions
of p53 and p73.2–4 Therefore, inactivation of the pro-apoptotic
functions of p73 is a key mechanism to provide selective
advantage in cancers, but, augmentation of p73 activity in
response to DNA damage is required to protect cells against
tumorigenesis. Interestingly, p73 is rarely mutated in tumors,
but elevated p73 levels are observed in several cancers
including hepatocellular carcinomas, neuroblastomas, and
the cancers of the lung, prostate, colon, breast and ovary.5,6

This strongly suggests that other regulatory mechanisms that
control p73 protein abundance and activity are deregulated in
these tumors.

Protein–Protein Interactions

All p53 family members, p53, p63 and p73 are expressed as
multiple isoforms.1,5,7 Use of alternative promoters (to
generate the transcriptionally active TA and dominant
negative DN isoforms) and extensive alternative splicing
produces 24 different p73 isoforms with different abilities to
induce or repress apoptosis (Figure 1).8–10 In addition to this
complexity, presence of a polypyrimidine tract-binding protein
motif in the second exon of p73 transcript suggests an IRES-
dependent translation of another DNp73-like protein.11
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DNp73- and DNp73-like proteins exhibit dominant negative
activity toward the tumor suppressor functions of TAp73 (and
also of p53), mostly via oligomerization, to comprise the
transcriptional activity of the active tetramer.12,13 In accor-
dance with this inhibitory function, DNp73 confers chemore-
sistance in cancer cell lines14,15 and DNp73 over-expression
correlates with poor prognosis in primary tumors.12,16 Other
than the inhibitory role of DNp73 isoforms, the alternative
spliced p73 variants can interact, via the oligomerization
domain, to regulate each other’s transcriptional activities.1,8,17

For example, it has been shown that co-expression of p73e
isoform is sufficient to impede p73b isoform-mediated
expression of p21WAF1/CIP1.17

The significant homology between p53 and p73 (63% at
DNA-binding domain, 29% at transactivation domain and 38%
at tetramerization domain) initially raised the possibility that
these protein can oligomerize and that p73 can potentially
interact with other p53-binding proteins. Although both wild-
type and mutant p53 were shown to interact with p73 in yeast
two-hybrid assays, co-transfection-based experiments in
tumor cell lines revealed that only mutant p53 can bind
p73.1,18 This binding resulted in reduced transcriptional
activity of p73 and inhibition of ability of p73 to induce
apoptosis. However, not all tumors with p73 over-expression
harbor mutant p53, suggesting presence of other mechan-
isms to inhibit p73 activity.19

The other family member p6320,21 also has key roles in
regulation of p73 activity and stability. p63 and p73 share an
extra a-helix, which is not present in p53, in their oligomeriza-
tion domain and therefore can interact efficiently to form stable
heterotetramers.22 The outcome of these interactions largely
depends on the ratio between the pro- and anti-apoptotic
family members. For example, DNp63 is over-expressed or
amplified in 480% of squamous cell carcinomas where it
blocks the transcriptional activity of p73 on pro-apoptotic
promoters by possibly forming stable hetero-oligomers.23,24

The key regulatory mechanism controlling p53 protein
abundance and activity involves the ring finger ubiquitin ligase
Mdm2.25–27 Over-expressed Mdm2 protein conveys its
inhibitory effect by binding directly to p53 either to inhibit its

transcriptional activity or to target it to proteasomal degrada-
tion.28,29 Initially, Mdm2 appeared to be a perfect candidate to
modulate p73 activity and stability. Indeed, succeeding work
demonstrated that Mdm2 can bind to and inhibit the
transcriptional activity of p73.30–32 However, unlike p53, p73
was stabilized following Mdm2 (and also the Mdm2-related
proteinMdmx) binding.30 Similar to p53, p73 can transactivate
Mdm2 expression. Therefore, a feedback-regulatory loop also
exists in the p73-Mdm2 network, which relies only on the
inhibitory function of Mdm2 to block p73-transcriptional
activity and inhibit apoptosis, rather than modulating its
steady-state levels.
Both p300 and CREB-binding protein (CBP) can interact

with p73 and control its transcriptional activity, acting as
transcriptional co-activators.33 The interaction between the
N-terminal of p73 and CH1 domain of p300/CBP enhances
the transcriptional activity of TAp73 isoforms. However, the
N-terminal region of p73 is also key to its interaction with
Mdm2 and therefore the competition between Mdm2 and
p300/CBP for p73 binding is an important determinant of p73
transcriptional activity; that is, over-expression of Mdm2
results in dislocation of p300/CBP from p73 and loss of p73
transcriptional activity.34 Another example of competition-
based control of p73 activity involves interaction of p73 with
c-myc and MM1 (myc modulator 1). Similar to its influence on
p53, c-myc is a potent inhibitor of p73 transcriptional activity.35

This inhibitory effect can be alleviated by co-expression of
MM1, which can bind p73 at its C-terminus and prevent c-Myc-
p73 interaction.
Other than p300, the most well-defined transcriptional co-

activator of p73 is YAP; a WW domain protein that has strong
transactivation activity but lacks a DNA-binding domain.36,37

Expression of p73 together with YAP significantly improves its
ability to induce transcription, even at levels where p73
expression alone is not sufficient to activate its target genes,
such as Mdm2 and Bax.36 Activity of YAP is strictly controlled
by phosphorylation by the pro-survival serine/threonine
protein kinase Akt (protein kinase B).38–40 S127 phosphoryla-
tion of YAP by Akt promotes its localization to cytosol, where it
can no longer act as a transcriptional co-activator. On the
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Figure 1 Schematic representation of the extensive alternative splicing at the 30 end of p73 transcript. Each exon is represented by a different color and changes in the
open reading frame are represented as a frame in the color of the coding exon with grey color filling. For example, the b isoform is generated by splicing out exon 13, but exon
14 is read in a different frame, which results in an immature stop codon. Similarly, g isoform is generated by splicing out exon 11, but exons 12 and 13 are transcribed from an
alternative open-reading frame (ORF)
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other hand, in response to pro-apoptotic signals, YAP is
recruited to nuclear bodies by the promyelocytic leukemia
protein (PML) to promote the transcriptional activity of p73.
Interestingly, p73 expression is essential for the recruitment of
YAP to PML-nuclear bodies following DNA damage as cells
lacking p73 fail to do so.41

Interaction of p53 with viral oncoproteins is critical to its
apoptotic functions. For example, the adenovirus E1B 55-kDa
protein and polyomavirus SV40 T antigen inhibit p53 function
by sequestering it in an inactive complex and the human
papillomavirus E6 (HPV-E6) protein promotes its ubiquitin-
dependent proteasomal degradation.42 Of interest, modula-
tion of p73 activity and stability by viral oncoproteins differs
largely from that of p53.32,43 Although both E1B 55-kDa and
SV40 T antigen fail to bind p73, HPV-E6 fails to mediate p73
degradation. However, HPV-E6 can still inactivate p73 by
directly interacting with the TA domain and inhibiting its
transcriptional activity.
Phosphorylation or acetylation of p73 following interaction

with kinases and histone acetyltransferases (HATs) is also
essential for the regulation of its activity and stability under
normal conditions and, in particular, following DNA damage.
These modifications lead to key changes in the portfolio of
p73-interacting proteins mostly via altering its sub-cellular
localization.

Phosphorylation and Acetylation-mediated Pathways

Accumulation of p53 in response to DNA damage is essential
for activation of the response pathways. This is primarily
achieved by phosphorylation of p53, which renders it resistant
to Mdm2-mediated ubiquitination and enables its interaction
with transcriptional co-activators.44 DNA damage-induced
p53 phosphorylation is primarily mediated by the activation of
serine/threonine kinases ataxia telangiectasia mutant (ATM)
and Chk2. Although p73 is also targeted by Chk2 for
phosphorylation,45 unlike p53, accumulation of p73 after
DNA damage is primarily mediated by the non-receptor
tyrosine kinase c-Abl.46–50 Following a genotoxic insult such
as g-irradiation or cisplatin treatment, p73 interacts with c-Abl
via its PxxP motif at the C-terminal homo-oligomerization
domain and becomes phosphorylated predominantly at
Tyr99, and also at Tyr121 and Tyr240.51 Activation of p73
by c-Abl in response to DNA damage is dependent on the
presence of an intact mismatch repair systemand involves the
Mut L homolog-1 (MLH1). HCT116 cells that do not express
MLH1 gene fail to activate the c-Abl-p73 pathway in response
to cisplatin; a phenotype, which can be rescued by comple-
mentation with MLH1 expression.46

c-Abl-mediated p73 phosphorylation can be regarded as an
initiator event to regulate a series of other modifications. One
key regulatory p73-modification that is dependent on tyrosine
phosphorylation is the acetylation of p73 by p300. p53 is the
first non-histone protein that is identified as a substrate for
HATs.52 Initial research to understand if p73 also serves as a
target for lysine acetylation identified that interaction of p73
with the closely related transcriptional coactivator proteins
p300 and CBP does not result in acetylation of p73 and that
the acetylase-activity defective p300 mutant can still act as a
co-activator for p73.53 Interestingly, the same group also

showed that unlike full length TAp73a, the C-terminal
fragment between amino acids 311–636 can be acetylated
in vitro by p300. Indeed, the following year Costanzo et al.54

showed that p300, but not CBP or PCAF, can acetylate p73
only when cells are treated with the DNA-damaging agent
doxorubicin. Of interest, although expression of non-acetyla-
table mutant of p73 failed to transactivate p53AIP to induce
apoptosis, it had no effect on induction of p21WAF1/CIP1

expression, suggesting that acetylation is a critical regulatory
mechanism to direct p73-mediated response to DNA
damage.54 Interestingly, acetylation of p73 by p300 in
response to DNA damage is regulated by the tyrosine kinase
c-Abl, such that tyrosine99 phosphorylation is a prerequisite
for p73 acetylation and fibroblasts from abl�/� mice fail to
acetylate p73 following DNA damage.54

Another key kinase that is involved in regulation of p73 is
p38.55 Remarkably, threonine phosphorylation of p73 upon
DNA damage is also dependent on c-Abl activity. Following
DNA damage, JNK/p38 MAPK pathway is activated by
c-Abl,56 which is proceeded by phosphorylation of p73 by
p38 at threonine residues adjacent to proline to promote its
accumulation.
As summarized above, a relatively complicated network

of different post-translational modifications merges to
control p73 activity/stability and c-Abl lies at the heart of this
network to initiate p73 acetylation and phosphorylation. A key
regulator of this c-Abl-centered network is the prolyl
isomerase PIN1 that specifically recognizes phosphorylated
serine/threonine residues followed by proline and induces
their substrates to undergo a conformational change. PIN1
binds to threonine-phosphorylated p73 upon DNA damage-
induced c-Abl activation and enables its interaction with
p300.57 In the absence of PIN1, p300 loses its activity to
upregulate p73-dependent Bax expression in response to
DNA damage. Intriguingly, interaction of p73 with PIN1 does
not exclusively rely on DNA damage as the two proteins can
also interact in non-stressed cells, suggesting that p73 is
phosphorylated at Pin1consensus sites under normal condi-
tions as well.
Indeed, p73 phoshorylation does not merely depend on

DNA damage as it is phosphorylated during cell cycle by the
cyclin-dependent kinases CDK2/CDK1 and by PKCd.58–60

CDK2/CDK1-dependent p73 phosphorylation is predomi-
nantly achieved by interaction of p73 with cyclin A and cyclin
B in G2 and M phases of the cell cycle, via its cyclin
recognition motifs, and phosphorylation at threonine 86. This
hampers the transcriptional activity of p73, possibly to inhibit
its growth arrest properties at this key stage of cell cycle. In
contrast, PKCd-mediated phosphorylation of p73 at serine
388 activates the second TA domain of p73 (between amino
acids 381–399) to regulate cell cycle progression, in a cell
type-specific manner.59 This second TA domain is incapable
of activating apoptosis-related genes and is regulated
differentially throughout the cell cycle. PKCd-mediated p73
phosphorylation is also important to augment its apoptotic
functions in response to DNA damage. This is mediated by
cleavage of PKCd by caspase-3 to generate the constitutively
active PKCd-CF fragment, which can interact with and
phosphorylate p73 at serine 289.61 Of interest, in response
to stress, PKCd is activated by c-Abl as well;62 therefore,
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serine phosphorylation of p73 by PKCd is also indirectly
regulated by c-Abl.

Modifications Leading to a Change in Subcellular
Localization

Once phosphorylated by p38, p73 interacts with PML and
consequently localizes to PML-nuclear bodies where it
interacts with p300, homeodomain-interacting protein kinase
2 (HIPK2) and YAP, to promote its stability and transcriptional
activity.41,63,64 Indeed, interaction of p73, YAP and p300 via
PML is an important determinant of the selective activation of
pro-apoptotic p73 targets in response to DNA damage.41 p73
ubiquitination is also significantly reduced following its
interaction with PML and localization to PML-nuclear
bodies.63 Apart from p38-mediated phosphorylation, c-Abl-
mediated p73 phosphorylation also induces its sub-nuclear
redistribution; following which, p73 translocates from the
nucleocytoplasmic fraction to the nuclear matrix, potentially to
become unavailable to ubiquitin ligases and escape protea-
somal degradation.65

Interaction of p73 with the Protein Inhibitor of Activated
STAT-1 (PIAS-1) also results in its localization to nuclear
matrix and subsequent stabilization.66 However, due to sumo
E3 ligase activity of PIAS-1, this interaction also results in
sumoylation of p73 at K627 and its transcriptional inactiva-
tion.66,67

Similar to p53, p73 has transcription-independent pro-
apoptotic functions during apoptosis.68,69 The transcription-
deficient p73mutant p73R293H (corresponding to the hotspot
p53R273H mutant) can still efficiently induce apoptosis in
response to TRAIL, but not etoposide, by a mechanism that
involves localization of p73 to mitochondria and interaction
with mitochondrial p53.69,70 Remarkably, like the other family
members, p73 is also targeted by caspases during apoptosis
and caspase-cleaved p73 fragments localize to mitochondria
to augment apoptosis.21,69,71

Unlike the two above-mentioned modifications to
sub-cellular localization that augment p73 activity, neddyla-
tion of p73 by NEDD8 conjugation has an opposite effect.72

Once neddylated, p73 localizes to cytosol and therefore
cannot function as a transcription factor. As interaction of p73
with Mdm2 is a prerequisite for its neddylation, only TAp73
isoforms are affected by this modification.
Relocalization of p73 to cytosol can also be induced by its

interaction with the WW domain containing oxidoreductase
protein Wwox.73 Although this interaction leads to loss of p73
transcriptional activity, its apoptotic activity is partially
retained; further supporting a transcription-independent role
of p73 in cell death.

Post-translational Modifications by Ubiquitin and
Protein Stability

p73 protein stability is predominantly regulated by the
ubiquitin-proteasome system.31,74,75 The first E3 ubiquitin
ligase identified to ubiquitinate p73 and target it to proteaso-
mal degradation is the HECT-domain E3 ubiquitin ligase
Itch.76 Itch-mediated p73 degradation is predominantly con-
trolled by two competition-based mechanisms. The first

mechanism involves Nedd4-binding protein 1 (N4BP1); a
WW-domain protein that can interact with Itch without leading
to its ubiquitination.77 N4BP1 competes with p73 for Itch
binding and therefore interaction of N4BP1 with Itch inhibits
Itch-p73 binding. The other key mechanism is based on
binding of YAP to the PPXY motif on p73.78 This motif is also
used by Itch to interact with p73, therefore competition of YAP
with Itch for the PPXY motif results in inactivation of Itch
activity towards p73.
Itch is selective only for the a and b p73 isoforms (containing

the PY motif interacting with Itch) of both TAp73 and
DNp73.76,79 However, upon genotoxic stress, the TAp73
and DNp73 isoforms are differentialy regulated. Interestingly,
Dulloo et al.80 identified a selective DNp73 degradation
pathway. This work indicated that a transcriptional target of
TAp73 is potentially responsible for the degradation of DNp73
isoforms. Indeed, we recently identified a RING finger E3
ubiquitin ligase PIR2 (p73-Induced Ring finger protein 2,
PIR2, also known as IBRDC2/Rnf144b) that is induced by
TAp73 and selectively binds, ubiquitinates and degrades the
DNp73 isoform. PIR2 is the only ubiquitin ligase, identified so
far, that has differential specificity over the TAp73 and DNp73
isoforms. PIR2 is able to fine-tune the TAp73/DNp73 ratio and
is critical for the regulation of the response to an apoptotic
stimulus.81

Other mechanisms of differential regulation of TAp73 and
DNp73 stability involves the stress-induced activation of
c-jun,82 via YAP,83 and the antizyme 1 system.84

Implications of Post-translational Regulation of p73
Activity in Cancer

Oncogenic transformation of normal cells into cancer cells
involves successive genetic changes that confer selective
advantages to mediate survival and evade cell death.85 Cell
death is initiated either by activation of cell surface receptors
upon ligand binding (extrinsic pathway) or by activation of pro-
apoptotic members of the Bcl-2 family (intrinsic pathway)86–88

and both pathways are mediated via sequential activation of
specific cysteinyl aspartate proteinases, caspases, to cleave
specific substrates after aspartate residues.89–91 p73, like the
other members of the p53 family, has key roles in the
regulation of both cell death pathways upon stress.26,92–96

Chemoresistance is one of the major challenges in the field
of tumor biology.97–100 In cancers harboring mutant p53,
inhibition of TAp73 pro-apoptotic activity is an important
mechanism to adopt resistance to chemotherapy. Cancer
cells achieve this predominantly by modulating the ratio
between the pro- and anti-apoptotic p73 isoforms to escape
death. Therefore, besides the differential transcriptional
control of TA versus DNp73 expression, regulation of their
function and stability via post-translational modifications, as
summarized above, serves as a prompt and effective way to
change this critical balance.

Concluding Remarks

The function of the guardian of the genome, p53, is often
compromised in cancers. Due to the high structural and
functional homology to p53, regulation of p73 activity or
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function represents a unique approach for targeted cancer
therapy. The TAp73 isoforms can potentially be induced or
activated to replace inactive p53 for induction of cell cycle
arrest/apoptosis, or to inhibit metastatic mutant p53 function.
Despite the similarities in gene structure and function, there
are considerable differences in the post-translational control
of p53 and p73 function, strongly suggesting that the
upstream signals that regulate their post-translational mod-
ifications dictate their differential activities during develop-
ment and malignant transformation. For example, although
the E3-ubiquitin ligasemdm2 canmediate degradation of p53,
it stabilizes p73, and although YAP binds p73 to augment its
transcriptional activity, it cannot bind p53. A summary of p73-
interacting proteins and p73 post-translational modifications
are shown in Figures 2 and 3. A thorough characterization of
molecular modifications of p73 and identification of similarities
between the other family members will help to fill-in the
missing pieces in the p53-p73 puzzle and lead to identification
of better agents for targeted tumor therapy.
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