
 

 1 

Universal closed-tube barcoding for 1 

monitoring the shark and ray trade in 2 

megadiverse conservation hotspots  3 

 4 

Andhika P. Prasetyo1,2,3*, Marine Cusa1,4, Joanna M. Murray5, Firdaus Agung6, Efin 5 

Muttaqin7, Stefano Mariani8† and Allan D. McDevitt1,9†* 6 

 7 

1 - School of Science, Engineering and Environment, University of Salford, Salford, 8 

UK 9 

2 - Centre Fisheries Research, Ministry for Marine Affairs and Fisheries, Indonesia 10 

3 - Research Centre for Conservation of Marine and Inland Water Resources, 11 

National Research and Innovation Agency, Bogor, Indonesia 12 

4 - Oceana Europe, Madrid, Spain 13 

5 - Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, 14 

UK 15 

6 - Directorate for Conservation and Marine Biodiversity, Ministry for Marine Affairs 16 

and Fisheries, Indonesia 17 

7 - Wildlife Conservation Society Indonesia Program, Indonesia 18 

8 - School of Biological and Environmental Sciences, Liverpool John Moores 19 

University, Liverpool, UK  20 

9 - Department of Natural Sciences and the Environment, School of Science and 21 

Computing, Atlantic Technological University, Galway, Ireland 22 

 23 

 24 

* Corresponding author. A. P. Prasetyo (a.p.prasetyo@edu.salford.ac.uk) or A. 25 

McDevitt (allan.mcdevitt@atu.ie)  26 

† These authors have joint-last authorship 27 

 28 

 29 

 30 

  31 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.11.30.518468doi: bioRxiv preprint 

mailto:a.p.prasetyo@edu.salford.ac.uk
mailto:allan.mcdevitt@atu.ie
https://doi.org/10.1101/2022.11.30.518468
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 2 

Highlights 32 

1. We applied a portable, universal, closed-tube DNA barcoding approach 33 

originally developed for bony fishes to distinguish between shark and ray 34 

species traded in Indonesia. 35 

2. We built a deep machine learning model to automatically assign species from 36 

the qPCR fluorescence spectra produced by two barcodes 37 

3. The model achieved 79.41% accuracy for classifying 28 elasmobranch species, 38 

despite the barcode regions being designed for teleost species  39 

4. This tool can serve as a potent single-assay in-situ diagnostic tool to regulate 40 

trade operations and it will be significantly enhanced by further optimisation of 41 

the barcode regions to fit elasmobranch DNA sequence variation 42 

43 
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Summary 44 

Trade restrictions for many endangered elasmobranch species exist to disincentivise 45 

their exploitation and curb their declines. However, the variety of products and the 46 

complexity of import/export routes make trade monitoring challenging. We 47 

investigate the use of a portable, universal, DNA-based tool which would greatly 48 

facilitate in-situ monitoring. We collected shark and ray samples across the Island of 49 

Java, Indonesia, and selected 28 species (including 22 CITES-listed species) 50 

commonly encountered in landing sites and export hubs to test a recently developed 51 

real-time PCR single-assay originally developed for screening bony fish. We 52 

employed a deep learning algorithm to recognize species based on DNA melt-curve 53 

signatures. By combining visual and machine learning assignment methods, we 54 

distinguished 25 out of 28 species, 20 of which were CITES-listed. With further 55 

refinement, this method can provide a practical tool for monitoring elasmobranch 56 

trade worldwide, without the need for a lab or the bespoke design of species-specific 57 

assays. 58 

 59 

Keywords: elasmobranchs, DNA barcoding, deep learning, illegal trade, biodiversity 60 

monitoring, Indonesia. 61 

 62 

Introduction  63 

Biodiversity is depleting more rapidly than at any time in human history. Within the 64 

last 50 years, animal species have declined by an average of almost 70% due to 65 

continued and increasing anthropogenic stressors (Bar-On et al., 2018; Leung et al., 66 

2020). Shark and ray populations (hereafter referred to as ‘elasmobranchs’) have 67 

one of the highest extinction risks across the animal kingdom due to fishing 68 

pressure, whether targeted or as by-catch (Dulvy et al., 2014; MacNeil et al., 2020; 69 

Pacoureau et al., 2021). Although some elasmobranch fisheries can be sustainably 70 

managed (Simpfendorfer and Dulvy, 2017), the market demand for shark and ray 71 

products typically leads to overexploitation (Clarke et al., 2006; Dulvy et al., 2014). 72 

The rapid global decline of elasmobranch populations requires collaborative 73 

management and conservation measures to ensure the long-term benefits of these 74 
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populations to the wider ecosystem, including, where sustainable, for human 75 

resource use. Binding international trade consortia, such as CITES (Convention on 76 

International Trade in Endangered Species of Wild Fauna and Flora), regulate and 77 

provide the framework to restrict the international trade of species of priority 78 

conservation concern by creating species listing (CITES appendix I and II). Indeed, 79 

there has been an increasing number of elasmobranch listings in CITES Appendix II 80 

over the last decade with 38 of the 47 species regulated by CITES added at the 16th 81 

(2013), 17th (2016) and 18th (2019) Conference of the Parties conventions (Booth et 82 

al., 2020). The number of Appendix II listings then more than tripled at the 19th 83 

Conference of the Parties (CoP19) in 2022 where parties agreed to add all remaining 84 

(54) species of requiem sharks (Carcharhinidae spp.), 6 species of hammerhead 85 

sharks, and 37 species of guitarfishes to Appendix II. Seven species of Brazilian 86 

freshwater stingrays were also adopted for Appendix II listing. The scale and pace of 87 

these listings (now 151 species) present an important implementation challenge for 88 

countries with large and diverse landings of sharks and rays, such as Indonesia. 89 

As a result of substantial bycatch, Indonesian fisheries hold the world’s largest 90 

volume of elasmobranch landings (Fahmi and Dharmadi, 2015; FAO, 2022). This 91 

exploitation contributes to the high vulnerability rate of elasmobranch populations in 92 

Indonesian waters (Mardhiah et al., 2019), including the populations in its coral reef 93 

ecosystems (MacNeil et al., 2020). This is particularly concerning as Indonesia 94 

harbours almost a quarter of the world’s elasmobranch diversity (Ali et al., 2018; Ali 95 

et al., 2014). Despite this, export volumes of elasmobranch products from Indonesia 96 

represent only a small fraction of its landing volume (FAO, 2021), which likely 97 

reflects its communities’ high dependency on shark and ray as an alternative protein 98 

source (Dharmadi et al., 2019b; Muttaqin et al., 2018; Prasetyo et al., 2021). Several 99 

measures have been established by the Indonesian authorities to reduce the decline 100 

of elasmobranch populations, such as: increasing the number of protected species, 101 

extensive outreach programmes, improvement of data collection and stock 102 

assessment, expansion of marine protected areas, as well as the establishment of 103 

port state measures to combat illegal fishing (Booth et al., 2018; Dharmadi et al., 104 

2015; Nugraha et al., 2020; Oktaviyani et al., 2019). 105 

The issue around elasmobranch fisheries is rendered even more challenging by the 106 

myriad of shark and ray product derivations, which add another layer of complexity 107 
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(Dent and Clarke, 2015; Safari and Hassan, 2020; Shea and To, 2017). Due to their 108 

similarity in appearance and the lack of distinctive features in most derivative 109 

products, elasmobranch species can be deliberately or accidentally mislabelled by 110 

those involved in the trade (Figure 1). The general lack of transparency in the trade 111 

of living resources is an ongoing concern for fisheries and conservation management 112 

(Naaum and Hanner, 2016) and can have a negative impact on stock management, 113 

and damages the reputation of entire sectors and countries (Cawthorn and Mariani, 114 

2017; Naaum and Hanner, 2016). Furthermore, the continuous increase of 115 

elasmobranch species listed in the CITES Appendices requires constant 116 

improvements of national and transnational capabilities in monitoring the supply 117 

chain (Pavitt et al., 2021).  118 

The rapid development of DNA-based diagnostic tools offers an ever-expanding 119 

option for wildlife identification, which have greatly assisted elasmobranch biology 120 

and forensics. Established DNA barcoding (Shivji et al., 2002) and mini-barcoding 121 

(Fields et al., 2015) approaches can robustly identify species in fresh and processed 122 

samples. However, these traditional DNA barcoding methods require longer 123 

processing time and high costs for their sequencing processes. More recently, 124 

advances in real-time PCR have eliminated the sequencing stage, thereby allowing 125 

species identification to be conducted in the field. This approach uses target-specific 126 

primers and fluorescent dyes to detect the presence of the targeted nucleic acid 127 

template during PCR amplification and has been successfully applied to detect 128 

several CITES-listed shark species in a single run tube (Cardeñosa et al., 2018) and 129 

Multiplex LAMP (Lin et al., 2021). However, given their reliance on species-specific 130 

primers and probes, these methods are better suited to screening large numbers of 131 

specimens from one or few species rather than from a wide variety of species. Thus, 132 

the need remains for a fast and easy way to identify any sample, by-passing the 133 

need to design species-specific assays. 134 

This issue is particularly glaring when inspectors are dealing with multiple types of 135 

products from different species across many locations and with a limited timeframe 136 

to investigate species compositions (Prasetyo et al., 2021). This year, the magnitude 137 

of the challenge has more than tripled, with the number of CITES-listed species 138 

going from 47 to 151 (CITES, 2022; Collyns, 2022). Since CITES regulations still 139 

allows species listed on Appendix II to be traded by considering the sustainability of 140 
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exploitation through a Non-detrimental Findings (NDF) framework, trade monitoring 141 

is more crucial than ever before. 142 

In an attempt to circumvent the limits of species-specific methods, a universal single-143 

tube assay marketed as FASTFISH-IDTM was recently developed for use in the 144 

seafood industry (Naaum et al., 2021). This method uses LATE (Linear-After-The-145 

Exponent) PCR to amplify one strand of the full 650bp COI barcoding region 146 

(Sanchez et al, 2004), and uses a set of fluorescent probes to target two distinct 147 

mini-barcode regions selected for their high intra-specific variability which will then 148 

produce unique species-specific fluorescent signatures (Naaum et al., 2021). The 149 

fluorescent signatures are then compared to those kept in a cloud-based library of 150 

verified specimen signatures. 151 

However, this approach and its libraries were originally designed and validated for 152 

bony fishes (Naaum et al., 2021) and no elasmobranch fluorescence fingerprints are 153 

publicly available in the FASTFISH-IDTM cloud. We therefore chose to test i) whether 154 

the existing FASTFISH-IDTM diagnostics could produce a diverse range of 155 

fluorescent signatures unique and specific to each of the 28 elasmobranch species 156 

frequently found in Indonesian trade; and ii) whether a deep machine learning 157 

method could quantitatively assign signatures to the correct species, irrespective of 158 

the visual appearance of the fluorescence. Deep learning algorithms are highly 159 

flexible and well suited for undertaking these tasks (LeCun et al., 2015; Malde et al., 160 

2019), and have recently been applied in marine science, including fish size 161 

estimation (Garcia et al., 2019), bycatch detection and shark identification from 162 

photos and videos (Jenrette et al., 2022; Peña et al., 2021; Sharma et al., 2018). Our 163 

findings indicate that this portable, universal methodology performs well even for 164 

‘non-target’ elasmobranch species, and with further refinement, it can become a 165 

powerful tool to combat the illegal trade of endangered sharks and rays. 166 

 167 

  168 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.11.30.518468doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.30.518468
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 7 

Results 169 

Fluorescent signature of species 170 

After filtering and removing 33 inconsistent runs, 357 pairs of fluorescent signatures 171 

from 28 species were generated, including 14 sharks and 14 rays, with 22 of those 172 

species (12 sharks, 10 rays) being CITES-listed species. Within 2.5 hours, all types 173 

of samples - from fresh to processed samples sourced from different body parts - 174 

were amplified and produced one or two fluorescent signatures (referred to as BS1 175 

and BS2 for barcode segment one and barcode segment two) (Tables S.1 and S.2. 176 

These two barcode segments refer to the two mini-barcode regions within the 177 

amplified COI target sequence that emitted fluorescent to be read by the real-time 178 

PCR machine. 179 

Many species were distinguishable using a combination of both barcode segments 180 

and had unique signatures, such as Alopias pelagicus (pelagic thresher), A. 181 

superciliosus (bigeye thresher) and Isurus paucus (longfin mako shark). However, 182 

some species displayed probe-barcode hybridisation difficulties (see Methods), with 183 

more shark species (7) than ray species (3) being affected, namely Carcharhinus 184 

falciformis (silky shark), C. longimanus (oceanic whitetip shark), I. oxyrinchus 185 

(shortfin mako shark), Lamna nasus (porbeagle shark), C. brevipinna (spinner 186 

shark), Galeocerdo cuvier (tiger shark), Prionace glauca (blue shark), Rhynchobatus 187 

laevis (smoothnose wedgefish), Glaucostegus typus (giant shovelnose ray), and 188 

Pristis pristis (Largetooth sawfish). Nevertheless, some of the species displaying 189 

poor probe-barcode hybridisation remained distinguishable using the alternative 190 

barcode segment (Table 1 and Figures S.1-4).  191 

Based on visual evaluations, the generated melt curves showed different fluorescent 192 

signatures for closely related species, such as thresher sharks (Alopias spp.) and 193 

hammerheads (Sphyrna spp.; Figure 2). Across the two species of thresher sharks, 194 

FASTFISH-IDTM produced visually distinguishable curves in BS1 at the initial stages 195 

of the hybridization process and produced a similar drop at ~74-79C, while the 196 

signatures in BS2 were clearly distinct in the initial stages (about 42-47C). Some 197 

species, on the other hand, have virtually identical BS1 signatures but are 198 

distinguishable using BS2, such as in the case of zebra shark (Stegostoma 199 

fasciatum) and spot-tail shark (C. sorrah) (Figure 3). However, there are problematic 200 
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species pairs that have highly similar signatures with both segments and therefore 201 

appear visually indistinguishable. This is the case between the tiger shark and giant 202 

shovelnose ray, between the silky and blue sharks, and between the giant oceanic 203 

manta and giant devil ray (two Mobula species), which have nearly identical 204 

signatures in both barcode segments (Figure 4). Overall, six out of 28 species were 205 

deemed visually indistinguishable, four of which are CITES-listed. We also found 206 

seven species that amplified inconsistently; shortfin mako shark (Isurus oxyrinchus), 207 

oceanic whitetip shark (C. longimanus), porbeagle shark (Lamna nasus), tiger shark 208 

(Galeocerdo cuvier), largetooth sawfish (Pristis pristis), giant shovelnose ray 209 

(Glaucostegus typus) and smoothnose wedgefish (Rhynchobatus laevis). It was 210 

observed that the right-most trough in the BS1 fluorescent signature labelled “TM” 211 

corresponds to ThermaMark, an internal marker for correction of artefactual 212 

temperature variation (Figure S.5). However, in BS2, some segments were amplified 213 

and unique for each of these species. 214 

Half of the samples were highly processed products, but they still amplified well. In 215 

some of these, there were differences in the intensity of the signatures, as reflected 216 

in signature variation from BS2 of great hammerhead, zebra shark and bowmouth 217 

guitarfish (Figure 2, 3 and S.4), which may in part be ascribed to the actual state of 218 

degradation of the original DNA template. 219 

 220 

Machine learning for species assignment 221 

We transposed data for the training sets and then used fluorescence values at 8,152 222 

temperature intervals (>4,000 per each barcode segment) as variables and identified 223 

variable importance as a key feature for species assignment. We ranked variable 224 

states according to their relative importance, scaled importance and percentage of 225 

variance explained, for each barcode segment (see Table S.3). We generated 301 226 

potential deep learning models, aiming for high accuracy and minimizing error. The 227 

best deep learning model was chosen as the one with the highest accuracy (98.20%; 228 

Table S.4). When the model was applied to melt curve data from the independent 229 

specimens, accuracy dropped to 79.41%, with 54 out of 68 specimens correctly 230 

assigned (Figure 5). Mis-assignments were consistent with the species that also 231 

proved problematic during visual assessments, i.e. the spinner and blue shark. The 232 

model also mis-identified spot-tail shark as zebra shark despite it visually having a 233 
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unique signature in BS2 (Figure 3). During the testing, some samples from 234 

hammerhead sharks (Sphyrna spp.), smoothnose wedgefish (Rhynchobatus laevis), 235 

and broadnose wedgefish (Rhynchobatus springeri) were assigned to the wrong 236 

species, even though each of these species had their own unique fingerprint 237 

(Figures S.1-4). 238 

 239 

Discussion 240 

Within a couple of hours and without the need to adjust the existing FASTFISH-IDTM 241 

assay from teleost fish to elasmobranchs, this real-time PCR method offered a 242 

portable monitoring tool that reliably enabled the identification of 25 elasmobranch 243 

species (20 of which are CITES-listed). The device used to conduct the runs, the 244 

MIC, is a convenient portable real-time PCR thermocycler weighing no more than 2 245 

kg and allowing for the simultaneous inspection of 48 specimens per run (Naaum et 246 

al., 2021). More importantly, the use of probes targeting mini barcodes with high 247 

inter-specific variation offers a universality that other qPCR-based assays do not 248 

currently provide, and the automatic amplification of the full COI barcode as part of 249 

the same reaction offers downstream opportunities for further in-depth screening, if 250 

necessary. 251 

While existing genetic-based monitoring tools continue to be useful in many 252 

situations (Fields et al., 2015; Shivji et al., 2002)(Cardeñosa et al., 2018; Lin et al., 253 

2021), FASTFISH-IDTM seems poised to significantly expand the horizons of DNA-254 

based control: alongside its speed, portability, and universality, the method exhibits 255 

single nucleotide resolution (Rice et al., 2014) which can minimize the risk of similar 256 

fluorescent signatures, particularly when more species are added to a reference 257 

library (Naaum et al., 2021). This is a particularly compelling argument for its 258 

implementation, as CITES lists are likely to  continue to expand in the future. 259 

Additionally, the amplification of the whole COI universal barcode segment embeds a 260 

forensic dimension (Dawnay et al., 2007) that is not necessarily afforded by other 261 

portable tools. 262 

A difficulty typically encountered in genetic-based trade monitoring is the handling of 263 

processed products, and this is particularly true for elasmobranchs which tend to be 264 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.11.30.518468doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.30.518468
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 10 

heavily processed in a variety of ways (Dharmadi et al., 2019a; Muttaqin et al., 265 

2018). Despite the issues of fragmented DNA due to the effect of various processing 266 

techniques (Shokralla et al., 2015), FASTFISH-IDTM shows notable robustness and 267 

reliability, with 83.6% of processed samples yielding reliable melt curve profiles (51 268 

of 61 processed samples). Since FASTFISH-IDTM uses real-time PCR and relies on 269 

fluorescent signatures, some species display variation in signature amplitude (the 270 

variation in peak heights and valley depths) especially when the DNA was degraded, 271 

as observed with processed products and displayed by the signature of both 272 

hammerhead species on BS2 (Figure 2). This deviation may be problematic for 273 

species assignment, especially when the assignment depends on a deep learning 274 

algorithm. The high probability of the features being similar to those of other species 275 

caused misassignments. Other issues that may have occurred is variation in the 276 

fluorescence signature from the same species. This could be due to single 277 

nucleotide polymorphisms (SNPs) within species or possibly to contamination in the 278 

case of the BS2 signature of the pale-edged stingray (Telatrygon zugei; Figure S.4). 279 

Visual assessment could distinguish 22 species out of 28 with more than half of 280 

these (N=17) being CITES-listed. Even in this preliminary phase, the method could 281 

therefore readily be applied by inspectors –without the application of computational 282 

tools – and reliably reveal cases of illegal activities. Three pairs of species had 283 

spectral features that are difficult to distinguish, e.g. these ambiguities were present 284 

between tiger shark and giant shovelnose ray, between two species of Mobula rays 285 

(giant oceanic manta ray and giant devil ray), and between silky and blue shark 286 

(Table 1 - Visual). Thus, it must be acknowledged that the barcode segments have 287 

the same sequence of nucleotides and produced similar signatures for those 288 

species. The technology was originally designed for bony fish (Naaum et al., 2021), 289 

and the database is currently being expanded to various important species that are 290 

globally traded as seafood. Yet, the much lower diversity of elasmobranchs (~1/30th 291 

that of teleosts) will make any effort to produce spectral reference databases a far 292 

less onerous task than that currently encountered with bony fishes. Whilst it has 293 

been known that the COI gene is more slowly evolving in chondrichthyans than 294 

teleosts (Moore et al., 2011; Naylor et al., 2012), this is seldom a major issue in most 295 

DNA barcoding applications (Fields et al., 2018; Griffiths et al., 2013; Hobbs et al., 296 

2019), so an optimised iteration of the FASTFISH-IDTM method is poised to be 297 
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transformational for elasmobranch conservation and management. A qualitative 298 

investigation on the full length of COI sequences (Sanger sequencing results) based 299 

on visual and simple comparison 300 

(https://www.bioinformatics.org/sms2/ident_sim.html) revealed that for those 301 

problematic three pairs of species mentioned above for that particular segment, 302 

there is a high degree of similarity in their sequence (70-98%), although this seems 303 

unlikely as the method is extremely sensitive and easily distinguishes between 304 

sequences that differ by a single nucleotide (Sirianni et al., 2016). 305 

In the absence of an online reference database of elasmobranch fluorescent 306 

signatures, machine learning was developed for this study. One of the machine 307 

learning applications is pattern recognition (Jenrette et al., 2022; Trentin et al., 308 

2018). Deep learning (also known as deep structured learning) is broadly applied in 309 

machine learning applications, especially pattern recognition (Jenrette et al., 2022; 310 

Trentin et al., 2018) and has advantages in its flexibility to develop learning styles i.e. 311 

supervised, semi-supervised or unsupervised (LeCun et al., 2015; Malde et al., 312 

2019). Deep learning models have been chosen and deployed with independent 313 

testing datasets to measure their accuracy. We found that the accuracy of our test 314 

model was 79.41%, which is lower than the training accuracy (98.20%; Table S.5), 315 

and yet the model could identify similar species that could not be distinguished 316 

visually. In fact, the model enabled us to differentiate the two Mobula species that 317 

have similar signatures in both barcode segments. Machine learning could also 318 

recognize silky shark, a problematic species for the authorities as the species 319 

belongs to the Carcharhinidae, a diverse family that has plenty of look-alike species. 320 

In particular, the silky shark spectral profiles appeared visually indistinguishable from 321 

blue shark. However, the new CITES listing agreed during CoP19 added all requiem 322 

sharks into Appendix II (including blue shark along with the other 53 species shark 323 

from Carcharhinidae family) will make implementing action manageable since 324 

requiem sharks make up a large proportion of the products found in the global shark 325 

fin trade hubs in China (Cardeñosa et al., 2022). Although international trade in all 326 

requiem sharks will now be regulated, a Non-Detriment Finding (NDF; CITES’s 327 

mechanism that allows certain species listed in Appendix II to be traded with strict 328 

quotas) which is specific to each species will still require the capability of 329 

identification at the species level. 330 
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Five out of 28 species could not be assigned accurately using the model, i.e. 331 

between spot-tail and zebra shark as well as mis-assignments among oceanic 332 

whitetip shark, tiger shark and giant shovelnose ray (Table 1 – Deep Learning). 333 

Curiously, there were also mis-assignments for species that had quite unique 334 

fluorescent signatures. We argue that these mis-assignments could be due to 335 

variation in amplitude, where some species actually have similar signatures, but 336 

different amplitudes (Cusa, 2021) the cause of which is undetermined, but could be 337 

due to degraded DNA. For instance, the signature in BS2 of zebra shark has high 338 

amplitude variations that may challenge the model to assign the species (Figure 3). 339 

Increasing training datasets may be required as this should improve the robustness 340 

of the model (LeCun et al., 2015), while future re-tailoring of the barcode regions to 341 

elasmobranch variation may also remove some of the within-species noise. Despite 342 

the assignment problems, when we combine visual and deep learning assignments, 343 

we could distinguish 25 out of 28 species, 20 of which are listed in CITES Appendix 344 

II. 345 

 346 

Limitations of the study 347 

The probe hybridization problems (which occurred when the barcode segments have 348 

a high degree of mismatches with the designed probes) encountered in seven 349 

species prevented the machine learning tool from adequately assigning fluorescent 350 

signatures to a given species. Since BS1 failed to hybridize for most of these 351 

species, the species assignment in these cases was solely reliant on BS2, which, in 352 

many cases also exhibited poor hybridization. To address this issue, it seems that 353 

going forward the designing of new probes tailored to elasmobranch sequence 354 

variation will be a necessary solution to increase the versatility and reliability of 355 

FASTFISH-IDTM. An increased set of elasmobranch species may also inflate mis-356 

assignments due to the higher degree of similarity among species in both visual-357 

based or machine learning-based systems. There is also limitations in using fully 358 

supervised deep learning approaches in the selection of important features from 359 

highly variable training sets (e.g. signatures from the two barcode segments) 360 

(Hantak et al., 2022). The addition of more species to the database will require more 361 

training images. However, with such improvements, this method will help authorities 362 

(i.e. fish inspectors, customs and quarantine officers) by providing a single, agile 363 
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testing option, at any point in the supply chain, to disentangle the complexity of the 364 

shark and ray product trade, and ultimately reduce the consequential risk of 365 

extinction for these endangered and iconic taxa. 366 
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STAR Methods 394 

Resource availability 395 

Lead contact 396 

Further information and requests for resources and reagents should be directed to 397 

and will be fulfilled by the lead contact, Andhika Prasetyo 398 

(a.p.prasetyo@edu.salford.ac.uk) or Allan McDevitt (allan.mcdevitt@atu.ie). 399 

 400 

Materials availability 401 

This study did not generate new unique reagents. FASTFISH-IDTM reagents were 402 

manufactured by Ecologenix, LLC. Natick, MA - USA. 403 

 404 

Data and code availability 405 

• Data is archived at the Google Drive and are publicly available of the date of 406 

publication database: https://bit.ly/FASTFISH-ID_MS_Supp_Datasets.  407 

• All original code is deposited at the Github repository and are publicly 408 

available of the date of publication database: 409 

https://github.com/andhikaprima/FastSharkID. 410 

• Any additional information required to reanalyse the data reported in this 411 

paper is available from the lead contact upon request. 412 

 413 

Experimental model and subject details 414 

Tissue sample of shark and ray specimens were collected in several sites nested in 415 

six locations across cities on Java Island, the most populous island in Indonesia 416 

(Figure S.6, namely Jakarta, Indramayu, Tegal, Cilacap, Surabaya and Banyuwangi. 417 

Collected specimens were gathered without prior knowledge of their exact harvest 418 

location and were available for collection at a variety of sites, such as fishing ports 419 

(FP), traditional markets (TM), processing plants (PP), export hubs (EH) and an 420 

inspector station (AU). 421 

Sample collection was granted by research permit no.251/BRSDM/II/2020 issued by 422 

Agency for Marine and Fisheries Research and Human Resources AMFRAD, the 423 

Ministry of Marine Affairs and Fisheries (MMAF), Republic of Indonesia. Research 424 

ethics no. STR1819-45 issued by the Science and Technology Research Ethics 425 
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Panel, University of Salford. Export permits no. 00135/SAJI/LN/PRL/IX/2021 (CITES-426 

listed specimens) and 127/LPSPL.2/PRL.430/X/2021 (non-CITES-listed specimens) 427 

were granted under the authority of the Ministry of Marine Affairs and Fisheries 428 

(MMAF), Republic of Indonesia. Sample were imported into the UK under import 429 

permit no. 609191/01-42 from the Animal and Plant Health Agency (APHA), United 430 

Kingdom. 431 

 432 

Method details 433 

Sample collection and DNA extraction  434 

579 specimens were opportunistically collected at the above-mentioned sites and 435 

processing factories throughout January and February 2020. The tissue, which could 436 

either be fresh, frozen, partially or heavily processed, was then stored in 2.0mL 437 

screw-cap microcentrifuge tubes, submerged in 90% ethanol and stored at 4°C. DNA 438 

was extracted from samples following the Mu-DNA protocol for tissue samples 439 

(Sellers et al., 2018) with an overnight incubation at 55°C on the thermomixer with a 440 

medium mixing frequency and a final elution volume of 100 μl. All surfaces were 441 

sterilised with 50% bleach and then washed with 70% ethanol, in-between and after 442 

extracting each sample, to reduce cross-contamination risks (Figure S.7a-b). 443 

Of these, we excluded specimens of unclear taxonomy, and all species represented 444 

by less than 3 individuals. We refined the collection to 130 tissue samples 445 

(specimens) belonging to 28 species; for each species, we used three replicates per 446 

specimen as training sets (390 runs) (Table S.1). We also had another 68 tissue 447 

samples without replication and used them as testing datasets (Table S.2). As 448 

sampling was conducted opportunistically, we did not have an equal number of 449 

samples per species. Some species had a limited number of specimens, so we took 450 

out some training sets to be used as testing datasets. Datasets were then filtered, 451 

and ambiguous qPCR runs (i.e. poor probe-barcode hybridisation or inconsistent 452 

fluorescent signature) were removed. A poor probe-barcode hybridisation was 453 

checked using a reference point created by ThermaMarkTM (TM) in the signature 454 

produced from BS1. If only ThermaMarkTM (TM) amplified in the BS1 fluorescent 455 

signature, those runs would have failed to hybridize. Inconsistent fluorescent 456 

signatures within a replication or species were re-run a second time. If the re-runs 457 

kept failing, those runs were removed. In the end, we used 357 (number of 458 
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replications varied by specimens) and 68 runs for training and testing datasets, 459 

respectively. 460 

 461 

FASTFISH-IDTM closed-tube barcoding protocol 462 

PCR reaction and amplification conditions 463 

 464 

In the first instance, the FASTFISH-IDTM method requires the amplification of the full 465 

cytochrome c oxidase I (COI) gene (~650 bp) and in the second instance, it targets 466 

the two mini-barcodes (~80 bp) using a set of probes. PCR master mixes were 467 

prepared in low-adhesion Eppendorf tubes (Naaum et al., 2021). The major 468 

components of this method are ThermaStopTM, ThermaMarkTM and FASTFISH-IDTM 469 

Probe Mix (Ecologenix, LLC.). ThermaStopTM is a novel hot-start reagent that 470 

prevents non-specific amplification prior to the start of the reaction, while 471 

ThermaMarkTM (hereafter referred as TM) is a temperature-dependent marker for 472 

correction of melt-curve analysis (Ecologenix, LLC.). The FASTFISH-IDTM probe mix 473 

consisted of two sets of positive/negative probe pairs labelled in two different colours 474 

that hybridize along the length of two mini-barcode regions within the amplified COI 475 

target sequence, hereafter referred to as Barcoding Segment 1 (BS1) and Barcoding 476 

Segment 2 (BS2). A M13 primer was used as a priming site that facilitates the 477 

sequencing process for eventual species validation through Sanger sequencing.  478 

FASTFISH-IDTM uses asymmetric PCR to produce more single stranded amplicons 479 

which allow the probes to hybridize more easily (Sanchez et al., 2004). After 480 

amplification, mismatch tolerant positive/negative probe pairs bind to their single-481 

stranded DNA targets. Each positive-probe is formed of a target binding sequence 482 

that is 20–35 nucleotides long and has a higher fluorescent signal when it is bound 483 

to its target sequence but a low background fluorescence when it is not. Negative-484 

probes are only quenchers that reduce the fluorescent signal when they are bound 485 

next to their paired positive-probe. Positive/negative probe pairs can bind to both 486 

perfectly matching strands and target sequence variants with one or more nucleotide 487 

polymorphisms. This means that they can tolerate mismatches, which is one of the 488 

most important features of this technology as a single set of reagents can be used to 489 

identify a large number of species (Naaum et al., 2021). Target sequences that are 490 

similar but different, even if only by one nucleotide, almost always have different 491 

fluorescent signatures. Positive/negative probe sets therefore have the potential to 492 
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discriminate among thousands of fish species and their variants (Naaum et al., 493 

2021).  494 

PCR amplification was performed on a Magnetic Induction Cycler (MIC) which is a 495 

real-time PCR thermocycler designed by Bio Molecular SystemsTM (Upper Coomera, 496 

Queensland, Australia). Thermocycling conditions were 94°C for 2 mins, 5 cycles of 497 

94°C for 5 secs, 55°C for 20 secs, 72°C for 45 secs, then 65 cycles of 94°C for 5 498 

secs, 70°C for 45 secs (in total: 2 hrs, 20 mins and 44 secs). Following a total of 70 499 

amplification cycles, the reaction leads to a 10- to 20-fold excess of single-stranded 500 

DNA which is critical for probe/target hybridization in a single closed tube (Pierce et 501 

al., 2005; Sanchez et al., 2004). At the completion of PCR, the temperature was 502 

decreased down to 40°C for 10 mins to enable the fluorescent probes in the 503 

FASTFISH-IDTM probe mix to hybridize to the excess single-stranded DNA. This step 504 

was followed by a melting curve analysis where the temperature was gradually 505 

increased from 40°C to 87°C at 0.1°C /secs with sequential fluorescent acquisition 506 

first in the MIC PCR Cycler’s Orange Channel (suitable for detection of CalRed 610- 507 

labelled probes; max excitation: 590 nm; max emission 610 nm) and then detection 508 

in the Red Channel (suitable for detection of Quasar 670-labelled probes; max 509 

excitation: 647 nm; max emission 670 nm). The first derivative of the melt curve was 510 

then used as the fluorescent signature. Species assignment was revealed by 511 

comparing a distinct mix of Cal-Red 610 and Quasar 670 fluorescent signatures 512 

(Figure S.7c-f). Those multiple combinations allow FASTFISH-IDTM to identify a 513 

large number of species with the same reagents (Naaum et al., 2021; Rice et al., 514 

2012; Sirianni et al., 2016).  515 

 516 

DNA barcoding and species validation 517 

 518 

The same single strand DNA products used to generate a fluorescent signature can 519 

also be sequenced by DNA barcoding for further investigation. The sequencing 520 

protocol uses the M13 tail sequence in the FASTFISH-IDTM FISH COI HBCts excess 521 

primer (5’ CACGACGTTGTAAAACGAC 3’, a modified version of the M13F primer) 522 

as a sequencing primer to generate the sequence of the excess primer strand. By 523 

design, the excess primer-strand sequence can be queried directly in the NCBI 524 

nucleotide database (NCBI, 1988) or the Barcode of Life Database (Ratnasingham 525 

and Hebert, 2007) for species identification. In addition, we also used Fish F2 (5’ 526 
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TCGACTAATCATAAAGATATCGGCAC 3’) and Fish R2 (5′ 527 

ACTTCAGGGTGACCGAAGAATCAGAA 3′) primer sets (Ward et al., 2005) for 528 

several initial specimens for comparison with HBCts excess primer (M13). 529 

Sequencing was outsourced to Macrogen EuropeTM. Samples were prepared 530 

according to the service provider protocols (https://www.macrogen-531 

europe.com/services/sanger-sequencing). We also added species and/or specimens 532 

after identification using a highly degenerated primer set using a high throughput 533 

barcoding (HTB) method (A.P. Prasetyo et al., unpublished data); Leray-XT primer 534 

sets (313 bp). This set included the primers jgHCO2198 (5′ 535 

TAIACYTCIGGRTGICCRAARAAYCA 3′) and mlCOIintF-XT (5′ 536 

GGWACWRGWTGRACWITITAYCCYCC 3′) (Wangensteen et al., 2018).  537 

 538 

Quantification and statistical analysis 539 

Machine learning for species assignment 540 

Since the two probing barcode segments and the algorithm were developed for 541 

teleost fishes, they are not expected to maximise differentiation among the melt 542 

curves of elasmobranch species. Furthermore, the existing cloud-based reference 543 

library does not contain any elasmobranch signatures. We therefore developed our 544 

own species identification system by using machine learning using the H2O platform 545 

(Figure S.7h-g). H2O is an open source, fast and scalable machine learning and 546 

predictive analytics platform that allows building machine learning models on big 547 

data, and improving reproducibility (Candel et al., 2016). The deep learning algorithm 548 

was deployed to address the problem of species assignment by considering its 549 

capability to arrange multiple nonlinear transformations to model high-level 550 

abstractions in data. H2O’s Deep Learning is based on a multi-layer feedforward 551 

artificial neural network (FANN) that is trained with a stochastic gradient descent 552 

using a backpropagation environment (Candel et al., 2016). Deep learning is also 553 

advantaged by extracting the optimal input representation from raw data without user 554 

intervention (Avci et al., 2021). 555 

The fluorescent signature datasets (BS1 and BS2) were extracted, with the species 556 

identity serving as the “response”, and the transposed PCR profile temperature 557 

values being used as the predictor “variables” (each barcode fragment is recorded at 558 

about 4,000 temperature values), and fluorescent values serving as the “feature”. In 559 
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deep learning, “response” refers to the individual value that served as the output 560 

(species name in our case); while “variable” refers to properties of the “response” 561 

and is evaluated through the “feature”. 562 

The performance of deep learning algorithms depends heavily on the extracted 563 

features, so it's important to choose the right group of features that best represent 564 

the input data (Pouyanfar et al., 2018). Data filtering was conducted to exclude poor 565 

probe-barcode hybridisation or inconsistent fluorescent signature datasets and 566 

provided the best representative of the data input. Two datasets (BS1 and BS2) 567 

were then merged by specimen ID with species name used as an input to the model. 568 

Our model was divided using a 70–30 ratio of training data to validation data (i.e. 246 569 

and 111 runs respectively) and then tested with 68 independent datasets. Default 570 

parameters of H2O’s Deep Learning were optimized, with a process called “grid-571 

search”, this process tried to adjust several parameters to find the optimal “stopping 572 

criteria” (list of parameters provided on Table S.6). We setup a “stopping criteria” to 573 

limit the computational load in searching for the best deep learning algorithm, which 574 

was based on random discreteness, the number of generated models, and model 575 

runtime (Table S.7). The best model was chosen based on model accuracy and 576 

Root Mean Square Error (RMSE) optimization. A confusion matrix is used to 577 

visualize model accuracy.  578 

As for other algorithms, larger databases are required to improve predictive abilities 579 

by optimizing distributed representation, activation function non-linearity, and flexible 580 

architecture depth in terms of hidden layers and nodes (Calzolari and Liu, 2021). The 581 

main challenges in applying deep learning is overfitting due to a dominant influence 582 

on the generalization ability of a deep neural network model (Li et al., 2019). 583 

However, regularization methods such as Ivakhnenko's unit pruning (Ivakhnenko, 584 

1971) or sparsity (l1-regularization) or weight decay (l2-regularization) can be applied 585 

during training to combat overfitting (Bengio et al., 2013). The sparsity and weight 586 

decay were used in this study. 587 

 588 

  589 
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Key resources table 590 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Biological samples   

198 tissue samples (specimens) 
belonging to 28 species 

This paper https://www.ncbi.nlm.nih.gov/sra/
?term=PRJNA850687  

Chemicals 

Mu-DNA extraction reagents (Sellers et al., 2018) https://www.protocols.io/view/mu-
dna-a-modular-universal-dna-
extraction-method-a-
6qpvryj2gmkn/v2  

Commercial assays 

FASTFISH-IDTM Probe Mix  Ecologenix, LLC. Natick, 
MA - USA 

https://www.fastspecies-id.com/ 

Deposited data 

Training and testing datasets This paper  

Software and algorithms 

H2O H2O.ai https://h2o.ai/platform/ai-
cloud/make/h2o/  

pandas The pandas 
development team 

Libraryhttps://pandas.pydata.org 

Deep learning algorithm for species 
recognition 

This paper https://github.com/andhikaprima/
FastSharkID 

Oligonucleotides 

M13F primer MacrogenTM Ecologenix, LLC. Natick, MA - 
USA 

Fish02 primer sets  MacrogenTM (Ward et al., 2005) 

Leray-XT primer sets MacrogenTM (Wangensteen et al., 2018) 

 591 
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Figures 819 

 820 

Figure 1. Condition of inspection and some derivative products from sharks and 821 

rays i.e. shark teeth (a); processed ray skin (b); shredded fins ‘hissit’ 822 

in brine ready for exporting to Japan (c); blue shark cartilages soaked 823 

for processing (d); dried meat from small sharks (e); dried meat from 824 

a large shark (f); live bowmouth guitarfish for the aquarium market (g); 825 

and dried fins of silky and hammerhead sharks waiting for quota to 826 

export (h). 827 
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 829 

Figure 2. Some species that have visually distinguishable signatures in both 830 

barcode segments i.e. pelagic thresher, bigeye thresher, scalloped 831 

hammerhead and great hammerhead. 832 
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 834 
Figure 3. Some species that have similar signature in one barcode segment but 835 

visually unique in other segment i.e. zebra and spot-tail shark. 836 
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 838 
Figure 4. Problematic species that visually have highly similar signatures at 839 

both barcode segments i.e. tiger shark and giant shovelnose ray; giant 840 

oceanic manta ray and giant devil ray; silky shark and blue shark. 841 
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 842 

 843 

Figure 5.  Confusion matrix of 28 shark and ray species assignment. 844 
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Tables 846 

Table 1.  Amplification conditions of each species using the targeted segments 847 

using the FASTFISH-ID technology. Amplification condition denotes 848 

whether the species amplified at either or both segments (BS1 and 849 

BS2) and whether the species was distinguishable from all other 850 

species by its fluorescent signature(s) and deep learning.  851 

No. 
CITES 
status 

Scientific 
name 

English name 

Amplification 
Condition 

Distinguishable 

Barcode 
segment 
1 (BS1) 

Barcode 
segment 
2 (BS2) 

Visual 
Deep 

Learning 

1 Yes Alopias 
pelagicus 

Pelagic thresher Yes Yes Yes Yes 

2 Alopias 
superciliosus 

Bigeye thresher Yes Yes Yes Yes 

3 Carcharhinus 
falciformis 

Silky shark Yes No No Yes 

4 Carcharhinus 
longimanus 

Oceanic whitetip 
shark 

No Yes Yes No 

5 Isurus 
oxyrinchus 

Shortfin mako 
shark 

No Yes Yes Yes* 

6 Isurus paucus Longfin mako 
shark 

Yes Yes Yes Yes* 

7 Lamna nasus Porbeagle shark No Yes Yes Yes 

8 Sphyrna 
lewini 

Scalloped 
hammerhead 

Yes Yes Yes Yes 

9 Sphyrna 
mokarran 

Great 
hammerhead 

Yes Yes Yes Yes 

10 Carcharhinus 
brevipinna 

Spinner shark Yes No Yes Yes 

11 Carcharhinus 
sorrah 

Spot-tail shark Yes Yes Yes No 

12 Prionace 
glauca 

Blue shark Yes No No Yes* 

13 Anoxypristis 
cuspidata 

Knifetooth 
sawfish 

Yes Yes Yes Yes 

14 Glaucostegus 
typus 

Giant shovelnose 
ray 

No No No No 

15 Mobula 
birostris 

Giant oceanic 
manta ray 

Yes Yes No Yes 

16 Mobula 
mobular 

Giant devil ray Yes Yes No Yes 

17 Mobula 
tarapacana 

Sicklefin devil ray Yes Yes Yes Yes 

18 Pristis pristis Largetooth 
sawfish 

No Yes Yes Yes 

19 Rhina 
ancylostoma 

Bowmouth 
guitarfish 

Yes Yes Yes Yes 
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No. 
CITES 
status 

Scientific 
name 

English name 

Amplification 
Condition 

Distinguishable 

Barcode 
segment 
1 (BS1) 

Barcode 
segment 
2 (BS2) 

Visual 
Deep 

Learning 

20 

 

Rhynchobatus 
australiae 

Whitespotted 
guitarfish 

Yes Yes Yes Yes 

21 Rhynchobatus 
laevis 

Smoothnose 
wedgefish 

No Yes Yes Yes* 

22 Rhynchobatus 
springeri 

Broadnose 
wedgefish 

Yes Yes Yes Yes* 

23 No Galeocerdo 
cuvier 

Tiger shark No No No No 

24 Stegostoma 
fasciatum 

Zebra shark Yes Yes Yes No 

25 Gymnura 
poecilura 

Longtail butterfly 
ray 

Yes Yes Yes Yes 

26 Himantura 
imbricata 

Bengal whipray Yes Yes Yes Yes 

27 Neotrygon 
orientalis 

Oriental 
bluespotted 
maskray 

Yes Yes Yes Yes 

28 Telatrygon 
zugei 

Pale-edged 
stingray 

Yes Yes Yes Yes 

Total distinguishable species 
  

22 23 

Note: species with Asterix "*" mark have probability of mis-assignment by the deep learning model 
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