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A B S T R A C T   

To accurately manage water resources, a precise prediction of reference evapotranspiration 
(ETref) is necessary. The best empirical equations to determine ETref are usually the temperature- 
based Baier and Robertson (BARO), the radiation-based Jensen and Haise (JEHA), and the mass 
transfer-based Penman (PENM) ones. Two machine learning (ML) models were used: least squares 
support vector regression (LSSVR) and ANFIS optimized using the particle swarm optimization 
algorithm (ANFPSO). These models were applied to the daily ETref at 100 synoptic stations for 
different climates of Iran. Performance of studied models was evaluated by the correlation co-
efficient (R), coefficient of determination (R2), mean absolute error (MAE), root mean square 
error (RMSE), scatter index (SI) and the Nash-Sutcliffe efficiency (NSE). The combination-based 
ML models (LSSVR4 and ANFPSO4) had the lowest error (RMSE = 0.34–2.85 mm d− 1) and the 
best correlation (R = 0.66–0.99). The temperature-based empirical relationships had more pre-
cision than the radiation- and mass transfer-based empirical equations.   

1. Introduction 

Arid regions of the world are more sensitive to climate change and variability concerning hydroclimatic conditions. The uptake of 
water resources has considerably increased, because of increasing global population and average human water withdrawals per capita 
[1,2]. To achieve water resource sustainability, accurate ETref estimation is necessary. ETref estimation is a non-linear relationship that 
is a function of several meteorological variables [3–11]. 
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A precise determination of ETref can be performed with a lysimeter station. However, establishing these stations can be expensive, 
particularly in developing countries. The Penman-Monteith equation based on FAO56 (PM-FAO56) has typically been used as a semi- 
empirical equation for prediction of ETref [12–15]. In spite of the acceptance of the PM-FAO56 equation, it requires full datasets of 
climatic variables. However, such data are often not available and/or are incomplete. On the other hand, the calculation of ETref may 
be considered as simulating a non-linear association between ETref and a large number of climatic variables [16]. Therefore, re-
searchers studied and evaluated so far ETref models in various climates [15,17–20]. The empirical models are usually divided into four 
categories: models based on temperature, radiation and mass transfer as well as a combination of various models [6,14,21–23]. 

Furthermore, different algorithms and methods have been so far developed for the calculation of ETref, including artificial neural 
network (ANN) [24–28], SVM [29–31], ANFIS [32–39], multiple layer perceptron (MLP; [40–42]), generalized regression neural 
networks (GNN; [43]), extreme learning machine (ELM; [34,35,44–48]). Among the methods listed, numerous ETref models have been 
evaluated by researchers using ELM methods. ELM methods are theoretically alternatives, because they generate simple equations and 
use a more limited number of climatic variables than the PM-FAO56 model. These methods use LSSVR, ANN, PSO, GA and GEP and are 

Fig. 1. Outline of the research.  
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utilized by many researchers [19,47,49–52]. Of these models, LSSVR and ANFPSO have been found to generate more accurate results. 
Chen [25] applied LSSVR and ANN models for the prediction of daily ETref in a semi-arid climate. By comparing the results with 

MLR, he concluded that the ANN model, which uses all climatic variables as input, has the best performance. Kisi et al. [53] modeled 
the values of mean monthly ETref for Iran using data-driven methods of ANN, GEP, ANFIS-grid partitioning (ANFIS-GP) and 
ANFIS-subtractive clustering (ANFIS-SC). They concluded that ANFIS-GP has the best performance among the studied methods. In 
India Patil and Deka [54] estimated weekly ETref and compared the performance of ANN, LSSVM and ELM methods. The ELM provided 
better results for the estimation of ETref than the ANN and SVM methods. Zhu et al. [47] evaluated the PSO algorithm to obtain the 
parameters of the ELM method. Afterwards, a hybrid PSO-ELM model was suggested to calculate approximate daily ETref for the arid 
climate of China. They confirmed that the PSO-ELM method was more reliable than other ELM models and empirical equations, and 
thus suggested its use to compute daily ETref. 

The main novelty of the research is the comprehensive comparison of data mining models with the most appropriate empirical 
equations [14] to predict the daily potential evapotranspiration across different climates. Furthermore, Iran has a long dry season (six 
to eight months) with rainfall amounts less than 5% of the total precipitation [6,55]. 

The main objectives of the present study are as follows: (i) to compare the correctness of different ML models (LSSVR and ANFPSO) 
and empirical equations (BARO, JEHA and PENM) in daily ETref estimation; (ii) to evaluate models with different combinations of 
climate inputs (temperature-, radiation- and mass transfer-based as well as combination-based); and (iii) to recommend optimal ML 
models to predict the daily ETref using limited input data for the various climates across Iran. Moreover, two approaches were pursued 
to assess the performance of the recommended methods for calculating ETref: (a) suggested models were tested and trained for 100 
synoptic stations; and (b) the synoptic stations were divided into four climate classes using the UNESCO aridity index with their mean 
climatic traits. The flowchart of the research undertaken is present in Fig. 1. 

2. Materials and methods 

2.1. Case study and associated data 

The meteorological data of 100 synoptic stations across Iran were used. The station locations are presented in Fig. 2. The mete-
orological data were obtained from IRIMO and included mean, maximum (Tmax) and minimum (Tmin) air temperatures, precipitation, 
relative humidity, wind speed and solar radiation for a period of 33 years (1987–2019). Altitude differences among the stations ranged 
from 26 m below sea level at Bandar Anzali station to 2465 m above sea level at Abali station. A double-mass curve analysis was 
conducted to evaluate the quality of the meteorological data [56]. Missing data were replaced by the means between the corresponding 
data for the previous and following years. The Angstrom equation was used to fill the solar radiation gaps [57] when the correlation 

Fig. 2. Location and climate class of synoptic stations based on the ratio of precipitation to ETref.  
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was more than 0.8 at the 95% confidence level. First of all, solar radiation meeting the land (Rn, MJ m− 2 d− 1) was determined above 
the earth’s atmosphere for each day linked to the corresponding latitude and longitude as well as the solar constant [57]. Then, 
equation (1) was used to calculate the value of Rs. 

Rs=KRs ×
(
1+ 2.7× 10− 5 ×Alt

)
×(Tmax − Tmin)

0.5
× Rn (1)  

where Alt is altitude (m); and KRs is the empirical constant, considered equal to 0.16 [6] Precipitation values in Iran are also very 
diverse so that the average annual precipitation during the study varied from 52.6 mm at Zabol station to 1694.7 mm at Anzali station. 
The average annual ETref calculated with the PM-FAO56 equation varied from about 800 mm at Anzali station to about 5040 mm at 
Jask station. 

Based on meteorological parameters, climates in Iran range from arid to humid. The UNESCO aridity index was applied for 
temperature-based and precipitation-based climate classifications and is calculated using the values of P and ETref (Eq. (2)). According 
to this classification, climate can be divided according to these categories: hyper-arid (AI<0.03), arid (0.03 < AI<0.20), semi-arid 
(0.20 < AI<0.50) and humid (AI>0.50) [58–60]. The AIUNESCO varied from 0.01 at Zabol station to 2.12 at Anzali station (Eq. (2)). 

AIUNESCO =
P

ETref
× 100 (2) 

According to the AIUNESCO, 10 stations were located in hyper-arid climate, 48 stations were situated in arid climate, 30 stations were 
located in semi-arid climate and 12 stations can be found in humid climate (Table 1). In general, the central and southeastern regions of 
Iran have a hyper-arid climate, and the northeastern, southern and southwestern regions have an arid climate. The western and 
northwestern regions of Iran have a semi-arid climate. The Caspian Sea region has a humid climate (Fig. 2). 

Fig. 3 illustrates the range of changes of the four parameters Tmin, Tmax, P and ETref. The lowest and highest values of Tmin were 
recorded in semi-arid and hyper-arid climates, respectively (Fig. 3a). Tmax values from arid to humid climates show a decreasing trend 
(Fig. 3b). Fig. 3c shows the increasing trend of P from hyper-arid to humid climates. The decreasing trend of annual ETref values is also 
shown in Fig. 3d. 

2.2. Empirical ETref relationships 

According to the importance and category of input climatic parameters applied by empirical equations to compute the daily ETref, 
all models were categorized subject to these four classes: temperature-based (BARO equation), solar radiation–based (JEHA equation), 
mass transfer–based (PENM equation) and combination-based (PM-FAO56). These empirical equations were introduced by Sharafi and 
Mohammadi Ghaleni [14] and gave good results in each category and are therefore recommended for estimating ETref in different 
climates of Iran. To compare the results of different models, the PM-FAO56 equation was calculated for all stations. The empirical 
equations are given below (Eqs. (3)–(6)): 

BARO (Baier and Robertson [61]) 

ETref = 0.109×(Ra / λ)+ 0.157Tmax + 0.158(Tmax − Tmin) − 5.39 (3) 

JEHA (Jensen and Haise [62]) 

ETref =(0.025Tmean + 0.08)Rs
/

λ (4) 

PENM (Penman [63]) 

ETref =(2.625+ 0.000479u2)(es − ea) (5) 

PM-FAO56 (Allen et al. [57]) 

ETref =
0.408Δ(Rn − G) + γ[900/(Tmean + 273)]u2(es − ea)

Δ + γ(1 + 0.34u2)
(6) 

Table 1 
Stations according to climate classification.  

Climate 
Classification 

Stations 

Hyper-arid Zabol, Yazd, Bam, Anar, Jask, Khorobiabank, Siri, Tabass, Chabahar and Abumusa 
Arid Iranshahr, Kerman, Nehbandan, Bandar Lengeh, Kashan, Garmsar, Zahedan, Khash, Kish, Qom, Saravan, Bandar Abbas, East Isfahan, 

Abadan, Sirjan, Bushehr, Ferdows, Shahr Babak, costal Bushehr, Shahroud, Minab, Birjand, Ghaen, Semnan, Gonabad, Bostan, Isfahan, 
Ahwaz, Sabzevar, Omidieh, Karaj, Kashmar, Abadeh, Golmakan, Tehran, Fassa, Mashhad, Ramhormoz, Safiabad, Shiraz, Torbat-e 
Heydarieh, Sarakhs, Sarpolzahab, Ghochan, Masjedsoleiman, Bojnord and Mianeh 

Semi-arid Jolfa, Sarab, Tabriz, Urmia, Arak, Hamedan Nozheh, Hamedan Airport, Parsabad, Maragheh, Khorramdareh, Ahar, Makoo, Shahrekord, 
Qazvin, Ardabil, Sanandaj, Takab, Bijar, Kangavar, Zanjan, Saqez, Mahabad, Kermanshah, Khalkhal, Aligoodarz, Islamabad, Dogonbadan, 
Khorramabad, Ilam and Ravansar 

Humid Abali, Gorgan, Piranshahr, Gharakhil, Sardasht, Babolsar, Koohrang, Rasht, Rasht and Anzali  
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where Δ is the slope of the saturation vapor pressure function (kPa ◦C− 1), Rn is the net radiation (MJ m− 2 d− 1), G is the soil heat flux 
density (MJ m− 2 d− 1), γ is the psychometric constant (kPa ◦C− 1), Tmean, max and min are the mean, maximum and minimum daily 
temperatures (◦C) in this order, u2 is the wind speed (m s− 1) measured at a height of 2 m, Ra is the extraterrestrial radiation (MJ m− 2 

d− 1), ʎ is the latent heat of vaporization (MJ kg− 1), RH is the mean relative humidity (%), Rs is the solar radiation (MJ m− 2 d− 1), es is 
the saturation vapor pressure (kPa), ea is the actual vapor pressure (k Pa), and (es-ea) is the saturation vapor pressure deficit (kPa). 

2.3. ML models 

2.3.1. LSSVR algorithm 
The least squares support vector regression (LSSVR [64]) was introduced for classification (discrete) and regression (real) chal-

lenges. According to the supervised learning method, a concept known as structural risk minimization is utilized to minimize the error 
of the model, whereas other methodologies (e.g. ANN) apply the principles of Empirical Risk Minimization [65]. In LSSVR, data are 
linearly separated and a regression line with the greatest confidence level is determined. Convex Quadratic Programming is used to 
solve the optimal line equations, which makes the problem complex and time-consuming [66]. Thus, solving large-scale challenges 
using this methodology entails high computational costs and makes the algorithm more complex. However, LSSVR converts the 
non-linear relationship between inputs and outputs to a linear relationship. The advantages of LSSVR include high precision and 
accuracy, low complexity, mathematical tractability and speed. One of the factors affecting the LSSVR accuracy is the selection of an 
appropriate Kernel Function [67]. 

2.3.2. ANFPSO algorithm 
In the ANFPSO model, ETref prediction has been performed using two models. ANFIS has been optimized using the particle swarm 

optimization algorithm. The ANFIS model has five layers including membership, fuzzy, normalization, diffusion and output layers. 
Fuzzy input variables have input membership functions (membership rules), while output membership functions and diffused output 
are the outputs of the first to fifth layers of the ANFIS model, respectively [68]. 

In this paper, the ANFIS model has been presented. This model is based on five input layers and the Gaussian membership function. 
The Levenberg–Marquardt algorithm was used to teach the ANFIS model. In the combined model ANFPSO, the particle swarm 
optimization (PSO) algorithm has been used to teach the ANFIS model. In other words, in this hybrid model, the weights of mem-
bership functions in the ANFIS model are optimized by the PSO algorithm to minimize the difference between measured and predicted 
ETref. Also, different meta-heuristic methods can be used to train the standard mathematical ML. 

The PM-FAO56 was calculated as the target ETref and these four groups of empirical ML models were selected: combination-based, 
radiation-based, temperature-based and mass transfer based. Table 2 showed the input variables for each model. 

Fig. 3. Boxplots showing meteorological variables of (a) Tmin; (b) Tmax; P; and (d) ETref for different climates of Iran.  

S. Sharafi et al.                                                                                                                                                                                                         



Heliyon 9 (2023) e13245

6

2.4. Evaluation performance criteria 

In this study, the number of eight statistical criteria were evaluated for each synoptic station: coefficient of determination (R2), 
mean absolute error (MAE), the root mean square error (RMSE), the average percentage error (APE), Nash-Sutcliffe Efficiency (NSE), 
the index of agreement (D) and the scatter index (SI). The perfect value for MAE, RMSE, SI, and MAE indices is zero, and for NSE and R2 

is unity. Li et al. [69] characterized the range of SI for the precision of the models as follows: excellent (SI < 0.1), good (0.1 < SI < 0.2), 
fair (0.2 < SI < 0.3) and poor (SI > 0.3). These criteria were applied, previously [6,14,21,70]. They are commonly used to assess the 
results of empirical equations as well as LSSVR and ANFPSO models with PM-FAO56 on the basis of Eqs. (7)–(12). 

Correlation coefficient (R) (Ma and Iqbal [71]) 

R=

∑i=1
N

(
ETPMFAO56

refi − ETPMFAO 56
ref

)(
ETmod el

refi − ETmod el
ref

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
∑N

i=1

(
ETPMFAO56

refi − ETPMF AO56
ref

)2
][

∑N
i=1

(
ETmod el

refi − ETmod el
ref

)2
]√ (7) 

Mean Absolute Error (MAE) (M44a and Iqbal [71]) 

MAE=
1
N
∑i=1

N

⃒
⃒
⃒ETmod el

Refi − ETPMF56
Refi

⃒
⃒
⃒ (8) 

Nash-Sutcliffe Efficiency (NSE) (Ferreira and da Cunha [49]) 

NSE= 1 −

⎡

⎢
⎣

∑i=1
N

(
ETPMF56

Refi − ETmod el
Refi

)2

∑N
i=1

(
ETPMF56

Refi − ETPMF56
Ref

)2

⎤

⎥
⎦ (9) 

Root mean square error (RMSE) (Ma and Iqbal [71]) 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1

(
ETmod el

refi − ETPMF 56
refi

)2
√

(10) 

Coefficient of determination (R2) (Ma and Iqbal [71]) 

R2 =

⎡

⎢
⎢
⎣

∑i=1
N

(
ETPMFAO56

refi − ETPMFAO56
ref

)(
ETmod el

refi − ETmod el
ref

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
∑N

i=1

(
ETPMFAO 56

refi − ETPMF AO56
ref

)2
][

∑N
i=1

(
ETmod el

refi − ETmod el
ref

)2
]√

⎤

⎥
⎥
⎦

2

(11) 

Scatter Index (SI) (Li et al. [69]) 

SI =
RMSE

ETPMFAO 56
ref

(12)  

where in Eqs. (7)–(12), ETPMFAO56
refi and ETmod el

refi are the ETref based on PM-FAO56 and modeled ETref, ETPMFAO56
ref and ETmod el

ref are the mean 
values of ETref based on PM-FAO56 and modeled ETref, and N is the number of datasets for 12,053 days. 

3. Results 

Boxplots and mean values of performance metrics were used to evaluate R, MAE, NSE, RMSE, R2 and SI for each synoptic stations to 

Table 2 
Input variables for ML and empirical equation models.  

Type model Model category Input variables Model name 

1 Temperature-based Tmax, Tmin and Ra LSSVR1 
ANFPSO1 
BARO 

2 Radiation-based Tmax, Tmin, Ra and Rs LSSVR2 
ANFPSO2 
JEHA 

3 Mass transfer-based Tmax, Tmin, RH and U2 LSSVR3 
ANFPSO3 
PENM 

4 Combination-based Tmax, Tmin, Ra, Rs, RH and U2 LSSVR4 
ANFPSO4 
PM-FAO56  
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Fig. 4. Heat map for showing (a) correlation coefficients; and (b) mean absolute errors between ML models and empirical equations with PM-FAO56 
in different climates of Iran. 
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Fig. 5. Time series plots and the distribution of NSE values in space for ML models and empirical equations for different Iranian climates.  
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analyze time series plots of predicted versus observed numbers and the behavior of models during the time period 1987–2019. The 
distribution of NSE values in space and SI mapping for all ML models and empirical equations listed are presented for each synoptic 
stations in Figs. 4–7, respectively. 

Fig. 4 illustrates the heating map of the R and MAE values according to ML models and the empirical equations. The mean R for ML 
models (LSSVR1-4 and ANFPSO1-4) and empirical equations (BARO, HEHA and PENM) for all studied stations are 0.83 and 0.69, 
correspondingly (Fig. 4a). The mean MAE values for the studied stations for intelligent models and empirical equations were 0.76 and 
1.89 mm d− 1, respectively (Fig. 4b). These results show that the ML models are more accurate than the empirical equations based on R 
and MAE results. 

Mean R and MAE for temperature-based (LSSVR1, ANFPSO1 and BARO), radiation-based (LSSVR2, ANFPSO2 and JEHA), mass 
transfer-based (LSSVR3, ANFPSO3 and PENM) and combination-based (LSSV4 and ANFPSO4) models were 0.82, 0.75, 0.76, 0.86 and 
0.87, 1.29, 1.33, 0.62 in this order. In other words, the highest and lowest accuracy in ETref estimation were related to the ML models 
(R = 0.86 and MAE = 0.62 mm d− 1) and the mass transfer-based models (R = 0.76 and MAE = 1.33 mm d− 1). 

Comparisons between climates showed that the average R of 11 ML models and empirical equations for stations located in hyper- 
arid, arid, semi-arid and humid climates are 0.69, 0.79, 0.86 and 0.69, correspondingly. The mean MAE in all studied models from 
hyper-arid to humid climates were 2.94, 1.18, 0.49 and 0.47 mm d− 1, respectively. This shows that there was no difference between 
selected stations in each climate and that the climate classification based on AIUNESCO values was suitable. ML models and empirical 
equations in semi-arid (R = 0.86 and MAE = 0.49 mm d− 1) and hyper-arid (R = 0.69 and MAE = 2.94 mm d− 1) climates had the highest 
and lowest accuracy in estimating daily ETref, respectively. 

3.1. Temperature-based models 

The application of classical ML models to evaluate ETref has recently attracted the attention of many researchers, and it has been 
confirmed that ML models provide better results than empirical equations [5,72]. The performance of recommended models in the 
temperature-based method is demonstrated in Fig. 4. The average value of R for temperature-based models in all stations studied for 
BARO, ANFPSO1 and LSSVR1 models are 0.85, 0.80 and 0.81, respectively (Fig. 4a). The mean R of BARO were 0.043 and 0.051 higher 

Fig. 6. Residuals (error plot) of the four types of models for dailly ETref estimation concerning various climates: (a) hyper-arid; (b) arid; (c) semi- 
arid; and (d) humid climates of Iran. 
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than those of LSSVR1 and ANFPSO1, and the mean MAE of LSSVR1 were 0.028 and 0.19 mm d− 1 lower than those of ANFPSO1 and 
BARO (Fig. 4b). 

According to the findings, there was no significant difference between the LSSVR1 and ANFPSO1 models in terms of RMSE, but the 
LSSVR1 model outperformed the ANFPSO1 and BARO. These results demonstrate that temperature-based LSSVR1 achieved a higher 
precision when calculating ETref compared to the use of the BARO equation. In contrast, ANFPSO1 decreased the R2 by 0.089, and also 
decreased the RMSE, showing that the temperature-based LSSVR1 model slightly outperformed ETref (Table 3). 

The mean R of BARO is higher than the ANFPSO1 and LSSVR1 models. This relationship has a R of less than 0.40 for some hyper- 
arid and arid climate stations (e.g., Jask, Siri, Chabahar, Bandar Lengeh and Bushehr coastal). The lower accuracy of the BARO at 
synoptic stations in the islands and coastal strip of the Persian Gulf is related to the high RH of these regions and the more complex 
evapotranspiration process. This is confirmed when assessing the MAE values that were higher than 4 mm d− 1 BARO at 5 stations of the 
Persian Gulf including Jask, Siri, Chabahar, Abumusa and Bushehr coastal stations. Even the LSSVR1 and ANFPSO1 models have MAE 
values higher than 4 mm d− 1 for the two Jask and Siri stations in the hyper-arid climate, the mean of MAE in all stations studied for 

Fig. 7. Spatial patterns of SI for (a) LSSVR models; (b) ANFPSO models; and (c) empirical equations for 100 synoptic stations of Iran.  
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these models is lower than the BARO. In general, while the mean MAE values of BARO, ANFPSO1 and LSSVR1 models in hyper-arid 
climates were 3.6, 2.5 and 2.3 mm d− 1, correspondingly, the mean MAE values of all temperature-based models in other arid, semi-arid 
and humid climates were below 1 mm d− 1 (Fig. 4b). 

Negative values of the NSE coefficient for the BARO at Chabahar and Jask indicated that the temperature-based models were less 
accurate in estimating ETref at stations with high RH. The mean NSE coefficients for temperature-based models in hyper-arid, arid, 
semi-arid and humid climates are 0.47, 0.66, 0.75 and 0.54, respectively. This indicates lower accuracy of temperature-based models 
in stations with higher RH in hyper-arid and humid climates than in arid and semi-arid ones. Furthermore, in stations where high RH 
has a significant effect on the ETref process, temperature-based models cannot provide an accurate estimate of ETref (Fig. 5). 

The range of estimated residual error for daily ETref computed over a cumulative 12,053 days for hyper-arid, arid, semi-arid and 
humid climates considering all temperature-based models were − 5.6 to 14.7, − 4.3 to 4.5, − 2.3 to 2.6, and − 2.2 to 1.8 mm d− 1, 
respectively. The mean SI values in those climates were 0.33, 0.17, 0.14 and 0.17 in this order. Thus, it can be concluded that the 
lowest and highest accuracy of temperature-based models were in the hyper-arid and semi-arid climates, correspondingly (Fig. 6). 

Commonly, BARO is one of the most precise empirical equations for computing ETref and is commonly used across Iran due to low 
requirements and its higher precision for weather data [14]. In most studies, the ML models also enhance the accuracy of computing 
ETref using temperature-based models [72,73]. Nevertheless, this study indicates that temperature-based LSSVR1 and ANFPSO1 
models do not improve the precision when assessing ETref, because the R2 values of these models had almost the same statistical results 
as BARO (Table 3). Tabari et al. [74] reported that the results attained with the ML models for ETref estimates were superior than those 
achieved with empirical equations. Ferreira et al. [49] found that the temperature-based ML with lower RMSE and better R2 values 
showed suitable results when compared to empirical methods. Feng et al. [75] also conveyed that the ML model had more accurate 
results than the empirical equations. 

3.2. Radiation-based models 

In the present study, JEHA was chosen as the best radiation-based empirical model [6] to conduct a comparison with the LSSVR2 
and ANFPSO2 models. The results demonstrated that the recommended radiation-based LSSVR2 and ANFPSO2 models were signif-
icantly enhanced than the JEHA model. The performance of recommended models in the radiation-based method is demonstrated in 
Fig. 4. The mean R of radiation-based models in all stations studied for JEHA, ANFPSO2 and LSSVR2 models are 0.67, 0.78 and 0.79, 
respectively. The mean R of LSSVR2 was 0.12 and 0.01 higher than those of JEAH and ANFPSO2, and the mean MAE of LSSVR2 was 
0.01 and 2.21 mm d− 1 lower than those of ANFPSO2 and JEHA (Fig. 4b). Also, the mean NSE of LSSVR2 was 0.01 and 2.34 lower than 
those of ANFPSO2 and JEHA (Fig. 5). These results show no significant difference in the RMSE between LSSVR2 and ANFPSO2 models, 
but the LSSVR2 model outperformed both ANFPSO2 and JEHA. These results confirm that radiation-based LSSVR2 and ANFPSO2 
reached greater precision when calculating ETref compared to methods using the JEHA empirical equation. 

Table 3 
RMSE and R2 criteria for different models in different climates.  

Base Model Step Hyper-arid Arid Semi-arid Humid 

RMSE R2 RMSE R2 RMSE R2 RMSE R2 

Temperature LSSVR1 All 2.95 0.53 1.14 0.67 0.43 0.78 0.44 0.51 
Train 2.86 0.55 1.10 0.70 0.42 0.82 0.43 0.53 
Test 3.16 0.50 1.23 0.63 0.46 0.74 0.47 0.48 

ANFPSO1 All 3.04 0.51 1.16 0.66 0.44 0.77 0.45 0.49 
Train 2.94 0.53 1.13 0.69 0.42 0.81 0.43 0.51 
Test 3.27 0.48 1.24 0.62 0.47 0.73 0.48 0.47 

BARO1 All 4.74 0.48 1.36 0.75 0.45 0.87 0.39 0.76 
Radiation LSSVR2 All 3.32 0.44 1.29 0.62 0.43 0.78 0.45 0.49 

Train 3.22 0.46 1.24 0.66 0.42 0.82 0.44 0.51 
Test 3.57 0.42 1.39 0.59 0.46 0.74 0.49 0.46 

ANFPSO2 All 3.35 0.43 1.30 0.61 0.44 0.77 0.46 0.48 
Train 3.25 0.45 1.26 0.65 0.42 0.81 0.44 0.50 
Test 3.59 0.41 1.39 0.58 0.47 0.73 0.49 0.45 

JEHA2 All 5.77 0.30 2.85 0.47 1.51 0.57 1.28 0.34 
Mass transfer LSSVR3 All 2.29 0.68 1.02 0.73 0.36 0.84 0.39 0.62 

Train 2.22 0.71 0.99 0.77 0.35 0.88 0.38 0.65 
Test 2.48 0.64 1.11 0.69 0.39 0.79 0.42 0.58 

ANFPSO3 All 2.29 0.68 1.02 0.73 0.36 0.84 0.39 0.62 
Train 2.22 0.71 0.99 0.77 0.35 0.88 0.38 0.65 
Test 2.48 0.64 1.11 0.69 0.39 0.79 0.42 0.58 

PENM3 All 9.18 0.23 3.50 0.37 1.59 0.46 1.48 0.08 
Combination LSSVR4 All 1.36 0.77 0.82 0.76 0.35 0.85 0.36 0.66 

Train 1.28 0.82 0.77 0.81 0.34 0.89 0.36 0.69 
Test 1.56 0.73 0.92 0.71 0.38 0.80 0.37 0.64 

ANFPSO4 All 2.63 0.58 1.03 0.70 0.40 0.80 0.40 0.60 
Train 2.54 0.61 0.99 0.74 0.39 0.85 0.38 0.63 
Test 2.85 0.55 1.10 0.66 0.43 0.76 0.43 0.57  
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The MAE values were higher than 4 mm d− 1 JEHA for eight stations: Jask, Siri, Chabahar, Abumusa, Kerman, Bushehr coastal, 
Safiabad and Torbate Heydarieh. However, the LSSVR2 and ANFPSO2 models have MAE values higher than 4 mm d− 1 for the Jask, Siri 
and Abumusa stations in the hyper-arid climate. In general, the mean MAE values of the JEHA, ANFPSO2 and LSSVR2 models for the 
hyper-arid climates were 4.6, 2.7 and 2.6 mm d− 1, correspondingly. These are the highest MAE values between climates of all 
radiation-based models (Fig. 4b). 

The mean NSE coefficients for ML radiation-based models in hyper-arid, arid, semi-arid and humid climates are 0.44, 0.62, 0.77 
and 0.48 in this order. This indicates lower accuracy of radiation-based models in hyper-arid and humid climates than in arid and semi- 
arid climates (Fig. 5). The range of estimated residual error for daily ETref for all radiation-based models computed over a cumulative 
12,053 days for hyper-arid, arid, semi-arid and humid climates were − 5.3 to 11.5, − 4.3 to 6.6, − 2.3 to 4.9, − 2.1 to 3.5 mm d− 1, 
respectively. The mean SI values for these climates were 0.39, 0.26, 0.25 and 0.28, respectively. This shows that the lowest and highest 
precision of radiation-based models were in hyper-arid and semi-arid climates, respectively (Fig. 6). 

Recent studies have confirmed that the variation in ETref can be clarified by temperature and solar radiation. Therefore, 
temperature-based empirical equations might be expected to provide better results for computing ETref [14,21,72]. Similarly, Feng 
et al. [75] also found that ML models had a higher accuracy for modeling ETref than the empirical models in China. Researchers [5] 
assessed the performance of SVR coupled with the whale optimization algorithm and the empirical equations for predicting ETref in 
Iranian hyper-arid, arid and semi-arid climates and found that SVR coupled with the whale optimization algorithm had a better 
performance than empirical models. 

3.3. Mass transfer-based models 

The different model performances for the mass transfer-based method are shown in Fig. 4. The mean R of the mass transfer-based 
models for the entire stations studied for the PENM, ANFPSO3 and LSSVR3 models are 0.45, 0.81 and 0.82, respectively. The mean R of 
LSSVR3 was 0.38 and 0.01 higher than those of PENM and ANFPSO3, and the mean MAE of LSSVR3 were 0.01 and 5.39 mm d− 1 lower 
than those of ANFPSO3 and PENM (Fig. 4b). These results show that there was no significant difference in the RMSE between LSSVR3 
and ANFPSO3 models, but the LSSVR3 model outperformed the ANFPSO3 and PENM. The results confirm that mass transfer-based 
LSSVR3 and ANFPSO3 achieved greater precision when calculating ETref than the PENM empirical equation (Table 3). 

The MAE values were higher than 4 mm d− 1 PENM for 21 stations. The LSSVR3 and ANFPSO3 models have MAE values lower than 
4 mm d− 1 for all stations in various climates. In general, the mean MAE values for the PENM, ANFPSO3 and LSSVR3 models applied to 
hyper-arid climates were 7.24, 1.85 and 1.84 mm d− 1, respectively. Those are the highest MAE values of all mass transfer-based models 
between climates. The mean NSE coefficients for ML radiation-based models in hyper-arid, arid, semi-arid and humid climates were 
0.68, 0.73, 0.84 and 0.62 in this order. This indicates lower accuracy of mass transfer-based models for humid climates compared to 
arid and semi-arid ones (Fig. 4b). 

The range of estimated residual error for daily ETref for all radiation-based models computed over a cumulative 12,053 days for 
hyper-arid, arid, semi-arid and humid climates were − 6.1 to 18.7, − 2.5 to 8.8, − 1.3 to 6.5 and − 1.3 to 3.8 mm d− 1, respectively. The 
mean SI numbers for those climates were 0.44, 0.25, 0.24 and 0.30, respectively. Thus, it can be concluded that the lowest and highest 
accuracy of radiation-based models were in hyper-arid and semi-arid climates, respectively (Fig. 6). 

Adding RH as input to mass transfer-based ML models significantly (p < 0.05) enhanced the accuracy of computing ETref when 
compared to temperature-based ML models. This finding compares well with those reported by Kiafar et al. [76], confirming higher 
accuracies in calculating ETref compared to the application of empirical equations. It is reasonable that the mass transfer-based 
empirical equations do not use extraterrestrial radiation as the input, whereas the radiation-based equations do. Chen et al. [77] 
confirmed that the accuracy of the ML models in comparison to the temperature-based and radiation-based models was enhanced by 
adding the RH trait. The reason for this result was that feeding more data to the ML models usually improves their precision in 
calculating ETref. 

3.4. Combination-based models 

The levels of precision concerning the ML models and the PM-FAO56 equation are very common when ETref modeling is more 
complex [19,78]. The performance of the recommended models in the combination-based method is shown in Fig. 4. The mean R of the 
combination-based models for all stations studied for the ANFPSO4 and LSSVR4 models is 0.84 and 0.88, respectively. The mean R of 
LSSVR4 was 0.04 higher than that of ANFPSO4, and the mean MAE of LSSVR4 was 0.19 mm d− 1 lower than that of ANFPSO4 (Fig. 4b). 
Models in the combination-based method had a mean NSE of LSSVR4 that was 0.07 higher than that of ANFPSO4 (Fig. 5). The results 
also show there was no significant difference in the RMSE between the LSSVR4 and ANFPSO4 models, but that the LSSVR4 model 
outperformed the ANFPSO4 one. These results confirm that combination-based LSSVR4 and ANFPSO4 were more accurate when 
calculating ETref than the other methods (Table 3). 

The mean NSE coefficients for the ML combination-based models in hyper-arid, arid, semi-arid and humid climates are 0.68, 0.74, 
0.83 and 0.63, respectively. This indicates lower accuracy of the combination-based models for humid climates compared to arid and 
semi-arid ones (Fig. 5). 

The estimated residual error range for daily ETref for all radiation-based models computed over a cumulative 12,053 days in hyper- 
arid, arid, semi-arid and humid climates were − 4.8 to 11.4, − 2.5 to 5.0, − 1.1 to 2.6 and − 1.1 to 1.3 mm d− 1 in this order. The mean SI 
values for the mentioned climates were 0.18, 0.14, 0.12 and 0.15, respectively. Thus, it can be concluded that the lowest and highest 
accuracy of the combination-based models were linked to hyper-arid and semi-arid climates, respectively. In applied combination- 
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based ML models, the LSSVR4 model had the highest R2 and the lowest RMSE. These results were predictable due to its reasonable 
inner model structure. The LSSVR4 is better in defining non-linear relationships between weather and ETref compared to other models, 
indicating a high performance as shown in Fig. 6. 

The accuracy of the ETref estimation is based the SI. The best results among the 11 models were linked to the LSSVR4 model (Fig. 7) 
with the exception of Siri and Kish stations, where the SI value was more than 0.20. In other words, for 98% of the stations, the LSSVR4 
model had estimated ETref values with good and excellent SI classifications (SI < 0.20). After the LSSVR4 model, the LSSVR3 and 
ANFPSO3 models had the highest accuracy by estimating the daily ETref values with good and excellent classifications for 93% of 
stations. The highest error among the studied models was related to the JEHA and PENM equations. About 90% and 76% of stations 
with poor classifications (SI > 0.30) were associated with the JEHA and PENM equations, respectively. 

Among the empirical mathematical relationships, the BARO equation is most accurate with 79% of good and excellent classifi-
cations in estimating daily ETref. The mean SI values for temperature-based, radiation-based, mass transfer-based and combination- 
based models for all studied stations are 0.17, 0.18, 0.14 and 0.13, respectively. 

The mean SI was calculated as 0.35, 0.21, 0.19 and 0.23 for all studied models in the stations of hyper-arid, arid, semi-arid and 
humid climates, correspondingly. This indicates that most models err in estimating daily ETref in hyper-arid and humid climates and 
have their highest accuracy for semi-arid climates. Daily ETref estimations for stations located on the Persian Gulf (especially stations 
on the islands such as Siri, Kish and Abumusa) always had the highest errors. For example, the accuracies of estimating daily ETref on 
Siri Island by using all 11 SI models were always associated with the poor class (SI > 0.30). Most of the errors of the models at these 
stations depend on the greater complexity of the evapotranspiration process in arid and humid climates (Fig. 7). 

4. Conclusions and recommendations 

According to the results, the behavior of the BARO equation was very good compared with complex models such as JEHA and 
PENM for different climates of Iran. However, it can be noted that empirical models are specific for the climatic conditions. Therefore, 
the BARO equation has an important role for stations without complete datasets and where it is not possible to utilize the PM-FAO56 
equation or to develop ML models. 

Temperature-based BARO and LSSVR1 significantly increased the accuracy of models used for predicting ETref. Radiation-based 
LSSVR2 and ANFPSO2 models had higher precisions in predicting ETref than radiation-based JEHA equations. Mass transfer-based 
LSSVR3 and ANFPSO3 models performed significantly better than the radiation-based PENM equation. The performance and 
behavior of the combination-based LSSVR4 and ANFPSO4 models were similar to that of the combination-based empirical PM-FAO56 
equation. 

When combination-based models were available, all recommended ML models could assess ETref with a higher accuracy than 
empirical equations. The application of RH generally improved the performance for all climates, especially for the ML models. 
Although the role of RH can be more important for arid and semi-arid climates, this variable also provided performance gains for 
humid climates of Iran. Therefore, it can be recommended for future studies that the RH variable should be applied as a crucial 
parameter to predict ETref in humid climates. It is also recommended to analyze relationships between other meteorological variables 
and ETref and to apply other machine learning models including deep learning methods. 
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AI Aridity Index 
AIUNESCO UNESCO Aridity Index 
Alt Altitude 
ANFIS adaptive neuro-fuzzy inference system 
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ANFIS-GP ANFIS optimized using the GP 
ANFIS-SC ANFIS-subtractive clustering 
ANFPSO ANFIS optimized using the PSO 
ANFPSO1 ANFPSO with temperature-based inputs 
ANFPSO2 ANFPSO with radiation-based inputs 
ANFPSO3 ANFPSO with mass transfer-based inputs 
ANFPSO4 ANFPSO with combination-based inputs 
ANN artificial neural network 
BARO Baier and Robertson 
ea actual vapor pressure 
ELM extreme learning machine 
es saturation vapor pressure 
ETref reference evapotranspiration 
G soil heat flux density 
GA Genetic algorithm 
GEP Gene expression programming 
GNN generalized regression neural networks 
GP Genetic programming 
IRIMO Iran Meteorological Organization 
JEHA Jensen and Haise 
KRs empirical constant 
LSSVR least squares support vector regression 
LSSVR1 LSSVR with temperature-based inputs 
LSSVR2 LSSVR with radiation-based inputs 
LSSVR3 LSSVR with mass transfer-based inputs 
LSSVR4 LSSVR with combination-based inputs 
MAE mean absolute error 
ML machine learning 
MLP multiple layer perceptron 
MLR Multi-linear regression 
NSE Nash-Sutcliffe efficiency 
P precipitation 
PENM Penman 
PM-FAO56 Penman-Monteith equation based on FAO56 
PSO particle swarm optimization algorithm 
PSO-ELM PSO algorithm to determine the parameters of the extreme learning machine method 
R correlation coefficient 
R2 coefficient of determination 
Ra extraterrestrial radiation 
RH mean relative humidity 
RMSE root mean square error 
Rn net radiation 
Rs solar radiation 
SI scatter index 
SVM support vector machine 
Tmax maximum temperature 
Tmean mean temperature 
Tmin minimum temperature 
U2 wind speed measured at 2-m height 
UNESCO United Nations Educational, Scientific and Cultural Organization 
ʎ latent heat of vaporization 
Γ psychometric constant 
Δ slope of the saturation vapor pressure function 
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