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1. INTRODUCTION  

Unmanned aerial vehicles (UAV), or drones as they are more commonly termed, have scope to strengthen the 

infrastructure of urban and metropolitan areas through typical means such as delivery, maintenance, and 

surveillance. As supporting technology improves with the success of these vehicles, more impressive operations 

may become conventional, such as emergency response (first aid), firefighting, road traffic control and monitoring 

air pollution (Burchan, 2019). The implications of UAV integration into city operations are advantageous, however 

as these vehicles are introduced a need to investigate any potentially adverse health effects on the public in relation 

to their novel acoustic character becomes principal. When compared to ubiquitous forms of vehicle noise atypical of 

urban environments, such as road, rail and aircraft noise, UAV sound signatures are distinctive. This is due to the 

increased proportion of audible noise present in higher frequencies above 2 kHz (Torija, et al., 2019). Multi-rotors 

under real operations might have rotors operating at different rotational speeds to maintain vehicle stability, which 

leads to complex tonal content (i.e., multiple BPF harmonics interacting between each other and giving a feeling of 

‘roughness’). This is done by changing the thrust produced by each rotor to balance the vehicle, which results in 

audible fluctuations in the spectra of operating UAV introducing tonal and broadband characteristics (Cabell, et al., 

2016). Due to these complex spectral and temporal characteristics, UAV can be dominant over a background 

soundscape environment, even at comparably low levels.  

Previous research has investigated the capability of established sound quality metrics from similar noise sources to 

quantify the effects of UAV noise on communities. Conventional aircraft could be considered as the closest relating 

noise source to UAV, which is currently present in metropolitan soundscapes, and has an extremely developed 

catalogue of noise metrics which are used to assess the potential negative impact on public health from these 

vehicles. Research has shown that metrics such as loudness and sharpness are strong indicators of perceived 

annoyance, proving that a higher ratio of high to low frequency content indicate a higher perceived annoyance 

(Soeta & Kagawa, 2020). Similarly, conventional rotorcraft noise sources such as helicopters have been investigated 

by controlling for loudness, and using synthesised helicopter noise which vary in sound quality metric attributes. It 

was found that sharpness, tonality and fluctuation strength were key predictors for perceived annoyance when used 

in multilevel regression analysis (Boucher, et al., 2020).  

Therefore, metrics that interrogated spectral content more robustly than a typical metric based on broadband SPL 

(sound pressure level) were developed, such as EPNL (effective perceived noise level), for conventional aircraft. 

The EPNL metric was used to better account for not only the perception of the loudness of aircraft, but also tonal 

influence and the duration of noise exposure. The effectiveness of EPNL to account for tonal content was 

investigated and compared to metrics from developed by the automotive industry, such as sharpness and tonality. It 

was found that EPNL was not refined enough to quantify the complex spectral characteristics of conventional 

aircraft, due to the metric only considering the most prominent tonal artefact of a signal. It was found however, that 

paring sharpness and tonality with a solely broadband level-based metric (PNL, perceived noise level), increased the 

accuracy of a linear model for predicting subjective values of preference towards several conventional aircraft and 

their associated engines (Torija, et al., 2019). 

To decide upon the appropriate sound quality metrics to be used when assessing the potential impact on 

communities introduced by UAV noise, it is paramount to understand the key operational differences between this 

new source and its conventional counterparts. One key difference is the change in operational distance of UAV 

when compared to conventional aircraft. Due to the nature of potential UAV operations, i.e., delivery, UAV will be 

at much closer ranges than commercial aircraft which typically fly at 400 ft at airport boundaries. This means that 

any effects that air absorption has on conventional aircraft will be drastically reduced for UAV which, compounding 

with an already high-frequency heavy spectral characteristic, leads to significant increases in perceived annoyance 

when assessed in comparison with conventional aircraft (Torija & Clark, 2021).  

Initial research has also begun to show how the presence of background noise may help to reduce the negative 

perception of UAV noise in urban soundscapes. UAV stimuli were introduced into a number of recorded urban 

audio-visual soundscapes, and participants were asked to rank the soundscapes in order of preference. It was found 
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that when a UAV stimulus was introduced into a roadside soundscape, the perceived annoyance increased by 1.3 

times. However, when a UAV was introduced into a quieter city park soundscape, the perceived annoyance 

increased by up to 7 times (Torija, et al., 2020). This research, however, only quantified the soundscape and UAV 

stimuli using a broadband LAeq value, and did not investigate the control of spectral and temporal characteristics on 

subjective responses.  

The research presented in this thesis aims to comprehensively investigate the spectral and temporal characteristics of 

UAV noise using discrete sound quality metrics which have the potential to surpass previously adopted broadband 

and limited frequency-discriminate metrics used in neighbouring industries such as conventional aircraft. This 

research uses statistical analysis techniques such as multilevel linear analysis and multidimensional scaling to not 

only evaluate the correlations between these sound quality metrics and subjective response values like perceived 

annoyance, but to also identify the key critical bands of these sound quality metrics which are contributing to 

perceived annoyance, and how they may be being produced by the mechanical processes in UAV flight and 

operation. The effects of noise masking upon UAV introduction into a soundscape is assessed in order to understand 

the controlling frequency ranges of UAV noise over perception, and which soundscape environments may be best 

suited to introduce UAV operations. The main objectives of this research are summarised as follows: 

▪ To understand the key spectral and temporal characteristics of isolated UAV noise that influence human 

perception  

▪ To quantify the effects of masking UAV noise with urban soundscape environments 

▪ To gather fundamental statistical information on the spectral and temporal noise characteristics of UAV, for 

the development of assessment metrics relating human response to UAV noise  

Following from this introduction is a literature review, which gives more detail on the previously discussed research. 

Then, metrics used for perception-based engineering in industries such as the commercial aircraft and the 

automotive industry are given and explained. After this, the thesis splits into two parts, including a methodology, 

analysis and results section for each. These two sections give detail on two separate experiments run to gather data 

for this thesis. The first half looks in-depth at UAV stimuli and the spectral characteristics they have, using sound 

quality metrics, a subjective listening experiment, and multilinear regression to give insight into the key sound 

quality metrics that control for perceived annoyance, loudness and pitch. The second half of the research involved 

introducing UAV stimuli into urban soundscapes, and gathering subjective responses of perceived annoyance, 

loudness, UAV dominance and soundscape pleasantness. The response values for this experiment were regressed 

against the results of a multidimensional scaling analysis of calculated specific sound quality metric values for each 

UAV stimuli. Each part of the research is subdivided into a methodology, analysis, and results section. Following 

both stages of the research will be a conclusion, which summaries the key results of the research, with potential 

future research to end.  

 



Nicholls Investigating annoyance of UAV noise 

 

Masters by Research Thesis 

Page 7 of 60 

2. LITERATURE REVIEW 

2.1. Human response to conventional aircraft noise 

2.1.1. Three-Dimensional Psychological Evaluation of Aircraft Noise and Prediction by Physical 
Parameters (Soeta & Kagawa, 2020) 

Although both large aircraft, such as commercial passenger flights, and drones are aerial vehicles, the methods of 

propulsion and elevation used differ, and hence typical spectral, temporal, and operational characteristics of noise 

from either method of aviation differ. This does not, however, mean that strategies to evaluate the psychoacoustic 

impact of noise emission cannot be transferred, at least partially, from one aerial vehicle to another. 

Aircraft noise measurements were taken of take-off and landing routines at roughly 100 m from the runway to the 

measurement position. Binaural microphones (B&K type 4101) were used to capture the aircraft noise, and was 

saved to a computer for acoustical analysis. Sound quality metrics were used to quantify the captured aircraft 

recordings, and included loudness, sharpness, roughness, and fluctuation strength.  

From the recorded aircraft noise measurements, 16 were chosen with a mean 𝐿𝐴𝑒𝑞  of 80 dB were used as test stimuli 

in a subjective testing stage. Of the 16, 6 were measured under a take-off routine, and the remaining 10 were 

measured under a landing routine. Each stimulus was presented to the test participants binaurally, through a pair of 

Sennheiser HD800 headphones and a Sennheiser HDVD800 power amplifier. The stimuli were 2 seconds long and 

each stimulus was presented in a pair with each other stimulus for comparison testing. 

Three different subjective aspects of the sound were used to build the scaled response system for the testing 

procedure, annoyance, loudness, and pitch. For each pair, the participant was asked to rate the annoyance, loudness 

and pitch on a 7-point scale. For example, for pair A, consisting of sounds Y and Z, the participant made one of the 

following statements: I perceived Y as strongly louder than Z (3 points); I perceived Y as moderately louder than Z 

(2 points); I perceived Y as slightly louder than Z (1 point); I perceived loudness equally (0 point); I perceived Z as 

slightly louder than Y (-1 point); I perceived Z as moderately louder than Y (-2 points); and, I perceived Z as 

strongly louder than Y (-3 point). This 7-point scale was also similarly used for responses of annoyance and pitch.  

Two regression models were built, using calculated values from the stimuli. The first was constructed using time-

domain based factors, such as the recording’s 𝐿𝐴𝑒𝑞  and delay time and amplitude of the first maximum peak, and the 

second model was constructed using frequency-domain based factors, such as the loudness and sharpness. Stepwise 

regression was used to identify the most influential factors on the participant’s responses of annoyance, loudness and 

pitch. Also, it was observed that the stimuli recorded during a landing routine, rather than a take-off routine, were 

perceived as statistically more annoying, higher in loudness and in pitch by the participants. 

 It was found that the most significant factors in the model constructed from the time-domain variables were the 

𝐿𝐴𝑒𝑞 , the width of the first decay of the auto-correlation function, 𝑊𝜙(0), and the standard deviation of the 𝐿𝐴𝑒𝑞 . For 

the model constructed from the frequency-domain variables, the most significant factors were the loudness, 

sharpness, roughness, the standard deviation of the loudness, the standard deviation of the sharpness, and the 

standard deviation of the fluctuation strength.  

The results show that the loudness and 𝐿𝐴𝑒𝑞  of the aircraft routine and the variation in sound level (standard 

deviation of 𝐿𝐴𝑒𝑞) were significant factors in annoyance prediction. Furthermore, the sharpness and the spectral 

content are also significant, where a higher sharpness, or larger proportion of high frequency to low frequency 

content, would indicate a higher perceived annoyance. These factors should be investigated in the context of drone 

noise emissions.  
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2.1.2. Sound Quality Metric Indicators of Rotorcraft Noise Annoyance using Multilevel Regression 
Analysis (Boucher, et al., 2020) 

Other forms of aviation, aside from large aircraft such as planes, also can be used to hypothesise sound quality 

metrics which are likely to take precedence when modelling for perceived preferability and annoyance of small to 

mid-sized UAVs. Aviation techniques which are more akin to the drones include rotorcraft such as helicopters; and 

research around these modes of transport give insight into suitable metrics for quantifying the spectral and temporal 

characteristics of drone noise. 

The research aimed to develop “The Rotorcraft Sound Quality Metric” (RoQM) psychoacoustic testing procedure, 

which incorporated multilevel regression analysis to correlate key acoustical factors of rotorcraft noise with 

perceived annoyance. First, before subjective testing could begin, helicopter noise stimuli were synthesized to 

remove the change in sound quality during a physical flyover, and to create stimuli that are more controlled in the 

variation of the sound quality metrics. A total of 105 synthesized, 5-second-long stimuli were created, with varying 

values of roughness, sharpness, fluctuation strength, tonality and impulsiveness, and were normalised for loudness. 

40 test subjects listened to the stimuli pool and gave responses for perceived annoyance on a 10-point scale; not at 

all annoying, slightly annoying, moderately annoying, very annoying and extremely annoying, and were free to 

choose in-between these points as well. The responses were then used in multilevel regression analysis, which 

combines complete pooling of the response data and no pooling of the response data. Regression without pooling 

evaluates each subjects’ responses individually, so subject-specific regression parameters that are not influenced by 

the whole subject response pool can be derived. Complete pooling evaluates the responses as an aggregated dataset, 

so the derived regression parameters apply to the whole subject pool.  

Three models were built for predicting perceived annoyance, in order to assess the efficiency of each model 

comparatively. They used individual subject datasets to calculate intercept values that varied per subject. The first of 

these models used no sound quality metric predictors, so had a slope of 0. The second had a fixed slope metric 

which did not vary between subjects, and the final model had slope metrics that varied between the subjects.  

Since the loudness of each test stimuli was normalised, the effects of the other sound quality metrics on the 

predicted annoyance from the regression models could be investigated more clearly. Sharpness, tonality, and 

fluctuation strength were found to be significant factors for predicting annoyance, having consistent slope values 

across all models. 2nd-order terms were also investigated, where the interactions between the sound quality metrics 

were analysed. It was found that interactions between some of the sound quality metrics were statistically 

significant, but due to the impracticality of interpreting what the effect of changing the product of two sound quality 

metrics would have on the annoyance, 1st-order sound quality metric terms are used for the regression slopes. 

2.1.3. On the Assessment of Subjective Response to Tonal Content of Contemporary Aircraft 
Noise (Torija, et al., 2019) 

For current modes of aerial transport, such as conventional passenger aircraft, metrics have been developed to 

objectify the impact of air traffic noise on communities close to aircraft operation. One metric includes the Effective 

Perceived Noise Level, or EPNL, which was developed by the Federal Aviation Administration (FAA) to include 

the impact of the Perceived Noise Level (PNL), duration effects, and inclusion of the strongest protruding tone of 

conventional aircraft noise. Torija et al investigated whether the EPNL Tone Correction was sufficient at 

quantifying the impact of the tonal content of twin-engine aircraft on perceived annoyance, and whether more 

modern metrics with more refined frequency resolution could be used to develop a more sufficient metric.  

Two previously established metrics were considered to quantify the complex tonal and high frequency 

characteristics of aircraft noise. The first was Aures’ tonality, which has been shown to appropriately quantify the 

presence of isolated tones, as well as harmonic series covering a large frequency band. The second metric was 



Nicholls Investigating annoyance of UAV noise 

 

Masters by Research Thesis 

Page 9 of 60 

Sharpness, which is a representation of the ratio between high frequency content and the whole frequency content of 

noise.  

The research used a subjective testing methodology to gather response data to aircraft sound stimuli. The aircraft 

recorded for the stimuli used 6 different engine variants: CFM-56-5, GE90-76/85/92B, GE90-115B, 

LEAP/PW1127G, RB211-5, and TRENT1000. The aircraft stimuli were captured at a location roughly 900m away 

from the south runway at Heathrow Airport. All aircraft were recorded during take-off, using a class 1 Rion ML52 

sound level meter with the microphone mounted on a 1 m diameter ground board, attached to the meter with a 5 m 

cable. The microphone was positioned in a flat, open area, and fitted with a hemi-spherical wind shield. A total of 48 

stimuli were used, each being 4 s long, as well as 24 reference samples. Participants were presented sets of six 

stimuli, with a set comprising of 4 aircraft stimuli, and 2 reference samples. The participants would first rank the 

stimuli in order of preference, with the option to listen to the stimuli individually as many times as required. Then, 

once an order was decided, the participant would hear the stimuli in the order they had chosen consecutively. After 

this, the participant could then make final adjustments to the order of preference for the current set, then proceed to 

the next set of 6 stimuli.  

The reference stimuli were included in each set of stimuli for each participant, to be used as a basis to build a 

relative preference magnitude scale between the stimuli. Using a double reference magnitude scale allowed for a 

more dynamic assignment of preference for each stimulus in relation to the reference stimuli. The reference samples 

1 and 2 were given arbitrary magnitude values of 60 and 40, respectively. The other stimuli are given magnitude 

values based on the equal spacing of the stimuli in the participants ranking order, in relation to the reference stimuli 

magnitude values and their position in the ranking order. Figure 1 demonstrates this for a set of results from the 

listening experiment.  

 

Figure 1: Demonstration of preference magnitude scaling for the response values of a participant (Torija, et 

al., 2019) (reproduced with permission) 
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The magnitude-scaled preference ratings from the subjective experiment were used in regression models to assess 

the effectiveness of the predictors PNL, EPNL, sharpness and tonality. It was found that EPNL with a tonal 

correction was not suitable for explaining the effect of tonal content on the responses of preference rating given by 

the participants. EPNL improved the correlation of models with only PNL as independent and preference rating as 

the dependent variable, for engines that contain a physically dominant blade passing frequency (BPF) tone 

(LEAP/PW1127G), but failed to improve the correlation of models for engines with a more diverse tonal content. 

This is due to EPNL only discriminating against the most prominent tonal artefact in aircraft noise, and does not 

account for any subharmonics of that tone, or other complex tonal content. Furthermore, it was found that the one-

third octave band resolution of EPNL led to some tonal content being unaccounted for in the correction calculation. 

Aures’ tonality was found to improve the correlation of models including PNL for engines that contained more 

complex tonal content, as it could account for the effect of a physically dominant tone, such as a BPF tone, it’s 

harmonics, and series of complex tones in the frequency spectra. Models including PNL and Aures’ tonality 

improved correlation, when compared to models only containing PNL, for all engine variants, except the GE90-

76/85/92B and TRENT1000. These engines were found to correlate strongly with sharpness, for the GE90-

76/85/92B variant, and PNL for the TRENT1000 variant.  

2.2. UAV noise characterisation 

2.2.1. Ten Questions Concerning the use of Drones in Urban Environments (Watkins, et al., 2019) 

Many questions are raised when envisioning the introduction of drone fleets into modern society. Areas of intrigue 

include what would they be used for? What would inhibit their adoption in urban environments and rural 

environments? How impactful would the perception of noise and other sensory interaction be on the health of the 

general population? How can they be regulated to ensure public approval and acceptance?  

In the context of community noise impact, it is queried that the perception of the drone noise will depend on the 

mission, or reason for the drone’s presence, and the person or people associated with the mission. Furthermore, 

factors relating to the context of the drone’s presence may influence perceived annoyance, such as the distance of 

the drone from the observer, and the operational load, the time of day, and the individuals’ sound sensitivity. 

Spectral and temporal factors of the noise have been shown to also explain differences in perceived annoyance in 

neighbouring industries, such as the automotive and aircraft industries, and should be investigated for this new 

sound source. It would therefore be beneficial if a combination of these factors could be correlated with responses of 

perceived annoyance from a group of test participants.  

2.2.2. Psychoacoustic Characterisation of a Small Fixed-Pitch Quadcopter (Torija, et al., 2019) 

Initial investigation into the psychoacoustic profile of typical UAV noise has been carried out in internal, 

anechoically controlled conditions, as well as in an external environment for comparison between fundamental UAV 

mechanical noise signatures and how they differ when put into more realistic operations. Mechanically, UAV 

employ propulsion techniques that are more intricate than other conventional aircraft, such as commercial planes or 

helicopters. A common configuration for sUAV is that of a quadcopter, where 4 rotor blades are mounted 

symmetrically upon electric motors, which are controlled by a central unit to balance the load to each electric motor, 

depending on the desired direction of flight. These vehicles are expected to be used for operations such as delivery 

(Yoo, et al., 2018), which could potentially affect a large percentage of urban communities, and hence the 

psychoacoustic characteristics of their noise profiles must be understood.  

A database of audio files was collected of not only UAV, but also car pass-by events, motorbike pass-by events, and 

aircraft take-offs, for the sake of analysing differences in the spectral characteristics of each of these vehicles.  The 

road vehicle samples were measured at the roadside, approximately 1.5 m away from the vehicles. The aircraft 

samples were measured at approximately 900 m from the end of the runway, with the planes passing overhead at 

heights of around 435 m. External UAV samples were recorded of straight-and-level flyovers at two heights above 

ground level (1 m and 2 m), two lateral distances between the microphone and the flight track (0 and 5m), and three 
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extra-payload conditions (0, 434 g and 656 g). Internal UAV samples were taken of the quadcopter fixed to a stand 

at 1.8 m above ground level. This meant that no distortion of the noise from the UAV was introduced through the 

UAV trying to counter-balance itself. The UAV was operated with each of its rotors operating and not operating, to 

assess how each component of the UAV’s propulsion system effects the acoustic signature.  

From the audio samples of the vehicles collected, 4 second clips were extracted which captured complete pass-by 

events of the road vehicles and the UAV, and aircraft clips were edited so the most prominent audio feature was 

presented. The audio samples were normalised to 65 dB LAeq, for comparison purposes. This meant that any 

differences between the acoustic signatures of these vehicles were attributable to the spectral and temporal 

characteristics of these noise sources. Sound quality metric values were calculated for each vehicle sample using 

HEAD ArtemiS Classic, including DIN 45631/A1 loudness, DIN 45692 sharpness, Aures’ listening model for 

roughness and fluctuation strength, and tonality was calculated following publications by Terhardt and Aures 

(Terhardt, et al., 1982) (Aures, 1985).  

The UAV measured internally in the anechoic chamber was put under 4 different operating conditions; only the 

electric motor working, the electric motor with 1 rotor operating, 2 rotors operating and 4 rotors operating. When 

just the electric motor was in use, high-frequency content was dominant in the spectrum, with tonal components 

being present between 2.4 kHz and 6 kHz. For the subsequent operating conditions, harmonics of the blade passing 

frequency (BPF) at low-to-mid frequency regions are close together. The 2-rotor operating condition showed more 

prominent BPF harmonics at higher frequencies, which increased for the 4-rotor operating condition. These results 

are shown in Figure 2. The spectrogram plots of the UAV measured externally illustrate the unsteadiness of the 

frequency spectra of UAV noise due to micro-adjustments to steady the UAV during flight, as well as to account for 

unbalances caused by wind (Cabell, et al., 2016). Figure 3 shows how, when compared to the steady spectra of the 

UAV which was measured internally and fixed in place, unsteady frequency content can be seen which is magnified 

at higher harmonics of the BPF.  

 

Figure 2: Frequency spectrum of the quadcopter tested; electric motor only, motor plus 1, 2, and 4 rotors 

(Torija, et al., 2019) (reproduced with permission) 
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Figure 3: Spectrogram of the quadcopter measured in the anechoic chamber (left), and externally while 

hovering (Torija, et al., 2019) (reproduced with permission) 

Furthermore, when analysing the frequency spectra of the external UAV flyover operations with varying payload 

complex tones up around 1.6 kHz are present, as well as significant high-frequency content introduced between 3.8 

kHz and 6 kHz. As the payload increased from 0 g to 434 g, the required power to keep the UAV elevated increased, 

which in turn led to a higher pitch noise being emitted from the vehicle. This was caused by the electric motors 

being driven at higher power to maintain stability.  

The analysis of the other vehicles measured, aircraft and road vehicles, revealed interesting results. With all the 

vehicle samples normalised to 65 dB LAeq, it was found that the quadcopter and the road vehicles achieved a similar 

value of average loudness, with the value of the aircraft being significantly lower. This was caused by the increased 

ratio of high-frequency content in their spectra, as the aircraft spectra are shaped by the effects of air absorption. 

Furthermore, the average values of tonality for the quadcopter and the aircraft were found to be higher than the 

value for road vehicles. For sharpness, it was found that the average value for the quadcopters was significantly 

higher than that of the road vehicles, and roughly double that of the aircraft, as shown in Table 1. Figure 4 shows 

how the frequency spectra of a typical aircraft significantly decrease at higher frequencies, compared to the 

quadcopter and road vehicles.  

 

Table 1: Average sound quality metric values for aircraft, road vehicles and quadcopters tested (Torija, et al., 

2019) (modified from source with permission) 

 

Aircraft Quadcopter Road Vehicles

Loudness (sone) 20.02 ± 2.47 27.21 ± 3.43 26.19 ± 3.12
Sharpness (acum) 1.69 ± 0.34 3.57 ± 0.24 2.64 ± 0.39
Roughness (asper) 2.31 ± 0.39 2.19 ± 0.19 2.79 ± 0.78

Fluctuation Strength (vacil) 0.11 ± 0.02 0.08 ± 0.01 0.09 ± 0.01
Tonality (tu) 0.32 ± 0.07 0.36 ± 0.07 0.24 ± 0.15
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Figure 4: Frequency spectrum of examples of an aircraft, quadcopter, and road vehicle (Torija, et al., 2019) 

(reproduced with permission) 

 

The modified Psychoacoustic Annoyance model (PA’), developed by Di et al (Di, et al., 2016) from Zwicker’s 

model (Zwicker & Fastl, 2007), was used to calculate PA’ values from the calculated sound quality metric values of 

the vehicle samples. It was found that the calculated PA’ value for the quadcopters was 58.53±8.69, for road 

vehicles it was calculated to be 56.09±11.10, and the aircraft had a value of 41.11±6.53. Zwicker’s model was also 

adjusted by More to create a value of PAmod to account for the specific characteristics of aircraft noise, specifically 

the tonality effects (More, 2011). This model found the quadcopter to have a PAmod value of 99.06±20.85, the road 

vehicles had a value of 68.69±14.17, and the aircraft had a value of 42.51±7.80. In both PA model versions, it was 

found that the quadcopter samples had significantly higher PA values when compared to aircraft noise, and higher 

values of PA when compared to road vehicles.  

This research found that typical UAV, specifically those in quadcopter configuration, had statistically higher values 

of PA when compared with typical road vehicles and aircraft. This was due to the significant increase in high-

frequency content present in the spectra of UAV when compared to aircraft, as well as complex tonal artefacts 

introduced by rotor interactions. The values of PA, however, were calculated using models not specifically tailored 

to UAV noise, rather to conventional aircraft. A progression from this would be to perform a psychoacoustic 

experiment using UAV sound stimuli to develop a PA value, like the regression methods employed in this thesis.  

2.2.3. A Psychoacoustic Approach to Building Knowledge about Human Response to Noise of 
Unmanned Aerial Vehicles (Torija & Clark, 2021) 

To predict public response to UAV operational noise, the typical noise characteristics of these vehicles must be 

explored and understood. Previous research has suggested that UAV may be quieter than conventional aircraft, but 

due to the significant decrease in the distance of operation between the noise source and communities, UAV could 

still imply a serious adverse effect on the public. Typically, conventional aircraft such as commercial flight vehicles 
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operate at heights of round 400 ft from airport boundaries, whereas UAV operations will typically be much closer, 

including delivery, building maintenance and blue light services.  

A comparison was made between 2 UAV models, and 2 conventional aircraft models. The UAV assessed were the 

DJI M200 and the Yuneec Typhoon, and the 2 conventional aircraft were the Boeing 737 MAX 8 and the Airbus 

A320. Measurements of the conventional aircraft were made approximately 900 m away from the end of the south 

runway of Heathrow Airport during take-off operations, with the height of the aircraft during measurement being 

estimated as 435.3 ± 57.4 m from the measurement point. The UAVs were recorded during flyovers at a level 

distance of 45.7 m from the measurement position. Figure 5 presents the recorded frequency spectra of these 

operations. It was found that the UAV models’ noise spectra included much more prominent high-frequency content 

when compared to the conventional aircraft models. This difference is predominantly due to the effects of air 

absorption over the large distances between the operating aircraft and the measurement positions, or ground level, as 

well as the fact that UAV generate higher frequency noise from smaller, high rpm rotor blades and motors (Gwak, et 

al., 2020). The rotor blades create a self-noise phenomenon, which includes turbulent boundary layer trailing edge 

noise (Alexander & Whelchel, 2019), the interactions between adjacent rotors (Torija, et al., 2019), and the 

interactions between armature and magnets of the electric motors (Cabell, et al., 2016).  

 

Figure 5: Frequency spectra from commercial aircraft and UAV operations (Torija & Clark, 2021) 

(reproduced with permission) 

Aside from the high-frequency characteristics of the UAV, Figures 6 and 7 show how tonal the frequency content of 

UAV can be, with the frequency of harmonics being dependent on the blade passing frequency (BPF) of the UAVs 

rotors. Figure 6 shows that, at further distances, the tonal prominence of the UAV noise is less obvious, whereas at 

closer distances, as illustrated in Figure 7, the BPFs and harmonics are clearly discernible. In Figure 7, the two 

bright lines in the spectrogram at about 120 and 140 Hz are the BPFs for the two sets of rotors of the DJI M200 

(left), whereas the Yuneec Typhoon (right) has its BPFs clustered around 200 Hz. What can also be seen in Figure 7, 

particularly in the spectrogram of the DJI M200 model, is that the tonal harmonics fluctuate slightly in the frequency 

domain over time. This is caused by the motors micro-adjusting to account for ambient weather conditions, such as 

wind gusts, while maintaining UAV stability. These fluctuations can influence the level, frequency, and temporal 

characteristics of UAV noise (Alexander, et al., 2019). Therefore, it can be said that the noise characteristics of 
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UAV noise does not resemble the noise characteristics of conventional aircraft (Christian & Cabell, 2017). 

Furthermore, it has been found that even if the LAeq is controlled (to 65 dBA) for both a UAV noise source and a 

conventional aircraft noise source, the preference rating given during a subjective assessment to a UAV stimuli was 

33% lower than the rating given to a conventional aircraft (Torija & Li, 2020).  

 

Figure 6: Spectrogram of UAV flyovers, measured at approx. 50 m (Torija & Clark, 2021) 

 

Figure 7: Spectrogram of UAVs hovering, measured at approx. 1.2 m (Torija & Clark, 2021) (reproduced 

with permission) 

2.3. UAV noise introduced into urban soundscapes   

2.3.1. Effects of a Hovering Unmanned Aerial Vehicle on Urban Soundscapes Perception (Torija, et 
al., 2020) 

Previous research has investigated the perceived annoyance of unmanned aerial vehicles (UAVs), or drones, when 

introduced to different populated environments. This research was undergone to understand the impact on the 

general public’s health as the use of UAVs for roles such as delivery increases.  

Firstly, audio-visual recordings of two areas were captured. The first area was the Southampton Common Park and 

contained 4 individual measuring positions at varying distances from a busy road. The second area was a park 

located in the city centre of Southampton, containing 3 measurement positions at varying distances from a busy road 

junction. 1st order A-format ambisonic audio was recorded using 4 Micro Electrical-Mechanical System (MEMS) 

microphones, integrated into a panoramic camera which captured the visual stimuli.  
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Secondly, a small, quadcopter drone (DJI Phantom 3 standard) was used to gather audio-visual signals. The drone 

was recorded inside an anechoic chamber, with the drone being fixed in position at an unvarying elevation, so that 

all the quadcopters’ rotors could move freely. A greenscreen with a high acoustic permeability was set up behind the 

drone so that the previously recorded environmental stimuli could be used as a background to virtually place the 

recorded drone on. The audio-visual recordings of the drone were captured using the same equipment as the 

environmental recordings.  

Subjective listening tests were carried out by 30 healthy participants. The test stimuli included the audio-visual 

recordings of both the environmental recordings, and the environmental recordings with the drone audio-visual 

signals virtually introduced. Furthermore, these scenarios were presented without the visual recordings, leaving only 

audio playback of each environment without and with the introduction of a drone. The participants were asked to 

give responses for their perceptions of loudness, annoyance, and pleasantness for each test stimuli, using an 11-point 

scale (0 being not at all, and 10 being extremely).  

The responses were analysed using multilevel linear modelling to evaluate the responses given for perceived 

loudness, annoyance, pleasantness, and to also observe any effect when playback included visual stimuli. The results 

showed that the introduction of drone noise in environments with a higher background level, mainly generated by 

traffic noise, the annoyance increased by around 1.3 times that of when the drone is not present. Where the 

environment had a lower level of background noise, the introduction of a drone increased the perceived annoyance 

by about 7 times that of when the drone is not present. It was also shown that using panoramic video stimuli yielded 

little effect on the responses for perceived loudness, but introduced large differences in the responses of annoyance 

and pleasantness than with solely audio stimuli, strengthening the previously suggested idea that using audio-visual 

stimuli aid in creating more accurate representations of the environments.   

The responses for perceived annoyance, loudness and pleasantness were only evaluated against the 𝐿𝐴𝑒𝑞  of each of 

the test stimuli, which was found to not account for the noise features of drones, suggesting that the use of more 

sound quality metrics should be used to characterise drone test stimuli in future research.  

2.3.2. Auditory Detection Probability of Propeller Noise in Hover Flight in Presence of Ambient 
Soundscape (Stalnov, et al., 2022) 

Aside from investigating the spectral characteristics of UAV and how they affect perceived annoyance, other means 

of mitigation should be researched. In this paper, the probability that a UAV may be detected in a particular 

environment is explored, by considering the noise level of the background environment, the number of blades the 

UAV has, and the operational distance of the UAV from the observer. Since UAV operations are predicted to be 

typically carried out in metropolitan areas, where infrastructure is developed and populations are high, it is of value 

to try and understand how high ambient noise levels in urban soundscapes could potentially mitigate the adverse 

effects of UAV noise; although this research does also investigate the effects of rural soundscapes, for comparison.  

This research was segmented into two parts. The first involved a two-step approach, to understand the probability of 

a UAV noise source being detected by an observer based on the noise level of the UAV compared to background 

noise in a forced choice experiment, and then to understand whether that UAV sample would be detected in an 

external environment where the listener is unaware of the experiment, in an unforced choice experiment 

methodology. The second part of the research models the auditory nerve system, to predict whether a UAV signal 

would be detected based on nerve fibre stimulation from the amplitude of the UAV signal.  

The first step of the first part was carried out by presenting the experiment participants with two audio stimuli; the 

first included only the background environmental noise, and the second included the environmental and the UAV 

noise. The listener was then prompted to answer whether they heard the UAV stimuli present in the audio containing 

both UAV and background noise. Four potential outcomes are possible using this method; a UAV stimulus is 

present and the participant detects it (hit), a UAV stimuli is present and the participant does not detect it (miss), a 

UAV stimuli is not present and the participant believes there is (false alarm), and a UAV stimuli is not present and 
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the participant does not believe there is (correct rejection). From these outcomes, as well as other accepted 

probability assumptions, a hit probability function was derived, to predict whether a UAV signal would be detected 

if introduced into background environmental noise. The second part looked at quantifying the function of the 

auditory nerve systems within the ear, and used an arithmetic function derived to for the threshold of an acoustic 

stimulus to be detected by the auditory nerve system.  

The UAV stimuli were recorded in an anechoic chamber, where a motor and propeller of a UAV were mounted in 

place in the middle of the chamber, at a height of 1 m above ground level. A total of 30 stimuli were recorded: 15 

for a 2-blade propeller, at polar angles increasing in equal increments from 0o-to 105o, as well as a 5-blade propeller. 

The background noise stimuli were measured in both rural and urban areas. The microphone for these recordings 

was positioned at 1.2 m above ground level. It was found that the urban environment had a typically increased level 

at regular intervals in the frequency spectra when compared to the rural environment. The rural environment 

exhibited a hump in the spectra at around 1 kHz, and the urban environment has a sharp increase in level around 6 

kHz.  

It was found that as operational distance increased, the threshold level for UAV detection in both rural and urban 

environments increased, however the threshold level in rural environments was consistently lower. Furthermore, for 

operational distances up to around 700 m, it was found that the difference between the threshold level for urban and 

rural environments was not statistically significant. However, at distances greater than around 700 m, it was 

observed that the detection threshold for the 5-blade propeller noise was higher than that of the 2-blade propeller 

noise, meaning that the probability to detect a 5-blade propeller-based vehicle was consistently lower than a 2-blade 

counterpart. It was found that UAV stimuli in rural areas have a higher probability of being detected than UAV 

stimuli in urban areas.  

However, at smaller operational distances, below around 100 m, the calculated probability of detection for both 

UAV propeller configurations in each environment is very high, above 0.75. From the results of this research, and 

considering the expected proximity of UAV operations such as delivery to the public, it is clear that operations 

within these distances must be investigated to assess the feasibility of UAVs. Furthermore, a more detailed analysis 

into the spectral contributions of UAV to a soundscape environment should be undertaken, to ascertain whether key 

characteristics of UAV stimuli are the main contributors to a lower estimated threshold of detection value, and 

consequently an increased estimated detection probability value. Finally, this research draws attention to the fact that 

the complexity of urban soundscapes lends itself to being a more appropriate noise masking tool for UAV noise 

when compared with rural soundscape environments, supporting the case for research into urban soundscape 

masking.  
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3. CONVENTIONAL AIRCRAFT NOISE METRICS 

The increase in use of aircraft for transportation of passengers and goods, and the subsequent exposure of these 

noise sources to the public, has led to the development of noise metrics which give an objective way to assess the 

potential impact of aircraft operational noise on public health. The perceived noise level (PNL) and effective 

perceived noise level metric (EPNL) were developed to assess the impact of tonal aircraft noise on the public. The 

EPNL calculations was defined by the FAA (Federal Aviation Agency, 2017) and expands on the PNL method by 

including a tonal correction implemented in the calculation, via a 10-step algorithm. This algorithm was designed to 

detect and account for tonal content in one-third octave bands from 80 Hz to 10 kHz. The step involves calculating 

the SPL in the 80 Hz one-third octave band (critical-band rate of 3 Bark), and then calculating the change in SPL, 𝑠, 

with increasing one-third octave band centre frequency (Equations 1 through 4). 

𝑠(3, 𝑘) = 𝑛𝑜 𝑣𝑎𝑙𝑢𝑒 (1) 

𝑠(4, 𝑘) = 𝑆𝑃𝐿(4, 𝑘) − 𝑆𝑃𝐿(3, 𝑘) (2) 

... 

𝑠(𝑖, 𝑘) = 𝑆𝑃𝐿(𝑖, 𝑘) − 𝑆𝑃𝐿[(𝑖 − 1), 𝑘] (3) 

… 

𝑠(24, 𝑘) = 𝑆𝑃𝐿(24, 𝑘) − 𝑆𝑃𝐿(23, 𝑘) (4) 

Where 𝑘 is a time index which are measured in 0.5 s intervals during a flyover operation of the aircraft, and 𝑖 is the 

critical-band rate. Step 2 is to encircle the value of the slope, 𝑠(𝑖, 𝑘), where the absolute value of the change in the 

slope is greater than 5, described in equation 5. Step 3 involves categorising the slope 𝑠(𝑖, 𝑘) for SPL evaluation. If 

the encircled value is positive and algebraically greater than the slope 𝑠[(𝑖 − 1), 𝑘], encircle 𝑆𝑃𝐿(𝑖, 𝑘). If the 

encircled value of the slope 𝑠(𝑖, 𝑘) is zero or negative and the slope 𝑠[(𝑖 − 1), 𝑘] is positive, encircle 𝑆𝑃𝐿[(𝑖 −
1), 𝑘]. For all other cases of slope 𝑠(𝑖, 𝑘), no SPL value is to be encircled. Following from this, step 4 is to omit all 

SPL values encircled, and calculate new SPL values, 𝑆𝑃𝐿′(𝑖, 𝑘).  

|∆𝑠(𝑖, 𝑘)| = |𝑠(𝑖, 𝑘) − 𝑠[(𝑖 − 1), 𝑘]| > 5 (5) 

For non-encircled SPL values from step 3, 𝑆𝑃𝐿′(𝑖, 𝑘) is equal to 𝑆𝑃𝐿(𝑖, 𝑘). For encircled SPL values in critical-band 

rates 1 through 23, the new SPL value is equal to the arithmetic average of the preceding and following critical-band 

rate SPL values, as shown in equation 6. If the SPL value of the highest critical-band rate, 24 Bark, is encircled, then 

the new SPL value for that band is shown in Equation 7. 

𝑆𝑃𝐿′(𝑖, 𝑘) =
1

2
[𝑆𝑃𝐿[(𝑖 − 1), 𝑘] + 𝑆𝑃𝐿[(𝑖 + 1), 𝑘]] (6) 

𝑆𝑃𝐿′(24, 𝑘) = 𝑆𝑃𝐿(23, 𝑘) + 𝑠(23, 𝑘) (7) 

Step 5 of the algorithm involves recomputing new slopes, 𝑠′(𝑖, 𝑘), for 1 ≤ 𝑖 ≤ 25, including an imaginary critical-

band rate, 25 Bark. This process is like Equations 1 through 4, and is reiterated in Equations 8 through 12. 

𝑠′(3, 𝑘) = 𝑠′(4, 𝑘) (8) 

𝑠′(4, 𝑘) = 𝑆𝑃𝐿′(4, 𝑘) − 𝑆𝑃𝐿′(3, 𝑘) (9) 
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… 

𝑠′(𝑖, 𝑘)𝑆𝑃𝐿′(𝑖, 𝑘) − 𝑆𝑃𝐿′[(𝑖 − 1), 𝑘] (10) 

… 

𝑠′(24, 𝑘) = 𝑆𝑃𝐿′(24, 𝑘) − 𝑆𝑃𝐿′(23, 𝑘) (11) 

𝑠′(25, 𝑘) = 𝑠′(24, 𝑘) (12) 

�̅�(𝑖, 𝑘) =
1

3
[𝑠′(𝑖, 𝑘) + 𝑠′[(𝑖 + 1), 𝑘] + 𝑠′[(𝑖 + 2), 𝑘]] (13) 

Then, step 6 consists of computing the arithmetic average of the three adjacent slopes for critical-band rates 3 to 23, 

as in Equation 13. Step 7 involves computing the final adjustments to the one-third octave band SPL values, 

𝑆𝑃𝐿′′(𝑖, 𝑘), starting with critical-band rate 3 Bark to 24 Bark, as shown in Equations 14 through 17. 

𝑆𝑃𝐿′′(3, 𝑘) = 𝑆𝑃𝐿(3, 𝑘) (14) 

𝑆𝑃𝐿′′(4, 𝑘) = 𝑆𝑃𝐿′′(3, 𝑘) + �̅�(3, 𝑘) (15) 

… 

𝑆𝑃𝐿′′(𝑖, 𝑘) = 𝑆𝑃𝐿′′[(𝑖 − 1), 𝑘] + �̅�[(𝑖 − 1), 𝑘] (16) 

… 

𝑆𝑃𝐿′′(24, 𝑘) = 𝑆𝑃𝐿′′(23, 𝑘) + �̅�(23, 𝑘) (17) 

𝐹(𝑖, 𝑘) = 𝑆𝑃𝐿(𝑖, 𝑘) − 𝑆𝑃𝐿′′(𝑖, 𝑘) (18) 

Equation 18 represents step 8 of the algorithm, which is to calculate the differences, 𝐹(𝑖, 𝑘), between the original 

SPL value and the adjusted SPL values. Only values of 𝐹(𝑖, 𝑘) greater than zero are noted. Step 9 is to determine 

tonal correction factors from 𝐹(𝑖, 𝑘) for each of the 24 one-third octave bands, using Figure 8. Finally, step 10 is to 

designate the largest of the tonal correction factors, as determined in step 9, as 𝐶(𝑘). From this, and the perceived 

noise level (PNL) as calculated following Appendix B, paragraph B36.3 of FAR Part 36, the tone corrected 

perceived noise level (PNLT) can be calculated for each 𝑘𝑡ℎ interval, and subsequently the EPNL, as shown in 

Equations 19 and 20, where 𝑑 is the time interval to the nearest 1 s during which 𝑃𝑁𝐿𝑇(𝑘) is 10 dB of the 

maximum tone corrected perceived noise level (PNLTM). 

𝑃𝑁𝐿𝑇(𝑘) = 𝑃𝑁𝐿(𝑘) + 𝐶(𝑘) (19) 

𝐸𝑃𝑁𝐿 = 10 log (∑ 10
𝑃𝑁𝐿𝑇(𝑘)

10  

2𝑑

𝑘=0

) − 13 (20) 
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Figure 8: Tone correction as a function of level difference (Federal Aviation Agency, 2017) 

For conventional rotorcraft such as helicopters, the sound exposure level (SEL) is often used as a metric for 

assessing the potential impact of noise from these vehicles on communities. The SEL of noise is the constant sound 

level that has the same amount of energy in one second as the original noise event. It is calculated as described by 

the FAA to assess helicopter noise (Federal Aviation Agency, 2017), to consider both helicopter flyover event 

duration and sound level. Equation 21 below shows the calculation of SEL, where 𝐿𝐴𝑒𝑞  is the A-weighted sound 

level measured for the total time the event elapsed, 𝑡.  

𝑆𝐸𝐿 = 𝐿𝐴𝑒𝑞 + 10 . 𝐿𝑜𝑔10(𝑡) (21) 

Although these metrics are deemed suitable for the assessment of conventional aircraft, their application to noise 

from UAV has been deemed inappropriate (Torija, et al., 2019). This may be due to the operational characteristics of 

UAV, which infer an observable increase in mid- to high-frequency content with much more rapid fluctuations in 

tonal artifacts when compared to conventional aircraft noise signatures. Therefore, the development of metrics that 

quantify UAV noise specifically is crucial to the adoption of UAV operations in public areas, with this development 

being guided by the influence of UAV noise on human perception.  

4. PERCEPTION-INFLUENCED ENGINEERING 

The effects of transportation noise on public health have thus far been assessed predominantly through methods that 

scrutinise sound pressure and power levels from noise sources. Perception-influenced engineering aims to improve 

product design through existing knowledge of psychoacoustics, human physiology, and psychological response, 

which benefits from the use of more intricate sound quality metrics that quantify the functions of the human auditory 

system. It has been suggested that sound levels do not necessarily account for these intricacies (Greenwood, et al., 

2022). An example of this can be seen in helicopter noise nuisance assessment, where current standing values used 

to quantify annoyance, such as the sound exposure level (SEL), have been seen to have some deficiency in 

predicting community response, and a level penalty of 4 dB must be applied (Boucher, et al., 2019). For helicopter 

noise, it has been suggested by recent research that a method incorporating several sound quality metrics should be 

used, to better evaluate the impact of helicopter noise on communities, and a similar approach could be beneficial 
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for the assessment of UAV community noise response. Similarly for aircraft noise, previous research has explored 

the impact of synthesised aircraft noise tonality on the annoyance response from participants in a subjective 

experiment, suggesting that sound quality metrics including a value of tonality should be used in the prediction of 

annoyance from actual aircraft noise (More & Davies, 2010). Sound quality metrics have been used to assess 

consumer product noise response in various industries, and have had significant development within the automotive 

industry, to quantify the effects of various frequency-based and temporal acoustic phenomena.  

4.1. Sound quality metrics 

Sound quality metrics have been developed to quantify acoustic phenomena perceived by the human ear. They are 

typically used in product design to mitigate perceived annoyance from noise sources ranging from washing 

machines to automotive vehicles (Davies, 2007). These metrics are particularly useful in regression analysis, to 

investigate the effects of acoustic characteristics of noise on human perception of the noise source. Standardised and 

industry accepted methods for calculating these metrics were implemented in this research to quantify the spectral 

and temporal characteristics of UAV noise.  

4.1.1. Critical-band rates 

The critical-band rate scale was derived to represent how the human ear discriminates between frequency 

components (Zwicker & Fastl, 2007). The critical-band rate scale, or Bark scale, converts the logarithmic frequency 

sensitivity of the ear into a linear range, representing frequencies from 0 to 15.5 kHz as 0 to 24 Bark on the critical-

band rate scale. The relationship between frequency range and critical-band rate scale is illustrated in Table 2.  

From the division of the ear frequency range into critical-band rates, the intensity of sound in these critical-bands for 

a given narrow-band noise can be considered. When a tone of a given frequency is incident on the basilar 

membrane, critical-bands adjacent to the critical-band related to that tone’s frequency may also be excited. Figure 9 

illustrates how the excitation level of the critical-band rates changes as a narrow-band noise passes up through the 

frequency range. This excitation function is used in sound quality metrics to identify the significance of frequency 

content, and is equal to the critical-band level in the range of main excitation. Critical-band level, 𝐿𝐺, is calculated 

using the critical-band intensity, 𝐼𝐺 , as a function of the critical-band rate, 𝑧, as shown in Equations 22 and 23.  

𝐼𝐺(𝑧) = ∫
𝑑𝐼

𝑑𝑧
𝑑𝑧

𝑧+0.5 𝐵𝑎𝑟𝑘

𝑧−0.5 𝐵𝑎𝑟𝑘

(22) 

𝐿𝐺 = 10 ∙ log10 (
IG
𝐼0

) , 𝐼0 = 10−12
𝑊

𝑚2
(23) 

 

Figure 9: Plot of excitation level as a function of critical-band rate (Zwicker & Fastl, 2007) 
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Table 2: Relationship between critical-band and frequency (Zwicker & Fastl, 2007) (Reproduced from 

source) 

 

4.1.2. Loudness 

Loudness is a measure of the intensity of sound perceived by the ear (Zwicker & Fastl, 2007). Loudness values are 

in phon or sone, where phon is a logarithmic metric and sone is a linear metric. For example, the phon assumes that 

if a 1 kHz sine wave increases in level by 10 dB (10 phon), the perceived loudness would be double at any other 

frequency. However, through jury testing this was not found to be the case, as a 30 Hz sine wave was found to only 

need to increase by 5 dB to instigate a doubling in perceived loudness. Equal-loudness contours are lines that relate 

the loudness of tones at different frequencies to one another, and are displayed in Figure 10. This shows that tones of 

different frequencies are perceived at different loudness level, despite being of equal sound pressure level. Loudness 

is calculated by first calculating the specific loudness, 𝑁′, in each critical-band rate, as shown in Equation 24.  

Bark
Lower Band 

Frequency (Hz)

Centre Frequency 

(Hz)

Upper Band 

Frequency (Hz)

0 0 50 100

1 100 150 200

2 200 250 300

3 300 350 400

4 400 455 510

5 510 570 630

6 630 700 770

7 770 845 920

8 920 1000 1080

9 1080 1175 1270

10 1270 1375 1480

11 1480 1600 1720

12 1720 1860 2000

13 2000 2160 2320

14 2320 2510 2700

15 2700 2925 3150

16 3150 3425 3700

17 3700 4050 4400

18 4400 4850 5300

19 5300 5850 6400

20 6400 7050 7700

21 7700 8600 9500

22 9500 10750 12000

23 12000 13750 15500

24 15500
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Figure 10: Equal-loudness contours for tones of varying frequency (Zwicker & Fastl, 2007) 

𝑁′ = 0.08 (
𝐸𝑇𝑄

𝐸0

)
0.23

[(0.5 + 0.5
𝐸

𝐸𝑇𝑄

)

0.23

− 1]
𝑠𝑜𝑛𝑒𝐺

𝐵𝑎𝑟𝑘
(24) 

𝐸 is the excitation level, 𝐸0 is the excitation level corresponding to the reference intensity 𝐼0, and 𝐸𝑇𝑄 is the 

excitation level at threshold in quiet. The value of loudness is then the integral of all values of specific loudness, as 

shown in Equation25. 

𝑁 = ∫ 𝑁′
24 𝐵𝑎𝑟𝑘

0

(25) 

Loudness has been revisited by various researchers following this initial model to better account for various effects, 

such as post-masking and temporal non-linearities (Genuit, et al., 2009). The calculation standard DIN 45631/A1, 

which includes the A1 amendment “Calculation of the loudness of time variant sounds” accounts for these 

discrepancies in unsteady signals, and is recommended to be used when analysing more technical sound stimuli 

(Faslt, et al., 2009) 

4.1.3. Sharpness 

Sharpness can be described as the ratio of energy in higher frequency critical bands, to the energy in all critical 

bands. As the narrow-band centre frequency of a noise increases, the calculated sharpness of that noise also 

increases. Sharpness is measured in Acum, and was derived by Zwicker and Fastl (Zwicker & Fastl, 2007). The 

reference sound producing 1 Acum is a narrow-band noise, 1 critical band-width wide, centred at 1 kHz, with a level 

of 60 dB.  
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Figure 11: Plot of sharpness against frequency (Zwicker & Fastl, 2007) 

Figure 11 shows how as the critical-band or frequency content increases, the calculated sharpness increases. The 

cross indicated in the figure at about 8.5 Bark is where the reference noise lies, giving a value of 1 Acum from a 1 

kHz narrow-band noise at 60 dB. The dotted line in the figure illustrates how, from frequencies of about 1 kHz to 

about 3 kHz, the sharpness curve is linearly proportional to the centre-frequency. As the centre-frequency increases 

above 3 kHz, sharpness can be seen to increase at a more rapid rate than centre frequency. Sharpness can be 

calculated following Equation 26, where 𝑁′ is the total loudness of all critical-band rates, 24 Bark is the highest 

critical-band rate, and 𝑔(𝑧) is a weighting function dependent on critical-band rate. Fastl and Zwicker defined 𝑔(𝑧) 

as shown in Figure 12. 

𝑆 = 0.11
∫ 𝑁′𝑔(𝑧)𝑧 𝑑𝑧

24 𝐵𝑎𝑟𝑘

0

∫ 𝑁′ 𝑑𝑧
24 𝐵𝑎𝑟𝑘

0

(26) 

 

Figure 12: Weighting factor applied in sharpness calculation, dependent on critical-band rate, as defined by 

Zwicker and Fastl (Zwicker & Fastl, 2007) 

Figure 12 shows how the weighting applied to the sharpness calculation in Equation 26 stays at 1 for critical-band 

rates 0 to 15.8 Bark, then increases exponentially from 15.8 to 24 Bark. Von Bismarck (von Bismarck, 1974) 

developed this metric by adjusting the weighting function applied to the critical-band rates, with the new weighting 

function being shown in Equation 27.  

𝑔𝐵(𝑧) = {
1 𝑧 ≤ 15 𝐵𝑎𝑟𝑘

0.2𝑒0.308(
𝑧

𝐵𝑎𝑟𝑘
−15)

𝑧 > 15 𝐵𝑎𝑟𝑘
} (27) 
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However, it has been seen that the overall loudness of a signal holds strong control over perception, but the 

sharpness model above is loudness normalised and independent of the overall loudness. Therefore, Aures developed 

a sharpness model which was loudness dependent, and appear as an appendix in DIN 45692. The equation for 

Aures’ model of sharpness is similar Equation 26, except it includes a weighting function which incorporates signal 

loudness. This is shown in Equation 28, below, where 𝑔𝐴(𝑧) is the new frequency-dependent weighting function. 

Example curves are given that represent the weighting function for 3 loudness levels (1 sone, 10 sone and 100 sone) 

in Figure 13. 

𝑆 = 0.11
∫ 𝑁′𝑔𝐴(𝑧)𝑧 𝑑𝑧

24 𝐵𝑎𝑟𝑘

0

∫ 𝑁′ 𝑑𝑧
24 𝐵𝑎𝑟𝑘

0

(28) 

 

Figure 13: Aures’ sharpness weighting curves gA(z) (Siemens Digital Industries Software, 2021) 

4.1.4. Roughness, fluctuation strength and impulsiveness 

Roughness is a sensation that is influenced by variation of a signal’s amplitude or frequency. In the cases of pure 

tones which are modulated by amplitude or frequency variations, if the variations occur at frequencies below 10 Hz, 

the human ear can actively track the change, which is the impression of a pulse or a beating effect. As the frequency 

of variation increases from around 20 to 300 Hz, the sensation of roughness can be perceived, as the ear no longer 

becomes capable of actively tracking any changes in the temporal structure of the signal. Above 300 Hz, the centre 

frequency of the tone and the sidebands created due to amplitude and frequency modulated start to become 

individually perceptible. Roughness depends on the centre frequency, modulation frequency and modulation depth 

of the signal. As modulation depth increases, the sensation of roughness increases. For modulation frequency, as it 

increases, the roughness sensation is seen to have a band-pass characteristic; as modulation frequency tends towards 

very low or high values, roughness decreases. For an amplitude-modulated tone of carrier frequency 1 kHz, and 

maximum modulation depth, the maximum roughness value was perceived at a modulation frequency of 70 Hz. The 

unit of roughness, asper, is defined by a sinusoidal tone of 1 kHz with a level of 60 dB, with an amplitude-

modulation frequency of 70 Hz with a modulation depth of 1 applied to it, which gives a value for roughness of 1 
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asper. Fluctuation strength is similar to roughness, in that it is a sensation caused by signal modulation, but at very 

low frequencies. The unit for fluctuation strength is vacil, and is defined by the same sinusoidal tone used to define 

asper, except amplitude-modulated at a frequency of 4 Hz instead of 70 Hz.  

Sottek (Sottek, 1993) created a hearing model, that resembled the audio processing functions of the human ear, to 

calculate roughness and fluctuation strength. First the outer and middle ear are represented by filtering of the input 

audio signal, with a transfer function as shown in Figure 14. Then, the signal is passed through a filter bank, 

comprising of parallel overlapping band-pass filters. The centre frequencies of the band-pass filters are distributed 

evenly across critical-band rates. Once the signal is filtered, using the Hilbert transformation (Kak, 1973), the 

envelopes of partial band signals are determined. Next, 3rd order low-pass filters are applied, with cut-off 

frequencies dependent on the filtered signal frequencies. For the signal filtered at 1 kHz, the low-pass filter has a 

cut-off frequency of 120 Hz. This filtering accounts for the modulation frequency above which the human ear 

cannot actively track the modulation change. A nonlinear filtering function is applied to the critical-band rate filtered 

signals, which is an exponential function with an exponent of 0.125. 3rd order high-pass filtering is then applied to 

the critical-band rate filtered signals, as well as a frequency dependent amplitude factor, 𝑔𝑅(𝑧𝑖).  

 

Figure 14: Transfer function from the outer to inner ear (Sottek, 1993) 

The high-pass and low-pass filtering create the band-pass variation of perceived roughness as a function of 

modulation frequency. This gives the specific roughness or fluctuation strength per critical-band rate, depending on 

the modulation frequency applied to the signal. Roughness and fluctuation strength can be calculated by integrating 

the specific roughness or fluctuation strength, respectively. Figure 15 shows a functional block diagram of the 

hearing model.  

The impulsiveness of a signal relates to the sensations perceived by the ear due to significant dynamic fluctuations 

of the level of the sound. Sottek developed a method for calculating impulsiveness from his already influential 

hearing model (Sottek, et al., 1995). First, the excitation function, 𝑒(𝑧𝑗 , 𝑡), or 𝑒𝑗 for short, is calculated for each input 

channel 𝑗, versus frequency and time using the previously described hearing model. Nonlinear processing is then 

applied the distribution of excitation. If background noise is present in the signal, the impulsiveness sensation is 

reduced considerably, therefor a function is applied that is approximately linear for small signal amplitudes, but 

resembles a power function with an exponent, 𝑎, of 0.15 for greater signal amplitudes. This is illustrated in Figure 

16, which shows that as the amplitude of the input pulse increases, the effect of the compressive, nonlinear 

processing changes.  

Once all specific impulse (𝐼′) values are calculated from the individual critical-band filters, as described in Sottek’s 

hearing model, the total impulsiveness can be calculated from summation. A 4th order high-pass filter is applied with 

𝑓3 𝑑𝐵 = 10 𝐻𝑧 to the difference in the numerator of the summation and 𝐼′, so to reproduce the dependency on the 

impulse rate frequency. In Equation 29, 𝑘𝑗 is a channel dependent weighting factor. Then, total impulsiveness, 𝐼, is 

calculated from Equation 30. 
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Figure 15: Functional block diagram of hearing model used to calculate specific roughness and fluctuation 

strength (Sottek, 1993) 

 

Figure 16: Effect of the nonlinear processing on an input impulse, with the weighting dependent on the input 

level (Sottek, 1993) 
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𝐼′ = ∑𝑘𝑗 ∙
(𝑦(𝑒𝑗) − 𝑦(𝑒𝑗)

̅̅ ̅̅ ̅̅ ̅)
𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑦(𝑒𝑗)
̅̅ ̅̅ ̅̅ ̅𝑚

𝑁

𝑗=1

(29) 

𝐼 = 0.055556 ∙ 𝐼′ + ℎ𝑒𝑎𝑣𝑖(𝐼′ − 1.8) ∙ (1.271367 ∙ 𝐼′ − 2.288461) + ℎ𝑒𝑎𝑣𝑖(𝐼′ − 7) ∙ (2.288461 − 0.326923 ∙ 𝐼′) 

ℎ𝑒𝑎𝑣𝑖(𝑥) = {
0, 𝑥 < 0
1, 𝑥 ≥ 0

} (30) 

4.1.5. Tonality  

Tonality quantifies the dominance of tonal components in signals. An early version of a tonality method was 

presented by Terhardt et al (Terhardt, et al., 1982), which took the form of a hearing model (Sottek, 1993) designed 

to detect pitch and pitch salience. First, a signal is converted from the time domain to frequency domain, via a fast 

Fourier transform (FFT), with a Hanning window. From this, tonal components are interrogated following Equation 

31, where 𝐿𝑖 is the relative SPL of the ith spectral sample, 𝐿𝑖−1 is the SPL of the previous sample, and 𝐿𝑖+1 is the 

SPL of the next spectral sample. If a spectral sample meets this criterion, then it is investigated further following 

Equation 32. If both conditions are met by a spectral sample, then sample 𝑖 − 3 to 𝑖 + 3 are considered to be a tonal 

component.  

𝐿𝑖−1 < 𝐿𝑖 ≥ 𝐿𝑖+1 (31) 

𝐿𝑖 − 𝐿𝑖+𝑗 ≥ 7 𝑑𝐵 ; 𝑗 = −3,−2,+2,+3 (32) 

𝑓𝑐 = 𝑓𝑖 + 0.46(𝐻𝑧/𝑑𝐵)(𝐿𝑖+1 − 𝐿𝑖−1) (33)  

The frequency of the tonal component, 𝑓𝑐, is then found following Equation 33. This is repeated until all eligible 

tonal components have been found in the signal’s frequency spectrum. This gives the values 𝑁, the total number of 

eligible tonal components found in the spectrum, 𝑓𝑐 for each tonal component, and 𝐿𝑐, the SPL of each tonal 

component. Then, the effect of masking on each tonal component is approached. That is to say, how dominant that 

tonal component is compared to the rest of the frequency spectrum content. SPL excess, 𝐿𝑋µ (1 ≤ 𝜇 ≤ 𝑁), is 

calculated for each tonal component, 𝜇, following Equation 34.  

𝐿𝑋µ = 𝐿µ − 10 log10

[
 
 
 

(∑10
𝐿𝐸𝑣(𝑓µ)

20 𝑑𝐵 )

𝑁

𝑣=1
𝑣≠µ

2

+ 𝐼𝑁µ + 10
𝐿𝑇𝐻(𝑓µ)

10 𝑑𝐵

]
 
 
 

 (34) 

𝐿𝐸𝑣(𝑓µ) = 𝐿𝑣 − 𝑠(𝑧𝑣 − 𝑧µ) (35) 

𝑠 = [
27 𝑑𝐵/𝐵𝑎𝑟𝑘 𝑖𝑓 𝑓µ ≤ 𝑓𝑣 

−24 − (0.23 𝑘𝐻𝑧/𝑓𝑣) + (0.2𝐿𝑣/𝑑𝐵) 𝑑𝐵/𝐵𝑎𝑟𝑘 𝑖𝑓 𝑓µ > 𝑓𝑣
] (36) 

𝑧 = {13 arctan(0.76(𝑓/𝑘𝐻𝑧)) + 3.5 arctan2(𝑓/7.5 𝑘𝐻𝑧)} (37)  

𝐿𝑇𝐻(𝑓µ) = 3.64𝑓µ
−0.8 − 6.5𝑒(−0.6𝑓µ−3.3)

2

+ (𝑓µ
4 × 10−3) (38) 

𝐿𝑒𝑣(𝑓µ) is the excitation level which is produced at the frequency 𝑓µ by the 𝑣𝑡ℎ tonal component. The 𝑣𝑡ℎ tonal 

component is not the same as the µ𝑡ℎ, however, as the µ𝑡ℎ tonal component’s SPL level is skipped in the summation 
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within Equation 34. 𝐿𝑇𝐻(𝑓µ) is the hearing threshold of tonal frequency 𝑓µ. 𝐼𝑁µ is the intensity of noise within the 

critical-band of the µ𝑡ℎ tonal component, calculated from adding the sound intensities of the spectrum samples 

corresponding to the critical band-rates of the µ𝑡ℎ (𝑧µ) and 𝑣𝑡ℎ (𝑧𝑣) tonal components, calculated in Equation 36. 

Using Equations 34 through 38, the SPL excess, 𝐿𝑋µ, can be calculated. If 𝐿𝑋µ has a positive value, then the tonal 

component µ is considered significant. If the value of 𝐿𝑋µ is 0 or negative, then the tonal component µ is considered 

insignificant. Aside from SPL excess, the effects of simultaneous spectral components interacting with the auditory 

system are accounted for. 𝐻µ, the spectral pitch of the µ𝑡ℎ tonal component, is measured in pitch units (pu). For tonal 

components with a value of 𝐿𝑋µ greater than 0, 𝑣µ, the induced pitch shift caused by interacting tonal components, is 

calculated following Equations 39 through 42. 

𝐻µ = (𝑓µ)(1 + 𝑣µ) (39) 

𝑣µ = 2(𝐿µ − 60)(𝑓µ − 2) × 10−4 + 1.5𝑒−
𝐿𝑋µ

′

20 (3 − ln(𝑓µ)) × 10−2 + 3𝑒−
𝐿𝑋µ

′′

20 (0.36 + ln(𝑓µ)) × 10−2 (40) 

𝐿𝑋µ
′ = 𝐿µ − 20𝑙𝑜𝑔10 (∑10

𝐿𝐸𝑣(𝑓µ)

20

µ−1

𝑣=1

) (41) 

𝐿𝑋µ
′′ = 𝐿µ − 20𝑙𝑜𝑔10 ( ∑ 10

𝐿𝐸𝑣(𝑓µ)

20

𝑁

𝑣=µ+1

) (42) 

𝐿𝑋µ
′  is the SPL excess of the lower frequency tone within the interaction, and 𝐿𝑋µ

′′ is the SPL excess of the higher 

frequency tone within the interaction. The process of the masking algorithm collectively gives 𝑅, a number of 

relevant tonal components, where 𝑅 ≤ 𝑁, the SPL excess (𝐿𝑋µ) of the relevant tonal components, and the spectral 

pitch (𝐻µ) of the relevant tonal components. These are used to appropriately apply a weighting factor to the tonal 

components, with the most significant factors that dictate the components weighting being SPL excess and 

frequency. The spectral-pitch weight, 𝑊𝑆µ, is described in Equations 43 and 44. 

𝑊𝑆µ = [1 − 𝑒−
𝐿𝑋µ
15 ] [1 + 0.07 (

𝑓µ

0.7
−

0.7

𝑓µ
)

2

]

−
1
2

, 𝑖𝑓 𝐿𝑋µ ≥ 0 (43) 

𝑊𝑆µ = 0, 𝑖𝑓 𝐿𝑋µ < 0 (44) 

Virtual pitch is the perceived pitch of a complex tone where the fundamental frequency is perceived by the brain 

from the series of harmonics in a signal, and may correspond to a frequency which is not included in the harmonic 

structure. This is accounted for in Terhardt’s model by including a virtual pitch evaluation. Virtual pitch candidates 

are specified as subharmonics of one of the relevant tonal components. Virtual pitch in this method, 𝐻𝑖𝑚, of the 𝑚𝑡ℎ 

subharmonic of the 𝑖𝑡ℎ relevant tonal component is calculated following Equation 45. 

𝐻𝑖𝑚 = 𝑚−1(𝑓𝑖 𝐻𝑧⁄ )(1 + 𝑣𝑖 − sign(𝑚 − 1) 10−3{18 + 2.5𝑚 − (50 − 7𝑚)(𝑓𝑖 𝑘𝐻𝑧⁄ )𝑚−1 + 0.1[𝑚−1(𝑓𝑖 𝑘𝐻𝑧⁄ )]−2})

                                                                                                                                                                                                            (45)
 

Aures (Aures, 1984) suggested an updated method to this previous hearing model of tonality, by accounting for 

frequency, bandwidth, and level of all tonal components, as well as noise included in a signal. Figure 17 shows a 

working block diagram of Aures’ method for tonality.  
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Figure 17: Working block diagram of Aures' tonality method 

In this method, the calculation of SPL excess is the same as the Terhardt method, but introduces identifying tones 

and applying weighting functions based on the bandwidth (Equation 46), centre frequencies (Equation 47), and 

prominence of each tonal component present (Equation 48). 

𝑤1(𝛥𝑧𝑖) =
0.13

𝛥𝑧𝑖 + 0.13
(46) 

𝑤2(𝑓𝑖) =

(

 
 
 

1

√1 + 0.2 ((
𝑓𝑖

700
) + (

700
𝑓𝑖

))

2

)

 
 
 

0.29

(47) 

𝑤3(𝛥𝐿𝑖) = (1 − 𝑒−
𝛥𝐿𝑖
15 )

0.29

(48) 
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Where 𝛥𝑧𝑖
 is the bandwidth of the tonal component 𝑖, expressed in Bark, 𝑓𝑖 is the frequency of the tonal component 

𝑖, in Hz, and 𝛥𝐿𝑖
 is the level of the tonal component 𝑖 above the broadband masking noise, which is explained in 

equation 4 to 8 of Terhardt et al. (Terhardt, et al., 1982). An overall weighting function is applied by combining 

Equations 46 through 48, and is shown in Equation 49. 

𝑤𝑇 = √∑[(𝑤1(𝛥𝑧𝑖)
1

0.29) (𝑤2(𝑓𝑖)
1

0.29) (𝑤3(𝛥𝐿𝑖)
1

0.29)]
2

 

𝑛

𝑖=1

(49)  

𝐾 = 𝑐 ∙ 𝑤𝑇
0.29 ∙ 𝑤𝐺𝑟

0.79 (50) 

𝑊𝐺𝑟 = 1 −
𝑁𝐺𝑟

𝑁
(51) 

Aures’ tonality (𝐾), in tonality units (tu), is calculated as shown in Equation 50. The weighting function, 𝑊𝐺𝑟, that 

accounts for the overall loudness of the tone to noise ratio is calculated following Equation 51, where 𝑁𝐺𝑟
 is the 

loudness of the broadband noise, and 𝑁 is the total loudness of the sound. The calibration constant, 𝑐, is equal to 

1.09, and is given so that a 1 kHz pure tone with a sound level of 60 dB has a tonality value of 1 tu. 

Simpler forms of quantifying the tonality of a signal have also been used, where a signal does not contain as much 

complex tonal content. For example, the tone-to-noise ratio (TTNR) approach considers a tonal artifact that is 8 dB 

or more over the adjacent masking noise in the signal. Masking noise is the background noise that, if high enough, 

makes the tonal content of a signal perceptually inaudible. The process for calculating the tone-to-noise ratio of a 

tonal artefact starts by finding the sound pressure level of the tonal component. Then the average sound pressure 

level of the critical band that the tonal component is in (including the tone) is calculated. The sound level of the tone 

is then subtracted from the sound level of the critical band to leave the masking noise level. The tone-to-noise ration 

of that tonal component is then calculated following Equation 52, where 𝐿𝑇 is the sound level of the tonal 

component, and 𝐿𝑀 is the sound level of the masking noise. A tonal component as assessed by this method is said to 

be significant if the TTNR is greater than 8 dB.  

𝑇𝑇𝑁𝑅 = 10 ∗ log10 (
𝐿𝑇

𝐿𝑀

) (52) 

Alternatively, the prominence ratio (PR) method takes the whole critical band containing a tonal component, and 

assesses the level of that critical band against the adjacent bands. First, the sound level of the critical band 

containing the tonal component is calculated. Then the sound levels of the two adjacent critical bands are calculated. 

The PR is then found using the following Equation 53, where 𝐿𝐴 is the sound level of the tonal critical band, and 𝐿𝐵 

and 𝐿𝐶  are the sound levels of the adjacent critical bands. The PR value of a tonal critical band must be greater than 

9 dB for it to be considered significant. 

𝑃𝑅 = 10 ∗ log10 (
𝐿𝐴

(𝐿𝐵 + 𝐿𝐶) ∗  0.5
) (53) 
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5. STATISTICAL ANALYSIS TECHNIQUES 

5.1. Regression analysis and multilevel linear modelling 

Linear regression is a statistical analysis technique that is used to investigate correlations between dependent and 

independent variable datasets. Multilevel linear modelling can be used to assess regression factors across different 

groups, or datasets which have a hierarchal or clustered structure. In multilevel modelling, there are several levels of 

model that can be built. Level 1 models resemble a simple linear regression model, but with repeated calculation for 

multiple observations per group, which follows Equation 54. 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑋𝑖𝑗 + 𝑒𝑖𝑗 (54) 

Where 𝑌𝑖𝑗  is the dependent variable for an individual observation, 𝑖, for group 𝑗, 𝑋𝑖𝑗 is a level 1 predictor for that 

dependent variable, 𝛽0𝑗 is the intercept of the dependent variable for group 𝑗, 𝛽1𝑗 is the predictor coefficient, or 

slope for the relationship between dependent variable and the level 1 predictor for group 𝑗, and 𝑒𝑖𝑗 is the residual 

error. For level 1 models, intercepts and slopes of the regression lines between dependent and independent variables 

can either be fixed per group, vary randomly between each group, or be non-randomly varying by including a level 2 

predictor variable in the level 1 regression coefficients, illustrated in Equations 55 and 56. 

𝛽0𝑗 = 𝛾00 + 𝛾01𝑊𝑗 + 𝑢0𝑗 (55) 

𝛽1𝑗 = 𝛾10 + 𝑢1𝑗 (56) 

Where 𝛾00 is the overall intercept of the model, or mean of all dependent variables when all predictor variables 

equal zero. 𝛾01 is the regression coefficient relating the dependent variable and the level 2 predictor, 𝑊𝑗. 𝑢0𝑗 is the 

random error component for the deviation of the group 𝑗 and the overall intercept. 𝛾10 is the overall regression 

coefficient for all groups between the dependent variable and the level 1 predictor variable and 𝑢1𝑗 is the error 

component for the slope. Random intercept models, or models which allow the intercepts of regression slopes to 

vary between group but maintains fixed regression slopes across groups can be used to evaluate the intraclass 

correlation coefficient (ICC). The ICC is a descriptive statistic that can be used to assess which dependent variable 

responses correlate within a group. The ICC is calculated using the residual variance, 𝜎𝑒𝑖𝑗
2 , and the variance of the 

subject-dependent intercepts, 𝜎𝑢0𝑗
2 , and is shown in Equation 57. 

𝐼𝐶𝐶 =  
𝜎𝑢0𝑗

2

𝜎𝑢0𝑗
2 + 𝜎𝑒𝑖𝑗

2
(57) 

5.2. Principle component analysis 

Principle component analysis can be used to understand key characteristics that can explain correlations in a dataset. 

The main goal of PCA is to dimensionally reduce large datasets, through transformation resulting in a smaller 

dataset that still describes most of the information of the previous large dataset. The main trade-off between a large 

and small dataset is between accuracy of the data and the simplicity of interpreting results from the data. The first 

stage of PCA is typically to standardise the values of continuous variables in the dataset, so that contributions of the 

variables towards the analysis are equal. This is done by subtracting the mean of a variable from any individual 

variable value, and then dividing by the standard deviation of that variable, as shown in Equation 58 below.  

𝑧𝑛 = 
𝑥𝑛 − �̅�

𝜎𝑥

(58) 
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Where 𝑧𝑛 is the normalised variable value, 𝑥𝑛 is a value from the initial variable dataset, �̅� is the mean of the 

variable dataset, and 𝜎𝑥 is the standard deviation of the variable dataset. This stage ensures that all variables used in 

the PCA will be transformed to the same scale. The next stage is to compute the covariance matrix of the dataset. 

This step highlights any correlation between the variables being included in the PCA. The covariance matrix is a 

𝑝 × 𝑝 sixed symmetric matrix, where 𝑝 is the number of dimensions describing the dataset, or the number of 

variables. For example, a dataset including 3 variables (𝑥, 𝑦 and 𝑧) would have a covariance matrix as illustrated 

below.  

[

𝐶𝑜𝑣(𝑥, 𝑥) 𝐶𝑜𝑣(𝑥, 𝑦) 𝐶𝑜𝑣(𝑥, 𝑧)

𝐶𝑜𝑣(𝑦, 𝑥) 𝐶𝑜𝑣(𝑦, 𝑦) 𝐶𝑜𝑣(𝑦, 𝑧)

𝐶𝑜𝑣(𝑧, 𝑥) 𝐶𝑜𝑣(𝑧, 𝑦) 𝐶𝑜𝑣(𝑧, 𝑧)
] (59) 

The values down the main diagonal, where covariances are calculated between a variable and itself (i.e., 𝐶𝑜𝑣(𝑥, 𝑥)), 

would all equal 1. Furthermore, the 𝐶𝑜𝑣() functions which are interrogating the same variables (i.e., 𝐶𝑜𝑣(𝑥, 𝑦) and 

𝐶𝑜𝑣(𝑦, 𝑥)) would be equal. Eigenvectors and their corresponding eigenvalues are calculated from the covariance 

matrix, with the total number of eigenvectors found being equal to the number of variables in the initial dataset (𝑝). 

Eigenvectors from the variance matrix can be seen as the direction in which the most variance occurs in a dataset, 

and give the directions of the principal components. The corresponding eigenvalues are used to rank the significance 

of each eigenvector, by quantifying the amount of variance carried in each principal component. To find the 

percentage of the variance explained by one principal component, the eigen value for principal component is divided 

by the sum of all eigenvalues for that dataset. The percentage of the variance explained is an intuitive metric for 

assessing the important of principal components relating to a dataset of variables.  

The next step is to form a feature vector, which includes eigenvectors for each variable in the covariance dataset up 

to a maximum value, or until the point where the sum of the covariance for each of the variables included in the 

feature vector equal a minimum criterion. Typically, the latter method is taken, with the minimum variance 

explained by the eigenvectors included being set as 95%. For example, if a dataset had 4 variables, with covariance 

explained values of 76%, 15%, 6% and 3% respectively, then only the eigenvectors of the first two variables would 

be included in the feature vector. Now the principal components have been chosen based on their eigenvalues, 

scores can be calculated for each input variable that translate them onto each principal component. These scores give 

indication of the significance each variable has on a principal component.  
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6. PART 1 – HUMAN RESPONSE TO SMALL UAV NOISE 

6.1. Methodology 

The first part of the subjective testing aimed to correlate psychoacoustic characteristics of isolated drone noise 

stimuli with human response values given by participants during subjective testing. Psychoacoustic characteristics of 

the UAV stimuli were described using sound quality metrics, and the participants gave responses of annoyance, 

loudness and pitch to the UAV stimuli. These values were then correlated using simple regression and multilevel 

modelling with calculated SQMs to assess the effectiveness of the metrics to predict values of annoyance, loudness 

and pitch of UAV stimuli. Details of the methodology are given in the following sub-sections.  

6.1.1. UAV sound stimuli  

A total of 44 sound stimuli were gathered from industry partners, which represented 8 different drone models. These 

models varied in weight and size, and were captured performing various operations, such as take-offs, hovering, and 

landing at different distances. Each stimulus was edited to be 4 seconds long, with any pass-by event taking place 

halfway through the 4 second period (Torija, et al., 2019). The UAV stimuli are presented in detail in Table 3. It has 

been previously shown in research that UAV constantly adjust to counter adverse weather conditions when in flight. 

These micro-adjustments are of the rotational speeds of the drone rotors, and are to maintain the stability of the 

vehicle. Due to these micro-adjustments, rapid fluctuations of frequency are introduced into the acoustic signature, 

and often have a negative impact on the overall perception of UAV (Torija, et al., 2019). It was therefore deemed 

appropriate to include a range of operations, to evaluate which operating conditions are deemed to be the most 

annoying. A range of operating distances were also included, to observe if audible distance can be correlated to 

perceived annoyance, loudness and pitch. To maintain relative LAeq between the UAV stimuli, a calibration system 

was implemented, using measurement data provided with the stimuli. Since the effect of operational distance is 

being assessed, keeping the relative levels between the sound stimuli is important for correlating with annoyance. 

The calibration setup is presented in Figure 18.  

 

Figure 18: Calibration set up used for subjective test 1 UAV stimuli 
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Table 3: UAV stimuli included in subjective test 1 

 

Sound UAV UAV Weight (kg) Operation Distance (m) Calibrated LAeq

1 DJI Inspire 2.85 Flyover 15 52

2 DJI Inspire 2.85 Flyover 7.5 58

3 DJI Inspire 2.85 Landing 7.5 64

4 DJI Inspire 2.85 Takeoff 2 70

5 Intel Falcon 1.2 Flyover 30 54

6 Intel Falcon 1.2 Flyover 60 47

7 DJI Matrice 600 9.1 Takeoff 3 71

8 DJI Matrice 600 9.1 Hover 40 65

9 DJI Matrice 600 9.1 Flyover 40 57

10 DJI Mavic 0.743 Flyover 15 51

11 DJI Mavic 0.743 Flyover 30 46

12 DJI Mavic 0.743 Flyover 60 37

13 DJI Mavic 0.743 Maneuvering 7.5 51

14 DJI Mavic 0.743 Maneuvering 7.5 53

15 DJI Mavic 0.743 Takeoff 7.5 59

16 DJI Phantom 3 1.216 Maneuvering 2 68

17 DJI Phantom 3 1.216 Takeoff 2 64

18 DJI Phantom 3 1.216 Landing 2 62

19 DJI Phantom 3 1.216 Hover 2 69

20 DJI Phantom 3 1.216 Ascending 2 64

21 DJI Phantom 3 1.216 Flyover 2 61

22 DJI Phantom 3 1.216 Flyover 2 63

23 DJI Phantom 3 1.216 Flyover 2 66

24 DJI Phantom 3 1.216 Flyover 5.4 56

25 DJI Phantom 3 1.216 Flyover 5.4 59

26 DJI Phantom 3 1.216 Flyover 5.4 57

27 DJI Phantom 3 1.216 Hover 2.2 62

28 DJI Phantom 3 1.216 Hover 5.1 56

29 DJI Phantom 3 1.216 Hover 2.2 67

30 DJI Phantom 3 1.216 Hover 3.6 67

31 DJI Matrice 200 4 Flyover 46 56

32 DJI Matrice 200 4 Flyover 46 45

33 DJI Matrice 200 4 Takeoff 30 50

34 DJI Matrice 200 4 Landing 30 52

35 DJI Matrice 200 4 Hover 1.2 56

36 Yuneec Typhoon 2 Flyover 46 48

37 Yuneec Typhoon 2 Flyover 46 44

38 Yuneec Typhoon 2 Takeoff 30 46

39 Yuneec Typhoon 2 Landing 30 52

40 Yuneec Typhoon 2 Hover 1.2 57

41 Gryphon GD28X 11.8 Takeoff 30 53

42 Gryphon GD28X 11.8 Landing 30 54

43 Gryphon GD28X 11.8 Maneuvering 30 57

44 Gryphon GD28X 11.8 Hover 1.2 60
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The calibration system included a BSWA 308 sound level meter, a Head and Torso System (HATS), a Norsonic 

front end type 336 microphone, an M-Audio M-Track 2x2M audio interface, and a laptop to play and record the 

sound stimuli through the system, a pair of AKG k501 headphones, and a Dragonfly headphone pre-amplifier. 

Firstly, the BSWA 308 meter was used to measure the calibration factor of the system. The meter was calibrated to a 

94 dB, 1 kHz sine wave, and when no significant drift from the previous calibration measurement was observed, was 

plugged into the output of the Norsonic microphone pre-amp. Then, a 94 dB, 1 kHz sine wave was played from the 

laptop, through the headphones, into the microphones situated in the HAT systems ears, and into the microphone 

pre-amp. The level of the sine wave was measured by the sound level meter, and the difference between this level 

and the initially measured 94 dB was the calibration factor to be applied to the UAV stimuli. The sounds were 

calibrated to this system, and re-recorded through this system, so that the analysis would be of the UAV stimuli 

presented to the participants using the exact system that they were to use during the subjective testing. This was so 

that any frequency colouration added by the headphones or other parts of the system would be accounted for. Due to 

the COVID-19 pandemic, and the restrictions of the lockdown, it was impossible to invite participants into the 

university to attend any subjective testing, so an online experiment was designed to allow participants to give 

response data from home.  

6.1.2. Online subjective testing 

Participants were recruited for both parts of this research via email to members of a group that have given the 

University of Salford’s Acoustics Research department consent to be contacted regarding upcoming research being 

facilitated by department. The group were sent the researcher’s contact information, as well as an information form 

detailing the reasoning and methodology behind the subjective experiments. Furthermore, colleagues shared the 

information via social media platforms, such as LinkedIn, to their peers. Interested peers then contacted the 

researcher via email, were given further detail of the subjective experiment, gave written consent to undertake the 

experiments if they wished to do so, and were given an identifying ID. Participants’ data was stored securely, and 

the data gathered was anonymised. A total of 49 participants successfully took part in both experiments. Of the 49 

participants, 34 were male (69.4%), and 15 were female (30.6%). 

An online testing interface was built, using the Web Audio Evaluation Toolkit (WAET) (Jillings, et al., 2015), to 

allow for participants to listen to the 44 UAV stimuli from home, and respond with values of perceived annoyance, 

loudness and pitch using sliders on the interface. The inclusion of perceived loudness and pitch as response values, 

as well as perceived annoyance, to investigate the correlation between the calculated sound quality metrics and 

perceived loudness and pitch, as well as the relationships between perceived loudness and pitch, and perceived 

annoyance. The part 1 online subjective test took about 20 minutes to complete, and all UAV stimuli were presented 

to the participants. When a UAV stimulus was presented, the participant could listen to the stimuli as many times as 

they wanted, by pressing on a slider. Once the participant had listened to the current UAV stimulus, they would 

proceed to rate the sound using the sliders to give values of perceived annoyance, loudness and pitch. If the 

participant was satisfied with their responses, they could progress to the next stimulus, or if they were not satisfied, 

could relisten to the sound and change their responses. For each participant, the order of the UAV stimuli presented 

was randomised by an internal function of the WAET.  

Before the participant response stage commenced, however, there were several stages to ensure that the UAV 

stimuli was being played back correctly and at a safe and appropriate level. Since the test was accessed by the 

participants online, each participant would be using a different system for the UAV stimuli playback. To mitigate 

potential risks to the participants regarding excessive noise exposure, the first pre-experiment stage was a safety 

precaution stage. The participants were presented with a practice page, which was similar to the design of the main 

participant response page. The practice page included the sliders for perceived annoyance, loudness and pitch, but 

had 5 different UAV stimuli that the participant could listen to, ranging in LAeq from the stimuli which was the 

quietest, to the stimuli which was the loudest. The participants were then asked to adjust the level of their playback 

system so that the UAV sound with the highest level was not at an uncomfortable level, but the UAV sound with the 

lowest level was still audible. The participants were then asked to not change the level of their playback system for 

the duration of the subjective experiment. Of course, this would introduce some stimuli level differences between 
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participants, which would have been controlled for by calibrating the stimuli and playback system prior to a 

laboratory based subjective test. Participants were also asked to adjust the levels of a series of tones so that they 

were perceived to be of equivalent level. This data was stored and could be assessed if a participant responds with 

particularly anomalous response values, as these could be due to hearing losses. A stage was included to make sure 

that the playback of the sound stimuli was in stereo. Participant IDs were given to each participant with an 

invitational email to the online experiment, which the participant would enter into the experiment interface prior to 

commencing the experiment. 49 participants agreed to participate and complete the online experiment, and consent 

was given to take part in the experiment by the participants using tick boxes, which were required to be checked 

before the test commencing.  

6.1.3. Analysis  

For the first subjective test, the analysis was split into 3 key stages. The first stage was an initial, simple analysis of 

the response data, which was gathered from the online subjective testing, and the calculated sound quality metrics of 

the UAV sound stimuli. The subjective response data and objective sound quality metrics were assessed for 

correlation using simple linear regression. Values of loudness, sharpness, roughness, tonality, fluctuation strength 

and impulsiveness were calculated using the HEAD Acoustics ArtemiS SUITE 12.5 software. Loudness was 

calculated following the DIN 45631/A1 standard. Sharpness was calculated following the Aures model, due to the 

observably large variance in the loudness of the stimuli (Aures, 1984). Tonality was also calculated following 

Aures’ model (Aures, 1984). Roughness, fluctuation strength and impulsiveness were calculated following the 

methods derived by Sottek (Sottek, 1993) (Sottek, et al., 1995). Furthermore, to compare the suitability between 

metrics quantifying loudness, the LAeq,4s and PNL values for each UAV stimuli were calculated using MATLAB. 

These metrics were chosen following the literature review and perception-influenced engineering review sections of 

this thesis, sections 2 & 3. The value that is exceeded for 5% of the stimuli time interval, or the 5th percentile, is 

commonly used in psychoacoustic calculations of objective metrics, to mitigate the effect of noise in stimuli. 

Furthermore, the first 0.5 s of each stimulus was omitted, as to remove any transient effects introduced by editing 

and cropping the UAV stimuli files (Torija, et al., 2021). The calculated 5th percentile sound quality metrics values 

were used in the linear regression analysis, which was implemented using IBM SPSS statistics software, which 

efficiently carries out statistical analysis calculations and generates statistical plots. The simple linear regression was 

carried out to evaluate the statistical significance of the sound quality metrics. This regression creates an equation 

that describes the correlation between the sound quality metrics and the gathered responses of perceived annoyance, 

loudness and pitch from the subjective testing. The general equation for the regression is described in Equation 60. 

𝑌𝑖 = 𝛾0 + 𝛾1𝑋1𝑖 + ⋯+ 𝛾𝑛𝑋𝑛𝑖 + 𝑒𝑖 (60) 

𝑌𝑖 is the average perceived annoyance of sound 𝑖, 𝛾0 is the y-axis intercept of the model, 𝛾𝑛 is the correlation 

coefficient that pairs with 𝑋𝑛𝑖, the 𝑛-th sound quality metric 5th percentile value of sound 𝑖, and 𝑒𝑖, the residual error. 

To choose the most statistically significant sound quality metrics to be included in the regression model, a 

backwards stepwise method was implemented. Backwards stepwise regression determines which variables to 

include in a model by first including all variables in the model, and then removing the metric that has the smallest 

reduction in R2 value, or the most statistically insignificant variable. This process was repeated until no variables 

could be removed without a significant reduction in R2. The 2nd of the analysis was an initial investigation into the 

effects of distance on the perceived annoyance, loudness and pitch for the UAV stimuli performing flyover 

operations. A total of 18 of the UAV stimuli were of flyover operations at distances varying from 2 metres to 60 

metres. The intrusiveness of UAVs will no doubt be a key factor in the acceptance of UAV as a viable form of 

delivery, as well as other services. If the relationships between operational distance and perceived annoyance, 

loudness and pitch can be understood, then these relationships can be used to determine acceptable situations where 

UAV can operate effectively while also mitigating any potentially negative effects of their presence as a sound 

source.  

Stage 3 of the analysis consisted of a multilevel linear regression analysis, to identify the significance of subject-

dependent responses of perceived annoyance. Multilevel linear regression has been used previously to investigate 

the factors contributing to annoyance for rotorcraft and small UAV, and has found to be a useful tool in discovering 
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key variables (Gwak, et al., 2020) (Boucher, et al., 2020). Multilevel linear regression is a method that integrates no 

pooling and complete pooling of data between subjects. No pooling would mean that a regression analysis for each 

subject’s response data would be built, meaning that a regression relationship would be described for each subject. 

Complete pooling suggests an aggregation of all response data, so a regression analysis would build a correlation 

between the independent data and the response data for the whole subject group. This multilevel regression groups 

by subject, therefore assuming a partial pooling of the subject data and a normal distribution across subjects of 

regression. It is first useful to determine whether a multilevel regression model is appropriate for understanding any 

grouping effects that may be causing variance in the response data. This was done by using a very simple, fixed 

intercept model with no predictor variables to understand the effect of clustered data on the dependent variable by 

assessing the intraclass correlation coefficient (ICC), which is a ratio of the variance of the subject-dependent 

intercept estimates from the simple model, and the sum of this variance with the variance of the fixed intercept value 

estimated by the model. The model is described by Equations 61 and 62: 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝑒𝑖𝑗 (61) 

𝛽0𝑗 = 𝛾00 + 𝑢0𝑗 (62) 

Where 𝑌𝑖𝑗  is the perceived annoyance of sound 𝑖 from participant 𝑗, 𝛽0𝑗 is the sum of 𝛾00, the overall mean intercept 

for all subjects, and 𝑢0𝑗, the subject-dependent intercept offset. 𝑒𝑖𝑗 is the residual error per subject. From this, 

estimates of the variance of subject-dependent intercept values and the estimate of variance of the fixed intercept 

value can be used to calculate the ICC. If the ICC calculation yields a statistically significant result, then it can be 

assumed that clustering effects in the model contribute to the value of the dependent variable, and a more detailed 

multilevel model should be introduced. The next stage is to introduce predictor variables into the mixed model. A 

multilevel regression model, with a variable intercept per participant but fixed slopes of sound quality metrics, has a 

general equation which is described by Equation 63: 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛾10𝑋1𝑖 + ⋯+ 𝛾𝑛0𝑋𝑛𝑖 + 𝑒𝑖𝑗 (63) 

𝛾𝑛0, which does not vary per subject, is the regression coefficient of the 𝑛-th sound quality metric 5th percentile 

value of sound 𝑖. Furthermore, introducing subject-dependent regression slope coefficients for each sound quality 

metric can reveal more information about the variance between how participants perceive these metrics, but 

previous literature has found that introducing subject-dependent slopes for this style of sound quality metric analysis 

yielded little improvement to model accuracy when compared to the increase in accuracy introduced by including 

subject-dependent intercepts (Boucher, et al., 2020). Therefore, a subject-dependent slope and intercept model was 

omitted from this analysis. Metrics were removed from this model to investigate the reduction in 𝑅2 between the 

model’s predicted values of annoyance and the measured response values, to determine the significance of each 

metric as predictor variables.  

6.2. Results 

6.2.1. Descriptive statistics of response data 

It has previously been shown that in research where participants are asked to subjectively assess sound stimuli 

during an experiment, a large amount of variability can be observed in response data (Torija & Flindell, 2015). 

Aside from this, the research methodology involved participants using the testing interface from home with their 

own playback equipment due to the COVID-19 pandemic, which may have introduced a greater degree of variability 

than if the experiment was carried out in laboratory conditions as initially planned. Therefore, it is deemed 

appropriate to carry out a statistical analysis of the response data, to ascertain the degree of variability which may 

have been introduced by the adopted experimental methodology, and to deduce whether the data collected fulfils the 

requirements for the subsequent analyses. To assess this, the non-parametric statistical value Kendall’s coefficient of 

concordance (Kendall’s W) was employed, giving an indication of the agreement between participants of how they 



Nicholls Investigating annoyance of UAV noise 

 

Masters by Research Thesis 

Page 39 of 60 

rated each sound stimuli for perceived annoyance, loudness and pitch. Kendall’s W is calculated using the following 

equations. 

𝑅 = ∑(𝑅𝑖 − �̅�)2

𝑘

𝑖=1

(64) 

𝑊 =
12𝑅

𝑚2(𝑘3 − 𝑘)
(65) 

Where 𝑅𝑖 is the sum of the ratings given for subject 𝑖, 𝑘 is the total number of subjects, 𝑗 is the current rater, and 𝑚 

is the total number of raters. �̅� is the mean of all values of 𝑅𝑖. A value of 𝑊 of 1 indicates the participants have been 

unanimous in their rating of each subject, and a value of 0 indicates no agreement between participants. Table 4 

shows the calculated values of Kendall’s W for the response values gathered from the participants. Perceived 

annoyance and loudness showed strong agreement between participants, with Kendall’s W values of greater than 

0.6. Perceived pitch showed statistically significant agreement, although not to the same magnitude as perceived 

annoyance and loudness. These values indicate that the response values gathered from the participants have 

appropriate variance necessary to continue with the subsequent analyses.  

Table 4: Kendall's W values calculated for the response data 

 

6.2.2. Correlation analysis 

A simple correlation analysis looked at regression relationships between the calculated sound quality metrics and the 

response data gathered during online subjective test 1. These results were presented in the proceedings of Inter-

Noise 2021 (Nicholls & Torija, 2021). Firstly, the sound quality metrics and dependent variables (responses of 

perceived annoyance, loudness and pitch) were regressed against each other to illustrate any obvious correlations 

between variables, and the correlation coefficients are presented in Table 5. Some of the sound quality metrics yield 

a strong correlation with the response values given by the test participants. For perceived annoyance, the most 

significant correlations were those with LAeq,4s, PNL, loudness, sharpness and fluctuation strength, indicating that 

these sound quality metrics may be good candidates for predicting perceived annoyance in a more developed 

regression model. Furthermore, perceived annoyance also correlated strongly with perceived loudness and perceived 

pitch. This result would suggest that participants thought that the loudness and frequency content relating to pitch 

were significant factors influencing annoyance. Perceived loudness correlated strongly with LAeq,4s, PNL, loudness, 

sharpness and fluctuation strength, meaning that these metrics could aid in controlling the perceived loudness of 

UAV noise. Perceived pitch correlated strongly with PNL, loudness, sharpness, tonality, roughness and 

impulsiveness, meaning these metrics may be useful in quantifying how the frequency content of UAV noise could 

be manipulated to reduce perceived annoyance. 

When comparing the metrics quantifying the sensation of loudness, those being LAeq,4s, PNL and loudness, it can be 

seen in Table 5 that the strongest predictor for perceived annoyance and perceived loudness is PNL, followed by 

loudness, and then LAeq,4s. Furthermore, LAeq,4s did not yield a significant correlation with perceived pitch, whereas 

PNL and loudness did. These results suggest that LAeq may not be the most suitable metric for quantifying the 

sensation of loudness, and therefore PNL was carried through to the next stages of analysis for part 1. Using these 

metrics, simple linear regression models were built to predict response values of perceived annoyance, loudness and 

pitch using a backward stepwise method to remove underperforming metrics. The first iteration of the model 

included all metrics, and was correlated to perceived annoyance with an adjusted 𝑅2 of 0.935. The final iteration of 

this model included PNL, sharpness and impulsiveness. The annoyance model statistics of each iteration during the 

backwards stepwise method can be seen in Table 6. The predictor variables for this model, PNL, sharpness and 

impulsiveness had standardised coefficients of 0.696, 0.289 and -0.088, respectively.  

Kendall's W 0.60 0.64 0.41
Significance <0.001 <0.001 <0.001

Stastical Value
Perceived 

Annoyance 

Perceived 

Loudness
Perceived Pitch 
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Table 5: Correlation coefficients between 5th percentile sound quality metrics and response values 

 

Then, a simple regression model was built to correlate loudness with the sound quality metrics. It was found that 

PNL and fluctuation strength were strong predictor metrics for perceived loudness, which in turn can be seen to 

correlate strongly with perceived annoyance. The iteration statistics for the simple loudness model can be seen in 

Table 8. The final iteration of the loudness model, including PNL and fluctuation strength as predictor variables, had 

an adjusted 𝑅2 of 0.973. The chosen predictor variables for this model are both measures of sound magnitude 

phenomena, and had standardised regression coefficients of 0.946 and 0.094, respectively. This result highlights the 

fact that PNL plays a significant role in quantifying the perceived loudness of UAV noise.  

Finally, a simple regression model was built to correlate perceived pitch with the sound quality metrics. The final 

iteration of this model included sharpness, roughness and tonality, which are all metrics that represent frequency-

based phenomena. This model had a final adjusted 𝑅2 of 0.585. The iteration statistics for the simple pitch model 

can be seen in Table 10. Sharpness, tonality and roughness had standardised regression coefficients of 0.563, 0.320 

and -0.452, respectively. This shows that these metrics all play a similarly significant role in quantifying the 

perceived pitch experienced by the subjective test participants.  

 

Table 6: Simple annoyance model iteration statistics 

 

1 0.944 0.935 0.0429 0.944
2 0.943 0.935 0.0429 -0.001 Tonality

3 0.941 0.935 0.0429 -0.002
Fluctuation 

Strength

4 0.939 0.935 0.0432 -0.002 Roughness
PNL, Sharpness, 

Impulsiveness

Final Metrics IncludedR Square
Metric 

Removed

Model 

Iteration

Adjusted R 

Square

Std. Error of 

the Estimate

R Square 

Change



Nicholls Investigating annoyance of UAV noise 

 

Masters by Research Thesis 

Page 41 of 60 

Table 7: Final simple annoyance model iteration predictor coefficients 

 

Table 8: Simple loudness model iteration statistics 

 

Table 9: Final simple loudness model iteration predictor coefficients 

 

Table 10: Simple pitch model iteration statistics 

 

B Std. Error Beta t Sig.

(Constant) -0.818 0.100 -8.194 <0.001

PNL 0.014 0.002 0.696 8.719 <0.001

Sharpness 0.065 0.018 0.289 3.631 0.001

Impulsiveness -0.181 0.081 -0.088 -2.240 0.031

Unstandardized 

CoefficientsModel 

Iteration
Predictor

Standardized Coefficients

4

1 0.976 0.973 0.0429 0.976

2 0.976 0.973 0.0429 0.000 Impulsiveness

3 0.976 0.974 0.0429 0.000 Tonality

4 0.976 0.974 0.0432 0.000 Roughness

5 0.974 0.973 0.0299 -0.001 Sharpness PNL, Fluctuation Strength

Final Metrics IncludedR Squared
Model 

Iteration

Adjusted R 

Squared

Std. Error of 

the Estimate

R Square 

Change

Metric 

Removed

B Std. Error Beta t Sig.

(Constant) -1.354 0.049 -27.688 <0.001

PNL 0.021 0.001 0.946 34.678 <0.001

Fluctuation 

Strength 
0.612 0.177 0.094 3.452 0.001

5

Model 

Iteration
Predictor

Unstandardized 

Coefficients
Standardized Coefficients

1 0.668 0.615 0.0864 0.668
2 0.655 0.610 0.0870 -0.013 PNL

3 0.636 0.598 0.0883 -0.020
Fluctuation 

Strength

4 0.614 0.585 0.0897 -0.022 Impulsiveness
Sharpness, Tonality, 

Roughness

Model
Adjusted R 

Square

Std. Error of 

the Estimate

R Square 

Change
Final Metrics IncludedR Square Metric Removed
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Table 11: Final simple pitch model iteration predictor statistics 

 

6.2.3. Multilevel linear model analysis 

A simple, fixed intercept model was built to test whether any variance in the response values of perceived 

annoyance is controlled by grouping or clustering effects within the data. This simple model is created following 

Equations 61 and 62. The estimated fixed intercept for the simple model is shown in Table 12, and is the mean 

average of all responses of perceived annoyance for each individual UAV stimuli. Using Equation 57, and the values 

given in Table 12, the ICC was calculated to be 0.185, which means that 18.5% of the variance in perceived 

annoyance is explained by the individual participant, leaving the rest of the variance to be explained by other 

factors, such as the calculated sound quality metrics related to each stimulus. Since the UAV stimuli vary largely in 

each sound quality metrics, this is to be expected, and gives a good case for using a more complex multilevel model 

to investigate any clustering or grouping effects within the data. The next multilevel model built included the sound 

quality metrics, with varying y-axis intercepts but fixed regression slopes across participants.  

Table 12: Estimates of fixed and covariance parameters for fixed intercept model with no predictor variables 

 

Table 13 shows the fixed effect statistics, or the statistics of the sound quality metrics used in the mixed model, with 

fixed regression slopes but variable intercepts per participant. PNL, sharpness, fluctuation strength, roughness and 

impulsiveness all were deemed statistically significant predictors in the fixed slope, variable intercept model. 

Previously, in the simple linear model of perceived annoyance, only PNL, sharpness and impulsiveness were 

deemed statistically significant predictors for perceived annoyance. Fluctuation strength and roughness have now 

become more significant after using variable y-axis intercepts per participant, which could mean that relationships 

between these metrics and perceived annoyance vary between participants. The metrics roughness and 

impulsiveness have negative estimates, meaning that for roughness, as the metric increases by a value of 1 asper, the 

predicted perceived annoyance decreases by 0.199. Similarly, as impulsiveness increases by a value of 1, the 

predicted perceived annoyance from the model decreases by 0.121. Figure 19 shows the reduction in 𝑅2 value per 

each metric removed from the mixed model with subject-dependent y-axis intercepts, but fixed regression slopes. 

PNL shows to have the largest reduction in 𝑅2 value when removed from the model, followed by sharpness at a 

much smaller magnitude. Fluctuation strength, tonality, roughness and impulsiveness reduce the 𝑅2 value of the 

model by a negligible amount when these metrics are removed while PNL is included.  

B Std. Error Beta t Sig.

(Constant) 0.129 0.074 1.741 0.089

Sharpness 0.105 0.019 0.563 5.382 <0.001

Tonality 0.470 0.150 0.320 3.135 0.003

Roughness -1.414 0.316 -0.452 -4.474 <0.001

4

Model Predictor

Unstandardized 

Coefficients
Standardized Coefficients

Lower 

Bound

Upper 

Bound

Fixed Intercept 0.6088 0.0162 <0.001 0.0576 0.0641

Residual 0.0514 0.0016 <0.001 0.0484 0.0546

Intercept 0.0117 0.0026 <0.001 0.0075 0.0182

Estimate Std. Error Sig.

95% Confidence 

Interval

Covariance 

Parameters
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Table 13: Estimates of fixed effects for multilevel model with subject-dependent intercepts and fixed 

regression slopes 

 

 

Figure 19: Reduction in R2 value per metric removed for mixed model using variable intercepts and fixed 

regression slopes per participant 

6.2.4. Perceived responses as a function of distance  

The UAV stimuli which represented the UAV performing flyover operations were used to assess how operational 

distance could be deemed to be a significant factor in introducing UAV into logistical services. The average values 

of perceived annoyance, loudness and pitch were taken from the subjective experiment and plotted against 

operational distance. Perceived annoyance yielded a very strong logarithmic correlation with operational distance, 

with an 𝑅2 value of 0.7408, as did perceived loudness, with an 𝑅2 value of 0.8158. Although perceived pitch does 

yield a negative, logarithmic correlation with operational distance, larger residual distances from the trendline can be 

observed when compared to the plots of perceived annoyance and perceived loudness against distance. As 

operational distance increases, you would expect a decrease in sharpness to come into play as air absorption effects 

occur, which mainly attenuates higher frequency content. Considering the typical frequency content of UAV noise 

being high frequency, and the number of UAV that could potentially be operating at a given time in an urban 

environment, it would be crucial to use operational distance as a controlling factor to mitigate any adverse effects on 

public health.  

Lower 

Bound

Upper 

Bound

Intercept -0.877 0.060 1922 -14.641 <0.001 -0.995 -0.760

PNL 0.014 0.001 2101 15.780 <0.001 0.013 0.016

Sharpness 0.060 0.010 2101 6.183 <0.001 0.041 0.080

Fluctuation 

strength
0.275 0.134 2101 2.055 0.040 0.013 0.537

Tonality 0.077 0.040 2101 1.908 0.056 -0.002 0.156

Roughness -0.199 0.083 2101 -2.400 0.016 -0.362 -0.036

Impulsiveness -0.121 0.047 2101 -2.588 0.010 -0.212 -0.029

Sig.

95% Confidence 

Interval
Std. ErrorParameter Estimate df t
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Figure 20: Plots of average perceived annoyance, loudness and pitch against distance for UAV stimuli 

performing flyover operations 
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7. PART 2 – IMPACT OF UAV NOISE ON URBAN SOUNDSCAPE PERCEPTION 

7.1. Methodology 

The second part of this research aims to quantify the change in perception of urban soundscapes when UAV noise 

stimuli are introduced, and relate the key characteristics of UAV noise which contributes to this change in 

perception with the mechanical functions typically employed by these vehicles for flight. The methodology for the 

second part of this research adopts a similar approach as the first. An online subjective experiment was carried out, 

to gather response data from participants assessing UAV stimuli in the context of various urban soundscapes. A 

smaller group of the UAV stimuli from the first part of the research were selected that varied in operation, UAV size 

and operational distance. These stimuli were then introduced into urban soundscapes which were recorded in 

urbanised areas. The effect each soundscape had on the perception of the UAV stimuli was quantified by calculation 

critical-band rate specific sound quality metrics for each UAV and soundscape stimulus, and then calculating the 

difference in each specific sound quality metric imposed by the introduction of the UAV into the soundscape. The 

specific sound quality metric differences were then used in principal component analysis (PCA) to find key 

bandwidths for each sound quality metric. The principal components found using PCA were then used in a 

regression analysis to give insight into how these bandwidths could potentially control human response.  

7.1.1. UAV and soundscape stimuli 

20 UAV stimuli were chosen from the previously gathered sound used in the first part of the research. The stimuli 

chosen to cover the various operations such as flyovers, take-offs, hovering, landing, and mid-flight manoeuvres at 

distances from 1.2 m to 60 m. 6 soundscape environments were recorded in urban areas including city squares, canal 

paths, parks and pedestrianised streets, each being 10 s long. The 20 UAV stimuli were then combined with these 6 

soundscape recordings to create 120 soundscape stimuli, each being a combination of a UAV and soundscape. The 

20 UAV and 6 soundscape stimuli used are presented in Tables 14 and 15. The soundscape stimuli were also 

calibrated as described in Section 6.1.1, to maintain appropriate relative levels between the soundscapes during 

playback in the online subjective experiment.  

The differing soundscape environments will be assessed for their ability to potentially mask unwanted spectral 

characteristics of UAV which could contribute to negative human response. UAV typically have complicated 

spectral content, created by fundamental frequencies of their sets of rotors. This is shown in Figure 21. In busier, 

more populated areas, where noise from various sources is introduced, the spectral content of background noise is 

more complicated. Soundscape environment 3, for example, includes a busy pedestrianised area, which is dominated 

by pedestrians talking, and includes distant traffic and occasional noise from advertisements over PA systems. In 

comparison to soundscape environment 4, which captures a quiet city park with distant road traffic noise, 

soundscape environment 3 has the potential to mask more spectral content of UAV. This is illustrated in Figure 22, 

which shows how a UAV hovering at 40 m introduces an obvious spectral pattern into soundscape environment 4, 

whereas the same UAV does not create as significant a pattern in soundscape environment 3.  

Table 14: Environments used in soundscapes 

 

Environment Sound No. Environment Description

1 Canal scene with train noise

2 Harehills Ln, road traffic noise

3 Millenium Square, pedestrian noise and adverts

4 Park with distant road traffic noise

5 Peel Park, early morning

6 Market Str, very busy with pedestrians
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Table 15: UAV stimuli used in soundscapes 

 

 

 

Figure 21: Frequency spectra and spectrogram for the DJI Matrice 200 hovering at 1.2 m from microphone 

 

UAV Sound No. UAV Model UAV Weight (kg) UAV Operation UAV Distance (m)

1 DJI Inspire 2.85 Flyover 15

2 DJI Inspire 2.85 Flyover 7.5

3 DJI Inspire 2.85 Landing 7.5

4 DJI Inspire 2.85 Take-off 2

5 DJI Matrice 600 9.1 Hover 40

6 DJI Matrice 600 9.1 Flyover 40

7 DJI Mavic 0.743 Flyover 15

8 DJI Mavic 0.743 Flyover 30

9 DJI Mavic 0.743 Flyover 60

10 DJI Mavic 0.743 Manoeuvring 7.5

11 DJI Mavic 0.743 Take-off 7.5

12 DJI Matrice 200 4 Flyover 46

13 DJI Matrice 200 4 Flyover 46

14 DJI Matrice 200 4 Take-off 30

15 DJI Matrice 200 4 Landing 30

16 DJI Matrice 200 4 Hover 1.2

17 Gryphon GD28X 11.8 Take-off 30

18 Gryphon GD28X 11.8 Landing 30

19 Gryphon GD28X 11.8 Manoeuvring 30

20 Gryphon GD28X 11.8 Hover 1.2
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Figure 22: (Top) Spectrogram of Environment 3 without (left) and with (right) DJI Matrice 600 hovering at 

40 m from the microphone; (Bottom) Spectrogram of Environment 4 without (left) and with (right) DJI 

Matrice 600 hovering at 40 m from the microphone 

7.1.2. Online subjective experiment 

For the second online subjective experiment, a similar methodology was used as the first part of the research. 

Participants were asked to give response values of perceived annoyance, loudness, UAV dominance and soundscape 

pleasantness. These response metrics were rated using sliders. The loudness slider had extremes of “very quiet” and 

“very loud”, the annoyance slider had extremes of “not very annoying” and “very annoying”, and the drone 

dominance slider had extremes of “not very dominant” to “very dominant”. The pleasantness slider had extremes of 

“not very pleasant” to “very pleasant”. The participant could listen to each soundscape as many times as they 

required to make their decision on each response metric, and then continue to the next soundscape. The order of the 

soundscapes was randomised for each participant. The response values were saved anonymously on a numerical 

scale from 0 to 1, corresponding to the position of the slider placement for each response metric. The experiment 

took around 40 minutes in total, and participants had the option to take a 5-minute break halfway through the 

stimuli, to mitigate the effects of fatigue. The order of the soundscape stimuli was randomised for each test 

participant, and the participants could listen to the sounds as many times as required for them to make their choices.  
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7.1.3. Analysis 

Once the response values of perceived annoyance, loudness, UAV dominance and soundscape pleasantness were 

gathered through the online subjective test methodology, the analysis was undertaken using MATLAB. Similar to 

the first experiment, sound quality metrics were calculated using the HEAD Acoustics ArtemiS Suite for each 

soundscape stimuli including UAV noise, as well as the soundscapes by themselves. The sound quality metrics 

calculated were critical-band rate specific values of loudness, tonality, roughness, fluctuation strength, and 

impulsiveness. Having the metrics calculated for both the stimuli including the UAV noise and the soundscape 

environments by themselves meant that the difference in each specific sound quality metric values when a UAV 

stimulus is introduced could be calculated. This approach is summarised in Equation 66, below.  

∆𝑆𝑄𝑀𝑠,𝑒,𝑏 = 𝑆𝑄𝑀𝑠,𝑏 − 𝑆𝑄𝑀𝑒,𝑏 (66) 

Where 𝑆𝑄𝑀𝑠,𝑏 is one of the specific sound quality metrics for a soundscape (i.e., environment + drone), 𝑠, at 

critical-band rate, 𝑏, and 𝑆𝑄𝑀𝑒,𝑏 is the specific sound quality metric for the corresponding environment, 𝑒, used in 

that soundscape. From this, an individual dataset was built for differences of each individual specific sound quality 

metrics. To assess the significance of each sound quality metric dataset in relation to the response metrics gathered 

during the online experiment, a principal component analysis was undertaken. This meant that the large datasets of 

differences in each sound quality metric for each soundscape stimuli across the critical-bands could be interrogated 

for key critical-bands that explain most of the variance in each dataset. The first 3 principal components were found 

for each dataset, and the scores which relate the specific sound quality metric values to the principal component. 

Then, the principal components of each individual sound quality metric dataset were used in linear regression 

against the response values gathered during the online subjective testing. From this, it can be seen which critical-

band rates, as illustrated by the principal component analysis, are potential predictors of perception of UAV stimuli 

in urban soundscapes, and which critical-band rates would be the most suitable to mask using a soundscape 

environment.  

7.2. Results  

7.2.1. Linear regression of SQM datasets against response values 

The sound quality metric difference datasets were used in linear regression against the response values of perceived 

annoyance, loudness, UAV dominance and soundscape pleasantness. Furthermore, the broadband LAeq,4s difference 

values were included in the linear regression analysis, to assess the performance of LAeq,4s as a predictor variable for 

the above response values. A summary of the results can be seen in Table 16. It can be seen that the LAeq,4s dataset 

yielded the largest adjusted R2 values when correlated with the response metrics perceived annoyance, loudness, and 

soundscape pleasantness, and the second highest value when regressed against UAV dominance (only surpassed 

marginally by loudness). However, we know from the first part of this research that the perceived effects of 

frequency content correlate significantly with the perception of UAV noise. Therefore, it is deemed appropriate to 

assess the effects of the loudness of discrete frequency ranges (such as critical band-rates, or in relation to the Bark 

scale), which is impossible by simply using the broadband LAeq,4s metric. Consequently, the specific loudness metric 

was used in the subsequent PCA analysis to investigate how specific frequency ranges impact the response metrics.  

Aside from the LAeq,4s dataset, the difference in loudness introduced by the presence of a UAV on a soundscape 

caused the strongest reaction in the subjective test participants. Perceived annoyance, loudness and UAV dominance 

correlated to the loudness dataset with adjusted R2 values of 0.77, 0.74 and 0.75, respectively, with a smaller value 

of 0.32 for the correlation with soundscape pleasantness. Roughness yielded a significant adjusted R2 value when 

regressed against UAV dominance, but less significant values when regressed against 0.38, 0.32 and 0.096. When 

regressed against perceived annoyance, fluctuation strength yielded an adjusted R2 of 0.44, but showed less 

significant results with the other response values, however. Impulsiveness had its highest adjusted R2 value when 

regressed against UAV dominance, but did not correlate as strongly with the other response values. Tonality did not 

perform well when correlated against any of the response values given by the participants.  
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Table 16: Adjusted R2 values for regression models between SQM datasets and response values 

 

7.2.2. Principal component analysis 

The principal component analysis of each specific sound quality metric dataset revealed critical-band, or frequency 

ranges for each sound quality metric that had strong influence on the principal components of each sound quality 

metric dataset. The results in this section have previously been presented by the author at Inter-Noise 2022 

(Nicholls, et al., 2022). The values of the scores have been normalised (�̃�𝑃𝐶𝑖,𝑛
) for the purpose of data interpretation, 

using the following equation, where |𝑡𝑃𝐶𝑖,𝑛
| is the absolute magnitude of the score for critical-band rate 𝑖, within 

principal component 𝑛, and 𝜂𝑛 is the variance explained by principal component 𝑛.  

�̃�𝑃𝐶𝑖,𝑛
= |𝑡𝑃𝐶𝑖,𝑛

| × 𝜂𝑛 (67) 

The first dataset interrogated was the loudness dataset. The first principal component found for the loudness dataset 

explained 84.1% of the variance in the data. This principal component included scores at all critical bands which 

were of increased magnitude when compared to principal components from later datasets. However, an increase in 

the principal component scores relating to the critical bands between roughly 2 kHz and 6.4 kHz can be observed, as 

illustrated in Figure 23. The second principal components yielded much different scores when compared to the first. 

The second principal component has slightly stronger scores associated with the critical bands at 200 to 300 Hz, and 

6.4 to 7.7 kHz. The second principal component explained only 6.5% of the variance in the loudness dataset. The 

third principal component for loudness explained 3.4% of the variance of the dataset, with scores that show less of a 

clear pattern when compared to the first two principal components. The scores for the principal components found 

for the roughness dataset can been in Figure 24. The first principal component explained 70.3% of the variance in 

SQM Dataset
Perceived 

Annoyance

Perceived 

Loudness

UAV 

Dominance

Soundscape 

Pleasantness

LAeq,4s 0.84 0.88 0.71 0.42

Specific 

Loudness
0.77 0.74 0.75 0.32

Specific 

Roughness
0.38 0.32 0.44 0.096

Specific 

Fluctuation 

Strength

0.44 0.34 0.42 0.033

Specific 

Impulsiveness
0.28 0.27 0.37 0.23

Specific 

Tonality
0.13 0.094 0.19 0.21
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the dataset, and can be seen to have a prominent score increase relating to the critical bands between 1.3 kHz and 5.3 

kHz. The second principal component of the sharpness dataset has a similar region of increased scores, but the 

critical-band rate range is lower, showing an increase in the scores in the frequency range between 400 Hz and 910 

Hz, as well as at 3.7 kHz. The second principal explained 13.1% of the variance in the roughness dataset. Finally, 

the third principal component of the roughness dataset explained 6.1% of the variance in the dataset. This principal 

component can be seen to have high scores associated with the 100 and 200 Hz critical bands. 

The scores for the principal components of the fluctuation strength dataset are presented in Figure 25. The first 

principal component of the fluctuation strength dataset can be seen to be dominated by the scores associated with the 

critical-band rates between 200 and 400 Hz, and slight increases in scores between 2.7 to 4.4 kHz. The first principal 

component explains 58.2 % of the variance in the fluctuation strength dataset, an observably lower value compared 

to the first principal components of the previous two sound quality metric datasets. The second principal component 

explains 28% of the variance in the fluctuation strength dataset, and has two controlling critical-band rate regions. 

The first region is related to the frequency range between 300 Hz to 510 Hz. The second region relates to the 

frequency range between 3.2 kHz and 5.3 kHz. The third principal component for the dataset explained only 4.9% of 

the variance in the dataset and did not show any significant scores. Impulsiveness yielded principal component 

scores as illustrated in Figure 26, with larger scores being achieved in two separate frequency ranges. The first range 

is between critical-band rates with centre frequencies of 2.3 kHz and 3.2 kHz, and the second range being between 

critical-band rates with centre frequencies of 6.4 kHz and 9.4 kHz. This principal component explains 70.8% of the 

variance in the impulsiveness dataset. The second principal component for the impulsiveness dataset explained 8.7% 

of the variance and had significant scores relating to critical-band rates with centre frequencies from 2.3 kHz to 2.7 

kHz, and 3.7 kHz to 6.4 kHz. The third principal component calculated explains 6.5% of the variance in the 

impulsiveness dataset. The critical-band rate with centre frequency 7.7 kHz had a high score for this principal 

component. The first principal component for the tonality dataset yielded scores with slightly increased values for 

critical-band rates with centre frequencies from 200 Hz to 1 kHz, and 6.4 kHz to 7.7 kHzj. The second principal 

component for this dataset had a very high score for the critical-band rate with centre frequency 7.7 kHz. The third 

principal component had very large scores for the critical-band rates with centre frequencies between 2 kHz and 

3.15 kHz. The principal components of the tonality dataset explained 54.5%, 19.7%, and 11.79% of the variance, 

respectively. Table 17 below summarises the results of the principal component analysis.  

Table 17: Summary of results from PCA 

 

Specific SQM
Explained 

variance (%) 

Frequency 

Range (Hz)

Explained 

variance (%) 

Frequency 

Range (Hz)

Explained 

variance (%) 

Frequency 

Range (Hz)

Specific 

Loudness
84.1 Broadband 6.5

200 - 300, 

6.4k - 7.7k 
3.4 94

Specific 

Roughness
70.3 1.3k - 5.3k 13.1

400 - 910,       

3.7k
6.1 100 - 200 89.5

Specific 

Fluctuation 

Strength

58.2
200 - 400, 

2.7k - 4.4k 
28

300 - 510, 

3.2k - 5.3k 
4.9 91.1

Specific 

Impulsiveness
70.8

2.3k - 3.2k, 

6.4k - 9.4k 
8.7

2.3k - 2.7k, 

3.7k - 6.4k 
6.5 7.7k 86

Specific 

Tonality
54.5

200 - 1k,   

6.4k - 7.7k 
19.6

100 - 300,  

3.7k - 7.7k 
11.7 2k - 3.2k 85.8

PC1 PC2 PC3

Total Explained 

Variance
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Figure 23: Scores of ΔSQM (Loudness) per critical-band rate for each principal component 

 

Figure 24: Scores of ΔSQM (Roughness) per critical-band rate for each principal component 
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Figure 25: Scores of ΔSQM (Fluctuation Strength) per critical-band rate for each principal component 

 

Figure 26: Scores of ΔSQM (Impulsiveness) at each critical-band rate for each principal component 
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Figure 27: Scores of ΔSQM (Tonality) at each critical-band rate for each principal component  
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8. DISCUSSION 

The results of part 1 of the research are presented in Section 6.2. Initial correlation analysis showed that participants’ 

response values of perceived annoyance correlated strongly with their responses for perceived loudness and pitch. 

This would suggest that perceived loudness and pitch are key factors in the perception of annoyance for UAV noise, 

and means of assessing and mitigating the amplitude and frequency phenomena relating to these perceived effects 

should be developed. For this to be possible, however, it must be understood which phenomena are causing 

increases in these response metrics. For perceived loudness, the metrics PNL, loudness, sharpness and fluctuation 

strength were found to have significant correlation statistics. PNL had a larger R2 value when correlated with 

perceived loudness compared to the sound quality metric loudness, and hence was chosen instead of loudness in the 

subsequent regression models to quantify the amplitude phenomena related to perceived loudness. The PNL metric, 

as developed by Kryter (Kryter, 1960), was designed to assess jet engine noise, and seems to be quantifying the 

spectral and amplitude characteristics associated with the UAV stimuli effectively. The strong correlation between 

perceived loudness and sharpness strengthens the case that the perception of both amplitude and frequency 

phenomena are related, and should both be treated appropriately when trying to mitigate perceived annoyance.  

The correlations between perceived annoyance and the calculated sound quality metrics are similar to those between 

perceived loudness and the sound quality metrics, whereas perceived pitch does introduce some deviations. 

Perceived pitch yields larger adjusted R2 values with metrics that quantify frequency phenomena, those being 

tonality and roughness, as well as impulsiveness. Interestingly, as roughness increases, perceived pitch decreases, 

which suggests that when more pronounced and less complex tonal content is present in UAV noise, the perceived 

pitch is higher than when UAV stimuli has a more complex tonal structure, as described in previous research (Torija 

& Clark, 2021). Similarly, as impulsiveness increases, perceived pitch is predicted to decrease. Literature has 

previously been inconclusive on whether impulsiveness is a strong predictor variable for perceived annoyance. In 

cases in literature that have deemed impulsiveness a significant indicator for perceived annoyance, the main source 

of impulsiveness is accredited to the main rotor blade-vortex interaction (BVI). This is also known as “blade slap”, 

and the effects of this phenomena are more prevalent in larger rotorcraft (Mestre, et al., 2017). For UAV, although 

related to large rotorcraft by using rotor blades for elevation and propulsion, the scale of the rotor blades may not 

create the same “blade slap” effect as larger rotorcraft, therefore impulsiveness may need further investigation into 

how applicable it is as a predictor for UAV noise annoyance. 

The results of the backwards stepwise regression model analysis show that for perceived annoyance PNL, sharpness 

and impulsiveness were the highest performing predictor metrics. Table 6 shows that the reduction in the R2 per 

metric removed during the stepwise elimination routine was no larger than 0.002, with the final adjusted R2- value 

being 0.935, showing a highly significant relationship between this model and perceived annoyance. When 

analysing the model, it can be seen in Table 7 that PNL (a metric quantifying the perception of loudness) has the 

highest standardised beta coefficient of 0.696, which is much greater in magnitude than the standardised coefficient 

of impulsiveness, being -0.088. So, although impulsiveness was chosen to be included in this regression model, its 

significance is still unclear, and further investigation should be carried out, as stated above. For the regression model 

predicting perceived loudness, it was found that PNL and fluctuation strength held the most significance following 

the backward stepwise routine. These metrics quantify the perception of loudness, and the inclusion of fluctuation 

strength may be quantifying the perceived effects of the interactions between rotor blade fundamental frequencies 

(even during stationary hover, rotor blades operate at varying RPM, which introduces beating effects), but further 

research should be carried out to investigate this result. PNL is the main contributor to the prediction of perceived 

loudness within this model, with a standardised beta coefficient of 0.946, compared to that of fluctuation strength, 

0.094. Although impulsiveness is a metric which is used to quantify an amplitude phenomenon, it was removed 

during the first instance of the backward stepwise regression routine.  

The perceived pitch model concluded the backwards stepwise regression routine with the metrics sharpness, tonality 

and roughness included, with the standardised beta coefficients all within a similar magnitude, as shown in Table 11. 

Roughness appears in this application to be accounting for complex spectral effects occurring due to the high-

frequency interactions of rotor-blades and their corresponding motors, which is supported by previous research 
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(Torija, et al., 2019). The adjusted R2 for this model gives a less profound correlation when compared to the 

perceived annoyance and loudness models however, with a value of 0.585 compared to those of 0.935 and 0.973, 

respectively. Although the adjusted R2 value for the perceived pitch model illustrates significance, the decrease in 

magnitude may have arisen from the ambiguity of the response value, and participant’s interpretation of what 

perceived pitch is meant to be describing. Pitch in a musical theory sense is referring to a relative quantity between 

musical notes, and therefore requires a reference to make pitch comparisons. Therefore, participants may have been 

constantly comparing the current UAV stimuli to the previous, introducing the potential for distortion in the 

response data. However, rephrasing the response value to something more objective, such as “high frequency 

content”, could be less intuitive to a participant group of scientific laypeople.  

The multilevel model with varying regression intercepts but fixed slopes revealed interesting relationships between 

the sound quality metrics and perceived annoyance. It was found that when the regression slopes between 

participants were allowed to vary, the sound quality metrics fluctuation strength and roughness were of a higher 

significance to the performance of the model when compared to the backward stepwise regression model, where 

they were removed before the final iteration. This suggests that the perception of the temporal and frequency 

phenomena these metrics are quantifying varies between test participants. Figure 19 shows that when PNL is 

removed from the fixed intercept, variable slope model, the largest reduction in R2 occurs, proving that the loudness 

of UAV noise holds the greatest significance for the subjective perception across participants.  

From the data presented in Figure 20, it is obvious that the operational distance of UAV will be paramount in 

mitigating the potential adverse effects of UAV noise on communities. The exponential decrease in perceived 

annoyance, loudness and pitch when increasing operational distance will be an extremely useful tool for the 

inception of UAV operations in urban areas, however environmental and logistical restraints could give rise to issues 

when solely relying upon operational distance as a mitigating factor. For delivery, for example, the very nature of 

the UAVs operation will be to manoeuvre to locations which are practical spaces for item delivery, and convenient 

for the end recipient. Previous research, however, has stated that the perceived annoyance of UAV noise does not 

vary significantly with operational distance (Christian & Cabell, 2017). In this research only one UAV type was 

assessed, as opposed to the various units analysed throughout this thesis, which could be the cause of the variation in 

the conclusions. The operational distances of UAV should be investigated using a highly controlled assessment 

methodology, as the implications could be significant for the adoption of these vehicles in urban infrastructure.  

The results of the part 2 of this research illustrated significant findings on the effectiveness of the calculated sound 

quality metrics to quantify the perceived change in urban soundscapes due to the introduction of UAV. Although the 

change in LAeq,4s was seen to correlate well with the response metrics as a broadband metric, it does not give any 

indication into whether a specific frequency range is controlling the correlation. The first part of the experiment 

showed that sharpness yielded greater correlation with perceived annoyance, loudness and pitch than LAeq,4s, which 

suggests that these response metrics are controlled by the level of higher frequency content more so than broadband 

frequency content. Therefore, due to the discrete nature of specific loudness, being discriminate between critical 

bands, a more accurate presentation of how specific frequency ranges are contribution to the broadband loudness, 

and how these frequency ranges impact the response metrics.  

Tonality was found to perform poorly when correlating with all perceived response metrics, as can be seen in Table 

16. It was initially expected that tonality would be of significance when predicting perceived annoyance for UAV 

noise, due to the dominance of harmonic tones in a typical UAV signature. This result is consistent with previous 

research, however (Gwak, et al., 2020), and may imply that either tonality is already being accounted for by 

loudness due to the tonal dominance of the UAV signatures, or that the tonality calculation used is not appropriately 

quantifying the perception of the tonal content of UAV noise.  

It can be seen that the effects of amplitude phenomena, particularly the overall level of the soundscape as quantified 

by specific loudness, influences the response values of perceived annoyance, loudness, UAV dominance highly (R2 

values of 0.77, 0.74 and 0.75, respectively), and to a lesser extent soundscape pleasantness. This is supported by 

previous research, where the calculated loudness of UAV stimuli was found to be the main factor contributing to 
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perceived annoyance (Gwak, et al., 2020). From the values of percentage variance explained for each of the 

principal components of the loudness dataset (84.1%, 6.5% and 3.4%), the first principal is explaining the most 

variance by a significant margin. The scores for this principal component suggest that the effect of loudness on 

perceived annoyance, loudness and drone dominance is largely broadband, and the whole frequency spectrum holds 

accountability for mitigating negative perception.  

The first principal component calculated for roughness (70.3% variance explained) showed significant scores for 

critical bands with centre frequencies between 1.3 kHz and 5.3 kHz. This mid to high frequency range has been 

previously related to the complex spectral fluctuations introduced into UAV signatures through micro-adjustments 

of the rotor blades controlled by the onboard flight computer system (Torija, et al., 2019). These micro adjustments 

are primarily to counteract adverse weather conditions during flight, and are essential to the successful operation of 

UAV (Alexander, et al., 2019). This result therefore suggests that roughness could be used to account for these 

interactions, typically being generated at harmonics of the blade passing frequencies (BPFs) of the rotors. The 

strongest correlation between specific roughness and the response values was with perceived UAV dominance, 

yielding an adjusted R2 values of 0.41. Although this value is smaller in comparison to the R2 values of specific 

loudness, it is still statistically significant, and shows that specific roughness could be quantifying the perception of 

how dominant a UAV signature is over an environment’s soundscape. 

The first principal component for the fluctuation strength dataset explained 58.2% of the variance, and had high 

scores at critical bands with centre frequencies of 200 Hz to 400 Hz. Previously, fluctuation strength has been 

attributed to quantify the low frequency amplitude modulation caused by rotor blade beating effects at rotor BPFs 

(typically between 200 Hz and 400 Hz) and could even be contributed to up to frequencies relative first harmonics 

of the BPF (typically 400 Hz to 630 Hz) (Torija, et al., 2022). These upper harmonics may be illuded to by the 

scores of the second principal component for fluctuation strength, with higher scores for critical band with centre 

frequencies between 300 Hz and 630 Hz. This principal component also explained 28% of the variance in the 

dataset, which is the highest value attained by a second principal component in this analysis. The principal 

component analysis for impulsiveness showed a notable correlation with perceived UAV dominance, yielding an R2 

value of 0.35, however the correlation statistics with perceived annoyance and loudness were less conclusive. The 

first principal component explained 70.8% of the variance in the impulsiveness dataset, with scores in two separate 

critical band ranges being significant. These ranges were critical bands with centre frequencies between 2.3 kHz and 

3.15 kHz, and between 6.41 kHz and 9.41 kHz. As previously stated, previous research investigating the 

effectiveness of impulsiveness to quantify aviation noise characteristics is yet to be resolving, however when 

assessing the metric in the context of UAV noise, it has been shown that impulsiveness may be able to account for 

the perceptual effects caused by blade-vortex interaction (BVI) (Krishnamurthy, et al., 2018) (Torija, et al., 2021).  
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9. CONCLUSIONS 

This thesis describes research which aimed to evaluate UAV noise spectra, and quantify the key characteristics of 

UAV noise that contribute towards perceived annoyance. Two subjective online experiments were carried out, the 

first of which was to gather response values of perceived annoyance, loudness and pitch from participants evaluating 

isolated UAV stimuli captured during various operational parameters. The second was to gather response values of 

perceived annoyance, loudness, UAV dominance and soundscape pleasantness from participants evaluating UAV 

noise in the context of the urban environment soundscapes. A regression analysis was carried out on the data from 

the first subjective experiment, including simple correlation analysis of calculated sound quality metrics and the 

response values, a linear regression analysis, and a multilevel linear model analysis. Using the UAV and the 

soundscape stimuli from the second subjective experiment, the change introduced in specific sound quality metric 

values by UAV noise was calculated and used in principal component analysis to identify key frequency ranges 

which are significant to the perception of temporal and spectral phenomena generated by UAV operational 

mechanisms.  

From the analysis of the data from the first subjective experiment, it was found that PNL correlated with perceived 

annoyance, loudness and pitch stronger than the loudness metric, so was used to quantify the perception of 

broadband level for the subsequent analysis. The linear regression analysis for the perceived annoyance response 

data showed that PNL was the most significant metric for predicting perceived annoyance, followed by sharpness. 

Impulsiveness was included by the backwards stepwise regression routine for this model, but the significance of this 

result is unconclusive. PNL and fluctuation strength were significant predictors for perceived loudness. The metrics 

sharpness, tonality and roughness were found to correlate well with the perceived pitch response values, and are 

quantifying complex spectral phenomena associated with UAV noise. Furthermore, perceived pitch and loudness 

correlate directly with perceived annoyance, and should be considered when mitigating negative community 

response to UAV noise. The multilevel linear regression analysis concluded that PNL, sharpness, roughness and 

fluctuation strength were statistically significant metrics for the prediction of perceived annoyance of UAV noise. It 

was observed that perceived annoyance, loudness and pitch decreased exponentially with operational distance. This 

has implications for the operational convenience of UAV, and research should investigate further the practicalities 

of increasing UAV operational distance from communities.  

The principal component analysis of the data from the second subjective experiment found that the loudness metric 

was quantifying the effects of the broadband amplitude level of UAV noise, and correlated strongly with perceived 

annoyance, loudness and UAV dominance. This illustrates the significance of assessing the amplitude of UAV noise 

when predicting community impact, which has been a recurring result throughout the analyses of this research. 

Roughness was found to have significance in the frequency ranges between 1.3 kHz and 5.3 kHz, which appears to 

be quantifying the complex spectral content introduced by rotor blade micro-adjustments, typical of UAV flight in 

adverse weather conditions. Roughness correlated with statistical significance to perceived UAV dominance. The 

first two fluctuation strength dataset principal components highlighted the frequency ranges of 200 Hz to 400 Hz, 

and 300 Hz to 630 Hz (which are typically the regions of fundamental and first harmonics of UAV rotor BPFs) to be 

of statistical significance. The principal component analysis for impulsiveness showed the frequency ranges between 

2.3 kHz and 3.15 kHz and between 6.41 kHz and 9.41 kHz to be of statistical significance to the first principal 

component, and the metric correlated significantly with perceived UAV dominance. The effectiveness of 

impulsiveness for quantifying temporal features of UAV noise should be investigated further, due to the 

inconclusive results between previous research, and within the analyses described in this thesis.  
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10. FURTHER WORKS 

This research gives a basis on which the development of UAV noise metrics can be built. An immediate extension 

of this research would be to build numerical predictor equations which contain the most significant specific sound 

quality metrics at key Bark values as predictor variables. A new dataset of UAV noise samples would be gathered 

(ideally through measurement rather than through peer donation, which this research was limited to due to COVID-

19) and a similar subjective experiment to the methodology detailed in this research would be carried out to gather 

response data for a validation dataset. This validation dataset would be used to investigate the suitability of the 

created predictor equations. 

Beyond this, the introduction of more complex reproduction methods to a subjective experiment involving UAV 

noise could give insight into how UAV noise perception could be influenced by more realistic operational or 

environmental characteristics. For example, a visual representation of UAV distance and flightpath using a virtual 

reality (VR) headset may alter the participants’ perception of the UAV. Furthermore, the use of more elaborate 

audio reproduction such as ambisonic speaker systems could create a sense of immersion which influences a 

participants’ perception. Giving the participants a description of a UAV operation, including the reason for the UAV 

being present, before playing the VR/ambisonic could alter a participant’s attitude toward the UAV’s presence in the 

soundscape environment. Any means of decreasing negative perception of UAV should be investigated, as it may 

aid in implementing UAV operations into urban infrastructure.  
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