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ABSTRACT. We present a novel framework for diagnostics and prognostics for multi-component sys-
tems with wear interaction between components. The principal elements of this framework are: health-state
indicator extraction using signal-processing; clustering of wear phases using a Gaussian mixture model;
a stochastic multivariate wear model; and prediction of the remaining-useful-life of components using
particle-filtering. These elements of the framework are illustrated and verified using an experimental plat-
form that generates real data. Our diagnostics study shows that different clusters not only indicate the
wear-state, but also the wear-rate of the components. Furthermore, our prognostics study shows that the
wear-interaction between components has an significant impact in predicting the remaining-useful-life for
components. Thus, we demonstrate, for prognostics and health management, the importance of modeling
wear interactions in the prognostic process of multi-component systems.

Keywords: prognostics and health management, multi-component system, reliability, maintenance,
remaining-useful-life, wear interaction.

1 INTRODUCTION

Systems with interactions that relate to the transfer of energy, heat and work, will eventually
degrade. This is the case of most machinery, whether mechanical or electronic. Such degradation
or wear may lead to failure, unexpected downtime and hence lower equipment-effectiveness and
higher costs. Nonetheless, wear processes may be slowed or even prevented by maintenance
intervention. The literature on maintenance suggests that the recent major advances in the field
have been in condition-based maintenance (CBM) and in prognostics and health management

*Corresponding author
1School of Computing, Science & Engineering, Autonomous Systems and Robotics Centre, University of Salford,
Manchester, M5 4WT, UK – E-mail: royassaf1.618@gmail.com
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2 A DIAGNOSTICS AND PROGNOSTICS FRAMEWORK FOR MULTI-COMPONENT SYSTEMS

Figure 1 – Principal elements of prognostics and health management.

(PHM) Zio (2021). CBM, in contrast to traditional maintenance policies, is proactive in nature,
aiming to maintain systems only when needed Grall et al. (2002); Jardine et al. (2006); Peng
et al. (2010). PHM has many similarities with CBM Kim et al. (2017); Wang et al. (2017), and is
principally seen as a key enabler for it Vachtsevanos et al. (2006). Notionally, the focus of CBM
is the optimization of maintenance policy for a system, and the focus of PHM is the assessment
(diagnosis) and prediction (prognosis) of the health-state of a system, with assessments made in
real time in both approaches Jimenez et al. (2020). Thus, compared to CBM, PHM deals largely
with extraction of the indicators of health-state from measured signals and puts greater emphasis
on diagnosis and prognosis, which is essential for the optimization of maintenance decisions. In
this paper, we also emphasize diagnosis and prognosis.

Freitas et al. (2010) Reliability assessment using degradation models: Bayesian and classical
approaches

For a maintained system, the first step in the PHM approach is health-state indicator extraction.
Next, these health-indicators are used for diagnosis and prognosis. Then follows maintenance
optimization using outputs from diagnostic and prognostic analysis. In the optimization step, the
objective is to reduce maintenance cost and/or to increase the system reliability or availability.
These steps are illustrated in Figure 1.

In analyses of this type, it is typically assumed that the wear processes of individual com-
ponents are independent Bouvard et al. (2011); Nguyen et al. (2014); Nguyen & Medjaher
(2019); Van Noortwijk (2009), thereby reducing the effectiveness of derived PHM and CBM
policies because real-world systems typically possess many interacting components. Indeed, in
Frei et al. (2013), the authors suggest that it is often more plausible that failures are depen-
dent than independent. Furthermore, while interest in the CBM literature in dependencies in
multi-component systems is growing, the modeling of stochastic dependence is the least ex-
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plored Keizer et al. (2017); Nicolai et al. (2009). Also, stochastic dependence of components,
as opposed to economic dependence of components (e.g. shared set-up costs), arguably falls
more within PHM than CBM, because wear-interactions impact directly upon component life-
times and indirectly upon costs. Therefore, it is important to consider stochastic dependence in
PHM of multi-component systems. However, to the best of our knowledge, no existing PHM
framework allows taking into account this kind of dependence between components. To face
this challenge, we propose a novel PHM framework allowing to consider the wear interactions
between components.

The framework itself is a collection of methods for diagnosis and prognosis:

• A method based on short-time Fourier transform for the effective extraction of health-state
indicators for each component in a multi-component system;

• A diagnostics method using Gaussian mixture model (GMM) to detect different wear
phases given stochastic dependence between components;

• A prognostic method based on a multi-component degradation model coupled with particle
filtering to predict the remaining-useful-life of each component with consideration of wear-
interaction impacts.

The proposed framework is then applied to the data collected on a gearbox experimental platform.

The structure of the paper departs somewhat from this ordering of the elements of the framework.
This is because we first present theory in Section 2 relating to dependencies in multi-component
systems, Gaussian mixture models, particle filtering, and multivariate wear models. Then, the
methodology for health-indicator extraction of multi-component systems is considered in Sec-
tion 3. Section 4 describes the experimental platform, the generation of data on the platform,
and health-indicator extraction for its critical components. Section 5 describes the application of
Gaussian mixture models for diagnosis. Section 6 describes the application of particle filtering
for prognosis, wherein we are particularly interested to compare end-of-life predictions when we
take account of stochastic dependence (through modeling) and when we do not. Finally, in Sec-
tion 7 we conclude with a review of our approach and its findings, limitations and opportunities
for further development.

2 DIAGNOSTICS AND PROGNOSTICS FOR A MULTI-COMPONENT SYSTEM
WITH WEAR INTERACTIONS

2.1 Background and classification of stochastic dependence

The current literature on CBM and PHM focuses principally on one-component systems. This is
in part because the analysis of stochastic models and the characteristics of optimal CBM policies
are much more complicated for multi-component systems Alaswad & Xiang (2017).

In the literature reviews that mainly deal with the maintenance of multi-component systems
De Jonge & Scarf (2020); Dekker et al. (1997); Dinh et al. (2020); Nicolai & Dekker (2008);
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Thomas (1986), component dependencies are generally classified as: structural dependence; eco-
nomic dependence; and stochastic dependence. A fourth type of dependence, resource depen-
dence, is also discussed in Keizer et al. (2017). Multi-component dependencies are fundamental
to our paper. In particular, we will consider stochastic dependence in detail throughout this work.
A general representation of multi-component dependencies is shown in Figure 2.

Figure 2 – An overview of multi-component dependencies.

Stochastic dependence is principally concerned with the question of how the health-state of one
component influences the health-state of other components in a multi-component system. Health-
state itself can be characterized in many ways: as a binary variable (failed, not failed); as age of
the component; as performance; as a measure determined from condition monitoring; or as a
combination of some or all of these.

We differentiate stochastic dependencies into two groups: failure interaction; and wear interac-
tion. In failure interaction, failure of one component impacts upon the state of other components.
There are then implications for maintenance policy, see for example Scarf & Deara (1998), where
age-based replacement and opportunistic age-based maintenance policies are studied when there
is type I failure interaction, and Satow & Osaki (2003), where damage accumulates in component
2 as a result of failures of component 1. In contrast, in wear interaction, the health-state of one
functioning component influences the wear-rates of other functioning components. Recent works
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Assaf et al. (2016); Bian & Gebraeel (2014); Rasmekomen & Parlikad (2016) call this rate-state
interaction, and it can include common-mode deterioration. Reasons for the recent growing inter-
est in rate-state interactions is development of sensor technology and IoT (internet of things) that
facilitate more extensive condition monitoring and the development of approaches for prognosis
and PHM in general.

This paper focuses on wear interaction and we describe our model in detail in Section 2.3.
However, we first we discuss our diagnostic and prognostic approaches for handling such
interaction.

2.2 Diagnostics using a Gaussian mixture model

The previous discussion suggests that stochastic dependence may accelerate the wear-rate of
components leading to unexpected faults and failures that may reduce system performance. Thus
although many works exist that involve data driven diagnostics Hao et al. (2014); Hoseinzadeh
et al. (2018), it remains important to address the wear-rate acceleration within the diagnosis
model.

Our framework for diagnostics using a Gaussian mixture model ( Figure 3) first clusters the
extracted health-state data. This requires the specification of a number of clusters that should be
extracted from the data. Then, it aims to diagnose the system by assigning different wear-states
and rates to each data cluster. Thus, the aim of the proposed diagnostics approach is to accurately
diagnose different wear-states and wear-rates of interacting components.

Figure 3 – A framework for diagnostics using a Gaussian mixture model.

In the paper we use GMMs for clustering. An advantage of GMMs is that a statistical criterion
can be used to optimize the number of clusters Dasgupta & Raftery (1998); Ouyang et al. (2004),
whereas many classical clustering algorithms such as hierarchical clustering, self-organizing
maps, k-means and fuzzy C-means are largely heuristic and so do not rigorously choose the op-
timal number of clusters Yeung et al. (2001). Successful applications of GMM-based clustering
have been reported in the literature Celeux & Govaert (1995); Yajima et al. (2015).
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To train the GMM, we start with several mixture components, indexed by c, each described by
a Gaussian distribution with mean µc and covariance σc, and a mixing coefficient πc. The joint
probability distribution of the GMM is then the weighted average of the C individual components:

p(x) =
C

∑
c=1

πcN (x; µc,σc). (1)

In the EM algorithm, the E step assigns data points to clusters and the M step is the estimation
of µc and σc for each cluster. The EM algorithm is a form of coordinate descent, so it is guar-
anteed to converge Wu et al. (1983). In practice, the algorithm terminates once the change in
the parameters or the log likelihood at each step is sufficiently small. However, convergence to
a global optimum is not guaranteed. This is best accommodated using multiple initialization. A
new, unseen data point is assigned to a specific cluster using the E step.

Determining C, the number of clusters uses a separate procedure, and this is a major issue in
the general case of unsupervised learning. We use the silhouette method, as recommended by
Rousseeuw (1987). The method iterates between different cluster numbers, and computes a sil-
houette coefficient, between +1 and −1, for each data point. A coefficient close to +1 indicates
that the data point is far from the neighboring clusters, and a coefficient close to−1 indicates that
the data point is in the wrong cluster. Therefore, the aim is to iterate between different cluster
counts and use the one that achieves the largest average silhouette coefficient across all clusters.

Note, because we aim to classify different wear phases, it is important to use more than two
clusters. This is because it is desirable to allow degradation behavior to transition from nominal
to critical via an intermediate, defective phase, during which fault or failure prevention measures
can be taken.

2.3 Prognosis using a multivariate wear model coupled with particle filtering

Data driven prognostics makes use of data collected from sensors to predict the evolution of
a representative health-state for the monitored component. The main goal of the predictions is
to estimate the (time of) end-of-life, and accordingly the remaining-useful-life (RUL) of this
component Saxena et al. (2008). Many works exist on this aspect Freitas et al. (2010); Wang
et al. (2019); Wu et al. (2019); Yan et al. (2019). However these approaches do not consider the
stochastic interaction between components and can therefore miss valuable information about
the degradation rates of components.

We now describe our approach for performing prognosis for multi-component systems. We start
with the multivariate wear model Assaf et al. (2018), and then show how this is coupled with
particle filter PF to enable effective prognostics of multi-component systems.

Consider a multi-component system with nc components. Suppose the wear-state of component
i is described by a scalar random variable X i

t and component i fails when X i
t first crosses a

threshold Li. Suppose also that the system fails if any component fails and that if a component
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is not operating, for whatever reason, its wear-state remains unchanged unless a maintenance
intervention is carried out. Let

X i
t+1 = X i

t +∆X i
t . (2)

We call ∆X i
t the wear increment of component i during one time step.

Suppose that the wear of a component i at time step t may depend on the operating conditions,
the state of component i, and also the state of other components, to a varying degree. Thus, in a
general stationary model for the increment ∆X i

t , we propose that:

∆X i
t = ∆Oi

t +∆X ii
t +∑

j ̸=i
∆X ji

t . (3)

Here ∆Oi
t is the wear increment of component i caused by the operating conditions during one

time step t. ∆Oi
t can be specified deterministically or stochastically. ∆X ii

t is the wear increment
that is intrinsic to i at time step t. That is, ∆X ii

t depends on the wear-state of component i at time
step t. ∆X ii

t can also be specified deterministically or stochastically. ∑ j ̸=i ∆X ji
t is the sum of all

wear increments that are caused by the interaction of component i with the other components of
the system. Again, this may be deterministic or stochastic.

In this paper we suppose ∆X ii > 0 and ∆X ji > 0, so that components are stochastically dependent
and a wear increment of component i may depend on both the state of component i and the state
of other components.

We use the following model to quantify the wear interaction between the components:

∆X ji
t = µ

ji× (X j
t )

σ ji
(4)

where X ji
t is the wear impact of component j on component i at time t. µ ji and σ ji are non-

negative real numbers that quantify the effect of component j on component i, see Table 1.

Table 1 – Wear interactions between multiple components.

Case Description
µ ji = 0 Component j does influence the degradation

behavior of component i
µ ji = 0 and µ i j = 0 Component j and i are independently subject to

gradual wear
µ ji > 0 and σ ji = 0 Degradation evolution of component j does not

depend on the state of component i

The effect of component j on component i does not have be to the same as the effect of
component i on component j. The square hollow matrices

µ
ji =


0 µ12 ... µ1n

µ21 0 ... µ2n

...
... 0

...
µn1 ... ... 0

 , σ
ji =

 0 σ12 ... σ1n

σ21 0 ... σ2n

...
... 0

...
σn1 ... ... 0

 (5)
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of size nc×nc can be used to represent these interactions.

These hollow matrices can be extended so that the diagonal entries are µ ii and σ ii respectively,
representing the intrinsic wear effect of the components upon themselves; i.e. whereby the wear-
rate of a component might depend on the wear level of the component itself, for example when
the protection coating of a components fades Leyland & Matthews (2000).

In principle, this model can accommodate as many components and interactions as required.
However, data, computation and the complexity of an optimal CBM policy are limitations. This
is an identified issue in the multi-component maintenance literature Alaswad & Xiang (2017).

The parameters of the model must be estimated, about which there is a large literature, see for
example An et al. (2015); Gebraeel & Pan (2008); Lorton et al. (2013). In practice, if the wear
model is not too complicated, parameters may be estimated using maximum likelihood estima-
tion (MLE). However, to do real-time prognostics for multi-component systems, it is recom-
mended to use sequential Monte Carlo methods, specifically the particle filter (PF) Doucet &
Johansen (2009).

We therefore use PF for performing parameter estimation of this model. PF has been applied
successfully in prognostics, see e.g. Jouin et al. (2016). Moreover, recent reviews on PF for
PHM such as Jouin et al. (2016) indicate the increasing use of PF in PHM, establishing it as a
state-of-the-art technique for PHM.

Following the estimation of the parameters of the model, simulations are used to predict the
health-state of a component X i

tk at a future time r > k and to determine teol as the time when the
wear trajectory hits the failure threshold. Then the remaining-useful-life can be extracted, and
maintenance decision-making follows accordingly.

3 EXTRACTING HEATH-INDICATORS FOR SYSTEMS WITH WEAR INTERAC-
TIONS

Raw condition monitoring data have to be processed and refined to allow for health-indicator
extraction for components. This is essential for performing prognostics in an effective manner,
and so health-indicator extraction sits at the heart of any PHM framework.

Typically, measured signals from real systems are noisy Tandon & Choudhury (1999); Wang et al.
(2003). Therefore, signal pre-processing and processing are necessary steps in health-indicator
extraction (Figure 4). The signal pre-processing step aims to increase the signal-to-noise ra-
tio (SNR). The signal processing step extracts health-indicators or fault-related information Lei
et al. (2013, 2014) that allow accurate diagnosis and prediction of the future states of the system.

3.1 Data acquisition

As indicated in Figure 4, the first step is data acquisition from sensors, specifically accelerom-
eters that measure vibration, which are commonly used for monitoring rotating machinery, e.g.
gears Lebold et al. (2000), bearings An & Jiang (2014); Tandon & Choudhury (1999) and induc-

Pesquisa Operacional, Vol. 42(nspe1), 2022: e264770



ROY ASSAF, PHUC DO and PHIL SCARF 9

Figure 4 – Approach for extracting the health-state indicators of components in
a multi-component system with wear interactions.

tion motors Benbouzid (2000). In a multi-component system setting, it is sensible to use multiple
accelerometers. These accelerometers should not be positioned too close together, to allow sep-
aration of component signals. This is especially important when monitoring components which
emit signals at similar frequencies.

3.2 Signal pre-Processing

Following data acquisition, a pre-processing step is typically used because clean data are not of-
ten found in an industrial setting. Thus, first cleaning the data specifically for outliers is advised.
This is potentially a tedious manual task, and so we suggest the use of Algorithm 1, which is
suitable for automation. This algorithm specifies a data-window based on the operating profile
of the system. Then the median value or geometric mean of the data and the median absolute
deviation (MAD) are computed over the window. Values that are outside the interval defined by
the median +/- MAD are replaced with a random variable sampled as X ∼N (med, mad), thus
retaining as much as possible of the true nature of the signal.
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Algorithm 1: Outlier Removal Algorithm

w represents the window length;
input : A signal Sig, a row matrix of size m×w
output: Signal Sig with no outliers

for i← 1 to m do
med←ComputeMedian(Sig(i));
mad←ComputeMAD(Sig(i));
for j← 1 to w do

if Sig(i, j)< (med−mad) or Sig(i, j)> (med +mad) then
Sig(i, j) = X ∼N (med, mad)

end
end

end

This should be followed by data detrending and centering. The data should also be rescaled
if necessary, depending on whether sensors are dissimilar or if the data have different ranges.
Filtering may follow this step, depending on the frequency band of interest and whether other
unnecessary frequencies can be rejected without loss of information. Finally, the signal should
be expressed in a unit that has an engineering meaning. This will depend on the specifics of the
sensors. For example, if the sensors are accelerometers, then it is sensible to output the signal in
units of gravitational acceleration (G).

3.3 Signal processing

Next, signal processing is used to extract features that represent health-state. A major challenge
for modeling stochastic dependence in a multi-component system, if it exists, is the complex
nature of the signals acquired. Each signal may be a mixture of the signals from each of the
components at once, and the mixture may be different for each signal. Therefore, we recommend
to use time-frequency domain analysis to obtain component-specific wear information from the
signals of multi-component systems.

Time-frequency analysis is used in blind-source separation Abrard et al. (2001); Yilmaz &
Rickard (2004). This separates mixed signals without using additional information by exploiting
the difference in the time-frequency signatures of the signals. The main focus of the literature
is audio applications Puigt & Deville (2005) and machine sound signals Zhong et al. (2006).
Applications to vibration monitoring can be found in Dekys et al. (2017); Vulli et al. (2009).

Following this approach, a short-time Fourier transform (STFT) is applied to the cleaned signal,
allowing an analysis in both time and frequency domains. This isolates the frequencies of interest
all while representing the evolution of their energy through time.
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Given the time-waveform data of a component i, the STFT can be applied using:

s
′
i = ST FT{si[n]}(τ,ω) =

+∞

∑
n=−∞

h[n− τ]s[n]exp− jωn (6)

Here h(t) is the window function, s(t) the input signal, and s
′

is the STFT of s(t). The optimum
window length depends on the application. It is important to note that a high resolution in time
cannot be achieved simultaneously with a high resolution in frequency. A high resolution in time
domain requires a shorter window than high resolution in the and vice-versa Kadambe (1992);
Satish (1998). Therefore, to resolve the fundamental and harmonics of a signal, a long window
is recommended. If the detection of the onset or presence of some events is prioritized then a
short window should be used. Some examples of window functions are Gaussian and Hamming
windows Harris (1978); Jones & Baraniuk (1994).

Following the STFT step, we can compute the frequency root mean square (FRMS) considering a
frequency band of interest. This estimates the evolution in time of the magnitude of the frequency
band of interest, and is calculated using:

XFRMS =

√
1
N

N

∑
i=1

s′2i (7)

where N is the number of data points.

This results in time series signals that describe the evolution of the health condition of the
components over time.

4 EXPERIMENTAL PLATFORM AND SCENARIOS

4.1 Existing platforms

In the literature on condition monitoring, two experimental platforms and their associated
datasets stand out: the NASA bearing data Jay et al. (2007); Qiu et al. (2006); and the PRONOS-
TIA dataset Nectoux et al. (2012). They are very often cited in research on PHM and CBM. The
former relates to three tests to failure of four bearings placed on a single shaft. The latter relates
to an experimental platform for accelerated life testing of bearings and was used to generate the
dataset for the IEEE ICPHM 2012 data challenge.

However, these experimental platforms do not provide datasets that are fit for the study of the
wear interactions in multi-component systems. In particular, in the NASA dataset, when a fault
is identified all components are then replaced. This does not allow the validation of interac-
tions between components. Therefore we have developed a gearbox-platform 5 for the valida-
tion of models of wear of multi-component systems with stochastic dependence. The choice of
a gearbox-platform is motivated by i) the multi-component nature of a gear-train, and ii) the
common use of gearboxes in industrial machinery.
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Figure 5 – Experimental gearbox-platform.

4.2 Description of the experimental platform

The platform was designed using computer aided design and 3D printing. It is re-configurable:
gear modules of various materials, sizes and tooth-number can be tested. Other experimental
parameters are adjustable: drives, loading and measurement devices, see Table 2.

The platform can have up to three gears mounted in series as shown in Figure 5, each mounted on
its own shaft, using a frictionless rotation system. For this work however we study in detail the
wear of two of these three gears. The gear directly connected to the motor is referred to as Gear

Table 2 – Experimental platform adjustable parameters.

Gears Driving Part Load Part Measurements Part
Material Motor type Dynamometer brake Accelerometers
Module Torque DC generator Acoustic

Speed Pneumatic brake DAQ specifications

Pesquisa Operacional, Vol. 42(nspe1), 2022: e264770
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1, and the other gear (the middle one) is referred to as Gear 2. The driving motor is a 24 Volt,
250 Watt motor capable of 2750 RPM. Full details of the platform are given in Assaf (2018).

We use three accelerometers, mounted on the frame, one over each shaft to collect vibration
data. In this way the vibration signals for each of the gears under study can be more accurately
distinguished. The accelerometer signals were collected using a DAQ and then transmitted to the
processing workstation. The accelerometer sensors have a full sensing range of±3Gs, and collect
data along three axis. These are mounted over the centerline of the shaft supporting bearing to
further avoid distortion of the vibration signals.

Digital data are imported to the processing workstation. Binary communication is used to ensure
reliable data transmission. Sensor data are time-stamped using the DAQ internal microsecond
clock, providing robust sampling time and sampling frequency.

4.3 Experimental scenario

As mentioned earlier, in this work we only mount two gears into the gearbox platform. We use
this two-gear system in order to demonstrate stochastic dependence between components. The
experimental runs of the gearbox are designed for accelerated-life testing, so that gears would
degrade more rapidly than under normal operating conditions. Runs were an alternating sequence
of two cycles: a low speed, low load cycle (LSLL); and a high speed, high load cycle (HSHL).
There was a high noise level in the HSHL cycle, so only vibration data from an LSLL cycles
were analyzed. These have a better signal to noise ratio. Thus, the platform was configured with
alternating cycles of HSHL and LSLL. Each HSHL cycle was 9 minutes, and each LSLL cycle
was 3 minutes.

The gearbox-platform was run three times to failure. In the first run, Run 1, Gear 1 and Gear 2
were both new and alternating HSHL and LSLL cycles continued until high levels of vibration
and displacement were observed. A long enough exposure to such displacement can lead to
a failure of the system structure. At this stage the measured vibration magnitude at the gear-
meshing frequency exceeded 1800 in LSLL. We therefore consider this to be the experimental-
run stopping criteria. After Run 1, Gear 1 was replaced, and Gear 2 remained unchanged. Thus,
for Run 2, Gear 1 was new and Gear 2 was worn. Otherwise, the parameters were the same as
Run 1. The gear-meshing frequency reached a magnitude of 1800 sooner and Gear 2 showed
more damage on its teeth surface than after the termination of Run 1. After Run 2, Gear 1 was
again replaced and Gear 2 remained unchanged. Thus, for Run 3, Gear 1 was new and Gear 2 was
severely worn, otherwise experimental conditions and the stopping criteria remained the same.

4.4 Component health-state Extraction

In Figure 6 we show a two second sample extracted from Run 1. Here we visualize the raw signals
following analogue to digital conversion. The signals were analyzed for outliers that may arise
from transmission of the signal between the DAQ and the PC workstation. The data were then
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14 A DIAGNOSTICS AND PROGNOSTICS FRAMEWORK FOR MULTI-COMPONENT SYSTEMS

centered and transformed to units of Gs (Figure 7). Next, the time waveform vibration signals
were transformed into the time-frequency domain using STFT (Figure 8).

Figure 6 – Raw accelerometer signals of Gears 1 and 2 after the analogue to digital conversion.

Figure 7 – Pre-processed accelerometer signals of Gears 1 and 2, in Gs.
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Figure 8 – Visual representation of the spectrum of frequencies of Gear 1 in Run 1 over time.

We then computed the average SNR of the signal to be 10.6 dB using equations:

SNRdB = 10log10(
Psignal

Pnoise
) (8)

Then, we are interested to monitor the evolution of the gear meshing frequency magnitude fmesh

over time. This is computed as:
fmesh = R×N (9)

where R is the revolutions per minute, and N is the number of teeth (here 16).

Due to a slight fluctuation in the motor speed that affected fmesh, we used dynamic-windowing
to capture fmesh, choosing a 5Hz frequency band that is guaranteed to contain fmesh at its peak
magnitude. We then calculated the RMS at that frequency band, and monitored its evolution over
time. fmesh was 120Hz approximately. Thus, here we use the fundamental meshing frequency
(120 Hz) to assess the health-state of the gears. We can therefore remove all frequency elements
that are greater that this value without affecting the information about the frequency of interest.
We therefore specified a cutoff frequency of 180Hz for the high pass filter. This allows for faster
computation and is justified because only the fundamental fmesh frequency is of interest. Note
that the specification of cutoff frequency requires engineering knowledge of the system at hand.

We then computed the RMS value for each time step, and the gear mesh frequency was nor-
malized for the range [0 1800]. This resulted in the wear time series shown in Figure 12. Black
dashed vertical lines separate the experimental runs. Silver dotted vertical lines separate data col-
lection cycles, i.e. the LSLL cycles. Note that a) between every two LSLL cycles there exists an
HSHL cycle, and b) HSHL cycles are not shown in this figure because vibration data from these
cycles were discarded.

We specify a failure threshold L based on the experimental runs, the vibration signals emitted, and
the different phases of wear that were observed on the gear tooth surfaces. The failure threshold
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Table 3 – Average gear meshing frequency magnitude for each LSLL cycle for both gears in all three runs.

LSLL Cycle Number
Run Gear 1 2 3 4 5 6 7 8 9 10

1 1 .283 .260 .257 .373 .230 .279 .183 .518 .735 .624
1 2 .347 .267 .325 .360 .253 .388 .283 .580 .560 .602
2 1 .314 .255 .366 .303 .606 .507
2 2 .464 .465 .489 .477 .626 .604
3 1 .358 .344 .507 .571
3 2 .595 .490 .570 .667

Table 4 – Cycles to first hitting time of Gear 1 at each run.

Gear 1 Gear 2 Gear 1’s cycles to failure Gear 1’s life expectancy (%)
Run 1 new new 7 100
Run 2 new worn 4 57
Run 3 new severely worn 3 43

L corresponds to the gear meshing frequency magnitude 0.65. At this threshold the gearbox-
platform emits high levels of vibration and displacement, with potential for damage to the system
structure as a whole. The system is therefore stopped, and we consider this as a system failure.

Next, we computed the average of each LSLL cycle to show the wear interactions between the
gears (Table 3). Note that the average meshing frequency magnitude does not necessarily increase
at every LSLL cycle. This small fluctuation is due to the distortion of the signal acquired by the
accelerometers when changing between HSHL and LSLL cycles. Another thing to consider is
that wear on the teeth of the gears such as pitting and dents can cause transient higher vibration.
These are damped when the surface of the tooth becomes relatively smoother during operation.
Nevertheless, we can see that there is a general increasing trend in vibration as the LSLL cycle
count increases, indicative of wear of the gears.

Wear interactions are apparent in Table 3. However, this is clearer in Table 4, here the cycles to
failure are evaluated as the number of cycles to first hitting time, i.e. when the moving average
of the signal first reaches L. We see that the number of cycles to first hitting time for Gear 1
is shorter when Gear 2 is worn (at Run 2) than when Gear 2 is new (at Run 1). And it is most
short when Gear 3 is severely worn (at Run 3). Thus, coupling a new component with a worn-out
component has resulted in accelerated wear of the new component at each step.

These results clearly demonstrate the importance of modeling wear interaction between gears
when performing prognostics for a multi-component system. Thus, if one replaces a specific
component in the system with a new one, ignoring the accelerated wear effect that results from its
being coupled with a worn component, there would arise unexpected failures and faults because
the new component(s) would not degrade in nominal fashion.
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5 IMPLEMENTATION OF THE GAUSSIAN MIXTURE MODEL BASED
DIAGNOSTICS

5.1 Clustering of different wear phases

Wear of two gear components is clustered in two dimensions. These dimensions are the wear-
state of Gear 1 and the wear-state of Gear 2. We use the magnitude of the RMS gear mesh
frequency to represent component wear. These wear data are obtained from Run 1. The clustering
algorithm is repeated ten times, to check for sensitivity to starting conditions. Each repetition has
200 EM steps. We use a diagonal matrix for the GMM as this is computationally faster than for a
general covariance matrix, which allows more frequent updating of clusters. Also, for flexibility
in the range of the clusters, different covariance matrices are not used for different clusters.

Using the silhouette analysis, and considering a cluster count between 3 and 6, the optimal cluster
count is found to be 3 in our case. The silhouette plot for 3 clusters is shown in Figure 9. It
presents the highest average silhouette value for all clusters which suggests that clustering using
three clusters is appropriate.

Figure 9 – Silhouette plot for three clusters with the dashed red line
is the average silhouette value for all three clusters

The result of clustering (for the wear in experimental Run 1) is shown in Figure 10, showing the
three clusters with their corresponding bivariate Gaussian distributions.

The plot suggests that the clusters represent different stages of wear: a healthy state (green), a
defective state (blue); and a worn-out state (red).

5.2 Diagnostics results

Having partitioned the wear in Run 1 into three clusters, we can use the clustering model to
classify new datapoints. This is the basis for diagnosis of the system. We demonstrate this next
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Figure 10 – Wear from experimental Run 1 with three clusters.

for Runs 2 and 3. (Figure 11). There the wear trajectories are overlaid with the cluster assignment.
We can see that initially in Run 2 wear data points are assigned to blue cluster (defective). Initially
in Run 3, they are assigned to the red cluster (worn-out). This because Gear 1 fails sooner in Run
2 than in Run 1 and sooner again in Run 3 than in Runs 1 and 2. This was as expected because
only Gear 1 was replaced immediately prior to the commencement of experimental Runs 2 and
3. Thus, we can conclude that these clusters not only represent the wear-states of the system, but
their wear-rates. Therefore, three wear phases can be identified for this multi-component system.

6 IMPLEMENTATION OF THE PARTICLE FILTER BASED PROGNOSTICS

6.1 Parameter estimation

The proposed generic multi-component wear model is fitted to the data generated from the
gearbox-platform. Following the health-indicator extraction step, we obtain the RMS trajectories
for Gear 1 and Gear 2 (Figure 12).

The RMS values represent the vibration energy in the machine that derives from the gears. Hence,
the RMS values represent the wear level of the gears because the higher the vibration energy,
the more the gears are deteriorated and the more prone the gearbox is to damage. Indeed, the
increasing damage of a gear i (i = 1,2) in reality derives from the gear state (intrinsic effect
∆X ii

t ) and the state of the other gear (interaction effect ∆X ji with j ̸= i). This is because both
gears are subject to wear and have a direct connection. Based on the results of Section 4, a gear

Pesquisa Operacional, Vol. 42(nspe1), 2022: e264770



ROY ASSAF, PHUC DO and PHIL SCARF 19

Figure 11 – Wear phases overlaid on the time series wear data of the two gears
from 3 experimental runs.

Figure 12 – RMS wear trajectories for Gears 1 and 2.

is considered to be severely worn or failed when its wear level reaches the threshold vibration
magnitude of Li = 0.65 for i = 1,2.

The wear process of each gear is assumed to be described by a gamma distribution:

X ∼ Γ(α i,β i).

The corresponding probability density function (PDF) is

fα i,β i(x) =
1

Γ(α i)
(β i)α i

xα i−1e−β ixI{x≥0},
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where Γ(α i) =

+∞∫
0

uα i−1e−udu denotes the gamma function; and I{x≥0} is an indicator function.

I{x≥0} = 1 if x≥ 0, I{x≥0} = 0 and otherwise.

These increments are denoted by ∆X11 and ∆X22 for Gear 1 and Gear 2 respectively. Thus,
∆X11 ∼ Γ(α1,β 1) and ∆X22 ∼ Γ(α2,β 2).

Concerning the wear interactions between the two gears, Figure 12 shows that that the wear-state
of Gear 2 affects the wear-rate of Gear 1. This can be seen clearly by observing the time to failure
of Gear 1 when coupled with a worn Gear 2 in both Runs 2 and 3. Further, in Run 3, where Gear
2 was severly worn, the time to failure of Gear 1 was shorter than in Run 2. Thus, it appears
that the wear-rate of Gear 1 depends on the wear level of Gear 2 and vice versa. This is further
studied in Section 5. We model the wear interactions between the two gears using Equation (4).

Finally, the evolution of wear for Gear 1 can be expressed as:

X1
t = X1

t−1 +∆X1
t ,

∆X1
t = ∆X11 +∆X21,

∆X1
t = Γ(α1,β 1)+µ

21× (X2
t−1)

σ21
.

(10)

and for GEAR 2 as:

X2
t = X2

t−1 +∆X2
t ,

∆X2
t = ∆X22 +∆X12,

∆X2
t = Γ(α2,β 2)+µ

12× (X1
t−1)

σ12
.

(11)

According to the above models, for each gear i (i = 1,2) four parameters (α i,β i,µ i,σ i) need to
be estimated from the recorded data.

For each set of parameters, selected at random from a prior distribution, we generate np = 1000
particles,. We then generate a prediction of the health state at the next time step, X̃ i,n

t for n= 1 : np.
On observing the actual health state at the next time step, yi

t , we compute the importance (weight)
of each particle as the likelihood of the observation given the predicted values of each particle
p(yt |X̃ i,n

t+1). The weights are then normalized, and bootstrap-importance sampling (re-sampling
with replacement according to weight) is used to generate the next set of np particles. This process
iterates until reaching the last time step.

Parameter estimates are in Table 5. Note, larger values of σ i imply smaller effects of the other
components on component i because the wear level is normalized between 0 and 1.

To further validate these parameter estimates, we compare the average estimated wear trajectory
resulting from the PF to the real wear trajectories using R2: for component 1, R2

1 = 0.792 and
for component 2 R2

2 = 0.753. In a model without wear interaction (stochastic dependence), the
corresponding results are R2

1 = 0.671 and R2
2 = 0.575.

Figure 13 shows the particle filter fit to the wear data of Run 1 for each component. Herein, silver
dots are the estimated wear levels at each time step corresponding to each of the np particles. The
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Table 5 – Estimated parameter values.

Component α i β i µ i σ i

Gear 1 0.0233 0.0425 0.0995 7.6659
Gear 2 0.0125 0.0914 0.0493 9.7375

yellow dashed line is the average of these np estimates of wear. A moving average of window of
width five (green line) smooths the observed wear trajectory and provides an effective indication
that a gear has failed once it reaches the failure threshold L.

Figure 13 – Fit of particle filter estimates to wear data of Gears 1 and 2.

6.2 End-of-life prediction for gears

The wear model with the estimates in Table 5 is used to predict the end-of-life of each gear by
generating a large number of wear trajectories. To study the impact of wear interaction between
gears in predicting the end-of-life of gears, two cases are specified: ”With Interaction” whereby
the wear trajectories are generated from Equations (10) and (11); ”No Interaction” whereby the
wear trajectories are generated from the reduced model in which there is no wear interaction.

Figures 14 and 15 show different wear trajectories for Gear 1 and Gear 2 in Run 1. Since only
Gear 1 is replaced for Runs 2 and 3 (Gear 2 remains unchanged), only the wear process of Gear
1 is generated in Run 2 and 3 (see Figures 16 and 17).

Intuitively, the simulated results show that considering wear dependencies can provide an
advantage when attempting to predict the real wear trajectories of gears.

Table 6 reports the different teol estimates. These results show that the difference between the
actual observed teol and the average predicted t̂eol for Gear 1 when not considering the wear
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Figure 14 – Simulated wear trajectories for Gear 1 in Run 1.

Figure 15 – Simulated wear trajectories for Gear 2 in Run 1.

Table 6 – Actual end-of-life, and average predicted end-of-life (̂teol) for the two gears.

Actual teol t̂eol with interaction t̂eol no interaction
Gear 1 Gear 2 Gear 1 Gear 2 Gear 1 Gear 2

Run 1 248 227 239 259 301 429
Run 2 133 faulty 157 faulty 301 faulty
Run 3 111 faulty 118 faulty 301 faulty
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Figure 16 – Simulated wear trajectories for Gear 1 in Run 2.

Figure 17 – Simulated wear trajectories for Gear 1 in Run 3.

interaction shows a strict growth trend. Indeed, this growth begins at time step 53 in Run 1, and
continues to time step 168 in Run 2, and then 190 in Run 3. The explanation for this difference is
that the parameters of the models are estimated in Run 1 using the particle filter (PF) and so the
reduced model does not account for the accelerated wear due to a new Gear 1 being coupled with
a worn Gear 2. Furthermore, the difference does not show this trend when we consider the wear
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interaction (stochastic dependence). The difference is 9 in Run 1, then 24 in Run 2, and then just
7 in Run 3. This shows the importance of modeling the wear interaction.

In addition, histograms simulated from the estimated wear distributions at the time of failure of
the gears are shown in Figures 18 and 19.

Figure 18 – Histograms of the estimated wear distributions at
the actual end-of-life of Gears 1 and 2 in Run 1.

Figure 19 – Histograms of the estimated wear distribution at the actual time
to end-of-life of Gear 1 in Runs 2 and 3.
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These again suggest that modeling stochastic dependence impacts upon the prediction of the
actual wear trajectories since the average estimated wear level is closer to the failure threshold
when wear interaction is considered than when it is not.

Finally, note, these predictions of teol are simulated at t = 0 in Runs 2 and 3. Therefore, if particle
filtering is used for online updating of parameters in presence of new observations (of wear),
prediction accuracy would increase. This would also facilitate the investigation of break points
in the health-state of gears, due to shocks arising from changes in the environment or sudden
excess loading, for example.

7 CONCLUSION

In this paper we present a framework for diagnostics and prognostics for multi-component sys-
tems with stochastic dependence between components. The proposed framework is applied to
data generated on an experimental gearbox-platform. We demonstrate how to extract health-
indicator information from such systems. These indicators are then used to perform diagnos-
tics that help to identify three wear phases for the system, each having a different wear-rate.
We follow this with a prognostics approach that uses particle filtering and a generic multi-
component wear model. We present a comparative study of a model in which stochastic depen-
dence is considered and a reduced model in which it is not. Our results indicate that modeling
stochastic dependence provides more accurate predictions of the end-of-life of components, and
hence remaining-useful-lives, and so provides a better basis for PHM and maintenance decision
making.

In future work we intend to focus on the development of a system to automate predictive main-
tenance optimization for multi-component systems with rate-state wear interactions. For this we
foresee the development of an emulator of the wear of components in a multi-component system
with wear interactions between components. The basis of such an emulator would be data col-
lected on an experimental platform such as the one we describe. Using the emulator, many real-
izations of multi-variate wear trajectories could be simulated under varying replacement policies.
Then, an autonomous system could learn those policies that are most effective. Some additional
randomness might be introduced to the emulator to capture unforeseen circumstances.

Finally, we comment on the limitations of the work we describe in this paper. The raw vi-
bration data are rather noisy. With hindsight we would design a gearbox emulator with gears
with more varied characteristics, position accelerometers more carefully, and significantly over-
specify bearings, the motor, and the loading and energy dissipation devices. Also, other more
direct wear-related variables, such as tooth profile and gear backlash, might be measured opti-
cally. Nonetheless, we think the experimental platform, the condition data obtained from it, and
the analysis of these data make an important contribution to the study of PHM for systems with
wear rate-state interactions.
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