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Abstract   

Motivated by emerging technologies in nanofluid electromagnetic sensor systems, a 

mathematical model is developed for free convective chemically reacting magnetized 

Buongiorno nanofluid flow along a stretching exponential Riga plate with dual (thermal and 

solutal) stratification. Additionally, the effects of radiative heat flux and thermal 

sink/generation are included.  The non-dimensional boundary layer conservation equations are 

solved with the associated boundary constraints using the Keller Box finite difference scheme, 

and authentication with earlier studies is conducted. With increasing magnetization parameter, 

velocity is elevated whereas temperature is suppressed. Increasing Grashof number enhances 

velocity strongly near the sensor surface region but reduces it further towards the free stream. 
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The heat transfer is depleted throughout the boundary layer regime with greater Grashof 

numbers. The thermal distribution is substantially boosted with increment in radiative flux, 

heat source, thermophoresis and Brownian motion parameters, whereas it is strongly decreased 

with increment in Prandtl numbers and thermal stratification. The nanoparticle concentration 

is markedly reduced with rising nanoparticle solutal stratification, Brownian motion parameter, 

reacting species term and Schmidt number. However, there is a considerable increment in 

nanoparticle concentration with high thermophoresis values. An increase magnetization 

parameter also elevates the drag force and wall heat transfer rate whereas it reduces the species 

gradient at the wall. With increasing chemical reaction, a weak rise in the wall friction and 

temperature gradient is noticed, but a significant rise is computed in Sherwood number.  

 

Keywords: Magnetized nanofluid; Buongiorno model; Stretching Riga plate sensor; Thermal 

radiation; Dual stratification; Heat source/sink; chemical reaction; Numerical. 

 

1. Introduction  

Magnetic nanofluids [1, 2] are a special subset of nanofluids which respond to external 

magnetic fields. These fluids may be unitary (single magnetic nanoparticle in a base fluid) or 

hybrid (multiple nanoparticle species). As such magnetic nanofluids offer greater advantages 

since the flow and thermal transport characteristics can be manipulated both by external 

magnetic field and also via nanoparticle volume fraction. They are being exploited in for 

example biomedical systems for targeted drug delivery [3] and heat exchanger systems [4]. 

The development of these and other technologies has also benefited from mathematical and 

numerical models. These models require the simultaneous consideration of nanofluid 

properties, heat transfer, viscous flow and magnetohydrodynamics (MHD). Many different 

computational methods have also been deployed to solve the nonlinear transport equations 

inherent to such models. Hamzah et al. [5] used a finite element Galerkin technique to compute 

the heat distribution conjugate of a revolving pipe absorbed in Fe3O4-water nanofluid under 

transverse magnetic field. A suppressed Nusselt number is observed with greater magnetic 

field, meanwhile it is enhanced with greater nanoparticle volume fraction, and thermal 

conductivity ratio. Shafqat et al. [6] utilized a space finite element procedure coupled with time 

Crank-Nicolson to simulate the unsteady magnetohydrodynamic flow of hybrid Al2O3-Cu-

water nanomaterial in a saturated cavity open flat channel of an impediment square adiabatic. 

Dogonchi et al. [7] engaged a control volume finite element technique to analyse the effects of 

nanoparticle shapes hydromagnetic free convective of CuO-water nanofluid in an enclosed 

complex shape. They showed that shaped-platelet nanoparticles achieve an optima heat 
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propagation, and a average and local thermal conduction rates are boosted with large Rayleigh 

number and smaller magnetic field (Hartmann number). Alwawi et al. [8] used the finite 

difference of Keller box technique and Tiwari-Das nanofluid model to simulate the MHD free 

convection viscoplastic boundary layer flow of Sodium Alginate nanomaterial over a 

prescribed solid sphere plate temperature. They also considered Graphite oxide (GO), Silver 

(Ag) and Titanium dioxide (TiO2) nanoparticles, noting that the latter achieves the greatest 

local wall drag and local heat gradient magnitudes. Bhatti et al. [9] used the perturbation 

technique and Tiwari-Das nanofluid model to simulate hybrid nanofluid flow under magnetic 

field effect. They hybridized the mixture of Tantalum and Gold nanoparticles. Additional 

investigations on magnetized nanomaterials can be obtained from Ahmed et al. [10] who 

addressed carbon nanotube (CNT performance in transient variable-viscosity nanofluid flow 

for a shrinking permeable wall. Hasan et al. [11] addressed particle shape effects on ferrofluids 

under low oscillating magnetic field. Sheikholeslami et al. [12] adopted a two-phase model to 

examine the thermal radiation effect on MHD flow.  

In recent years, magnetic nanoparticles have infiltrated into electromagnetic sensors wherein 

they offer improved performance for lower detection limits. They also enable better biosensing 

designs [13] as a result of their high magnetic properties which are absent in conventional bio-

systems. Magnetic nanoparticles also permit significant fine tuning for specific point of care 

applications since the composition, size and magnetic properties can be more precisely 

modulated. This permits a substantial step up in quality of monitoring and measurement of 

delicate processes [14]. A particularly attractive sensor for emerging nano-medical applications 

is the Riga plate [15] which features a parallel wall magnetic body force and is constructed 

with a series of enduring magnets in series with aligned spanwise alternating electrodes. The 

electromagnetic force is parallel to the Riga sensor plate and decays perpendicularly to the 

exponential surface. Although, originally developed as an electromagnetic actuator for naval 

engineering flow control, the presence of magnetic and electric crossed fields that produces the 

parallel wall electromagnetic force has many possible applications in medicine, coating 

diagnostics etc. Boundary layer flow characteristics can be successfully altered with 

modification in the applied electrical and magnetic field strengths on Riga plate sensors. 

Furthermore, different working fluids can be deployed and thermo-solutal (heat and mass 

transfer) phenomena can also be incorporated. This has motivated many researchers to explore 

the performance of Riga and other plate sensor flows with a variety of multi-physics effects. 

Interesting studies include Salahuddin et al. [16] who adopted a Fehlberg Runge–Kutta 
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procedure to examine the squeezing hydromagnetic flowing non-Newtonian material over a 

micro-cantilevered sensor plate surface. Shafiq et al. [17] utilized an optimal homotopy 

analysis technique to examine the stagnation point stream of a short memory magneto-

viscoelastic fluid along a Riga plate. Several investigators have also explored the performance 

of magnetic nanofluids in Riga plate systems. Ahmad et al. [18] employed a shooting 

computational scheme and perturbation approach on two-components Buongiorno’s nanoscale 

formulation to analyse the boundary layer mixed convective flowing nanofluid past a porous 

Riga plate. Hayat et al. [19] computed the coefficients of temperature gradient and wall friction 

for squeezing electromagnetic rotating flow of Carbon (Cu)-Water (H2O) kerosene oil 

nanomaterial in two stretching Riga plates, noting that horizontal velocity is elevated with 

greater magnetization parameter. Ayub et al. [20] computed the impact of wall slip on the 

flowing of magnetic nanomaterial along a Riga plate surface with Brownian movement and the 

thermophoresis. Anjum et al. [21] investigated the impact of stratification heat on magnetized 

viscoelastic flow along a linear stretching Riga plate with thermal sink/source. They 

demonstrated that with greater magnetization parameter the flow accelerated. Ellahi [22] 

examined the flow of non-Newtonian nanofluid in a pipe under the influence of MHD and 

temperature- dependent viscosity. Ellahi et al. [23] studied transport in thermally charged 

MHD bi-phase flow coatings along slippery walls with non-Newtonian nanofluid and Hafnium 

particles. Ellahi et al. [24] provided a hybrid approach to electro-magnetohydrodynamics flow 

of nanofluid through porous media.   

A scrutiny of the scientific literature has shown that thus far the collective effects of heat 

sink/source [25], reacting species [26-28] and thermal radiation [29-30] in free convective 

magnetized Buongiorno nanofluid flow through an exponential stretching Riga plate with dual 

(thermal and solutal) stratification, has not been considered. This is the focus and the 

innovation of the current investigation. The flux diffusion Rosseland’s model is engaged for 

the thermal radiation propagation and is applicable for optically dense fluids as considered in 

Riga plate systems. Chemical reaction is of relevance in electromagnetic corrosion control. The 

controlling momentum, heat transfer and chemical reaction equations with modified Grinberg 

magnetic body force term are formulated, with associated boundary conditions in a Cartesian 

coordinate system. Using appropriate similarity transformations, the resulting dimensionless 

model is solved by the efficient, finite implicit difference Keller Box method. The 

authentication of the results is done by comparative analysis with aforementioned studies. The 

impact of magnetization parameter (H), Grashof number (Gr), radiative flux parameter (Rd), 

heat source parameter, thermophoresis term (Nt), (Q), Brownian movement term (Nb), Prandtl 
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number (Pr), thermal stratification term (St), nanoparticle solutal stratification parameter (Sm), 

species reaction term () and Schmidt number on the flow rate, temperature, nanoparticle 

concentration, skin friction, Nusselt number and Sherwood number is visualized graphically 

and in tables. The analysis find applications in emerging applications in magnetic nano-

biosensors [31] and molecular monitoring sensing systems exploiting magnetic nanoparticles 

and Riga sensors in biochemical engineering [32]. 

 

2. Mathematical Model 

The physical description under consideration is shown in Fig. 1. Incompressible, natural 

convective radiative chemically reacting magnetized nanofluid flow through an exponential 

stretchy Riga electromagnetic plate is investigated. Buongiorno’s nanofluid formulation is 

employed, which features thermophoresis and Brownian movement. The nanofluid is optically 

dense and thermal flux radiation is simulated with the Rosseland model. A reacting 

homogenous species of order one is assumed for the reactive nanoparticles. Heat source/sink 

is also present as are thermal and solutal (mass) stratification effects. The Riga plate sensor is 

on the direction of x-axis. The magnetization at the plate ( 0y  ) is 0M M x  with unvarying 

energy and species at the wall ,w wT C  that are greater than the ambient heat and reacting species 

,T C  . The stretched rate of the Riga plate in x-axis is
/

0

x Lu U e , where 0U denotes a reference 

velocity. Generalizing the models of Supian et al. [33], Yusof et al. [34] and Hayat et al. [35], 

the controlling equations for reacting species, velocity, heat transfer and nanoparticle reaction 

are formulated as follows in an ( , )x y coordinate system: 
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Fig. 1. Physical model for magnetized nanofluid flow along a stretching Riga sensor plate 
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In Eqns. (1)-(5) the following notation applies: u and v  denote flow rate modules in x, y planes, 

separately, T is temperature, kinematic viscosity is  , nanofluid density is  , plate permanent 

magnetization is 0 ,M applied electrode current density is 0 ,j heat diffusion is ,  heat 

expansivity is 0 , thermal capacity is ,pC  thermal sink/source is 0 ,Q  nanoparticles molecular 

diffusivity is BD . thermophoresis diffusion is TD , chemical reaction parameter is rK

unidirectional radiative flux is qr. The radiation term in the energy equation is obtained utilizing 

Rosseland’s approximation [36]  



7 
 

 
44

3
r

T
q

k y

 




 


.                                                                                                                        (6) 

Here 1  is Stefan-Boltzmann radiative constant, 1k is absorption coefficient. Taylor expansion 

of 4T  about T , and neglecting terms of higher order, gives 
4 3 44 3T T T T   . 

Invoking the following transformations [35]: 
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Substitution of Eqn. (7) in Eqns. (1)-(5), the mass conservation is inevitably gratified, and the 

reduced flow rate, heat and nanoparticle species equations emerges in the following 

dimensionless, coupled, nonlinear ordinary differential equations:  

22 0f f f f Gr H e                                                                                               (8) 
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The associated dimensionless boundary constraints for the Riga plate and edge of the 

boundary layer become:  
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The similarity quantity   is used and the differential order is denoted with prime. The 

dimensionless terms featured in Eqns. (8-10) are defined as: 
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Here ,t mS S  are heat and stratification solutal terms respectively, Gr  is thermal Grashof 

number,  denotes non-dimensional Riga term related to the electrode and magnetic width, 

H stands for  body force magnetic modification, Pr is Prandtl  number, R  is thermal radiative 

term, ,Nt Nb are thermophoresis and Brownian parameters of the Buongiorno model, Sc is 
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Schmidt number, Q indicates thermal sink/source/ term and   symbolizes the chemical 

reaction species term.  

Important design quantities are the wall friction factor, Nusselt and mass gradient numbers that 

may be expressed correspondingly as follows: 
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In Eqn. (13), the dimensional shear stress, thermal flux and solutal flux are described as: 
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Invoking the non-dimensional transformations in Eqn. (12), we get: 
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Where /

0Re /x L

x U e x   indicates local Reynolds number. The local wall friction (skin surface 

shear stress),  local thermal gradient number  (plate thermal transport gradient) and local mass 

gradient number (plate nanoparticle species transport) computed in the numerical solution in 

the next section are 𝐶𝑓𝑅𝑒𝑥
1/2

, 𝑁𝑢𝑥𝑅𝑒𝑥
−1/2

 and  𝑆ℎ𝑥𝑅𝑒𝑥
−1/2

 respectively. These are obtained by 

simple transposition of Eqn. (15). 

 

3. Numerical Solution with Keller-Box Finite Difference Technique 

 To have a solution for the nonlinear ordinary differential Eqns. (8)– (10) with associated 

boundary constraints (11), the second order accurate finite difference Keller box method [37] 

has been deployed, coded in symbolic software MATLAB. The stages intrinsic to this 

numerical scheme are summarized in the flow chart in Fig. 2. This method is very popular for 

parabolic differential equation systems such as boundary layer flows and has been employed 

widely in recent years for magnetized nanofluid flows [38-41].  



9 
 

 

Fig. 2. A diagram of the sequences of the Keller box technique. 

The first stage of the Keller box method is the reduction of the multi-order ordinary differential 

equation system to system of multiple order-one ordinary derivative equations. The 

substitutions 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5 , 𝑦6 and 𝑦7 are demarcated where: 

𝑦1 = 𝑓, 𝑦2 = 𝑓′, 𝑦3 = 𝑓′′, 𝑦4 = 𝜃, 𝑦5 = 𝜃′, 𝑦6 = 𝜙, 𝑦7 = 𝜙′. (16) 

𝑦1′ = 𝑦2,  (17) 

y2
′ = 𝑦3,  (18) 

𝑦3
′ = − 𝑦1𝑦3 + 2𝑦2

2 − 𝐺𝑟𝑦4 − 𝐻𝑒−𝛥𝜂 ,  (19) 

𝑦4
′ = 𝑦5,  (20) 

𝑦5
′ =

𝑃𝑟(𝑦1𝑦5−𝑦2𝑦4−𝑆𝑡 𝑦2+𝑁𝑏 𝑦5𝑦7+𝑁𝑡 𝑦5
2+𝑄 𝑦4)

(1+𝑅𝑑)
, (21) 

𝑦6
′ = 𝑦7,  (22) 

𝑦7
′ = −𝑆𝑐 𝑦1𝑦7 + 𝑆𝑐 𝑦2𝑦6 −

𝑁𝑡

𝑁𝑏
𝑦5

′ + 𝑆𝑐 𝑆𝑚 𝑦2 + 2𝑆𝑐 𝛿𝑦6, (23) 

𝑦2(0) = 1, 𝑦1(0) = 0, 𝑦4(0) = 1 − St, 𝑦6(0) = 1 − 𝑆𝑚,

𝑦2(∞) = 0, 𝑦4(∞) = 0, 𝑦6(∞) = 0.                            
} (24) 

Appropriate finite difference approximations are then introduced, and the consequential 

algebraic nonlinear system is then linearized and solved with a block elimination matrix 

technique with the aid of a Thomas algorithm.  An appropriate stepping distance in the -

direction is used. Solutions are readily generated for flow velocity (𝑓′), temperature (𝜃) and 
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nanoparticle species(𝜙) with carefully selected values of the control terms (𝑆𝑐, 𝐻, 𝑆𝑚 𝑒𝑡𝑐). 

  

4. Verification of Computed Results  

The validity of the Keller box algorithm is verified by comparing the Nusselt number (wall 

temperature gradient)  solutions to the earlier study of Qureshi [42] in the absence of radiative 

flux (𝑅 = 0), neglecting nanoscale effects (𝑁𝑏 = 𝑁𝑡 = 0), negating dual stratification effects 

(𝑆𝑡 = 𝑆𝑚 = 0) and without heat absorption/generation (𝑄 = 0).  Table 1 shows that very 

close correlation is obtained confirming the correctness of the Keller box code.  

 

Table 1. Comparing −𝜃′(0) with variation  in Prandtl number and with 𝑅𝑑 = 𝑁𝑏 = 𝑁𝑡 =
𝑆𝑡 = 𝑆𝑚 = 0, 𝑄 = 0. 

Pr  Qureshi [42] Keller box 

solution  

0.72 0.8087618 0.8087612 

1.0 1.0000000 1.0000000 

3.0 1.9235742 1.9235734 

7.0 3.0731465 3.0731465 

10 3.7205542 3.7205511 

 

5. Results and Discussion 

Detailed solutions have been computed for the hydrodynamic, thermal and nanoparticle species 

characteristics for variation in all key parameters. The results for flow rate, heat dispersion and 

reacting nanoparticle (i. e. ( ), ( )f    and ( )  ) with transverse coordinate () are visualized 

in Figs. 3-17. In all figures, the following physically appropriate data for Riga plate sensor 

flows is prescribed (unless otherwise stated) which has been selected from [18]-[21] and [33]-

[34]: 0.5,Pr 7, 0.1, 0.3, 0.2, 0.3, 0.1, 0.4H Rd Q Nb Nt Sc St Sm           . 
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Fig. 3. Velocity (𝑓′(η)) profiles for various values of 𝐻. 

 
Fig. 4. Temperature (𝜃(𝜂)) profiles for diverse values of 𝐻. 
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Fig. 5. Velocity (𝑓′(η)) profiles for various values of 𝐺𝑟. 

 

 
Fig. 6. Heat distribution (θ(η)) profiles for diverse values of 𝐺𝑟. 
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Fig. 7. Temperature (𝜃(𝜂)) profiles for various values of 𝑅𝑑. 

 

 
Fig. 8. Heat propagation (𝜃(𝜂)) profiles for various values of 𝑁𝑏. 
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Fig. 9. Temperature (𝜃(𝜂)) profiles for various values of 𝑁𝑡. 

 

 
Fig. 10. Temperature (𝜃(𝜂)) profiles for various values of 𝑃𝑟.  
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Fig. 11. Temperature (𝜃(𝜂)) profiles for various vaues of 𝑄. 

 

 
Fig. 12. Temperature (𝜃(𝜂)) profiles for various values of 𝑆𝑡. 
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Fig. 13. Nanoparticle concentration (𝜙(𝜂)) profiles for various values of 𝑁𝑏. 

 

 

 
Fig. 14. Nanoparticle concentration (𝜙(𝜂)) profiles for various values of 𝑁𝑡. 
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Fig. 15. Nanoparticle concentration (𝜙(𝜂)) profiles for various values of 𝑆𝑚. 

 

 
Fig. 16. Nanoparticle concentration (𝜙(𝜂)) profiles for various values of 𝑆𝑐. 
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Fig. 17. Nanoparticle concentration (𝜙(𝜂)) profiles for various values of 𝛿. 

 

Table  2: Results of wall friction 𝐶𝑓𝑅𝑒𝑥
1/2

 , thermal gradient 𝑁𝑢𝑥𝑅𝑒𝑥
−1/2

 and Sherwood 

number 𝑆ℎ𝑥𝑅𝑒𝑥
−1/2

 at the Riga plate sensor surface (wall) 
𝑯 𝑮𝒓 𝑹𝒅 𝑵𝒃 𝑵𝒕 𝑷𝒓  𝑸 𝑺𝒄 𝜹 𝑺𝒕 𝑺𝒎 𝑪𝒇𝑹𝒆𝒙

𝟏/𝟐
  𝑵𝒖𝑹𝒆𝒙

−𝟏/𝟐
 𝑺𝒉𝒙𝑹𝒆𝒙

−𝟏/𝟐
 

0.5  2 0.1 0.1  0.2  7 0.3 0.3  0.4 0.1 0.1 0.18281 1.48902 0.59603 

0.7            0.31953 1.53711 0.57823 

0.9            0.44952 1.57755 0.56174 

 0.1           0.87102 1.33349  0.63284 

 0.4           0.97528 1.35914 0.59724 

 0.8           1.10903 1.38927 0.55393 

  0.1          0.86738 1.17345 0.20454 

  1.1          0.87491 1.52916 1.01403 

  2.1          0.87919 1.78985 1.36344  

   0.2         0.87130 1.31095 1.95027 

   0.4         0.87166 1.28139 2.16979 

   0.6         0.87202 1.25237 2.24293 

    0.2       0.87120 1.32023 6.43112 

    0.4       0.87156 1.29417 3.15221 

    0.6        0.87192 1.26874 0.03404 

     5.0       0.87213 1.26040 8.24908 

     8.0      0.85401 3.16447 5.12117 

     10       0.84958 4.07348 3.59389 

      0.5      0.87103 1.12873 8.49322 

      0.9      0.84212 1.98466 7.43758 

      1.3      0.81767 4.50181 5.78605 

       0.5     0.87119 1.31680 0.24605 
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       1.0     0.87124 1.31001 0.87227 

       1.5    0.87126 1.30435 1.04600 

        0.5   0.87108 1.32820 0.92887 

        1.0   0.87111 1.32480 1.13519 

        1.5   0.87114 1.32129 1.36670 

         0.1  0.87102 1.33349 0.63284 

         0.2  0.86316 1.50502 0.60628 

         0.3  0.85521 1.72617 0.57902 

          0.1 0.87103 1.33260 0.96838 

          0.2  0.87103 1.33305 0.82158 

          0.3  0.87102 1.33349 0.63284 

 

Figs. 3 and 4 denote the impact of the Riga magnetic term, 𝐻 =
𝜋 𝐽0 𝑀0 𝐿

8𝜌 𝑈0
2 𝑒

2𝑥
𝐿

, on velocity and 

temperature, respectively. With increment in H values, there is a strong accentuation in velocity 

profiles (Fig. 3) which exhibit a sigmoidal topology. Peak velocity is obtained at the Riga plate 

and the velocity decays into the free stream. Flow acceleration is therefore generated since the 

modified body force,  +𝐻 𝑒−𝛥𝜂, in the momentum equation is assistive, not inhibitive, since it 

aligned with the sensor (plate surface) and is not transverse to it, as in Lorentzian forces 

encountered in  conventional magnetohydrodynamics [43]. Momentum (hydrodynamic) 

boundary layer thickness is therefore reduced with high values of magnetization term, H. 

Temperature as observed in Fig. 4, is conversely suppressed with rising values of H. Since the 

aligned magnetic body force assists momentum development, the nanofluid does not expend 

extra work and does not drag against the magnetic field. This induces a cooling effect in the 

regime and decreases thermal boundary layer thickness.  

Figs. 5 and 6 illustrate the influence of the Grashof number Gr, on flow rate and heat 

dispersion, respectively. Near the sensor surface (wall) a strong acceleration (Fig 5) is 

generated in the flow and the profiles morph from parabolic to approximately linear decays. 

However further into the boundary layer there is a weak reduction in velocity sustained to the 

free stream. , 𝐺𝑟 =
2𝑔 𝛽(𝑇𝑤−𝑇0)𝐿

𝑈0
2𝑒

2𝑥
𝐿

 and represents the ratio of thermal buoyancy force to viscous 

force in the boundary layer. For 𝐺𝑟 < 1 viscous force dominates the thermal buoyancy and 

vice versa for 𝐺𝑟 > 1. As 𝐺𝑟 is increased the thermal buoyancy term, +𝐺𝑟𝜃, in the momentum 

Eqn (8) is increased which assists the flow and induces a boost in velocities. However the 

upsurge in thermal buoyancy force generates a strong decrement in temperatures (Fig. 6) which 

is maintained along the transverse Riga plate boundary. The thickness of the thermal boundary 
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layer is substantially depleted with huge values of 𝐺𝑟. In all the heat distributions there is a 

smooth monotonic descent towards the free stream.  

Fig 7 displays the impact of radiative parameter (𝑅𝑑) on temperature distribution. A 

strong accentuation in temperature is observed for a rising radiation term (𝑅𝑑) and thermal 

boundary layer thickness is increased. The magnetic nanofluid is energized with greater values 

of radiative flux. 𝑅𝑑 =
16𝜎∗𝑇∞

3

3𝑘 𝑘∗
 signifies the relative involvement of radiative thermal dispersion 

and thermal conduction heat transfer in the regime. When 𝑅𝑑 > 1, radiative heat controls the 

heat conductivity and the converse is the case when𝑅𝑑 < 1 . For 𝑅𝑑 = 1 both thermal transport 

modes contributed correspondingly. When 𝑅𝑑 = 0, radiative effects vanish. Asymptotically 

smooth distributions are seen in the free stream confirming that an adequately high infinity 

boundary constraint is given in the Keller box code. The presence of radiative heat effectively 

encourages heat transfer in the sensor regime.  

Figs. 8 and 9 illustrate the response in temperature to a variation in nanoscale parameters i.e. 

Brownian movement (𝑁𝑏) and thermophoresis  (𝑁𝑡) separately. There is a strong elevation in 

temperature with both parameters. Increasing values of 𝑁𝑏 (Fig. 8) correspond to smaller 

diameter nanoparticles in the Buongiorno model. This results in greater ballistic collisions 

between the nanoparticles and an intensification in chaotic motions. The Brownian motion 

term, +𝑁𝑏 𝜃 ′ 𝜙′ is enhanced in Eqn. (9) and the regime is energized. Heat transfers are boosted 

as the boundary thermal thickness layer is encouraged, confirming the heat enhancement 

properties achieved with nanofluids. Fig. 9 also demonstrates that there is a noteworthy boost 

in the  computed heat transfer with larger values of Nt. Thermophoretic body force +𝑁𝑡 𝜃 ′2is 

enhanced in the energy Eqn. (9) with increment in thermophoresis parameter, Nt. The 

movement of nanoparticles under large temperature gradient is assisted with rising 

thermophoretic term. This also serves to elevate the thermal boundary layer viscosity on the 

Riga plate sensor. 

Fig 10 shows the evolution in temperature with a change in Prandtl number. All profiles decay 

sharply from the Riga plate surface initially and then merge further in the free stream. As 

Prandtl number is increased, the heat conduction of the nanofluid is reduced. This inhibits heat 

diffusion in the regime and induces a cooling effect. Thermal boundary layer thickness is 

strongly suppressed. Prandtl number defines the momentum diffusivity relative to the heat 

diffusivity. For 𝑃𝑟 = 1, both flow velocity and thermal diffusion occurs at the similar rate. For 

𝑃𝑟 > 1, momentum diffusion rate exceeds thermal diffusion rate. A considerable variation in 
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the temperature field is therefore attained with using a different base fluid and nanoparticles in 

the Riga sensor regime.  

Fig 11 shows the impact of thermal generation (source) term, 𝑄 =
2𝑄0𝐿

𝜌𝐶𝑝𝑈0𝑒
𝑥
𝐿

, on thermal 

transport profiles. The case of thermal absorption  (𝑄 < 0) is not considered .As anticipated, 

the heat source term, +𝑄 𝜃 is enhanced with greater values of 𝑄. This initially produces a 

strong boost in temperatures near the Riga sensor plate surface (wall). However further from 

the wall there is a reverse in the effect and temperature is suppressed. The impact of heat source 

in the regime is therefore not consistent and is a function of the transverse location from the 

wall. Profiles are generally linear decays close to the wall but become increasingly parabolic 

with further distance from the wall.   

Fig 12 displays the impact of thermal stratification term, St on the energy distributions. A 

marked decrement in temperature is observed with greater values of 𝑆𝑡. The regime is cooled 

and the thermal boundary layer thickness is depleted with more intense thermal stratification. 

Stronger thermal stratification effectively delays the thermal diffusion in the regime. 

Temperature is therefore a maximum when the thermal stratification effect is a minimum  

(𝑆𝑡 = 0.1) . The implication is that if thermal stratification is neglected in the Riga plate 

transport model, temperatures are over-predicted. Inclusion of thermal stratification therefore 

allows a more accurate appraisal of the heat transfer behaviour, as also confirmed in Hayat et 

al. [35]. 

Figs. 13- 17 illustrate the progress in nanoparticle species mixture 𝜙(𝜂) with diverse selected 

parameters. In Fig. 13 a significant reduction in nanoparticle concentration is observed with 

large Brownian movement term  (𝑁𝑏). At low values of Nb the concentration magnified near 

the plate (Riga plate surface) which is eliminated at higher values of 𝑁𝑏. As noted earlier, 

higher 𝑁𝑏 values imply smaller diameter nanoparticles. The chaotic motion is increased in the 

regime. However the upsurge in ballistic collisions which produces heating, circumvents the 

diffusion of nanoparticles in the boundary layer. This damps the reacting species (nanoparticle) 

concentration magnitude and deplete the nanoparticle boundary layer thickness.  Fig. 14 shows 

that increasing thermophoresis term (Nt) opposes the effect of Brownian motion (Nb). There is 

a strong accentuation in nanoparticle concentrations and species boundary layer thickness  is 

elevated. While 𝑁𝑡 and 𝑁𝑏 both feature in the terms, +𝑁𝑏 𝜃 ′ 𝜙′  and +𝑁𝑡 𝜃 ′2 in the energy 

Eqn. (9), they are also coupled in the term, +
𝑁𝑡

𝑁𝑏
𝜃″,  in the concentration boundary constraints 

Eqn. (10). Both parameters then exert a direct influence on nanoparticle concentration 
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distribution. Fig. 15 depicts that with rising in  solutal stratification term, Sm,  there is a strong 

reduction in nanoparticle concentration values. The term, −𝑆𝑐 𝑆𝑚 𝑓 ′ in Eqn. (10) is increased 

with greater 𝑆𝑚 values and inhibits nanoparticle migration (diffusion). The solutal 

stratification parameter, 𝑆𝑚 also features in the wall species boundary condition (11), viz

(0) 1 Sm   . Higher 𝑆𝑚 values therefore also reduce the nanoparticle concentration boundary 

layer thickness. Fig. 16 displays the elevation in the Schmidt number, 𝑆𝑐, a marked depletion 

in nanoparticle species, and this impact is emphasized close to the Riga plate sensor surface. 

Further from the wall the profiles merge and Schmidt number exerts a much weaker influence. 

Concentration boundary layer thickness is thereby depleted with rising 𝑆𝑐 values. Schmidt 

number defines the relationship between the momentum diffusivity and the nanoparticle 

molecular diffusivity. For 𝑆𝑐 < 1, the mass diffusivity overshoots the momentum diffusivity 

and vice versa for 𝑆𝑐 > 1. For 𝑆𝑐 = 1 both diffusivity rates are equal, also the velocity 

(hydrodynamic) and nanoparticle concentration boundary layer thickness are of equal 

magnitude. Clearly with 𝑆𝑐 > 1 the nanoparticle mass diffusion is inhibited. The nature of the 

nanoparticles selected for deployment in the Riga plate sensor system is therefore is critical in 

determining the mass diffusion behaviour in the magnetic nanofluid.  Fig. 17 displays the 

concentration distribution in the regime for different values of reacting species term  (𝛿). The 

homogenous destructive chemical mixture of order-one is modelled in Eqn. (10) with the term,  

−2𝑆𝑐 𝛿𝜙. Since the chemical reaction is destructive, more nanoparticles are converted to 

another species. The original nanoparticle species concentration magnitudes are therefore 

reduced as observed. Nanoparticle concentration  boundary layer thickness is decreased with 

large chemical reaction effect. The non-reactive case is retrieved for 𝛿 = 0. With increasing 𝛿 

values, the concentration peak near the Riga plate sensor wall is also progressively displaced 

closer to the wall and the concentration overshoot is also suppressed.  

Table 2 documents the variation in skin friction 𝐶𝑓𝑅𝑒𝑥
1/2

 , heat gradient number 𝑁𝑢𝑥𝑅𝑒𝑥
−1/2

 

and mass gradient number 𝑆ℎ𝑥𝑅𝑒𝑥
−1/2

 with all key terms. An increment in Riga magnetization 

parameter (𝐻) elevates the wall drag force and temperature gradient number while the species 

gradient number is reduced. With enhancing Grashof number  (𝐺𝑟), wall friction and Nusselt 

number are also boosted, meanwhile Sherwood number is reduced. Increasing  radiative 

parameter  (𝑅𝑑) weakly enhances skin friction but strongly boosts the Nusselt and Sherwood 

numbers, indicating higher heat distribution and nanoparticles mass transfer to the wall (Riga 

plate surface). A boost in the Brownian movement term  (𝑁𝑏)  damps the wall skin friction, 

strongly decreases the Nusselt number and significantly amplifies the Sherwood number (mass 
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transfer gradient at the wall). Rising thermophoresis term  (𝑁𝑡)  weakly increases skin friction, 

weakly  reduces the Nusselt number and very substantially suppresses the Sherwood number 

(since nanoparticle mass transfer is raised in the region, the transit of nanoparticles to the wall 

is strongly reduced). An elevation in Prandtl number  (𝑃𝑟)  reduces skin friction, noticeably 

boosts the Nusselt number (thermal gradient at the wall) - since nanofluid temperature is 

reduced- and  very markedly depletes the Sherwood number. A boost in thermal source term  

(𝑄 > 0), reduces skin friction and increases Nusselt number, although it induces a significant 

fall in Sherwood number magnitudes. A boost in mass transfer gradient  (𝑆𝑐)  weakly increases 

the wall friction and weakly enhances the Nusselt number, but strongly elevates Sherwood 

number (since nanoparticle concentrations in the boundary layer are diminished and net 

migration of nanoparticles to the wall is therefore boosted). With more intense chemical 

reaction (𝛿), a slight rise in the wall skin friction and temperature gradient (Nusselt number) 

is noticed, but a significant enhancement in the species gradient (Sherwood number) is 

obtained. With increasing thermal stratification parameter  (𝑆𝑡),  both wall skin friction and 

nanoparticle concentration gradient (Sherwood number) are weakly reduced, whereas thermal 

gradient at the wall (Nusselt number) number is strongly enhanced. With increasing mass 

(solutal) stratification parameter  (𝑆𝑚),  there is no tangible modification in skin friction, 

whereas there is a slight rise in Nusselt number and a prominent decrease in Sherwood number.   

 

6. Concluding Remarks  

A theoretical study has been presented for convective chemically reacting flow of a magnetized 

Buongiorno nanofluid along an exponential stretchy Riga electromagnetic plate sensor with 

dual (thermal and solutal) stratification effects. The additional impacts of thermal sink/source 

and radiative heat flux are included. A computational solution of the transmuted non-

dimensional ordinary differential boundary layer conservation equations with associated 

boundary constraints has been obtained with the second order finite difference Keller Box 

technique. Corroboration with earlier investigations were carried out. The key findings of the 

current study may be crystallized as follows: 

 With enhancing magnetization term (𝐻), velocity is elevated whereas temperature is 

suppressed. 

 Increasing Grashof number  (𝐺𝑟) enhances velocity strongly near the sensor surface region 

and also decreases temperature throughout the boundary layer regime. 
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 Increasing thermophoresis term  (𝑁𝑡), radiative flux term  (𝑅𝑑), Brownian movement term  

(𝑁𝑏), and thermal generation term  (𝑄), all elevate the heat propagation, while it is 

decreased with higher values of Prandtl number  (𝑃𝑟) and thermal stratification term  (𝑆𝑡).  

 Nanoparticle species reaction is significantly decreased for rising values of nanoparticle 

solutal stratification  (𝑆𝑚), Brownian motion parameter  (𝑁𝑏), Schmidt number and 

chemical reaction term  (𝛿), meanwhile it is enhanced with thermophoresis parameter  (𝑁𝑡). 

 Augmenting magnetization term  (𝐻) also elevates the wall drag force and thermal gradient 

(Nusselt number) but diminishes the species gradient at the wall (Sherwood number). 

 With increasing chemical reaction  (𝛿), a slight rise in the wall skin friction and Nusselt 

number is seen and a prominent upsurge in the Sherwood number is computed. 

 With increasing thermal stratification parameter  (𝑆𝑡), both skin friction and Sherwood 

number are slightly decreased, but Nusselt number is considerably elevated. 

 With increasing mass (solutal) stratification parameter  (𝑆𝑚) ,  there is no significant change 

in wall in skin friction, whereas there is a slight enhancement  in Nusselt number and a 

substantial depletion in Sherwood number.   

The present study has shown that the Keller box finite difference technique is a very efficient 

method for computing electromagnetic actuator boundary layer flows. Future studies may 

generalize further the present analysis to consider non-Newtonian magnetic nanofluids which 

are also relevant to hybrid Riga plate electromagnetic devices.   
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