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Abstract 

The convective-radiative magnetohydrodynamic non-Newtonian second grade fluid 

boundary layer flow from a curved stretching surface has been scrutinized in the present study. 

The Reiner-Rivlin second grade viscoelastic model is deployed which provides a good 

approximation for certain magnetic polymers. High temperature invokes the presence of 

radiative heat transfer which is simulated with the Rosseland diffusion approximation. Viscous 

dissipation and Joule heating are also featured in the model and hydrodynamic (velocity) slip 

at the wall is also incorporated in the boundary conditions.  The emerging nonlinear coupled 

dimensionless transport equations are solved with a Runge-Kutta method and a shooting 

numerical scheme. The influence of emerging multi-physical flow parameters on the 

dimensionless profiles are examined with the help of plots for comparative analysis of both 

non-Newtonian fluid and Newtonian fluid. The numerical solutions are validated for special 

cases with existing works. The velocity declines for higher magnetic field whereas the reverse 

trend is noted for the temperature function. An augmentation in thermal field is noted with 

increment in radiation parameter. Furthermore, the fluid temperature of second grade fluid is 

higher with increasing Brinkmann number. Wall slip induces deceleration. Contour plots for 

streamlines and isotherms are also visualized and analyzed. 
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1. Introduction 

Transport from curved surfaces is an important topic in numerous industrial systems including 

manufacturing, coating, materials processing and also aerodynamics of flight vehicles. The 

compressible flow from a curved surface was initially investigated by Kaplan [1]. Later, 

motivated by industrial coating systems, the incompressible flow of a Newtonian liquid from 

a linear stretching surface was analysed by Crane [2] in the year 1970. More recently viscous 

fluid flow over a curved stretching sheet was examined by Sajid et al. [3] who deployed a 

similarity approach for reducing the governing boundary flow equations and observed that the 

momentum boundary layer thickness was reduced with higher curvature. Abbas et al. [4] have 

reported the flow and heat transfer flow along a curved surface in the presence of applied 

magnetic field. Further studies of boundary layer flows from curved stretching surfaces have 

considered a diverse spectrum of multi-physical phenomena including non-Fourier and non-

Darcy effects [5], unsteady and wall suction/injection effects [6], exponential wall stretching 

[7], power-law wall stretching [8], chemical reactions [9],  nanofluids [10], entropy generation 

[11], radiative heat transfer [12], convective wall boundary conditions [13], porous media drag 

[14], wall slip [15], oblique stagnation flow [16], thermal conductivity variation [17] and 

activation energy and mass diffusion [18]. All these studies indicated that curvature plays a 

prominent role in modifying the boundary layer characteristics including Nusselt number and 

wall shear stress.  

 

Fluid flow in the presence of a magnetic field has prominent applications in metallurgical 

engineering, electro-conductive polymer processing, nuclear reactor thermal control, plastics 

manufacture etc. The science of magnetohydrodynamics (MHD) is used to analyse the 

interaction of external magnetic field on electrically conducting liquids. MHD materials 

processing is for example very useful in achieving non-intrusive control of fabrication 

processes. Mathematical modelling of curved stretching sheet deposition flows with MHD 

effects has therefore mobilized considerable interest in recent years in applied mathematics and 

engineering sciences. Magnetic effects may include Lorentzian drag, magnetic induction, 

Ohmic heating, Maxwell displacement currents and also static or time-dependent magnetic 

fields. The unsteady hydromagnetic boundary layer flow external to a curved stretching surface 

was analysed by Naveed et al.  [19]. The Runge-Kutta integrating was employed and 

benchmarked with the special case of a flat unsteady stretching surface (infinite curvature).  

The thermal analysis of nanofluid flow from a curved surface was scrutinized by Mishra et al.  

[20]. The interaction of hydromagnetic flow of a nanofluid from a curved nonlinearly extending 
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sheet with higher order wall slip and thermo-diffusion effects has been explored by Ibrahim 

and Kuma [21] who utilized the bvp4c numerical procedure in MATLAB. It noted that the flow 

is decelerated with first and third order slip parameters but accelerated with second order slip. 

The local mass transfer rate at the wall (Sherwood number) is enhanced with Soret and Dufour 

numbers whereas the local heat transfer rate (Nusselt number) is suppressed. The 

hydromagnetic and viscous liquid flow with thermal radiative flux was scrutinized by Hayat et 

al.  [22]. It observed that velocity and skin friction are depleted with stronger applied magnetic 

field i. e. Hartmann number and heat transfer rate is also reduced with increasing curvature 

parameter.  The thermal radiation impact on convective flow from a stretching cylinder has 

been addressed by Pandey and Kumar [23].  Pandey and Upreti [24] have analyzed the effect 

of heat generation on transport from a curved sheet and observed that the rate of heat transfer 

is reduced for larger curvature.  Temperature and thermal boundary layer thickness was also 

shown to be elevated with Biot number and radiative parameter. Riaz et al. [25] studied the 

entropy generation in magneto-convective radiative nanofluid from a curved extending surface.  

Bhatti et al. [26] have simulated the convective and dissipative flow of a third-grade 

viscoelastic fluid in microchannel under electrical and magnetic field influence. 

In recent years a new generation of intelligent polymers known as electro-conductive or 

magneto-rheological polymers [27] has emerged. These sophisticated liquids combine 

magnetohydrodynamics with rheology i.e. non-Newtonian behaviour. Such materials provide 

enhanced performance in for example coating applications in aerospace, biomedical and 

marine industries. Electro-conductive polymers may exhibit a range of rheological effects 

including shear thinning (pseudoplasticity), shear thickening (dilatancy) and viscoelasticity 

(stress relaxation and retardation). Scientists have therefore considered a range of such models 

in recent years.  Shahid et al. [28] used the Maxwell viscoelastic model to study magnetized 

polymer flow from a stretching surface with non-Fourier heat flux. Micropolar non-Newtonian 

hydromagnetic flow from a curved extending sheet was explored by Naveed et al. [29]. Bisht 

and Bég [30] investigated the non-Newtonian magnetic nanofluid flow doped with micro-

organisms from a curved stretching surface using the Sisko high shear rate model. The heat 

transfer characteristics of power-law rheological nanofluids from a stretching sheet has been 

examined by Reddy et al. [31].  Shabbir et al. [32] obtained finite difference numerical 

solutions for magneto-convective flow of a micropolar fluid from a curved stretching boundary. 

It showed that the flow is decelerated with stronger magnetic parameter, power law index and 

radius of curvature whereas micro-rotation is elevated. Maity and Kundu [33] studied the 

viscoplastic (Casson) nanofluid transport from a curved stretching sheet in the presence of 
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applied magnetic field, observing that temperature and concentration are reduced with 

increasing stretching parameter.  The magnetohydrodynamic Sutterby non-Newtonian 

nanoparticle-doped drug delivery with heat transfer in a tapered artery was studied by Bhatti et 

al.  [34].   

 

In high temperature magnetic materials processing, both thermal radiation and Joule heating 

(Ohmic dissipation) may arise. Other systems featuring these phenomena include thermal 

energy conversion processes, photochemical magnetic bioreactors and liquid metal fabrication.  

Zhang et al. [35] have computed Joule heating effects on stagnation point flow of magnetic 

nanofluid from a curved stretching or contracting permeable surface. It is noted that greater 

curvature reduces surface skin friction whereas larger wall suction induces the opposite effect. 

It is also observed that wall heat transfer rate is boosted with wall suction, greater Hartmann 

number and Biot number. Magnetohydrodynamic Newtonian thermo-solutal flow from a 

curved stretching sheet with thermal radiation and Joule Heating was investigated by Hayat et 

al.  [36]. It is noted that pressure, skin friction coefficient, and Nusselt number decrease with 

larger curvature parameter and that Joule heating strongly modifies the temperature field. 

Anantha Kumar et al. [37] have scrutinized the effect of thermal radiation in viscoplastic 

convection from a curved stretching surface, employing the Rosseland model and Runge–Kutta 

methods. They found that the Casson viscoplastic parameter decreases velocities whereas the 

curvature parameter increases them. Ferdows at al. [38] studied the impact of radiative flux on 

hydromagnetic flow from a curved stretching sheet, using MATLAB bvp4c quadrature, noting 

that the fluid velocity and temperature increase with curvature parameter whereas higher 

magnetic parameter reduces velocity. Sridhar et al. [39] have reported the combined effects of 

Joule heating and radiation on non-Newtonian fluid flow. Further analyses reporting on the 

dual effects of thermal radiation and Ohmic heating on stretching sheet flows include Sajid et 

al. [40] (on ferrofluids), Shamshuddin et al. [41, 42] (on micropolar magnetic polymers and 

pseudoplastic magnetic polymers), and Prakash et al. [43] (who used a tangent hyperbolic 

rheological model for bi-axial electromagnetohydrodynamic stretching flow). 

The above studies have not considered the viscoelastic second grade Reiner-Rivlin model 

which provides a good approximation for certain magnetic rheological polymers [44-47]. There 

has been a growing interest in new electro-conductive polymer materials which feature smart 

characteristics that can be manipulated by, for example, external magnetic fields. These 

materials are increasingly being utilized in coating manufacturing processes. In view of these 

applications, the current article examines the convective-radiative magnetohydrodynamic non-
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Newtonian second grade fluid boundary layer flow from a curved stretching surface under a 

static radial magnetic field. A further novelty of the present model is that it also includes Ohmic 

heating and viscous dissipation effects in the thermal analysis and furthermore a velocity slip 

condition at the sheet surface (wall). The transformed conservation boundary layer equations 

are solved numerically with an appropriate Runge-Kutta technique. The numerical solutions 

are verified with special cases from the literature. Contour plots for streamlines and isotherms 

are visualized and analyzed. The impact of emerging parameters on velocity and temperature 

distributions is evaluated in detail. Skin friction and Nusselt number are also computed.  

 

2. Mathematical Model 

Steady two-dimensional (2D) hydromagnetic flow of a non-Newtonian second grade fluid 

(magnetic polymer) from a curved stretching surface of radius R is considered. Here the 

problem is modeled based on curvilinear coordinates (𝑟, 𝑠). The energy equation features 

thermal radiation, Joule heating and viscous dissipation. First order velocity slip is also 

included in the boundary conditions, since polymers are known to exhibit slip phenomena. It 

is assumed that the constant magnetic field (𝐵0) acts normal to the curved surface, applied in 

the radial direction. Unidirectional radiative flux acts transverse to the curved surface. The 

magnetic polymer is assumed to be optically thick, and the Rosseland diffusion approximation 

is deployed. Hall current and magnetic induction effects are neglected. The physical 

configuration is shown in Fig.1. It is assumed that the surface is stretched with a velocity, 𝑢𝑤 =

𝑈𝑠𝑙𝑖𝑝 + 𝑎𝑠, where 𝑎 is a positive constant. Based on the assumptions mentioned, the governing 

equations (continuity, momentum and energy) are obtained by extending the models in 

[5,12,18,21] for the second-grade viscoelastic fluid: 

 

𝜕

𝜕𝑟
((𝑟 + 𝑅)𝑣) + 𝑅

𝜕𝑢

𝜕𝑠
= 0,             (1) 

1

𝑟+𝑅
𝑢2 = −

1

𝜌

𝜕𝑝

𝜕𝑟
  ,          (2) 
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𝑣
𝜕𝑢

𝜕𝑟
+

𝑢𝑅

𝑟 + 𝑅

𝜕𝑢

𝜕𝑠
+

𝑢𝑣

𝑟 + 𝑅

= −
1

𝜌

𝑅

𝑟 + 𝑅

𝜕𝑝

𝜕𝑠
+ 𝜈 (

𝜕2𝑢

𝜕𝑟2
+

1

𝑟 + 𝑅

𝜕𝑢

𝜕𝑟
−

𝑢

(𝑟 + 𝑅)2
)

+
𝛼1

𝜌
[

2

𝑟 + 𝑅

𝜕2𝑢

𝜕𝑟2

𝜕𝑢

𝜕𝑠
 −

2

(𝑟 + 𝑅)2

𝜕𝑢

𝜕𝑠

𝜕𝑢

𝜕𝑟
+

2

𝑟 + 𝑅

𝜕𝑣

𝜕𝑠

𝜕𝑢

𝜕𝑟
+

2

𝑟 + 𝑅
𝑣

𝜕2𝑢

𝜕𝑟2

−
2

(𝑟 + 𝑅)2
𝑣

𝜕𝑢

𝜕𝑟
−

4𝑅

(𝑟 + 𝑅)2
𝑢

𝜕2𝑢

𝜕𝑠𝜕𝑟
−

4𝑅

(𝑟 + 𝑅)2
𝑢

𝜕𝑣

𝜕𝑟
 

2𝑅

(𝑟 + 𝑅)3
𝑢

𝜕𝑢

𝜕𝑠
] −

𝜎

𝜌
𝐵 𝑢0

2  

            (3) 

𝑣
𝜕𝑇

𝜕𝑟
+

𝑢𝑅

𝑟+𝑅

𝜕𝑇

𝜕𝑠
=

𝑘

(𝜌𝑐𝑝)
(1 +

16𝜎∗

3𝑘𝑘∗) (
1

𝑟+𝑅

𝜕𝑇

𝜕𝑟
+

𝜕2𝑇

𝜕𝑟2) +
𝜇

(𝜌𝑐𝑝)
(

𝜕𝑢

𝜕𝑟
+

𝑢

𝑟+𝑅
)

2

+
𝜎𝐵0

2

(𝜌𝑐𝑝)
𝑢2                  (4) 

 

The associated boundary conditions at the curved sheet surface and in the free stream are 

prescribed as follows: 

𝑢 = 𝑙 (
𝜕𝑢

𝜕𝑟
) + 𝑎𝑠,   𝑣 = 0,   𝑇 = 𝑇𝑤    𝑎𝑡  𝑟 = 0,  

𝑢 → 0,   
𝜕𝑢

𝜕𝑟
→ 0,   𝑇 → 𝑇∞     𝑎𝑠       𝑟 → ∞                 (5) 

where 𝑈𝑠𝑙𝑖𝑝 = 𝑙 (
𝜕𝑢

𝜕𝑟
).  

 

 

                                     Fig.1. Geometric flow configuration 

Defining the following transformations to normalize the governing equations [3,5,12]: 

𝑢 = 𝑎𝑠, 𝑓′ = (𝜂), 𝑣 =
𝑅

𝑟+𝑅
√𝑎𝑣𝑓 𝑓(𝜂), 𝜁 = √

𝑎

𝑣
𝑟, 𝑝 = 𝜌𝑓𝑎2𝑠2𝑃(𝜁), 𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
              (6) 
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Introducing equation (6) in Equations (1) to (5), we have the following similarity equations for 

pressure, velocity and temperature: 

𝑃′ =
𝑓′2

(𝜁+𝐾)
 ,                    (7) 

2𝐾

(𝜁+𝐾)
𝑃 = 𝑓′′′ +

1

(𝜁+𝐾)
𝑓′′ −

1

(𝜁+𝐾)2 𝑓′ −
𝐾

(𝜁+𝐾)
𝑓′2 +

1

(𝜁+𝐾)
𝑓𝑓′′ +

𝐾

(𝜁+𝐾)2 𝑓𝑓′ + Γ [
2𝐾

𝜁+𝐾
𝑓′𝑓′′′ −

2𝐾

(𝜁+𝐾)2 𝑓′𝑓′′′ −
8𝐾

(𝜁+𝐾)2 𝑓′𝑓′′ +
4𝐾

(𝜁+𝐾)3 𝑓′𝑓′′ +
6𝐾

(𝜁+𝐾)3 𝑓′2
−

4𝐾

(𝜁+𝐾)4 𝑓𝑓′] − 𝑀𝑓′,         (8) 

(1 + 𝑅𝑑) (𝜃′′ +
1

(𝜁+𝐾)
𝜃′) + 𝑃𝑟

𝐾

(𝜁+𝐾)
𝑓𝜃′𝐵𝑟 (𝑓" +

1

(𝜁+𝐾)
𝑓′)

2

+ 𝑀𝐵𝑟𝑓′2 = 0,        (9) 

The transformed associated boundary conditions emerge as: 

 𝑓(𝜁) = 0, 𝑓′(𝜁) = 1 + 𝐿𝑓′′(𝜁),    𝜃(𝜁) = 1, 𝑎𝑡    𝜁 = 0 

𝑓′(𝜁) = 0,     𝑓′′(𝜁) = 0, 𝜃(𝜁) = 0       𝑎𝑠     𝜁 → 0          (10) 

Here the following dimensionless variables are defined:   

𝐾 = √
𝑎

𝑣
𝑅, 𝑀 =

𝜎𝐵0
2

𝜌𝑎
, Γ =

𝛼1𝑎

𝜇
, 𝑃𝑟 =

𝑣

𝛼
, 𝑅𝑑 =

16𝜎∗𝑇∞
3

3𝑘𝑘∗ , 𝐸𝑐 =
𝑎2𝑠2

𝑐𝑝(𝑇𝑤−𝑇∞)
, 𝐵𝑟 = 𝑃𝑟𝐸𝑐, 𝐿 = 𝑙√

𝑎

𝑣
  

          (11) 

These denote respectively the curvature parameter, magnetic field parameter, second grade 

viscoelastic fluid parameter, Prandtl number, radiation parameter, Eckert number, Brinkman 

number and velocity slip parameter. 

By neglecting the pressure from momentum Equation (8) using Equation (7), the momentum 

Equation (8) emerges as: 

𝑓𝑖𝑣 +
2

(𝜁+𝐾)
𝑓′′′ −

1

(𝜁+𝐾)
𝑓′′ +

1

(𝜁+𝐾)
𝑓′ +

𝐾

(𝜁+𝐾)
(𝑓𝑓′′ − 𝑓′𝑓′′) +

𝐾

(𝜁+𝐾)
(𝑓𝑓′′ − 𝑓′2)   

   −
𝐾

(𝜁+𝐾)3 𝑓𝑓′ − 𝑀 (𝑓′′ +
1

(𝜁+𝐾)
𝑓′) + 2Γ [

𝐾

(𝜁+𝐾)
𝑓′′𝑓′′′ +

𝐾

(𝜁+𝐾)
𝑓′𝑣𝑓′ −

5𝐾

(𝜁+𝐾)3 𝑓′𝑓′′′ +

     
12𝐾

(𝜁+𝐾)3
𝑓′𝑓′′ +

3𝐾

(𝜁+𝐾)3
𝑓𝑓′′′ −

4𝐾

(𝜁+𝐾)3
𝑓′′2

−
6𝐾

(𝜁+𝐾)4
𝑓𝑓′′ −

8𝐾

(𝜁+𝐾)4
𝑓′2

+
6𝐾

(𝜁+𝐾)5
𝑓𝑓′] = 0    

              (12) 

The prominent engineering quantities such as local skin-friction coefficient 𝐶𝑓 and Nusselt 

number 𝑁𝑢 are given by: 

𝐶𝑓 =
𝜏𝑟𝑥

1

2
𝜌𝑢𝑤

2
                     (13) 

𝑁𝑢 =
𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞)
,            (14)  

in which the shear stress 𝜏𝑟𝑥 and heat flux 𝑞𝑤  are defined respectively [9] as: 

𝜏𝑟𝑥 = 𝜇 [
𝜕𝑢

𝜕𝑟
−

𝑢

𝑟 + 𝑅
+

2𝛼1

𝜇
{

𝑅

𝑟 + 𝑅

𝜕𝑢

𝜕𝑟

𝜕𝑢

𝜕𝑥
+

𝑣

𝑟 + 𝑅

𝜕𝑢

𝜕𝑟
−

2𝑅𝑢

(𝑟 + 𝑅)2

𝜕𝑢

𝜕𝑥
−

2𝑢𝑣

(𝑟 + 𝑅)2
}]

𝑟=0

, 

           (15) 
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𝑞𝑤 = (𝑘 +
16𝜎∗𝑇∞

3

3𝑘∗
)

𝜕𝑇

𝜕𝑟
|

𝑟=0
 ,         (16) 

With the help of Equation (6), equations (13) and (14) are transformed to: 

𝐶𝑓(𝑅𝑒𝑥)
1

2⁄ = 2 [𝑓′′(0)
𝑓′(0)

𝐾
+ Γ {𝑓′(0)𝑓′′(0) −

2

𝐾
(𝑓′(0))

2
}],   (17) 

𝑁𝑢(𝑅𝑒𝑥)
−1

2⁄ = −(1 + 𝑅𝑑)𝜃′(0)        (18) 

Here (𝑅𝑒𝑥)
1

2⁄ = √
𝑎

𝑣
𝑠  is the Local Reynolds number. 

 

3. Numerical Solution: 

To derive closed form solutions of the final dimensionless differential equations (9) and (12) 

subject to the boundary conditions (10) is difficult, if not intractable. Therefore, these equations 

are solved by employing the Runge-Kutta numerical approach along with a shooting scheme 

in MATLAB symbolic software and the procedure is as follows:  

𝑓 = 𝑦1, 𝑓′ = 𝑦2, 𝑓′′ = 𝑦3, 𝑓′′′ = 𝑦4,        (19) 

𝑦4
′ = −

1

(1+
𝐾

(𝜁+𝐾)
𝑦2)

[
2

(𝜁+𝐾)
𝑦4 −

1

(𝜁+𝐾)
𝑦3 +

1

(𝜁+𝐾)
𝑦2 +

𝐾

(𝜁+𝐾)
(𝑦1𝑦3 − 𝑦2𝑦3) +

𝐾

(𝜁+𝐾)
(𝑦1𝑦3 − 𝑦2

2) −
𝐾

(𝜁+𝐾)3 𝑦1𝑦2 − 𝑀 (𝑦3 +
1

(𝜁+𝐾)
𝑦2) + 2Γ [

𝐾

(𝜁+𝐾)
𝑦2𝑦3 −

5𝐾

(𝜁+𝐾)3 𝑦2𝑦4 +

12𝐾

(𝜁+𝐾)3 𝑦2𝑦3 +
3𝐾

(𝜁+𝐾)3 𝑦1𝑦4 −
4𝐾

(𝜁+𝐾)3 𝑦3
2 −

6𝐾

(𝜁+𝐾)4 𝑦1𝑦3 −
8𝐾

(𝜁+𝐾)4 𝑦2
2 +

6𝐾

(𝜁+𝐾)5 𝑦1𝑦2]]    (20) 

𝜃 = 𝑦5,   𝜃′ = 𝑦6,            (21) 

𝜃′′ = −
1

(1+𝑅𝑑)
[

1

(𝜁+𝐾)
𝜃′ + 𝑃𝑟

𝐾

(𝜁+𝐾)
𝑓𝜃′𝐵𝑟 (𝑓" +

1

(𝜁+𝐾)
𝑓′)

2

+ 𝑀𝐵𝑟𝑓′2]                   (22) 

The transformed boundary conditions are:  

𝑦1(0) = 0,   𝑦2(0) = 1 + 𝐿 𝑦3(0),     𝑦5(0) = 1 

𝑦2(∞) = 1,     𝑦3(∞) = 0,   𝑦5(∞) = 0        (23) 

 

4. Validation of numerical solutions 

In order to validate the obtained Runge-Kutta numerical solution, a comparative study of 

friction factor (skin friction) versus curvature parameter 𝐾 is conducted. Solutions are 

compared with those from the literature for special cases where viscous heating is absent (Ec 

= 0), second grade viscoelastic fluid parameter is neglected (𝛤 = 0) and wall velocity slip is 

absent (L = 0). The special reduced cases correspond to the earlier studies of Sajid et al. [3], 

Abbas et al. [4] and Hayat et al. [15]. The comparisons are shown in Table 1.  
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Table1: Comparison of the friction factor for the curvature parameter 𝐾 with 𝐿 = Γ = Ec = 0. 

𝐾 Ref. [3] Ref. [4]  Ref. [15] Present R-K results 

5 

10 

20 

30 

0.75763 

0.87349 

0.93561 

0.95686 

0.75754 

0.87480 

0.93564 

0.95685 

0.75762 

0.87350 

0.93562 

0.95685 

0.757642 

0.874823 

0.935612 

0.956867 

 

From this, it is observed that the friction factor is boosted for higher 𝐾 i. e. as the sheet becomes 

progressively flatter. Excellent correlation between the present Runge-Kutta numerical results 

and those in the literature has been achieved. Confidence in the present numerical approach is 

therefore justifiably very high.   

 

Fig.2. Comparison graph for validation of code. 

 Furthermore, in order to validate the employed computer code, the effect of magnetic 

field parameter 𝑀on velocity function for the second-grade non-Newtonian fluid is 

benchmarked with the solution of Imtiaz et al.  [9] and the comparison is displayed in Fig.2. It 

is evident that excellent agreement between the present results and previous published work 

[9] is achieved confirming high confidence in the present numerical results. 
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4. Graphical description 

The main focus of the current investigation is to examine both the streamline and isotherm 

distributions and velocity and temperature profiles in non-Newtonian dissipative radiative 

second grade fluid flow from a curved stretching surface with wall slip. For the numerical 

calculations, the parameter values considered of the present study are : 𝐾 = 2.2, 𝑀 = 2.2,  =

0.8 (non-Newtonian fluid),  = 0.0 (Newtonian fluid), 𝑅𝑑 = 2.2, 𝑃𝑟 =4.4, 𝐵𝑟 = 2.2, 𝐿 =0.2. 

The effects of all key emerging parameters on streamline contours, isotherm contours, velocity 

and temperature are visualized in graphical plots (Figs. 3-13).  
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Fig.3. Contour plots for streamlines (a) 𝐿 = 0.01 (b) 𝐿 = 0.2 (c) 𝑀 = 0.2 (d) 𝑀 = 2.0 

(e) 𝐾 = 2.0 (f) 𝐾 = 6.0 (g) 𝛤 = 0.0 (h) 𝛤 = 0.8 
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Fig.4. Contour plots for isotherms (a)  𝑅𝑑 = 0.6, 𝛤 = 0.0 (b)  𝑅𝑑 = 2.0, 𝛤 = 0.0  (c)  𝑅𝑑 =

0.6, 𝛤 = 0.8 (d)  𝑅𝑑 = 2.0, 𝛤 = 0.8   (e) 𝐵𝑟 = 0.6, 𝛤 = 0.8  (f) 𝐵𝑟 = 2.0, 𝛤 = 0.8  
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Fig 5. Variation in 𝑓′(𝜁)  with  𝐾. 

 

 

 

Fig 6. Variation in 𝑓′(𝜁)  with  𝑀.  
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Fig 7. Variation in 𝑓′(𝜁)  with  𝐿. 

 

 

Fig 8. Variation in 𝜃  with   𝑀. 
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Fig 9. Variation in 𝜃 with   𝑅𝑑. 

 

 

 

 Fig 10. Variation in 𝜃  with  𝐵𝑟.  
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Fig 11.  Variation in 𝐶𝑓 with  𝐾.  

 

 

Fig 12. Variation in 𝑁𝑢 with 𝐾. 
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Fig 13. Variation in 𝑁𝑢 with 𝐵𝑟. 

4.1. Streamlines 

The contour plots for streamlines with variation in different flow parameters such as velocity 

slip parameter 𝐿, magnetic variable 𝑀,  curvature parameter 𝐾, non-Newtonian fluid parameter 

𝛤 have been displayed in Figs. 3(a)-3(h) respectively.  The influence of increasing velocity slip 

parameter 𝐿 on streamlines (Figs. 3(a) and 3(b)) is to constrict the higher velocity (top right) 

zone. In other words, the flow is decelerated with greater velocity slip and there is the 

emergence of lower velocity (graded blue) zones in the left of the plot. A similar effect is 

induced with increasing magnetic parameter (M) which constricts the bands of streamlines 

((Figs. 3(c) and 3(d)). Lower velocity zones emerge due to the strong deceleration associated 

with the magnetic force. The boundary layer flow is therefore significantly damped with 

stronger magnetic field and the initial larger red, orange and yellow higher velocity zones for 

M = 0.2 (left plot) are considerably contracted for M = 2.0 (right plot).  Figs. 3(e) & 3(f)) 

indicate that streamlines are also suppressed with a boost in the curvature from 𝐾 = 2.0  to 

𝐾 = 6.0 . As the curved sheet tends to a flatter geometry (higher K values), the velocity is 

reduced, and the higher velocity red zone is contacted. Much lower velocity zones (purple) also 

emerge at the left of the plot indicating strong retardation in the boundary layer flow.  Figs. 

3(g) and 3(h) show that streamline magnitudes are suppressed for the case of the non-
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Newtonian second grade fluid (𝛤 = 0.8) as compared to the Newtonian fluid (𝛤 = 0). The 

presence of viscoelasticity influences the tensile stresses in the magnetic polymer. Viscous 

effects also become dominant, and this decelerates the flow relative to the Newtonian case. 

More graded blue minimal velocity zones therefore appear only in the non-Newtonian case 

(right plot) and are less in number in the Newtonian case (left plot). The green, orange, yellow 

and red zones (higher velocity) are significantly depleted in the non-Newtonian case (right 

plot). The incorporation of a robust viscoelastic model in the model is therefore justified since 

the classical Newtonian case over-predicts the streamline magnitudes throughout the domain.   

 

4.2. Isotherms 

The isotherm patterns with variation in selected parameters are displayed in Figs. 4(a)-4(f) 

respectively.  Figs. 4(a) & 4(b) show the isotherm contour plots for different thermal radiation 

parameter 𝑅𝑑  for the Newtonian fluid case (𝛤 = 0).  It is perceived that the temperature 

function is escalating for higher thermal radiation since the higher temperature zones become 

contracted in the right plot (Rd = 0).  The impact of radiation on temperature function for the 

case of second grade fluid is elucidated in Figs. 4(c) & 4(d).  The influence of thermal radiation 

is smaller for the non-Newtonian fluid case as compared to the Newtonian fluid. However, 

temperatures are still greater than for the non-radiative case (Rd =0). Radiative flux energizes 

the boundary layer regime and encourages thermal diffusion. This leads to an increase in 

temperatures (lighter purple zones compared with darker purple zones) and higher thermal 

boundary layer thickness. The impact of Brinkman number 𝐵𝑟  on the isotherms has been 

displayed in Figs. 4(e) and 4(f) for non-Newtonian second grade fluid.  The temperature 

isotherms are reduced for larger Brinkman number and the associated thermal boundary layer 

thickness is also reduced (larger cooler purple zones emerge for Br = 2.0 compared with Br = 

0.8). Br features in both the viscous dissipation and Ohmic dissipation terms in the transformed 

energy equation (9) i. e. +𝑃𝑟
𝐾

(𝜁+𝐾)
𝑓𝜃′𝐵𝑟 (𝑓" +

1

(𝜁+𝐾)
𝑓′)

2

+ 𝑀𝐵𝑟𝑓′2. Since non-zero 

magnetic field is applied, the Ohmic heating (Joule dissipation) will also contribute to the re-

distribution of thermal energy in the boundary layer. Clearly dissipative effects will modify the 

heat transfer in the boundary layer and are important to include in realistic models of magnetic 

polymer flows. In addition, the temperature magnitudes overall in the boundary layer on the 

curved surface are smaller for the second-grade fluid (𝛤 = 0.8) whereas as they are greater for 

the Newtonian fluid (𝛤 = 0). The implication is that the rheological (viscoelastic) 
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characteristic of the magnetic polymer achieves a cooling effect which is advantageous in 

coating operations.    

 

4.3. Velocity field 

Fig. 5 is plotted to examine the impact of curvature parameter 𝛫on velocity function, 𝑓′(𝜍). It 

is evident that the viscous force is reduced with greater curvature parameter 𝛫 (i. e. tendency 

towards a flatter sheet) and momentum development is assisted, leading to flow acceleration. 

In the case of infinite curvature, a flat stretching sheet is obtained (infinite radius scenario). 

The trends computed in Fig. 5 concur with the earlier studies reported in [5] and [21]. Also, it 

is evident that that the velocity computed for Newtonian fluid (𝛤 = 0) is lower as compared 

to second grade fluid (non-Newtonian fluid). This is associated with the greater viscous effect 

and upsurge in flow resistance in the non-Newtonian fluid which induces boundary layer 

deceleration and an increase in momentum boundary layer thickness. In addition, the 

momentum boundary layer thickness is reduced for larger curvature parameter, 𝛫.  

Fig. 6 shows the evolution in velocity profile with magnetic parameter, 𝑀. Significant 

depletion in velocity is generated with an increase in magnetic field. The Lorentz force appears 

in the reduced momentum boundary layer Eqn. (12) as −𝑀 (𝑓′′ +
1

(𝜁+𝐾)
𝑓′) and is clearly a 

retarding body force. It acts in the reverse direction to the flow and retards the boundary layer 

flow on the curved surface, increasing hydrodynamic boundary layer thickness. Furthermore, 

the velocity magnitudes for non-Newtonian fluid are consistently higher than Newtonian fluid 

indicating that the magnetic field exerts a reduced effect on the magnetic polymer. Flow 

reversal is however never induced in the regime since velocity magnitudes are positive at all 

locations transverse to the curved surface.  

Fig. 7 visualizes the distribution of fluid velocity 𝑓′(𝜍) for various values of velocity slip 

parameter, 𝐿 again for both second grade viscoelastic fluid and Newtonian fluid. While an 

increment in slip diminishes both fluid velocities, the non-Newtonian fluid again achieves 

higher velocity magnitudes. The deceleration is more prominent in the Newtonian fluid which 

will correspond to a thicker momentum boundary layer than the non-Newtonian fluid. The 

velocity slip is simulated in the augmented wall boundary condition, 𝑓′(𝜁) = 1 + 𝐿𝑓′′(𝜁), in 

Eqn. (10). Velocity is therefore also modified via the slip effect by the shear rate at the wall. 

Increment in L therefore induces a delay in the boundary layer response which manifests in 

deceleration in the flow. As anticipated the primary effect is at the curved sheet surface (wall) 

and then decays progressively into the boundary layer. Again, back flow is never generated in 
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the regime as velocity magnitudes never become negative, irrespective of magnetic field 

parameter value. The inhibiting effect of external magnetic field is therefore clearly 

demonstrated, and this non-intrusive method provides an excellent mechanism for 

manipulating flow characteristics in electro-conductive polymer materials processing [46, 47]. 

 

4.4. Fluid Temperature 

Fig.8 displays the variations of magnetic variable 𝑀 on temperature distribution.  It is apparent 

that a strong escalation in temperature is induced with greater applied magnetic field. The 

parameter M features in the Ohmic dissipation term in the thermal boundary layer Eqn. (9), 

viz, +𝑀𝐵𝑟𝑓′2. The temperature field is also modified indirectly by the Lorentzian body force 

term in the momentum Eqn. (12) via this Ohmic term and additionally the other higher order 

terms +𝑃𝑟
𝐾

(𝜁+𝐾)
𝑓𝜃′𝐵𝑟 (𝑓" +

1

(𝜁+𝐾)
𝑓′)

2

in Eqn. (9). The supplementary work expended in 

dragging the magnetic polymer against the action of the radial magnetic field (Lorentz body 

force) is dissipated as thermal energy. This energizes the fluid and boosts temperature and also 

thermal boundary layer thickness. Furthermore, the Ohmic dissipation is accentuated with 

higher magnetic parameter, and this also results in further heating of the fluid. A dual 

contribution of the magnetic field is therefore sustained leading to significant heating in the 

boundary layer regime. It is also noteworthy that the non-Newtonian second grade fluid achieve 

lower temperatures relative to the Newtonian fluid. The viscoelastic characteristics of real 

magnetic non-Newtonian polymers have been confirmed to achieve improved temperature 

control in coating applications as elaborated by Kashevskii et al. [46] and Kimura [47]. Again, 

the inclusion of non-Newtonian characteristics (stress relaxation and retardation are featured 

in the second-grade model) in the current analysis for simulating more realistically actual 

electroconductive polymer flows is therefore clearly justified. 

Fig.9 depicts the response in temperature with a change in radiation parameter, 𝑅𝑑, again for 

both Newtonian and non-Newtonian fluid cases. Cleary, stronger radiative flux boosts the 

temperature significantly. The radiative parameter features in the augmented thermal diffusion 

term, (1 + 𝑅𝑑) (𝜃′′ +
1

(𝜁+𝐾)
𝜃′) in Eqn. (9). When radiative flux is absent i.e. for purely 

convective-conductive boundary layer flow, Rd = 0 and temperatures are minimized for both 

Newtonian and non-Newtonian fluids. The presence of radiative flux strongly energizes the 

boundary layer and encourages thermal diffusion. This heats the regime and enhances thermal 

boundary layer thickness. Temperature 𝜃(𝜍) is therefore hiked. A similar trend is observed in 
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other studies in the literature including Hayat et al. [22] and Riaz et al. [25], who have also 

deployed the Rosseland diffusion flux model. It is also evident that lower temperatures are 

produced for the non-Newtonian liquid (magnetic polymer) relative to the Newtonian fluid, 

again confirming that improved temperature control is achieved with a rheological polymer 

which is not captured in the Newtonian classical model (=0 for absence of second grade 

viscoelasticity). The thermal boundary layer thickness of the Newtonian fluid will as such be 

significantly higher than the non-Newtonian fluid.  

Fig.10. presents the impact of Brinkman number 𝐵𝑟 on temperature field, 𝜃(𝜍). It is found that 

temperature magnitudes are substantially boosted with augmentation in 𝐵𝑟. Larger Brinkman 

number 𝐵𝑟corresponds to a boost in the kinetic energy dissipated by viscous heating in the 

regime. This escalates the thermal energy generation which in turn elevates the temperature 

magnitude and also thermal boundary layer thickness. Clearly the inclusion of the viscous 

heating effect is important in magnetic polymers. Neglection of this effect will under-predict 

actual temperatures. A stronger enhancement is computed for Newtonian fluid compared with 

non- Newtonian second-grade fluid, however, again confirming that magnetic non-Newtonian 

polymers achieve improved thermal control. It is also noteworthy that a slight temperature 

overshoot is produced at very high Brinkman number (Br = 3) in the Newtonian fluid case, in 

close proximity to the wall (curved surface) which is absent for the non-Newtonian case.   

 

4.5. Friction factor and Nusselt number 

Figs. 11-13 are plotted to illustrate the impact of curvature parameter, 𝛫, magnetic variable 𝑀 

and Brinkman number 𝐵𝑟  on skin friction factor 𝐶𝑓 and Nusselt number 𝑁𝑢. It is observed 

that the friction factor is boosted for higher curvature whereas the Nusselt number is depleted 

with greater curvature parameter, K. Furthermore, the Nusselt number is a decreasing function 

of the Brinkman number (Br), since temperatures are elevated with the viscous dissipation 

effect. The heat transferred to the wall from the boundary layer will therefore be reduced. 

Overall, the non-Newtonian fluid achieves lower skin friction, but higher Nusselt number 

values are computed compared to the Newtonian fluid. 

 

5. Conclusions 

Motivated by coating flow processes utilizing magnetic rheological polymers, a mathematical 

model has been developed for steady radiative magnetohydrodynamic non-Newtonian second 

grade fluid boundary layer flow from a curved stretching surface with Ohmic heating, viscous 
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dissipation and velocity slip effects. The transformed similarity conservation boundary layer 

equations have been solved numerically with efficient Runge-Kutta quadrature and shooting 

techniques in MATLAB. The numerical solutions have been validated with special cases from 

the literature. Contour plots for streamlines and isotherms and velocity and temperature 

distributions have been visualized. The main findings of the current study may be summarized 

as follows:   

1. The fluid velocity 𝑓′(𝜍) is boosted with greater higher curvature parameter, K, and 

momentum boundary layer thickness is reduced. 

2. The velocity is a diminishing function of the velocity slip parameter, 𝐿. Higher slip 

parameter therefore decelerates the boundary layer flow and increases momentum 

boundary layer thickness on the curved surface. 

3. Velocity is suppressed with increasing magnetic parameter whereas temperature is 

significantly boosted with magnetic field due to the dual effect of Ohmic dissipation and 

extra work expended in dragging the magnetic polymer against the magnetic field.  

4. Higher velocity magnitudes and an associated thinner momentum boundary layer is 

produced for the viscoelastic (non-Newtonian i. e. 𝛤 ≠ 0 ) case relative to the Newtonian 

case (𝛤 = 0). 

5. Lower temperatures and a thinner thermal boundary layer thickness are computed with 

increasing radiative parameter for the non-Newtonian liquid (magnetic polymer) relative 

to the Newtonian fluid, indicating that enhanced temperature control is achieved with 

viscoelastic electroconductive polymers.  

6. Smaller temperature (and isotherm) magnitudes arise for the non-Newtonian second-

grade fluid (𝛤 = 0.8) whereas greater magnitudes are computed for Newtonian fluid 

(𝛤 = 0).  

7. Skin friction at the curved stretching surface is elevated with increasing curvature K (i.e. 

tendency towards a flatter surface) whereas Nusselt number is suppressed with greater 

curvature parameter, K.  

8. A reduction in Nusselt number is observed with increasing viscous dissipation effect i. e. 

Brinkman number (Br). 

9. Larger skin friction values are computed for the Newtonian fluid compared with the non-

Newtonian fluid, whereas the opposite trend is observed for Nusselt number (heat 

transfer rate at the curved surface). 
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The present study has revealed some interesting insights into thermo-magnetic coating flows 

with electro-conductive polymers. Future studies may consider unsteady effects and a variety 

of alternative non-Newtonian models (e. g. Maxwell viscoelastic, Carreau, Cross or Oldroyd-

B fluids) and will be communicated imminently. 
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