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ABSTRACT
Autonomous Vehicles (AVs) are equipped with several sensors which produce various forms of data, such as
geo-location, distance, and camera data. The volume and utility of these data, especially camera data, have
contributed to the advancement of high-performance self-driving applications. However, these vehicles and
their collected data are prone to security and privacy attacks. One of the main attacks against AV-generated
camera data is location inference, in which camera data is used to extract knowledge for tracking the users. A
few research studies have proposed privacy-preserving approaches for analysing AV-generated camera data
using powerful generative models, such as Variational Auto Encoder (VAE) and Generative Adversarial
Network (GAN). However, the related work considers a weak geo-localisation attack model, which leads
to weak privacy protection against stronger attack models. This paper proposes DeepClean, a robust deep-
learning model that combines VAE and a private clustering technique. DeepClean learns distinct labelled
object structures of the image data as clusters and generates a more visual representation of the non-private
object clusters, e.g., roads. It then distorts the private object areas using a private Gaussian Mixture Model
(GMM) to learn distinct cluster structures of the labelled object areas. The synthetic images generated
from our model guarantee privacy and resist a robust location inference attack by less than 4% localisation
accuracy. This result implies that using DeepClean for synthetic data generation makes it less likely for a
subject to be localised by an attacker, even when using a robust geo-localisation attack. The overall image
utility level of the generated synthetic images by DeepClean is comparable to the benchmark studies.

INDEX TERMS Autonomous Vehicle, Data Privacy, Data Utility, Deep Clustering, Generative Model.

I. INTRODUCTION

Autonomous vehicles (AV) onboard sensors generate di-
verse datasets [1]. These datasets include camera data (for
example, images and videos of street views showing road
objects in a city), distance data from Lidar and Radar sensors,
and Global Positioning Systems (GPS) trajectory data. The
captured datasets are required for several functional and non-
functional processes [2]. For instance, the captured visual im-
ages and videos can be used for accident claims and training
auto-driving deep learning models (e.g., for object detection
and recognition [3]–[5]). Also, real-time data analysis on in-
vehicle data is used for performance evaluation purposes [6],
[7]. This rich dataset could be held inside the vehicle or sent
to external storage, such as Cloud [8].

One of the main concerns regarding AV-generated data is
users’ privacy [9]. Camera data contain several visual and

context-rich features that can be extracted and geo-localised.
Several studies have shown how over-needed location infor-
mation in images, such as background buildings, landmarks,
road signs and markings, and surrounding vegetation, im-
prove image matching and geo-localisation [10]. Suppose
we assume an attacker can get unauthorised access to the
stored camera data in the internal or external storage. In that
case, she can perform a location inference attack using geo-
localisation techniques. This attacker may be able to infer
sensitive information, such as the user’s home/work address
and past/future travel patterns, which leads to a location
privacy breach.

Figure 1 (c) shows an example of a location inference
attack. If an attacker has access to both Figure 1 (a) and
(b), she can learn that the target’s vehicle has passed through
Queen’s Tower in Figure 1 (a). By getting access to more
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(b)

(c)

FIGURE 1: An example to show a geo-localisation attack.
(a) Camera data of target’s vehicle near Queen’s Tower,
(b) Camera data of target’s vehicle near Boston Market, (c)
Leaked trajectory information. All the images are extracted
from Berkeley AV Open-source data [8].

images and videos from the target’s vehicle with timestamp
correlations in Figure 1 (b), she can perform geo-localisation
and predict the trajectories (Figure 1 (c) is an example).

Researchers have proposed several ways of distorting
private objects in a dataset to mitigate location inference
attacks on AV-generated camera data. Recently, Xiong et al.
proposed ADGAN, in which they use Variational Autoen-
coder (VAE) and Generative Adversarial Network (GAN)
to generate privacy-preserving camera datasets [11]. They
have considered a weak attack model under Multi-KNN
(i.e., multiple k nearest neighbour) feature matching geo-
localisation approach. Multi-KNN [12] was also used in other
research studies for geo-localisation, such as [13], [14].

Schindler et al. organised image features as a bag of words
and arranged them in a vocabulary tree for image match-
ing [13]. Their approach is inefficient for processing large
image features and computationally too slow. Zamir et al.
improved the computational efficiency of feature matching
using a generalised minimum clique problem [12]. However,
their formulation of a fixed nearest neighbour selection algo-
rithm limits the number of matching features and hence does
not allow for image matching improvement.

Zemene et al. [15] designed a more robust geo-localisation

system to localise street view images with higher perfor-
mance compared to the previous studies, and other image
geo-localisation approaches [16], [17].

The improved feature matching approach in [15] is based
on returning a dynamic nearest neighbour of the reference
images using dominant set clustering, which outperforms
the approaches based on multi-KNN with a fixed value
for k. However, improved geo-location estimate increases
the image matching performance with the cost of increased
potential privacy threats. This motivated us to consider the
robust geo-localisation method proposed in [15] as a strong
attack model against AV-generated camera data and draw
the following research questions: 1) To improve privacy,
what features in an image could be manipulated to decrease
the similarity between an original image and its distorted
version? 2) can we find a privacy-preserving technique for
generating synthetic AV-camera data that sufficiently bal-
ances the privacy-utility trade-off to suit several data use
cases?

In this paper, we propose DeepClean, which answers the
above research questions. DeepClean is a deep clustering
approach which combines VAE with GMM clustering meth-
ods to improve the privacy-utility trade-off. It proposes a
solution for learning and controlling the visual representation
of objects in an image. We consider two labels for the objects
in each image, i.e., private and non-private. Private objects
are those that could significantly help in the geo-localisation
process, such as buildings, pedestrians, vehicles, and road
signs. We use deep clustering to separate (and then distort)
those clusters that include private objects while retaining the
underlying structure of the non-private areas (e.g., roads).
The GMM clustering method is used for learning clusters
of objects in high-dimensional image data that are well-
separated to enforce the privacy/utility requirements.

DeepClean uses the VAE data generation technique to
produce high-dimensional image samples without directly
operating on original data. The VAE approach is flexible
for 3D street view models and traffic analysis applications.
A similar work, ADGAN II [11], also adopts the VAE
approach to improve the data generation performance from
distributional assumptions, while UNIT in ADGAN I [18]
uses image-dependent processing. DeepClean utilises an en-
coder and decoder model. Its encoder model encodes data
by partitioning it into object clusters using our private GMM
algorithm. A function of the algorithm learns a supervised
clustering task and accurately partitions the clusters into
private and non-private object parts by using mask binary
code as a key. The learned private object clusters are distorted
by injecting Gaussian noise into their cluster centres. This
approach ensures that we can efficiently preserve privacy in
the private cluster areas without affecting too much visual
quality of the non-private object areas. DeepClean’s decoder
model decodes the resulting high-dimensional feature repre-
sentation from the encoder network into observable samples
using a deep neural network. The model optimisation is
achieved by maximising the expected lower bound of the
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VAE system.
The main contributions of this paper are as follows:

• We propose DeepClean, a privacy-preserving generative
technique for AV camera data that combines our private
Gaussian Mixture Model (GMM) with a Variational
Autoencoder (VAE) to learn high-dimensional feature
representations of images as a supervised private/non-
private cluster task. Then trains the cluster outputs on a
VAE to generate more privacy-protected samples from
our model.

• We evaluate the privacy performance of DeepClean on
a robust geo-localisation attack (that improves image
matching of distorted images with their trained refer-
ence images) for location inference resistance.

• Our thorough experiments on real-world publicly avail-
able datasets show that DeepClean learns more features
in an image, variably controls privacy/utility require-
ments and generates more privacy-preserved image data
compared to the state-of-the-art.

The remainder of the paper is organised as follows. Sec-
tion II discusses the related work and provides the required
background. Section III explains the methodology and the
components of DeepClean. Section IV presents the evalua-
tion results of the experiments on image quality, utility and
user privacy. Section V concludes the paper and highlights
future work directions.

II. RELATED WORK AND BACKGROUND
In recent years, machine learning techniques have been
widely utilised and applied along with traditional privacy
techniques (such as K-anonymity and differential privacy)
to address privacy challenges in data mining, publishing,
and storage [19]. A fundamental part of machine learning is
clustering, which involves grouping a set of similar objects
in clusters [20]. Its application in computer vision tasks, e.g.,
object detection, face recognition, and image analysis, has
been widely studied and has achieved efficient performance.
Usually, efficient clustering algorithms are justified by how
well they can represent data, typically performed by solving
an optimisation problem. However, the more complex the
features in an image or video data, the more difficult it
becomes to generate a well-structured representation of the
data using many existing clustering algorithms [21].

Recent works focused on deep learning-based image clus-
tering approaches for feature representations in an unsuper-
vised setting, which are shown to be more efficient than in
supervised settings. For example, in [21]–[23], the data gen-
eration process is performed using an unsupervised approach,
aiming at learning a joint distribution of images in different
domains by using images from the marginal distribution in
individual domains. Yang et al. represented images using
agglomerative clustering and activations of convolutional
neural networks [23]. Hsu et al. proposed a clustering convo-
lutional neural network to better capture the salient part of an
image without providing any bounding boxes in the training
stage for a better representation [24]. Wang et al. combined

Sparse coding base pipeline into deep learning for clustering,
achieving an extremely efficient inference process and high
scalability of large-scale data [22]. Thus, these methods are
only efficient on images with fewer features like the MNIST
dataset [25] (the handwritten digits) and do not consider
privacy in the image generation process.

The image translation performance of VAE and the GAN
models has been remarkable recently. Liu et al. proposed an
unsupervised image-to-image translation framework based
on GAN and VAE, which is called UNIT [26]. These ad-
versarial training objectives interact with a weight-sharing
constraint, enforcing a shared latent space to generate corre-
sponding images in two domains. At the same time, VAE re-
lates translated images with images in the respective domain.
These methods achieve high-quality image translation results
for street-view images and videos. Similarly, in DeepClean,
we are also taking advantage of the data generation power of
VAE. However, to outperform GAN-based models, we con-
sider a stricter attack model (the geo-localisation approach
in [15]) and deliver higher privacy protection.

Recently, Xiong et al. [11], [18] were the first to address
privacy concerns of auto-driving images and videos. The
auto-driving generation neural network (ADGAN I) uses
UNIT to generate data and applies noise directly to the
original image to produce the synthetic samples [18]. This
direct approach gives no flexibility to learn the variations of
samples. Moreover, the added noise affects the whole image
quality. ADGAN II [11] combines GAN with VAE to better
represent street view images. With VAE in ADGAN II, the
synthetic samples can now be produced by a latent vector
without any original data, making ADGAN II more flexible
for real applications, such as the street view image. Generally
speaking, GAN-based models may lose perpetual accuracy
due to the model collapse property of GAN. For this reason,
several methods such as Mean Square Error, Peak Signal-to-
noise Ratio, and Structure Similarity Index Measurement are
used to achieve high perceptual accuracy [27].

Regarding privacy challenges, robust geo-localisation
techniques can variably compute the similarity between the
images generated by the methods using discriminative prox-
imity [28]. A few other techniques proposed a more robust
data generation utilising the data generative power and useful
basic generative structures of VAE with deep neural networks
for clustering tasks. Acs et al. divided data into clusters using
a differentially private clustering approach [25]. Then they
gave each cluster a separate Generative Neural Network to
train on differentially private gradient descent. The data par-
titioning into general clusters led to more accurate synthetic
samples than training the whole dataset as a single model. A
more powerful clustering framework was proposed by [29],
which combines VAE and a GMM and maximises the Ev-
idence Lower Bound using Stochastic Gradient Variational
Bayes estimator and the reparameterisation trick. DeepClean
adopts the data generation technique in [29] and optimises
GMM for our specific clustering tasks. The private version of
GMM is employed to inject noises in specific cluster centres.
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Some approaches to privacy preservation ensure that
data features must be selectively distorted to balance pri-
vacy/utility trade-offs. In response, Chong [30] proposed a
generative adversarial network that aims at reducing privacy
risks by removing location-relevant information, e.g., back-
ground buildings, from the camera data, before being used
for analysis. The location-relevant information in the camera
data was analysed and reported as a threat to privacy when
providing the data for analysis. Location-relevant informa-
tion in the camera data was highlighted as a privacy threat to
the data. Trajectories of a vehicle could be formed or traced
by extracting the location hints from image data and match-
ing them with reference data to geolocate them. However,
camera data may also contain other quasi-identifiers (QIDs
such as the human face and vehicle plate number) besides
location-related ones, putting users’ privacy at risk.

To the best of our knowledge, only two research studies
(previously explained in this section [11], [14]) addressed lo-
cation inference threats for AV-generated camera data. Their
solution to the problem involves using VAE and GAN-based
models to generate privacy-preserving datasets. We argue
that using GAN in their approach has two practical limita-
tions. One is that the privacy achieved by the discriminative
distance measurement cannot guarantee the location privacy
of the image objects. Secondly, a robust geo-localisation tool
can exploit the discriminative distance value of the original
and distorted images to estimate the geo-location of the target
image.

In comparison, DeepClean clusters different parts of an
image into private and non-private objects. It then adds noise
to specific private objects without affecting the underlying
structure of the non-private objects. It achieves a better
privacy-utility trade-off compared to the state-of-the-art.

III. PROPOSED APPROACH
In this section, we present DeepClean, a privacy-preserving
generative model for AV-generated camera data to address
a balanced privacy-utility trade-off in the presence of a
potential location privacy threat. This section first explains
the considered system and attack model, while Section III-B
presents the details of the proposed approach.

A. SYSTEM MODEL

We assume that we have a set of raw camera data, which
is generated by an AV. We want to generate a synthetic
dataset resilient against location inference attacks. The orig-
inal camera data is passed to the DeepClean model as an
input, and synthetic data is generated as the output. Dif-
ferent components of the DeepClean model are presented
in Figure 2. The first component is the labelled DP-GMM
algorithm to partition the image into k clusters, learn and
predict the labelled clusters, and add Gaussian noise to the
learned private object clusters. The output of this component
is a noisy partitioned cluster. These clusters are then trained
in the encoder g(x, ϕ) to produce a latent representation z.

A decoder network f(z; θ) interprets z, such that a synthetic
sample can be drawn from the model θ.

Let x be a real camera image such that x ∈ I , where I is
a set of raw images from real AV camera data. An image x is
fed into the model M consisting of inference and generative
processes, and an observable image sample x̂ = M(x) is
generated. Our private Gaussian mixture model is applied
to the sensitive clusters during inference, and the generative
model produces a privacy-preserved image x̂.

In the inference process, the private GMM component
partitions the labelled image objects into k clusters, X1,
X2,. . . ,Xk where each cluster is a group of similar objects in
X . The GMM is trained in a supervised setting to classify the
objects in the clusters. Then the GMM trains separately on
each cluster; if the cluster is classified as sensitive, Gaussian
noise is applied to the cluster centre, else it retains its accu-
rate visual representation (without noise). The VAE encoder
trains separately on the cluster outputs and maximises the
expected lower bound (ELBO) for optimisation. In the gen-
erative process, the decoder, a deep neural network f(z; θ)
decodes the embeddings to an observable, where θ is the
parameter of the resulting model.

1) Attack Model
We consider an attacker or a curious analyst who can access
a target’s camera data. A vehicle user or vehicle is regarded
as a target. A location inference attack can be mounted on
the data with or without external multi-source information
such as trajectory and distance data. The core task of the
attack relies on extracting visual and contextual features, e.g.,
landmarks, background buildings, surrounding vegetation,
and surrounding objects, from query image data. Then the
features extracted from the query data are compared with the
features of an already trained reference image data of a city
or a group of cities (e.g., Google Street View images). If there
is a match of features, the geo-localisation system returns
the nearest neighbour (NN) image reference with matching
features. Then a scheme is used to estimate the location of the
most matching NN or even evaluate the location proximity
of the multi-NN. A robust geo-localisation system must
improve image feature matching and geo-location estimates.

As explained in the introduction section, our attack model
is based on the scheme that is proposed by Zemene et al. [15].
It uses discriminative values from the image features in
the NN selection phase, dominant set clustering for feature
matching and constrained dominant set for localising the best
matching reference images. This geo-localisation system im-
proves image localisation accuracy by 21% compared to [12],
[13], which are used as the attack model in the related work.
We assume that if the attacker can access some AV camera
data and, using this sophisticated geo-localisation system
[15], she can infer vehicle location information. More so, the
attacker can still learn estimated location information from
the less privacy-preserved datasets that the state-of-the-art
has generated (e.g., ADGAN [11], [14]). Figure 3 shows the
matching reference images of a given distorted query image
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FIGURE 2: Different components of the DeepClean model (including the combination of our differentially private GMM with
VAE).

data (ADGAN-generated image). The exact matching image
is the nearest neighbour with the most frequent occurrence
(the NN with the yellow-coloured ID and frequency of 6). In
contrast, the geo-localisation technique in [13] [12] cannot
locate the exact match because of its fixed NN selection
constraint.

FIGURE 3: Image matching of a distorted query image by
the Dominant Set framework [15]. The reference data with
the yellow colour ID occurs most frequently.

The attacker is motivated to learn users’ sensitive infor-
mation, such as trajectories that link the target’s past travel
patterns, places of interest, home/work address, and even
predict future journey patterns. The attack resulting from
tracking the victim’s vehicle could be as severe as physical
damage and theft. To control the impact of this attack, privacy
analysts would reduce the precision of extracting sensitive

features and side-channel location information from the data.
A typical privacy-preserving approach would remove or blur
sensitive objects, which is not trivial to achieve. However,
the data utility for analytics purposes, such as auto-driving
navigation analysis, will be affected, and the generated data
may become entirely useless.

This creates a challenge in balancing the privacy-utility
trade-off. Thus, the transformed data must retain statistical
structure in various non-private areas yet preserve the privacy
of the private object areas in the data, which is achieved
through DeepClean.

B. DEEPCLEAN DESCRIPTION

As shown in Algorithm 1, a private GMM partitions X as a
mixture of Gaussians with labelled clusters Gρ = ((G1, ρ1),
. . . ., (Gz, ρz)), where we can choose Gi from the mixture
component G(ρi), such that ρi is a labelled image object in
the independent and identically distributed (i.i.d) clusters. An
output of the private Gaussian mixture partitioning algorithm
on X is a cluster Gi. Then computes an estimation of the
Gaussian mixture parameters z ∼ N (µj ,Σj). Finally, a
DNN model f(z; θ) takes z as an input with the model
parameter θ. Model θ is a privacy-preserving model that can
produce synthetic samples.

With the labelled image as input, we run a private version
of Principal Component Analysis (PCA) [31] to project onto
the top k principal components, containing the means of the
components. Our implementation differs because we pass a
label sample image as an input. Then privately run the sub-
function to individually locate components that find a small
ball containing many points. This ensures that all the points
generated from a single Gaussian lie in the same cluster. We
then estimate the mean and variance of the corresponding
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Gaussian component privately. Next, we dive into the formal
analysis and justification of the version of the algorithm used
to design DeepClean.

Algorithm 1 DeepClean: Deep Clustering Generative Model

Require: Image Data : x, # of clusters : k, Bounds on the
GMM parameters wmin, σmin, σmax, learning parame-
ter α, β, Privacy parameters ϵ, δ > 0

Ensure: A Privacy-Preserving Model θ
1: [G1, G2, ..., Gk]← PGMM

(x, k,R,wmin, σmin, σmax, ϵ, δ)
2: for j from 1 to k do
3: (µj ,Σj) ← PGE((Gj); R,wmin, σmin, σmax, ϵ, δ);

Comment: Proof of PGE [31]; πj ← |Gj | +
2
√

2 ln (1.25/δ)/ϵ;
4: end for
5: set weight such that for all; j, wj ← πj/(Σπj)
6: z ← (µj ,Σj , wj)

k
j=1

7: x̂← f(z, θ)

1) Gaussian Mixture Model
Assuming the underlying distribution G is a mixture of
k Gaussian in high-dimension d, {Gi ∈ Rd}ki=1 is a k
distinct Gaussian distribution with dimension d. The clus-
ter component Gi is chosen with probability wi ∈ [0, 1],
and the mean µi ∈ Rd and variance Σ ∈ Rd∗d are the
parameters of the distributed Gaussian. The mixture can be
written as the tuple {(wi, µi,Σi)}i∈[k]. We can accurately
recover the tuple {(ŵi, µ̂i, Σ̂i)}i ∈ [k] for a mixture Ĝ.
Where ∥ŵ − w∥1, ∥µ̂i − µi∥Zi, and ∥Σ̂ − Σ∥Zi are small
for every i ∈ [k]. The vector ∥.∥Z approximately ensures
that N (µi,Σi) and N (µ̂i, Σ̂i) are close in total variation
distance and likewise ∥.∥1 ensures the same for comparing
the weights.

To learn from the GMM with n samples, independent
identically distributed (i.i.d.) samples can be obtained from
the mixture D and roughly approximate the parameters of a
mixture D̂ by a probability π : [k] −→ [k] and satisfying
two conditions. One is a separate condition that measures
the learning guarantees of the clustering and shows how the
clusters are well-separated. In our case, it will ensure that
privacy is adequately controlled within the clusters and limit
privacy loss due to distributional assumptions. Secondly,
certain boundedness of the mixture components is assumed
to control the output. Let the separation condition satisfy

∀1 ≤ i < j ≤ k, ∥µi − µj∥2 ≥ s.maxσi, σj

For s > 0 the Gaussian mixture D ∈ G(d, k) is s-
separated. Depending on the number of mixtures and inde-
pendent of the dimension d. Assuming some large known
quantities R, σmax, σmin such that

∀i ∈ [k]∥µi∥2 ≤ Randσ2
min ≤ ∥Σi∥2 ≤ σ2

max

Definition 1- (α, β)-learning: Let the parameters of a
Gaussian mixtures D ∈ G(d, k) be {(µ1,Σ1, w1),. . . ,
(µk,Σk, wk)}, an algorithm (α, β)-learns a distribution D
and outputs a distribution D̂ ∈ G(d, k) parameterized
by {(µ̂1, Σ̂1, ŵk),. . . ,(µ̂k, Σ̂k, ŵk)}, with a probability of at
least 1− β and a permutation π : [k] −→ [k]. The following
conditions will hold

1. 1 ≤ i ≤ kdTv(N (µi,Σi),N (µ̂π(i), (Σ̂π(i)) ≤ O(α)

2. ∀1 ≤ i ≤ k, |wi − ŵπ(i)| ≤ O(α/k)

Both conditions imply that dT v(D, D̂) ≤ α

Definition 2- Learning Labelled clusters – We learn the
mixture of Gaussian, where we can choose Gi from a mixture
component Gρi. Such that ρi is a label to predict the mixture
component in the i.i.d. clusters. A labeled cluster is a set
of tuples Gρ = ((G1, ρ1), . . . , (Gm, ρm)) sampled from a
distribution D, where

D ∈ G(d, k, σmin, σmax, R,wmin, s)

The label ρ is composed of a matrix

ρ = ρ(i, j)

which is the same size as D. Each element ρ(i, j) is a label
of corresponding pixels in the original data X . Let pt denote
the label of sensitive clusters in G. The classification result
maps of the non-sensitive clusters in the original distribution
D̂ should be similar.

We aim to locate the clusters distinctly so sensitive clusters
are perturbed, and non-sensitive clusters are unperturbed.
So, we divide the image into sensitive and non-sensitive
parts using masking, where Mt and Mo denote the parts,
respectively. Mt is 0−1 binary matrix which equals Mt(i, j),
where Mt(i, j) = 1 iffρ(i, j) = ρt and Mo = 1−Mt where
1 is an all 1 matrix with the same size as Mt. Our GMM
algorithm locates the object clusters by their binary number
label.

2) Variational Auto-Encoder
In the inference process of the VAE, the encoded latent vari-
able z is obtained from sampling the output of the Gaussian
mixture z ∼ N (µj , σ

2
j ). The reparameterisation trick is used

to adapt the recognition model q(z|Gi) to approximate the
time posterior distribution pθ(z|Gi). So, make z be a deter-
ministic function of ϕ and some noise ϵ, where z = f(ϕ, ϵ).
A sample can be drawn from a normal distribution like
z = µ+ σϵ, where ϵ ∼ N (0, I).

In the generative process, the obtained latent variable z
is decoded to obtain another distribution pθ(z), where the
synthetic image x̂ can be sampled. The DNN parameters
ϕ and θ are jointly learned by optimising the ELBO using
the Stochastic gradient descent of the DNN. The ELBO
is computed as the difference between the latent variable
distribution and the observed variable distribution as follows;
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log p(x) ≥ L(x) = Eqϕ(z|x)[log pθ(x|z)]
−KL(qϕ(z|x)∥pθ(z))

Where the first term of the difference is the expected log-
likelihood, and the second term is the KL divergence.

To improve the visual quality of the non-private areas, we
inject information about the non-private clusters into the gen-
erative process of the decoder. The conditional information ρ’
has the same size as ρ and only holds information about the
non-private objects. Hence, the conditional VAE reconstruct
most labelled non-private areas to preserve utility. The loss
function for the conditional VAE based on the generative
model is stated as

Lc(x) = Eqϕ(z|x)[logpθ(x|z, ρ′)]
−KL(qϕ(z|x)∥pθ(z))

3) Differential privacy
A randomised mechanism M will satisfy (ϵ, δ)-differential
privacy ((ϵ, δ) − DP ) for learning mixtures of Gaussian
if it takes two pair of image data (X , X̂) that differ in
one single item (pixel), the distributions M(X) and M(X̂)
are precisely (ϵ, δ)-close. If the image data is partitioned
into cluster distributions X1, . . . , Xk ∼ D for a mixture
D satisfying separation and boundedness, M(X) produces
an approximate output to the parameter of G. The images
X, X̂ ∈M and every set of output O, if M satisfies

Pr[M(X) ∈ O] ≤ eϵ.P r[M(X̂) ∈ O] + δ

Where Pr[.] denotes the probability of an event, and δ
bounds the probability of the privacy guarantee not holding,
which is often better set to be less than 1/|D|. Specifically,
the distribution of A(D) and A(D̂) are (ϵ, δ)-close.

Let’s define the global Lp-sensitivity of the feature vector
f(x), as we inject noise into the cluster centres of specific
locations in the image. If the images consist of n pixels, such
that X = (x1 , . . . ., xn) and X̂ = (x̂1, . . . ., x̂n), the function
f maps the image to feature space, and the sensitivity △f is
defined as

△pf = max
X,X̂
||f(X)− f(X̂)||p

where X, X̂ are neighbouring datasets, △f is the maximum
differences in f(x) generated by two different images, and
∥.∥p denotes the Lp− norm.

Our private GMM achieves differential privacy by inject-
ing Gaussian noise, defined in the following.

Gaussian Mechanism (GM): The GM with parameter
σ adds noise scaled to N (0, σ2) to each of the private
components of the output. For any G(X) = f(X) +
[N1(0,△2f.α)],. . . , Nd(0,△2f.σ] where Ni(0,△2f.σ)
are i.i.d. normal random variables with zero mean and vari-
ance (△2f.σ)2. Let ϵ ∈ (0, 1) be arbitrary. For c2 >
2 ln(1.25/δ), the Gaussian mechanism with parameter σ ≥
c△ 2f/ϵ is (ϵ, δ)−DP .

To learn our differentially private GMM with well-
separated and bounded image object clusters, we describe the
private GMM conditions in the following theorem (the proof
is available in [31]).

Theorem 1 : A (ϵ, δ)-differentially private algorithm takes
n samples from an unknown mixture of k Gaussians D ∈ Rd

satisfying the above conditions of separation and bounded-
ness.

n =
( d2

α2wmin
+

d2

αwminϵ
+

poly(k)d3/2

wminϵ

)
.poly log

(dkR(σmax/σmin

αβϵδ

)
Where Wmin = miniwi, with probability at least 1 − β,
learning the parameters of D up to error α. The parameters
α, β, ϵ, δ are the estimator accuracy of variation distance,
failure probability, and privacy parameters, respectively. R
is the radius of a ball at the centre containing all means, and
k is the ratio of the variances’ upper and lower bound.

Under Theorem 1, we transform data to a lower dimen-
sion space and recursively cluster the data with a Principal
Component Analysis (PCA) [32]. This approach ensures the
maximum effect of the injected noise. The PCA projection
privately learns under the following assumptions: (i) All
components being spherically Gaussian such that each com-
ponent’s variances lie in a small known range (with bounder
ratio by a constant factor), (ii) The means of the Gaussian
lie in a small ball around the origin. Making the PCA private
by injecting noise into the covariance matrix makes the al-
gorithm private. The projection shifts each component mean
by the complexity of O(

√
kσmin) under the already stated

assumptions and preserves the separation of data because all
variances are within a constant factor of one another. Finally,
cluster data using the 1-cluster method of [33] and learn each
component’s parameters using a simplified version of [34].

IV. EXPERIMENTAL ANALYSIS
To evaluate the performance of DeepClean, we use a
dataset which is a high-dimensional street view scene from
Cityscapes [35]. The image data consists of 2975 training
sets, 500 validation, and 1525 test sets showing street views
of different cities at different times. The images have a size of
256 ∗ 256 and are trained with no data augmentation because
the DNN learnt more patterns and trained faster without it.
We set up our deep-learning Python and Tensorflow on a
Colab playbook.

Training method – In all the experiments, we follow the
same experimental setup of the VAE network in ADGAN-
II [11] by set epochs to 150 and batch-size of 1. For Deep-
Clean, the latent dim is 128, the label dim of 64, beta
β = 0.65, and the learning rate of 0.001.

For our comparative analysis, we evaluate the performance
of DeepClean in comparison with two benchmark tech-
niques for AV camera data, i.e., ADGAN [11] and VAE+DP-
Kmeans [25]. We chose these two techniques due to their
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balanced privacy/utility claims and their use of VAE mod-
els (similar to DeepClean). Regarding the chosen dataset,
ADGAN and VAE+DP-kmeans models were evaluated using
the Cityscapes dataset.

The comparison results (provided in this section) show
that DeepClean outperforms the considered benchmark tech-
niques by preserving the better visual quality of the non-
private object parts of an image while resisting location in-
ference attacks. A brief explanation of these three techniques
is provided in the following to improve readability.

• ADGAN [11] – combines VAE and GAN. The synthetic
image is generated by the generator transformation x̂ =
G(x) and applies a privacy loss function Lpri(G) to
make x̂ privacy-preserving.

• VAE + DP-kmeans [25] – combines VAE and private
Kmeans. The synthetic image is generated by adding
differentially private Kmeans on the data points D = x1,
. . . , xN , the results of the cluster data is produced by a
DPKmeans (Parameters) = D1, D2,. . . , Dk. The output
of the parameters is used to learn the VAE generator.

• DeepClean (VAE + DP-GMM) – is our proposed
method to combine VAE and a private GMM. The
GMM is applied to the latent distribution to learn sensi-
tive and non-sensitive objects in clusters. Gaussian noise
is applied to the sensitive clusters, while the noise does
not impact non-sensitive objects. The clusters are then
trained in a conditional VAE system.

A. EVALUATING IMAGE QUALITY, PRIVACY AND
OVERALL UTILITY
To measure the efficiency of the techniques, we adopt the
FCN score to quantify the features in the generated synthetic
images. FCN score is efficiently adopted to evaluate gen-
erative models quantitatively [36]. Two indicators from the
FCN score are used for the evaluation: pixel accuracy (PA)
and interaction over union (IoU). The PA value estimates
how well the image pixels are represented in percentages.
In contrast, the IoU value estimates the overlap between the
predicted segmentation and the ground truth over the area of
the union between the predicted segmentation and the ground
truth. We run the semantic segmentation model to compute
the PA and IoU values of the generated images.

The evaluation of the indicators is defined as comparing
performances using three metrics, i.e., image quality (IQ),
image utility (IU), and image privacy (IP). IQ is estimated
by taking the average PA and IoU over the whole image,
IU is calculated by averaging PA and IoU over non-private
objects in the image, and IP is estimated by averaging PA
and IoU over the private objects in the image data. As for the
metrics IQ and IU, the higher their value, the better the image
representation performance of the technique. While for IP,
the lower the value, the more privacy is preserved and the
more difficult it is to recognise an object from the image.

We initially show DeepClean produces better IQ and IP
than the other techniques. Table 1 shows the FCN-scores
comparison of DeepClean with the other techniques using the

Cityscapes dataset. DeepClean achieves a global IQ accuracy
of 68.30% PA and 17.15% IoU, slightly as good as ADGAN,
70.69% PA and 17.39% IoU, and VAE+DP-kmeans with
64.60% PA and 15.86% IoU. The drop in performance of
DeepClean compared to ADGAN is due to achieving bet-
ter privacy preservation in the private areas of the images.
However, the overall IQ performance can be improved by
reducing the number of noisy scales on the IP. DeepClean
preserves more privacy by achieving a lower IP value, 6.36%
PA and 2.76% IoU, compared to the other models. By this,
DeepClean shows better resistance to privacy attacks. The
goal to preserve more utility around the non-private object
areas is achieved, with IU measurement of 77.75% PA and
21.20% IoU for DeepClean, which is better than the other
models. The good performance of DeepClean is due to the
good clustering proficiency of GMM on the distributions.
However, the two deep clustering models show the effective-
ness of good clustering in better controlling the image quality
of specific locations in the images.

Figure 4 shows the accuracy of the clustering technique
over some epochs in training the Cityscapes dataset. The
number of clusters k was initially set to 10 to achieve high
clustering performance. Setting the privacy parameters for
the benchmark techniques, we use the default settings in the
K-means model [25], and for the clustering models, noise
scales for clustering σk is set as 1.0 and SGD noise scale σG

as 40. The privacy metric result shows that the DeepClean
model achieves reasonable privacy protection better than
ADGAN concerning the utility gained in the non-private
object areas.

B. PRIVACY PERFORMANCE
To validate the performance of privacy protection achieved
by our proposed technique, we run the geo-localisation attack
using dominant set clusters (DSC) to localise the query image
data. The reference dataset used for the experiment is 102k
google street view images covering different cities in Europe.
We select 500 sets from Section IV Cityscape test set for
the query image set. The DSC quantifies the percentages
of images that can be localised at 300m from their actual
locations. Localisation above the 300m range is regarded as
non-matching nearest neighbours. Using the DSC and the
constrained DSC post-processing step for feature matching
and geolocating the best matching reference image, respec-
tively, improves the performance of geo-localisation than
the Multi-KNN approach used in other studies for privacy
performance.

Figure 5 shows the privacy performance of DeepClean
on the images compared with the benchmark studies. The
X-axis is the error threshold in meters, and Y-axis is the
percentage of the test set localised within the error threshold.
DSC localises the original query images at 74%, about 300m
better than Multi-KNN 60%. The higher percentage result
proves a higher risk of location inference threats on the
image data. On the other hand, using distorted images of
ADGAN models as the query image, localisation improves
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TABLE 1: The FCN-score comparisons of various generative models on the cityscape dataset.

Model Image Quality (IQ) Image Privacy (IP) Image Utility (IU)
PA IoU PA IoU PA IoU

ADGAN [11] 70.69% 17.39% 11.65% 4.72% 77.53% 21.06%
VAE+DP-Kmeans [25] 64.60% 15.86% 6.27% 2.37% 60.54% 16.53%

DeepClean 68.30% 17.15% 6.35% 2.76% 77.58% 23.04%

from 5% to 20% within the error threshold of 60m – 300m.
This improvement indicates that DSC can still match some
features to the produced dynamic corresponding reference
data set. DeepClean reduces localisation accuracy to about
3% - 7%, which is relatively minimal compared to the
other techniques. With this result, there are possibilities that
the original reference images are not included among the
matching nearest neighbour images. Both local and global
features present around the classified private object areas
are well distorted to confuse the DSC from detecting stable
features. Only a few images with more stable features around
features such as road signs, vegetation and structures, apart
from buildings, likely make the matching step. However, the
image is unlikely to return as the best matching image. This
result makes Deepclean images immune to location inference
attacks.

As seen in Figure 6, we tested a fixed Multi-KNN to
examine the performance of the DSC on different numbers
of nearest neighbours. Although Multi-KNN used in previous
works drops in performance when k is ≥ 4, DSC improves
the chances of selecting the original image data as the nearest
neighbour increases. The first 4 NNs retrieved by the multi-
KNN method assume the NNs are the stable features detected
from the image. These detected features show that they
contribute more to the localisation accuracy.

FIGURE 4: Clustering accuracy over some epochs during
training on the Cityscapes dataset.

C. UTILITY PERFORMANCE
To evaluate the utility performance of the DeepClean model,
we measure the structural similarity index (SSIM) of the
generated images. SSIM measures image recognition utility
very close to human visibility [37]. It measures the similarity

FIGURE 5: Privacy performance of DeepClean compared
with ADGAN.

FIGURE 6: Performance comparisons of the techniques with
fixed nearest neighbour.

TABLE 2: SSIM measurement on Cityscapes dataset.

Model SSIM Measurement
ADGAN 0.6210
VAE+DP-Kmeans 0.4560
DeepClean 0.6012

between the original and distorted data by a number greater
or equal to 0 and less or equal to 1, where 0 means com-
pletely different, and 1 means the same. Table 2 shows that
DeepClean achieves 0.6012 on the Cityscape data, which is
closer to the value achieved by ADGAN. The slight drop in
utility performance of DeepClean compared to ADGAN con-
siders the stricter privacy requirements enforced in the private
object areas. This performance only highlights the challenge
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FIGURE 7: Visual quality of non-sensitive object areas and
privacy-preserved sensitive areas using three techniques on
the Cityscapes data.

of simultaneously achieving a balanced privacy-utility trade-
off in images. Thus, the privacy-utility performance results
show that a balanced trade-off may not be achievable to
suit all requirements. Therefore, it explains our approach
to achieving more utility in the non-private object areas.
The results produced by DeepClean, as shown in Figure 7
(among other image data generated by the other techniques),
generate a more balanced privacy-utility trade-off regarding
more privacy preservation in private object areas and utility
preserved in non-private object areas. DeepClean generated
data can be used to train AV driving navigation models.

V. CONCLUSION
Location inference attacks threaten the privacy of Au-
tonomous vehicle camera data. For this reason, a reason-
able level of security and privacy is required to enhance
data storage and sensitive image protections, respectively.
Focusing on the privacy-preservation of AV camera data, this
study has addressed the privacy/utility trade-off for efficient
data analysis and storage. Our proposed generative model
approach integrates a differentially private technique to guar-
antee privacy instead of relying on masking or reconstruction
loss for privacy protection by prior works. The comparative
analysis of the models showed that DeepClean achieves bet-
ter privacy preservation and comparable utility performance
to benchmark models. Future research on AV camera data
privacy preservation could formulate a GAN-based model
amenable to differential privacy. Aiming to utilise generative
and discriminative models for an improved image utility with
a provable privacy guarantee.
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