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In recent years electric micromobility transportation, including electric scooters, has seen a surge in pop-
ularity due to technological advances and the move to lower emission transport. Although offering a
range of societal benefits, such as reduced pollution and increased personal mobility, concerns have been
raised regarding the implications for pedestrian safety, most notably within the blind and partially
sighted community. The issue of pedestrian safety is well studied in the context of larger electric vehicles
(EVs), and indeed regulations are now in place that specify mandatory Acoustic Vehicle Alerting Systems
(AVAS) for such vehicles. However, limited research has been done on the development of acoustic alert-
ing systems for micromobility. In this paper, the development of an electric scooter (e-scooter) AVAS is
considered by taking a perception-influenced design approach to designing alert sounds that optimise
detectability and annoyance. A listening experiment has been conducted using ambisonic soundscapes
and simulated auralisations of e-scooter passes at 20 km/h, in which a detection-based task and annoy-
ance rating task were conducted. Objective metrics for detectability and annoyance were subsequently
evaluated in relation to the subjective responses, so as to enable a more focused approach to the devel-
opment of alert sounds. Results show that without additional alert sounds, the rate of detection for e-
scooters in a soundscape of 60 dBA is as low as 23%. Regression analysis showed that the objective metric
of Zwicker’s psychoacoustic annoyance is a useful predictor of subjective annoyance for AVAS sounds,
with a coefficient of determination of R2 ¼ 0:96, and explains more variance than other metrics previ-
ously reported in the literature. Partial loudness was also studied as a predictor of detectability, with
strong positive association seen (R2 � 0:9). Of the alert sounds evaluated, those comprising pure tones
with frequency content in the 800 Hz - 1 kHz range, and with amplitude modulation or impulsive char-
acteristics, offered the greatest balance between detectability and annoyance. This study offers much
needed research into detectability of electric micromobility transport in a range of environmental noise
conditions, and furthermore provides objective metrics for the development of micromobility AVAS
sounds going forward.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Electric scooters (e-scooters) are becoming an increasingly
common sight on our streets; as of 2022, there were an estimated
520,000 shared e-scooters across Europe, up from 360,000 in 2021
[1,2]. This increase in popularity can be seen across the electric
micromobility1 sector as a whole, as falling battery prices, improve-
ments in energy density and the move to zero emission transport
begin to influence how we move people and goods around our cities
[3].

Whilst the take up of electric micromobility has potential
advantages, such as the move to ’clean’ transport and increased
mobility, it is not without its challenges. For example, in a UK
Department for Transport survey on perceptions of current and
future e-scooter use in the UK, 53% of respondents cited safety
issues as one disadvantage of e-scooters [4]. Moreover, UK Govern-
ment national statistics on road traffic collisions involving
e-scooters revealed there were 1,359 casualties in collisions
involving e-scooters in 2021, compared to 484 in 2020 [5]. These
statistics are based on the definition of an ‘e-scooter’ as given by
the UK Government [6] and this is the definition to which we refer
to in this paper. This definition distinguishes e-scooters from other
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two-wheeled electric vehicles by specifying a maximum speed
limit of 12.5 mp/h (20 km/h), a mass not exceeding 35 kg and
designed to carry one person in a standing position with no provi-
sion for seating.

One particular concern of electric vehicles (EVs) and micromo-
bility transportation, is that they pose a challenge to pedestrians,
specifically those who are blind and partially sighted. This has been
researched in the context of EVs for over a decade [7–11], however
has only recently been considered in the context of micromobility
[12]. Previous research has highlighted that the risk of road traffic
near-misses and accidents involving pedestrians was around 25%
more likely when comparing EVs with no alert sounds to internal
combustion engine vehicles (ICEVs) due to their inherently lower
noise levels [13]. The National Highway Traffic Safety Administra-
tion (NHTSA) of the United States conducted early research on the
topic of quieter cars and the safety of blind pedestrians [8,9], which
resulted in initial specifications for Acoustic Vehicle Alerting
Systems (AVAS). There are now a range of regulations in place out-
lining minimum sound requirements for quiet running vehicles
[14–16], such as the United Nations Economic Commission for Eur-
ope (UNECE) Regulation 138. In UNECE Regulation 138, minimum
AVAS sound levels are specified in one-third octave bands between
160 Hz and 5 kHz, with compliant sounds requiring minimum
levels in at least two of the specified bands and with one of them
below or within the 1600 Hz one-third octave band [14]. The speed
range of required AVAS operation is greater than 0 km/h up to and
inclusive of 20 km/h, as above this speed, sound level measure-
ments show little difference between EVs and internal combustion
engine vehicles due to an increased contribution from rolling noise
and wind noise [10]. Furthermore, the regulation specifies that the
AVAS varies proportionally with speed by an average of at least
0.8% per 1 km/h in the speed range from 5 km/h to 20 km/h inclu-
sive when driving in forward direction, so as to alert pedestrians to
changes of speed.

Research investigating detectability of smaller electric vehicles
is more limited. Sekine et al. [17] investigated the detectability of
Electric Motorbikes (EM) and Internal Combustion Engine Motor-
bikes (ICEM) operating at speeds of 10 km/h and 20 km/h. It was
found that the travelling sound of the EM was lower than that of
the ICEM by approximately 15 dB at a given speed, and this led
to a reduction in detectability distance from 57.9 m for the ICEM
to 11.7 m for the EM at 20 km/h. Torija et al. [12] recently pre-
sented results from a feasibility study looking at developing a sys-
tem to generate an awareness sound for e-scooters. A virtual
reality experiment was conducted to evaluate pedestrian aware-
ness of an approaching e-scooter with and without additional alert
sounds. Initial results indicate that with an additional alert sound,
detectability distance was increased by 3.2 m, however it was
noted that further research is needed to design awareness sounds
with an optimal balance between noticeability and annoyance.

Specific acoustic features of AVAS sounds have previously been
researched in the context of detectability and annoyance [18–23].
As part of the eVADER project (electric Vehicle Alert for Detection
and Emergency Response), Parizet et al. [18] aimed to develop alert
sounds that were readily detectable, but without causing annoy-
ance. Sounds were developed with a range of variables, including
number of harmonics, amplitude modulation (AM), and frequency
modulation (FM), and the effectiveness of these were evaluated
with a detection task in a simulated pass-by scenario. It was found
that reaction times were shortest when the alert sounds had a low
number of harmonics, when FM is absent, and when AM is promi-
nent and irregular. An extension of this study [19] investigated
how the effectiveness of each alert sound was related to its per-
ceived unpleasantness, in which it was found that high levels of
detectability were correlated to high levels of unpleasantness.
The trade-off between detectability and acceptance for AVAS
2

sounds was also considered by Lee et al. [21], whilst also consider-
ing the masking effect of background noise. As in [18], an ampli-
tude modulated signal produced the best performance in terms
of both annoyance and detectability.

Objective metrics that predict detectability and annoyance of
AVAS sounds are desirable as they would allow the development
of effective sounds without the need for resource intensive listen-
ing experiments. Broadband sound pressure levels, such as LAeq and
LAFmax, offer one type of metric, however they overlook the intrica-
cies of human auditory perception, and as such, additional percep-
tion based metrics are needed. Examples of using perception based
metrics for the development of AVAS include partial loudness [20],
annoyance index [24], whine index [21], spectral flatness and mod-
ulation rate [25], and other sound quality metrics (SQMs), e.g.
roughness, sharpness and tonality [22].

The study presented here builds on the existing literature by
taking a perception-influenced design approach to designing e-
scooter alert sounds that optimise detectability and annoyance.
Moreover, a range of objective metrics are considered for the
development of micromobility AVAS sounds. Specifically, the met-
ric of Zwicker’s psychoacoustic annoyance is analysed in correla-
tion with AVAS sound performance, which provides an original
contribution to the field. Zwicker’s model of psychoacoustic annoy-
ance (PA) combines measures of loudness, sharpness, fluctuation
strength and roughness and produces an output of annoyance that
can be used to compare different sounds [26]. The metric of PA has
also recently been used to analyse human response to drone noise
[27]. Furthermore, partial loudness as a predictor of AVAS sound
performance for electric micromobility is investigated. To achieve
this, a listening experiment has been conducted using a three-
dimensional loudspeaker array, including ambisonic soundscapes
and simulated e-scooter passes, in which detection and annoyance
rating tasks were completed.

The remainder of the paper is organised as follows. Section 2
describes the experimental setup for the listening experiment
including baseline measurements of e-scooter passes, Section 3
presents and discusses the experimental results including a
description of the objective metrics used, followed by the main
conclusions in Section 4.
2. Methodology

This listening experiment was conducted as a laboratory-based
study at The University of Salford. Ambisonic soundscapes were
reproduced over a three-dimensional loudspeaker array to simu-
late presence in different acoustic environments and acoustic sim-
ulations of passing e-scooters with a variety of added alert sounds
were synthesised within the three-dimensional space. Participants
were required to complete a detection task as well as an annoyance
rating task, with further details provided in the following sections.
2.1. Apparatus

The experiment took place within a listening room at the uni-
versity, with the setup consisting of 16 Genelec 8030A loudspeak-
ers; 8 loudspeakers are located in the horizontal plane (positioned
at azimuths þ0�;�45�;�90�;�135�;þ180�), 4 loudspeakers at
�39� elevation (positioned at azimuths �45�;�135�), and 4 loud-
speakers at �39� elevation (positioned at azimuths �45�;�135�).
The loudspeakers in the horizontal plane are at a distance of
1.26 m from the centre of the array, whereas the loudspeakers at
�30� elevation are at a distance of 1.54 m from the centre of the
array. An RME MADIface XT audio interface was used with an
RME M-32 DAC to drive the loudspeakers. The loudspeakers were
time-aligned and level-aligned to produce the same A-weighted
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equivalent sound level (LAeq)(�0:5 dB) for a pink noise signal at the
central listening position. The reverberation time in the room is
approximately 0.1 s.

The graphical user interface was reproduced via a 42.5 inch dis-
play mounted on the front wall of the room. Data entry was via a
high contrast keyboard and a standard optical computer mouse.
The experiment was administered via Cycling ’74 MAX/MSP
software.

2.2. Stimuli and design

2.2.1. Acoustic Features
A range of e-scooter alert sounds were synthesised using the

software MAX/MSP and were designed to incorporate the pertinent
psychoacoustic AVAS features as outlined in previous research. In
order to investigate the effect of different acoustic features, five
main components of the sound were considered at two different
levels and these design factors are summarised in Table 1. As the
simulation involved e-scooter passes at one speed only, these
acoustic features were not speed dependent.

Each sound is based on a fundamental frequency plus two har-
monics, as AVAS tones comprising a small number of harmonics
have previously been shown to reduce reaction times [18]. Compo-
nent C1 controls the frequencies of the fundamental and associated
harmonics and component C2 controls the wave type of these
tones. Component C3 controls the amplitude modulation depth,
component C4 controls the amplitude modulation rate, and com-
ponent C5 controls the synchrony of the amplitude modulation;
for level 1 the amplitude modulation of the fundamental and har-
monics is in sync, whereas for level 2 the amplitude modulation of
the fundamental is 0.5 Hz below the specified AM rate, and the
amplitude modulation of the second harmonic is 0.5 Hz above
the specified AM rate, so as to produce an asynchronous modula-
tion effect.

A full factorial design of these factors would result in 32 differ-
ent stimuli (25), which was considered impractical for the desired
length of experiment. As such, a fractional factorial design was
implemented with a design specification of 25�2

III , i.e. a five factor
Table 1
Levels of acoustic features used for stimuli generation.

Factor Level 0 Level 1

C1 - Frequency 120 Hz (0 dB), 180 Hz
(-3 dB), 240 Hz (-3 dB)

400 Hz (0 dB), 600 Hz
(-3 dB), 800 Hz (-3 dB)

C2 - Wave type Sine Saw
C3 - AM depth 0.5 1
C4 - AM rate 4 Hz 8 Hz
C5 - AM synchrony Synchronous Asynchronous, �0.5 Hz

Table 2
Alert sound stimuli and associated component levels.

Factor level

Stimulus C1 - Frequency C2 - Wave type

S1 0 0
S2 1 0
S3 0 1
S4 1 1
S5 0 0
S6 1 0
S7 0 1
S8 1 1
S9 Impulsive sound based around a 1 kHz tone with ADSR envelop

respectively and a rate of 7 Hz
S10 Baseline e-scooter audio recording

3

design of resolution III. In resolution III designs, no main effects
are aliased with any other main effect, but main effects are aliased
with two-factor interactions, and they are often used for screening
of important factors [28]. Table 2 outlines the factor combinations
used, as taken from [28]. In addition to the eight stimuli produced
from the five components in Table 1, two additional stimuli were
included. S9 consisted of an impulsive sound based around a
1 kHz tone at a rate of 7 Hz and S10 consisted of a baseline e-
scooter sound with no alert sound added, as further discussed in
the following section.

2.2.2. Baseline measurements
Audio recordings and sound level measurements of e-scooter

operations were undertaken to provide baseline audio and to
enable accurate calibration of pass-by levels. On-scooter audio
was captured with a class 1 sound level meter (B&K 2250) includ-
ing windshield, whilst the e-scooter was travelling at 20 km/h on
smooth asphalt, with the microphone positioned approximately
1 m from the edge of the scooter and 1.7 m from the ground. This
represents the position of a pedestrian and includes any contribu-
tion from tyre noise, aerodynamic noise and motor noise. The
audio was monitored for wind noise and the windshield used
was deemed sufficient to prevent wind noise interference within
the audio clip. As the recording was taken on the e-scooter, the
audio was relatively constant and could be subsequently processed
with the pass-by simulation code. A loop of this recording was
used as stimulus S10, and furthermore, this loop was mixed with
stimuli S1 to S9 so as to include tyre-road interaction noise and
to provide a realistic pass-by sound for the alert sounds. The loop
was based on an 8 s section of audio, which was chosen to limit
perception of periodicity when repeated, and furthermore the 8 s
samples were cross-faded with each other over 1.5 s to reduce per-
ception of connecting points.

Sound level measurements were undertaken with the e-scooter
passing 1 m distance from the sound level meter at 10, 15 and
20 km/h; the third-octave frequency spectrum of these is pre-
sented in Fig. 1. The 20 km/h pass-by resulted in an overall broad-
band maximum sound level (LAFmax) of 52 dBA, when propagated to
2 m distance, and this level was used during the calibration stage.

2.2.3. Simulation
The stimuli were processed to obtain a realistic pass-by scenar-

io, with geometry as outlined in Fig. 2. The pass-by simulation was
implemented using the SPAT 5 package for MAX/MSP [29], and
comprised the following properties:

� The e-scooter was travelling at a constant speed of 20 km/h
with the pass-by commencing 50 m from the listener.
C3 - AM depth C4 - AM rate C5 - AM synchrony

0 1 1
0 0 0
0 0 1
0 1 0
1 1 0
1 0 1
1 0 0
1 1 1

e settings of 5, 30, 0.01 and 5 ms



Fig. 1. Third octave frequency spectrum of e-scooter pass-by at 1 m distance LZFmax.

Table 3
Environmental noise characteristics.

ID Description Level (LAeq)

N1 City park soundscape, characterised by 50 dBA
by birdsong and distant road traffic noise.

N2 Soundscape of passing traffic, as recorded 60 dBA
next to a medium to busy city road.
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� The e-scooter passed 2 m in front of the listener, from either left
to right, or right to left, with the direction randomly assigned.

� Distance attenuation was applied based on free-field radiation
of a monopole, resulting in a sound level that is inversely pro-
portional to the distance to the listener.

� The Doppler effect was modelled, as was high-frequency air
absorption.

� The signal was rendered to the loudspeaker array using vector-
base amplitude panning (VBAP) [30].

2.2.4. Calibration
The first stage of the calibration process involved calibrating

stimulus S10, and the baseline rolling noise component of stimuli
S1 to S9, to 52 dBA (LAFmax) (�0:5 dB) when at 2 m from the listener,
as determined by the pass-by sound level measurements. The alert
sound components of stimuli S1 to S9 were then added to produce
a total level of 56 dBA (LAFmax) (�0:5 dB) when at 2 m from the lis-
tener. This level corresponds to the minimum requirements speci-
fied in UN Regulation 138, which specifies a minimum pass-by
sound level requirement of 56 dBA when measured at 2 m dis-
tance, for quiet running vehicles [14].
Fig. 3. Frequency characteristics of environmental noise excerpts. The increase in
energy at 4 kHz for N1 has been identified as birdsong.
2.3. Environmental Noise

The role of environmental noise on vehicle detectability has
previously been reported [31,32] and therefore two environmental
noise scenarios were used within this study to increase ecological
validity of the detection and annoyance rating tasks. The first
soundscape consisted of a city park scenario and was calibrated
to a sound level of 50 dBA (LAeq). The second soundscape consisted
of a road traffic noise scenario and was calibrated to a sound level
of 60 dBA (LAeq). These two scenarios were chosen as they offer var-
ied but representative use cases for e-scooter passes. Further
details can be found in Table 3 and fast Fourier transforms of the
environmental noise clips can be found in Fig. 3.
Fig. 2. E-scooter pass-by scenario as acou
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The soundscapes were recorded using a Soundfield ST450 ambi-
sonic microphone and a Zoom F8n Field Recorder. Short segments
of 10–15 s were looped so as to create excerpts of approximately
constant level with minimal attention attracting events. Such
soundscapes have previously been labelled as ‘‘amorphous
sequences” [33] and are referred to as background noises in which
no specific event can be isolated. As a measure of variation in level,
the difference between the 90th percentile and 10th percentile of
the A-weighted sound pressure level was calculated, with values
of 1.6 dBA and 1.7 dBA for clips N1 and N2 respectively. The loop
segments were chosen to limit perception of periodicity when
repeated and were cross-faded to reduce perception of connecting
points. The B-format ambisonic recordings were rendered to the
loudspeaker array using the SPAT 5 renderer for MAX/MSP [29].
2.4. Environmental Process

The experiment consisted of four sections: familiarisation,
training, detection and rating. The familiarisation page consisted
of all 10 stimuli randomly assigned to buttons ’A’ through ’J’ on
the interface, with no environmental noise present. Pass-by simu-
lation effects were not applied to the stimuli at this stage, and
therefore the perception can be considered to be from the perspec-
tive of the e-scooter rider. Participants were instructed to famil-
stically simulated for detection tasks.
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iarise themselves with the various alert sounds in preparation for
the detection tasks.

For the training and main detection sections, each page corre-
sponded to a single detection task. After pressing start, there was
a random time delay of between 0 and 3 s before the pass-by event
started from either the left or the right of the listener, as deter-
mined randomly. As soon as the participant detected the alert
sound, they were instructed to press the left arrow key on the key-
board if the e-scooter was approaching from the left, or the right
arrow key on the keyboard if the e-scooter was approaching from
the right. Participants were free to move on to the next page within
their own time.

The training section consisted of four detection pages, each with
a predetermined stimulus (S2, S6, S7 and S9) and environmental
noise (N1). The purpose of this section was for participants to learn
how to use the detection task interface. The results from this sec-
tion were not considered during the subsequent data analysis.

The main detection section consisted of 40 detection pages. The
initial environmental noise condition was randomly chosen and
then for this condition, detection tasks of all 10 stimuli were com-
pleted. The order of the stimuli was randomly chosen. This was
then repeated for the second noise condition. The whole process
with alternating environmental noise conditions and random stim-
uli was repeated to produce a total of 40 tasks (2 environmental
noise x 10 stimuli x 2 repeats).

Following the detection page, participants made annoyance rat-
ings of the stimuli. The rating page was presented as a multiple
stimuli method, where all 10 stimuli were rated on the same page,
with an annoyance scale ranging from 0 (’not at all annoying’) to
100 (’extremely annoying’). Intermediate verbal anchors were pro-
vided at 25 (’slightly annoying’), 50 (’moderately annoying’) and 75
(’very annoying’). An open text box was also provided to elicit com-
ments about the given ratings. The annoyance ratings were made
in the presence of environmental noise N1 so as to increase ecolog-
ical validity of the ratings.

For all pages, spoken instructions were available via a text-to-
speech generator and the experiment could be navigated using
keyboard shortcuts or mouse input.
Fig. 4. Missed detection rate by noise and stimulus.
2.5. Participants

A total of 30 subjects participated in the study. Four of these
were excluded due to their responses containing a high number
of outliers (see Section 3.1), leaving a sample of 26 participants
for the following analysis. Of these, 20 were male and 6 were
female. Age data was recorded in ranges, with the youngest partic-
ipants falling within the age range of 18–25 and the oldest within
the range 56–65. All participants were fluent in English and self
reported normal hearing. Participants were recruited from a listen-
ing experiment participant database and included subjects who
were both internal and external to the university. Subjects received
a small monetary compensation for their participation.

It should be noted that although none of the participants were
blind or partially sighted, this is not expected to have negatively
influenced the applicability of the results, as previous research
has shown no significant difference between sighted and blind par-
ticipant groups for AVAS reaction times [34,18].
Fig. 5. Mean detection distance by noise and stimulus. Red shading indicates ‘risk’
area. Error bars show 95% confidence interval.
3. Results and Discussion

3.1. Participant Screening

Prior to further analysis, participant reliability was checked by
comparing directional error rates (i.e. recording opposite direction
to actual pass) across participants, as well as comparing missed
5

detections, defined as responses after the e-scooter had passed
the listener’s position (reaction distance RD < 0). The error rates
from four participants were identified as outliers when compared
to the sample as a whole (greater than 1.5 times the interquartile
range above the upper quartile), based on a median of 8 and an
upper adjacent of 13. These participants were subsequently
excluded from further analysis as particularly high error rates
could indicate that a participant had difficulty completing the task,
or did not fully understand the instructions.

3.2. Analysis of Missed Detections

Missed detection rates including incorrect directional responses
were compared across all stimuli and environmental noise condi-
tions for the remaining participants, Fig. 4. It is seen that stimulus
S10 (baseline condition) resulted in a missed detection rate of 29%
for noise condition N1 and 77% for noise condition N2. The addition
of alert sounds (S1 - S9) increased detectability in all cases with
fewer missed detections, however, it is apparent that the missed
detection rate varied markedly by stimulus. Stimuli S1 and S5
show an increased missed detection rate for both noise conditions
in comparison to the other stimuli, with rates above 50% for noise
condition N2. These stimuli share the factors of C1 = low frequency
and C2 = sine wave, suggesting that at the presented levels, this
combination of features results in low detection rates, especially
for noise conditions comprising road traffic noise.

For the subsequent analysis, trials with no response recorded
and trials with directional errors (11.6% of trials) have been
excluded from the dataset.

3.3. Descriptive statistics of detection distance

Fig. 5 presents the mean detection distance by stimulus and
noise. A ’risk’ area is highlighted in red (RD< 7.5 m); if a pedestrian
steps in front of the oncoming e-scooter within this distance, they



Table 4
Type III fixed effects for dependent variables detection distance and annoyance
ratings.

Variable Source df F p

Detectability C1 - Frequency 1/ 727 106.14 <.001
C2 - Wave type 1/ 727 140.78 <.001
C3 - AM depth 1/ 727 0.09 0.769
C4 - AM rate 1/ 727 9.83 0.002
C5 - AM type 1/ 727 2.89 0.089

Annoyance C1 - Frequency 1/177 12.87 <.001
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are at risk of being hit by the e-scooter given the reaction time
needed for the rider to start breaking, as based on stopping dis-
tances established in [35] for cars. It should be noted that this risk
area is based on reaction times and breaking distances for larger
vehicles, and therefore the risk area may be conservative for e-
scooters, which have a considerably lower mass.

The baseline condition, S10, has mean detection distances
within the risk area for both environmental noise conditions, with
a mean detection distance in the presence of a 50 dBA environmen-
tal noise of 4.8 m, falling to 2.5 m in 60 dBA noise, albeit with a
large variance for the louder noise condition. This suggests that
e-scooters travelling at 20 km/h without additional alert sounds
do not provide sufficient auditory warning for pedestrians to react
in a timely manner, when in a typical city soundscape.

For the stimuli that contain an additional alert sound (S1-S9),
there is a large distribution for mean detection distances, high-
lighting the fact that the metric of LAFmax alone is insufficient for
predicting detectability. Stimuli S1 and S5 are seen to provide
mean detection distances within the risk area for N2, whilst being
close to the risk area for N1. Along with the data presented in Fig. 4,
this suggests that the combination of C1 = low frequency and C2
= sine wave, results in low detectability for the sound levels pre-
sented. On the other hand, stimuli S8 and S4 provide the best
detectability performance, which correspond to C1 = high fre-
quency and C2 = saw wave. The detectability performance of the
stimuli is therefore considered to be dependent upon the spectral
characteristics of the stimuli and masking environmental noise,
with lower frequency components being more effectively masked
by the ambient soundscape, thus being less detectable. The degree
to which the stimuli are masked can be characterised by the metric
‘partial loudness’, which is discussed in greater detail in
Section 3.7.2.

3.4. Descriptive statistics of annoyance ratings

Fig. 6 presents the mean annoyance ratings by stimulus, where
0 corresponds to ’not at all annoying’ and 100 corresponds to ’ex-
tremely annoying’. Compared to the baseline (S10), all stimuli with
additional alert sounds have an increased mean annoyance rating.
Stimuli S5, S9, S1, S6 and S2 have annoyance ratings closest to the
verbal anchor ’slightly annoying’, whereas stimuli S3, S7, S4 and S8
have mean ratings between ’moderately annoying’ and ’very
annoying’. All of this later group correspond to the saw wave type,
suggesting that this is a prominent factor in the subjective annoy-
ance ratings.

3.5. Analysis of sound feature significance

In order to evaluate the significance of the sound features on
detectability and annoyance in more depth, a linear mixed model
Fig. 6. Mean annoyance ratings by stimulus; 0 corresponds to ’not at all annoying’
and 100 corresponds to ’extremely annoying’. Error bars show 95% confidence
interval.
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analysis was conducted on responses including stimuli S1 to S8.
As fixed effects in the model, the components C1 to C5 were used,
with main effects calculated only, due to aliasing of interactions
(see Section 2.2.1). To account for differences between individuals,
variable Participant was used as a random effect in the model,
including intercepts. Visual inspection of residual plots did not
reveal any deviations from homoscedasticity or normality.

Type III tests of fixed effects revealed that the main effects of
frequency, wave type and AM rate were statistically significant
(p < :05) for detectability, and the main effects of frequency and
wave type were statistically significant (p < :05) for annoyance,
see Table 4.

Descriptive statistics of the significant effects are presented in
Table 5. These results highlight that, of the components studied,
the higher frequency level (fundamental of 400 Hz) and saw wave
type level improve detectability whilst at the same time increasing
annoyance. Moreover, the AM rate has a small significant influence
on detectability, with the lower rate (4 Hz) performing slightly bet-
ter than the higher rate (8 Hz).

3.6. Relationship between detectability and annoyance

The relationship between detectability and annoyance is pre-
sented in Fig. 7, using ratings made in the presence of environmen-
tal noise N1. As found in previous studies [19], there is a noticeable
correlation between detectability and annoyance. By analysing the
location of the stimuli within this perceptual space, it is possible to
assess how well suited they are for use as alert sounds that min-
imise annoyance. A cluster of stimuli (S10, S5 and S1) can be seen
at low detection distances and low annoyance ratings, although as
these fall within the risk area (RD < 7.5 m), they are not considered
to provide sufficient detectability performance. On the other hand,
a cluster of stimuli (S3, S7, S4 and S8) can be seen at high detection
distances and high annoyance ratings; these provide maximal
detectability at the cost of increased annoyance. Finally, a cluster
of stimuli (S9, S6 and S2) is seen with high detection distances
and relatively low annoyance ratings; out of the stimuli tested,
these offer the greatest balance between detectability and annoy-
ance. Stimuli S6 and S2 are characterised by the higher frequency
level and the sine wave type. S9, which offers the second lowest
C2 - Wave type 1/177 255.21 <.001
C3 - AM depth 1/177 0.01 0.917
C4 - AM rate 1/177 0.01 0.929
C5 - AM type 1/177 0.82 0.638

Table 5
Mean detection distance (m) and annoyance rating values (scale from 0–100) for
significant sound features.

Variable Source Level 0 Level 1

Detectability (m) C1 - Frequency 12.6 20.5
C2 - Wave type 11.8 21.0
C4 - AM rate 17.6 15.7

Annoyance C1 - Frequency 42.6 51.1
C2 - Wave type 27.8 65.9



Fig. 7. Mean detection distances versus mean annoyance ratings. Error bars show
95% confidence interval. Red shading indicates ‘risk’ area.

Fig. 8. Mean subjective annoyance ratings versus the metric psychoacoustic
annoyance, with simple linear regression fitted.
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annoyance ratings yet fifth best detectability of the additional alert
sounds tested, is characterised by an impulsive sound based
around a 1 kHz tone.

3.7. Relationship between objective metrics and subjective
performance

3.7.1. Sound Quality Metrics
The psychoacoustic metrics of the e-scooter stimuli were calcu-

lated using HEAD Acoustics ArtemiS Suite 12.5 software. The calcu-
lation of loudness (units of sone) was made according to DIN
45631/A1 [36], which is based on Zwicker’s loudness model and
includes a modification for time varying signals. There are no stan-
dard methods for calculating roughness (asper) and fluctuation
strength (vacil) and therefore these two metrics were calculated
according to the hearing model given by Sottek [37], as was tonal-
ity (tuHMS). Sharpness (acum) was calculated according to the
Aures method [38], which takes into account the influence of abso-
lute loudness on the sharpness perception. The Aures model of
sharpness was considered appropriate in this instance as the stim-
uli were presented in the presence of a masking noise, potentially
increasing the importance of loudness on the perception of attri-
butes at high frequency.

Zwicker’s model of psychoacoustic annoyance [26] is calculated
using the terms loudness (N), sharpness (S), fluctuation strength
(F) and roughness (R), and is given by:

PA ¼ N5 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

S þw2
FR

q� �
; ð1Þ

where N5 is the 5th percentile of the loudness (sone) and

wS ¼
ðS� 1:75Þ � 0:25 logðN5 þ 10Þ; if S > 1:75
0; if S 6 1:75

�
; ð2Þ

wFR ¼ 2:18
N0:4

5

ð0:4F þ 0:6RÞ: ð3Þ

Fig. 8 plots the mean subjective annoyance ratings versus the
metric psychoacoustic annoyance, as calculated by Zwicker’s
model. Simple linear regression was used to test if PA significantly
predicted subjective annoyance responses. The results of the
regression indicated that the model explained 96.1% of the vari-
ance and that the model was significant,
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Fð1;194Þ ¼ 4513:5; p < :001. It was found that PA significantly pre-
dicted subjective annoyance ratings for the presented e-scooter
sounds (b1 ¼ 7:94; p < :001).

Previous studies have shown that by using broadband sound
pressure levels as a predictor of AVAS annoyance, coefficients of
determination from regression models have ranged from
R2 ¼ 0:34 when using the average sound pressure level (LAeq) as a

predictor, to R2 ¼ 0:65 when using the maximum sound pressure
level (LAmax) [24]. Furthermore, in the same study, Altinsoy devel-
oped a metric labelled as the ‘‘annoyance index”, which used loud-
ness, tonality, roughness and fluctuation strength, with linear
contributions from each. This resulted in a coefficient of determi-
nation of R2 ¼ 0:91. Although Zwicker’s model of PA used in the
study presented here did not include a tonality component, the
non-linear contribution from the SQMs (with the exception of
loudness) are believed to have resulted in a stronger model as this
aligns more closely with auditory perception [26]. In the case
where the AVAS stimuli set contains a mixture of strongly tonal
and non-tonal sounds, it may be necessary to include a tonality
term to Zwicker’s PA model, as outlined in [39] and further
assessed in the context of drone noise annoyance in [27].
3.7.2. Partial Loudness
The term ‘partial loudness’ (PL) refers to the perceived loudness

of a target sound against a background of other masking sounds. As
the level of the masking sound increases, the partial loudness of
the target sound is therefore reduced [40]. Partial loudness has
previously been used as a metric for detectability and annoyance
of AVAS sounds, and was shown to provide a better prediction met-
ric than signal-to-noise-ratio (SNR) [20], as well as giving good per-
formance for the audibility prediction of a wider range of technical
signals in real-world background noises [41].

To investigate the use of partial loudness as an objective metric
for e-scooter alert sound performance, a partial loudness model
implemented in Python / C++ was used [42], as based on Glasberg
and Moore’s model of partial loudness for time-varying sounds
[43]. The model was calculated for each stimuli and noise combi-
nation, with the environmental noise summed to mono and the
original stimuli loops without pass-by processing. The output of
the model was ’Short Term Partial Loudness’ (STPL).

Figs. 9a and 9c plot partial loudness versus mean detection dis-
tance for environmental noise conditions N1 and N2, with simple
linear regression models included. When including all stimuli,
the regression model has coefficients of determination of
R2 ¼ 0:597 and R2 ¼ 0:852 for noise conditions N1 and N2 respec-
tively. It is notable that stimuli S9 is an outlier to the regression
model, and its detection performance is not well predicted by PL,
especially for the lower noise condition. This is consistent with
the literature, which shows that current loudness models, includ-



Fig. 9. Partial loudness versus mean detection distance for environmental noise conditions N1 and N2, with and without impulsive stimulus S9.
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ing Glasberg and Moore (2002), often show discrepancies for
strongly time-varying signals [44,45]. As such, linear regression
was recalculated excluding stimuli S9 to assess PL as a predictor
for detectability for the non-impulsive sounds, Figs. 9b and 9d.
When excluding S9, the regression model has coefficients of deter-
mination of R2 ¼ 0:861 and R2 ¼ 0:895 for noise conditions N1 and
N2 respectively, and is significant (p < :001) in both cases. Partial
loudness is therefore a good predictor for detectability of AVAS
sounds in the presence of environmental noise, and outperforms
the metrics of loudness and psychoacoustical annoyance, as sum-
marised in Table 6.

The relationship between partial loudness and annoyance was
also investigated, with the linear regression model resulting in a
coefficient of determination of R2 ¼ 0:925 (p < :001). This is con-
sistent with results presented by Jacobsen et al., who reported val-
ues between R2 ¼ 0:64 and R2 ¼ 0:91 [20]. Although not as strong
as PA as a predictor of subjective annoyance, this result confirms
the use of loudness-based metrics for the prediction of subjective
annoyance.
4. Summary and Conclusions

In this paper, the development of an e-scooter AVAS has been
considered by taking a perception-influenced design approach to
Table 6
Objective metric comparison for the prediction of detectability.

Noise Condition Predictors R2

N1 N 0.528
PA 0.559
PL 0.597
PL (excl. S9) 0.861

N2 N 0.662
PA 0.821
PL 0.852
PL (excl. S9) 0.895
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designing alert sounds that optimise detectability and annoyance.
A listening experiment has been conducted using ambisonic
soundscapes and simulated auralisations of e-scooter passes at
20 km/h, in which a detection-based task and annoyance rating
task were conducted by 30 participants.

Detectability results showed that, when no additional alert
sound was included, missed detection rates were 29% for a 50
dBA environmental noise condition, and 77% for a 60 dBA environ-
mental noise condition. When combined with mean detection dis-
tances of 4.8 m (50 dBA) and 2.5 m (60 dBA) for this baseline
condition, it can be considered that e-scooters travelling at
20 km/h without additional alert sounds do not provide sufficient
auditory warning for pedestrians to react in a timely manner, when
in a typical city soundscape. These detection rates and mean detec-
tion distances are likely to be even further reduced in many city
environments when the ambient noise level is greater than the
60 dBA level used in this study.

With the addition of a 56 dBA LAFmax alert sound, e-scooter
passes at 20 km/h showed improved detectability rates and mean
detection distances for all alert sounds investigated. In the case of
the best performing AVAS sound, mean detectability distance
increased to 30.0 m in the 50 dBA noise condition and 18.2 m in
the 60 dBA noise condition, an improvement of 4.9 s in terms of
reaction time for the worst case scenario. Specific acoustic features
of the alert sound had a significant influence on detectability per-
formance, with high frequency, saw wave type sounds providing
the best detectability performance out of those studied. Statisti-
cally significant AVAS components for detection were frequency,
wave type and AM rate. This result highlights that broadband
sound level metrics such as LAFmax are inadequate for predicting
detectability performance, as all stimuli were calibrated to the
equivalent LAFmax level.

By plotting detection distance versus annoyance, stimuli could
be evaluated within a perceptual space so as to optimise
detectability and annoyance. Whilst detectability and annoyance
were seen to be highly correlated, a cluster of stimuli offered good
detectability with relatively low annoyance ratings. Two of these
sounds were characterised by higher frequency sine tones (400
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+ 600 + 800 Hz) with amplitude modulation, with the most opti-
mal being characterised by an impulsive 1 kHz tone at a rate of
7 Hz. This suggests that modulated or impulsive tones with fre-
quency content in the 800 Hz - 1 kHz range, and with sine type
characteristics, may provide optimal micromobility AVAS sounds,
however further research is needed. Comparing these sounds to
the EV AVAS regulations as set out in UNECE 138 [14], all of the
continuous stimuli tested (S1 - S8) would fulfil requirements, sub-
ject to calibration, as they span multiple third-octave frequency
bands, however, the impulsive 1 kHz tone (S9) would not. Adding
further frequency components to this sound should be investi-
gated, as this may mean it is more detectable for individuals with
frequency-specific hearing loss, and satisfy current AVAS
regulations.

Regression analysis showed that the objective metric of Zwick-
er’s psychoacoustic annoyance is a useful predictor of subjective
annoyance for AVAS sounds, with a coefficient of determination
of R2 ¼ 0:96. When compared to other metrics for the prediction
of subjective annoyance, such as annoyance index in [24], PA is
seen to explain more variance and should therefore be considered
when developing micromobility AVAS sounds. Likewise, partial
loudness was studied as a predictor of detectability, with strong
positive association seen (R2 � 0:9). By evaluating signals with
these objective metrics, it could be possible to assess the suitability
of AVAS sounds, in terms of optimisation between detectability
and annoyance, without the need for resource intensive listening
experiments. However, current loudness models often show dis-
crepancies for strongly time-varying signals [44,45], and their
applicability to impulsive type AVAS sounds needs to be further
investigated.

Due to practicalities in experiment duration, a single AVAS
sound level was considered in this study (56 dB LAFmax at 2 m); this
corresponded to current AVAS regulations for EVs [14]. Further
work is needed to optimise AVAS sound pressure levels for micro-
mobility transportation to further balance detectability and annoy-
ance, and the objective metrics of PA and PL will likely be useful
tools for this. For instance, by interpreting the slope of regression
between PL and detection distance, it is possible to calculate the
required PL for a given detection distance in a specific noise envi-
ronment. Such analysis should be considered alongside the distri-
bution of responses, as basing alert sound levels on mean results
may produce inadequate detectability for a set percentage of the
population.

Further work should also consider directivity of AVAS loud-
speakers for micromobility. This topic has been considered previ-
ously in the context of EVs [46,47], however unlike traditional
EVs where the driver is acoustically insulated from the reproduced
AVAS sound, riders of e-scooters will be more exposed to generated
alert sounds, in part due to proximity to the loudspeaker. Beam-
forming and array technology should be considered with the pur-
pose of increasing detectability for pedestrians whilst
simultaneously reducing annoyance for the rider.
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