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Abstract
Partitioning a water distribution network into several district metered areas is beneficial for its management. Partitioning 
a network according to its node features and connections remains a challenge. A recent study has realized water network 
partitioning based on node features or pipe connections individually. This study proposes an unsupervised clustering method 
for nodes based on a graph neural network, which uses graph attention technology to update node features based on the 
connections and a neural network to cluster nodes. The similarity between nodes located in each area and the balance of the 
total water demand between areas are optimized, and the importance of the boundary pipes is calculated to determine the 
installation position of flowmeters and valves. Three water distribution networks with different structures and sizes are used 
to verify the proposed model. The results show that the average location differences (LocDiffs) within the areas of the three 
networks completed by partitioning are 0.12, 0.07, and 0.06, and the total demand differences (DemDiffs) between areas are 
0.13, 0.27, and 0.29, respectively. The LocDiff and DemDiff of the proposed method decreased by 6% and 55%, respectively, 
when compared to the traditional clustering method. Additionally, the proposed method for calculating the importance of 
boundaries provides an objective basis for boundary closure. When the same number of boundaries are closed, the com-
prehensive impact of the proposed method on the pipe network decreases by 17.1%. The proposed method can be used in 
practical applications because it ensures a highly reliable and interpretive water distribution network partitioning method.
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Introduction

Water distribution networks (WDNs) are composed of 
demand nodes and transport pipes that provide water to a 
city’s residents and industrial facilities (Alvisi 2015). They 
are susceptible to unexpected water consumption because 
of pipe bursts, connection leakages, water theft, and other 
factors (Puust et al. 2010; Bhagat et al. 2019). The British 
Water Industry Association proposed the concept of water 
network partitioning (WNP), which divides a WDN into 
several district metered areas (DMAs) to manage the net-
work more effectively (Wu et al. 2016). It has proven to be 
immensely beneficial to the management of WDNs, which 
include reducing losses (Nicolini and Zovatto 2009), limit-
ing pollution flow (Grayman et al. 2009), and optimizing 
pressure (Gomes et al. 2011). Therefore, how to partition the 
water network based on the network structure and the points 
features can improve the detection efficiency and response 
speed of the water network for anomalies in the practical 
phase (Gupta et al. 2020; Sharma et al. 2022). But it is still 
a challenge for Hydraulic Utilities and academic circles.

The common WNP problem can be formulated into two 
steps: clustering and division. The clustering stage refers to 
the clustering of water demand nodes into areas based on 
their features and connections. The division stage refers to 
the installation of flowmeters or valves in boundary pipes 
between areas to achieve an independent meter (Sela Perel-
man et al. 2015). In the last decade, various methods for 
clustering water demand nodes and division of boundary 
pipes have emerged. In the clustering stage, several studies 
have been conducted to investigate and identify the factors 
affecting WNP. The features of water demand nodes in a 
network (such as water demand, horizontal and vertical posi-
tions, and elevation) affect the WNP (Twort et al. 2000). 
For example, if the nodes with similar spatial locations are 
divided into the same DMA, the potential energy loss of 
water flow is reduced, which makes the network pressure 
distribution more uniform (Grayman et al. 2009; Gajghate 
et al. 2021). Simultaneously, the close connection of water 
network within the DMA implies these nodes are less con-
nected with other DMAs; therefore, there are fewer bound-
ary pipes between DMAs, which helps simplify the deter-
mination of boundaries (Ciaponi et al. 2016). Additionally, 
connection between nodes is an important factor affecting 
WNP (Giudicianni et al. 2018). The correlation of nodes 
is not a simple spatial relationship. Nodes are connected 
through pipes, which implies the nodes at both ends of the 
pipes should be clustered as a DMA. Several data-based 
algorithms have been used to partition water networks. 
Graph theory mainly clusters the nodes based on a net-
work structure, which includes depth-first and breadth-first 
searches (Tzatchkov and Yamanaka 2008; Di Nardo and Di 

Natale 2011; Lifshitz and Ostfeld 2018); the community-
structure algorithm divides a water network according to 
network density (Diao et al. 2013; Ciaponi et al. 2016); the 
modularity-based algorithm considers the features of nodes 
based on the former two methods (Giustolisi and Ridolfi 
2014); the multilevel partitioning algorithm is used to evenly 
distribute the pressure, water demand, and structure of a 
pipe network (Di Nardo et al. 2013; Saldarriaga et al. 2019); 
spectral graph algorithms cluster the nodes using the vec-
tor information of a network (Herrera et al. 2010; Di Nardo 
et al. 2018); and the multi-agent approach divides networks 
by constructing competing node groups (Izquierdo et al. 
2009; Herrera et al. 2012; Hajebi et al. 2014). While, in the 
division stage, the methods include single-objective optimi-
zation (Farmani et al. 2006), multi-objective optimization 
(Di Nardo et al. 2015), iterative approach (Pesantez et al. 
2019), and adaptive sectorization (Giudicianni et al. 2020). 
Generally, these methods can achieve WNP according to 
different basics, but remain following problems:

• Not considered demand nodes self and connection rela-
tionship comprehensively.

• Not have proper way to avoid fall into local optimization.
• Not avoided the negative impact of trial-and-error parti-

tion on the actual network.

The development of artificial intelligence technology and 
its combination with traditional fields provide possibilities 
for innovative WNP methods (Choudhary et al. 2021; Rakh-
shani et al. 2021; Yang et al. 2022). Based on the analysis 
of node features and connections in networks, this study 
proposes a graph attention network to design DMAs (GAN-
DMA) to realize WNP. In the proposed method, each node 
in the network aggregates the features of the surrounding 
nodes based on the connection, and the nodes are clustered 
using an unsupervised neural network. Simultaneously, the 
importance of the boundary pipes formed in the clustering 
stage is evaluated and ranked, and the pipes for installing 
flowmeters and valves are determined by calculating the 
influence degree and scope indices.

Contributions of this study are as follows:

• Graph attention of node features realizes the comprehen-
sive consideration of node features and pipeline connec-
tions, making the input of neural network more reason-
able.

• Unsupervised neural network realizes highly reliable 
node clustering and avoids the dilemma that traditional 
clustering is easy to fall into local optimization.

• Assessment of Boundary Pipes provides the objective 
basis for boundary division and avoids the negative 
impact of trial-and-error division on real pipe network.
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Problem Statement

Preliminary description

First, the number of DMAs formed must be determined. 
Ferrari et  al. suggested that each DMA should connect 
500–5000 customers, and the total number of customers 
of the entire network is based on the total water demand 
of the network and per capita water demand (Ferrari et al. 
2014). Smaller DMAs facilitate loss detection but represent 
higher initial costs and management difficulties (Laucelli 
et al. 2016). In this study, the number of DNAs is determined 
using Eq. (1).

where Dt is the total water demand, Dav is the per capita 
water demand, and Nc is the average number of customer 
connections in each DMA. The number of customer con-
nections in each DMA is an ambiguous value; therefore, 
the number of DMAs formed is variable, and the effect of 
the number of DMAs on the results will be examined in 
Section 4.4. Additionally, node clustering is determined by 
node features, including location and demand features (Her-
rera et al. 2010). The location features contain the longitude, 
dimension, and altitude data, whereas the demand feature 
refers to the water demand of the nodes. These features are 
collected and aggregated for node clustering. Owing to the 
aggregation based on network-connection information, each 
node in the network creates a list of its neighbor nodes and 
stores it as a sparse adjacency matrix, which is used in the 
following steps.

Problem description

In this study, the partitioning of a WDN into DMAs is 
defined as an optimization problem that can be automati-
cally solved using the model, and the definition of objec-
tives directly affects the model results. Several studies have 
described the objectives of WNP (Brentan et al. 2018; Liu 
and Han 2018). Firstly, the internal stability of each DMA is 
the most important problem to be considered in WNP. Inter-
nal stability means that the features of nodes in each DMA 
maintain a high degree of correlation, such as longitude, lati-
tude, and altitude. This can be interpreted as intra-area cor-
relation facilitating intra-area management and reducing the 
difficulty and workload of subsequent water loss location. 
Secondly, the balance between areas should also be con-
sidered. The balance between areas mainly means that the 

(1)NDMAs =
Dt

DavNc

water demand of each area should be kept close, which can 
optimize the number of DMAs, reduce the impact of WNP 
on the original water network, and facilitate the maintenance 
and detection of the water network. Finally, the original per-
formance of the pipe network should not be ignored, and the 
WNP should not affect the daily water use of water units. In 
fact, due to the closure of some boundary pipe networks, the 
impact of DMAs was significant, which mainly refers to the 
decline of water node pressure head caused by the closure 
of boundary (Taha et al. 2021; Tiernan and Hodges 2022).

Problem formulation

An ideal model generally requires a lower average location 
difference (LocDiff) and total demand difference (DemDiff) 
between areas, and fewer boundary pipes, which facilitate 
subsequent management. Moreover, the network water pres-
sure decreases after WNP because a part of the boundary 
pipes of the formed DMAs must be closed and valves must 
be installed. The pressure head of each demand node must be 
higher than the minimum pressure head to satisfy the daily 
water-pressure demand (Di Nardo et al. 2015). Therefore, 
the objectives and constraints of the model are as follows:

where NDMAs denotes the number of DMAs, P denotes the 
number of surrounding nodes, L denotes the location fea-
tures, L denotes the average location features, D denotes the 
total water demand of the DMA, D denotes the average total 
water demand of the DMAs, NB is the number of boundary 
pipes, h is the pressure head, and h∗ is the minimum pressure 
head. The objectives and constraints of the model are set to 
realize an automatic clustering of demand nodes, which is 
implemented using the GANDMA method and divided into 
two steps in the clustering stage: feature aggregation and 
unsupervised clustering. Subsequently, in the division stage, 
the importance of the boundary pipes formed by clustering 
is calculated and used to evaluate the installation of flow-
meters or valves.

(2)
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1
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Methodology

Method overview

In this study, the GANDMA method is used for WNP and 
maintains the daily operational status of the WDN. The 
method consists of three steps (Fig. 1). In the first step, 
feature sampling and aggregation are performed for each 
node (Section 3.2). In the second step, the aggregated node 
features are used for unsupervised clustering using a neural 
network (Section 3.3). Finally, the importance of the bound-
ary pipes is calculated and used to determine whether they 
need to be closed (Section 3.4).

graph and the node j
1
, j
2
,… , jK connected to it through the 

pipes, the aggregation index � between two nodes is based 
on the feature difference and pipe length. � represents the 
degree of influence of node j on node i . This process can be 
described by Eq. (6).

where D is water demand, Nf  is the type of feature, F is the 
feature of the node, and K is the number of surrounding 
nodes. The � values of all nodes adjacent to node i and the 
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3.2. Algorithm 1. Pseudo code of the GANDMA
Inputs: the feature of the nodes in the water distribution network:
the structure of the water distribution network:
the parameters of the neural network:

for = 1 to 
for = 1 to 

Calculate using Eq. (6)
Update the feature of the node using Eq. (7)

end
end
for n = 1 to 

Obtain the node classification result: 
Calculate using Eq. (1-2)

Optimize the neural network parameters
end
Calculate the of boundary pipes using Eq. (9)
Rank the importance of boundary pipes
for n = 1 to 

if 
Update partition result

else 
Output partition result

end
Output: water network partitioning result

Feature Aggregation

The water distribution network can be regarded as a graph, 
G

0
, that contains several demand points and connection 

pipes. Each node adjacent to others through the pipes usu-
ally is similar in spatial position and water demand behavior 
(Zhang et al. 2021). Shorter pipes imply that two points have 
stronger similarities and are more suitable for division into a 
DMA (Giudicianni et al. 2018). Therefore, for a node i in the 

i are calculated, and the features of the surrounding nodes 
are weighted and aggregated based on � to realize the feature 
update of node i . This process can be described by Eq. (7).

The same operations are performed on all nodes in 
the network to make each of them aggregate the location 

(7)F
(0+1)

i
=

K+1
∑

k=1

�ijFk
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features of its surrounding nodes, and these updated nodes 
form a new graph layer, G

1
 . We repeat this step r times to 

obtain the r-th layer graph, Gr, which implies each node in 
the graph contains the features of nodes adjacent to its r
-order.

Unsupervised Clustering

The aggregated node location features are used for unsuper-
vised clustering, and the process is automatically realized 
by a neural network, which includes the input, hidden, and 
output layers (Oyedele et al. 2021). The input layer contains 
the features of each node; the hidden layer contains several 
layers with several neurons; the output layer is the cluster-
ing result of nodes. The weight and bias of each neuron are 
optimized through training to satisfy the expected objec-
tive, which is to maintain the similarity of nodes located in 
each area and the balance of total water demand between 
areas (Eqs. 2 and 3). Training of the neural network is imple-
mented using the chain derivative optimization rule under 
the PyTorch framework, and the step size of the optimization 
is set to 0.02. The structure of the neural network has a sig-
nificant effect on unsupervised clustering, which manifests 
in the model efficiency and clustering results. More complex 
networks can achieve better results; however, the workforce 
under the same condition requires a longer running time. 
Therefore, the influence of the model layers and neural num-
bers on clustering is discussed in Section 4.2.

Boundary Division

The water demand nodes are clustered into several areas, 
and each area has multiple pipe connections to others on the 
boundary. These boundary pipes were equipped with flow-
meters or valves to facilitate management. The installation of 
flowmeters is costly, and the installation of valves prevents 
the flow of water and worsens water quality by extending its 
age (Herrera et al. 2016). Todini et al. proposed the use of 
resilience index (Ir) to evaluate the comprehensive impact of 
valve installation on daily network operation (Todini 2000). 
This is widely used to evaluate network reliability in the 
event of an emergency and can be expressed as follows:

where nn and nr are the numbers of demand nodes and res-
ervoirs, Q and h are the water demand and pressure head, 
respectively; and h∗ is the design minimum pressure head. 
The GANDMA method is used to evaluate the importance 
and influence of boundary pipes, which in turn is based 
on � and distance Dt of the surrounding node, and can be 
described as the influence degree and scope index as follows:

where Ns denotes the number of selected nodes. A higher 
Iids indicates the boundary pipe has a higher impact on areas 
on both sides; therefore, the pipe is not suitable for closure 
and the installation of a flowmeter should be prioritized. 

(8)Ir =
∑nn

i=1
Qi(hi−h∗)

∑nr
r=1

QrHr−
∑nn

i=1
Qih

∗

(9)Iids =
∑Ns

i=1

∑Ki

j=1

�ij

Dti

Fig. 1  Steps adopted for partitioning water networks
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Conversely, valves should be installed in boundary pipes 
with lower Iids . Furthermore, the influence of different 
flowmeter and valve ratios in the network is evaluated, as 
described in Section 4.6.

Experiment and Evaluation

Description of the data

GANDMA was used in three WDNs with different sizes and 
network structures: Hanoi, C-town, and E-town (Pesantez 
et  al. 2019), which represent small, medium, and large 
WDNs, respectively (Fig. 2). The Hanoi network is a part 
of the total Hanoi water distribution network, which trans-
ports water by gravity and consists of one water source, 31 
water demand nodes, and 50 pipes. The C-town network was 
proposed in the Battle of Water Calibration Networks and 

imitates a real medium-sized water distribution network con-
sisting of one water source, 388 water demand nodes, and 
429 pipes. The E-town network is a large water distribution 
network for supplying water to 400,000 people. It consists of 
five water sources, 11,063 water demand nodes, and 13,896 
pipes. The features of each water demand node and the con-
nection between pipes in the three networks were recorded 
and used to cluster and divide the networks. These features 
include spatial location and water demand.

Determination of network structure

The structure of a neural network directly affects the efficiency 
and results of the node clustering. Generally, a more complex 
network can achieve better results; however, a workforce 
under the same conditions requires a longer running time. 
This study analyzed the influence of different network layers 
and numbers of neurons in each layer on the final results. The 

Fig. 2  Water distribution networks of Hanoi (upper left), C-town (lower left), and E-town (right)
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effect was measured using LocDiff and DemDiff. Fig. 3 shows 
that under the 100 training epochs, the structure with two lay-
ers and 20 neurons in each layer achieved the best effect; the 
LocDiff and DemDiff were 0.07 and 0.31, respectively, which 
are in line with the expected results (Alvisi and Franchini 
2014). Therefore, this structure was used in the clustering 
of demand nodes. A further analysis showed that the largest 
difference was more than 15% based on the different models, 
which indicates the model structure has a significant impact 
on node clustering (Table 1).

Performance of node clustering

The GANDMA method was applied to the cluster nodes of 
three independent WDNs, and the clustering results were 
evaluated using LocDiffs and DemDiffs (Fig. 4). First, the 
number of DMAs in the three networks were determined to 
be 4, 7, and 160, and the aggregation range was 5 (the influ-
ence of the number of DMAs and aggregation range on the 
results will be discussed in Sections 4.4 and 4.5). The neu-
ral network structure was then used to cluster the demand 
nodes. Table 2 shows the GANDMA method’s excellent per-
formance for all network sizes. For the Hanoi network, the 
LocDiff and DemDiff values were 0.12 and 0.13, respectively; 
for the C-town network, the LocDiff and DemDiff values were 
0.07 and 0.27, respectively; and for the E-town network, the 
LocDiff and DemDiff values were 0.06 and 0.29, respectively. 
Compared to the K-means and spectral graph methods (Wu 
et al. 2016), the GANDMA method significantly enhanced 
the similarity of nodes located in each area and maintained 
the balance of total water demand between areas. Compared 
to the K-means method, the average LocDiff and Dem-
Diff values in the three areas formed using the GANDMA 

method decreased by 6% and 55%, respectively. Compared 
to the spectral graph method, the average LocDiff and Dem-
Diff values decreased by 3% and 36%, respectively. This is 
because the GANDMA method allows each node to include 
the location features of multiple nearby nodes by aggrega-
tion, and the new graph formed by these multi-information 
nodes significantly enriches the information from the original 
graph. Subsequently, the neural network was used for auto-
matic clustering to address the limitation of the traditional 
method, which is only suitable for single-objective clustering 
with low-dimensional information. It realizes multi-objective 
node clustering with a high stability. The GANDMA method 
achieved a balance of water demand between areas by main-
taining similar node location features within each area.

Influence of number of DMAs

This study evaluated the influence of the number of DMAs 
on clustering results (Fig. 5). The C-town and E-town net-
works were used for this purpose because the Hanoi network 
is small and the allowable number of DMAs is limited. For 
C-town, LocDiffs and DemDiffs were recorded when the 
demand nodes were clustered into 3–11 DMAs. Table 3 
shows that with an increase in the number of DMAs, the 
LocDiff gradually decreased and stabilized at approximately 
0.07 when the number of DMAs was more than seven. 
Additionally, the DemDiff gradually decreased and stabi-
lized at approximately 0.32 when the number of DMAs was 
more than eight. After a comprehensive consideration, the 
most appropriate number of DMAs was chosen to be seven 
(LocDiff = 0.07, DemDiff = 0.32, and NB = 22). While the 
results of E-town were similar to that of C-town, the Dem-
Diff gradually decreased and stabilized at approximately 

Fig. 3  Grid-search results based 
on model effectiveness for the 
number of neural network layers 
and neurons in each layer
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0.06 when the DMA was more than 160, and at approxi-
mately 0.39 when the DMA number was more than 170. 
After a comprehensive consideration, 160 was chosen as 
the most appropriate number of DMAs for E-town (LocDiff 
= 0.06, DemDiff = 0.40, and NB = 1348). The results of 
C-town and E-town show that each DMA should connect 
2000–2500 consumers as the optimal choice, although this 
is based on the limited experimental data quantity. This indi-
cates that an appropriately sized DMA optimizes the integral 
properties of the network and prevents the negative effects 
of numerous boundary pipes on subsequent divisions (Mor-
rison et al. 2007).

Influence of aggregation range

The influence of aggregation range on clustering was evalu-
ated (Fig. 6). A significant characteristic of the GANDMA 
method is that it allows each node to aggregate the features 

of its neighbors; this step was repeated several times to make 
each node aggregate the features of its multi-order neigh-
bors. Thus, the effect of the aggregation range in the GAN-
DMA method is significant and should be evaluated. For the 
three networks, the DMA numbers were set to 4, 7, and 160, 
respectively. The aggregation ranges were set to 1–8 to study 
the changes in clustering results following the changes in 
aggregation range. Table 4 shows that for the Hanoi network, 
both LocDiff and DemDiff values first decrease and remain 
stable with the increase in the aggregation range; the optimal 
LocDiff and DemDiff values were obtained in the aggrega-
tion ranges 4 and 5. An aggregation range of five is consid-
ered the most appropriate choice (LocDiff = 0.12, DemDiff 
= 0.13, and NB = 5). Similarly, in C-town and E-town, both 
LocDiffs and DemDiffs first decrease and remain stable. 
After a comprehensive consideration, the optimal aggrega-
tion range of C-town is five (LocDiff = 0.07, DemDiff = 
0.27, and NB = 22), and that of E-town is also five (LocDiff = 

Fig. 4  Clustering results of Hanoi (upper left), C-town (lower left), and E-town (right)
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0.06, DemDiff = 0.29, and NB = 1,126). The results indicate 
that the optimal aggregation range of the GANDMA method 
is always five. This is because an extremely small aggrega-
tion range makes it difficult to aggregate the features of the 
surrounding nodes; however, an excessively large aggrega-
tion range leads to similar features of irrelevant nodes, blur-
ring the boundaries of clustering (Hamilton et al. 2017).

Performance of boundary division

The clustering stage refers to clustering the demand nodes 
into some areas, and the division stage refers to the instal-
lation of flowmeters or valves in the boundary pipes of the 

areas to form DMAs. The locations of the flowmeters and 
valve installations directly affect the actual operating capac-
ity of the DMAs (Di Nardo et al. 2014). The GANDMA 
method determines a location for installing flowmeters and 
valves by evaluating the importance of boundary pipes; a 
flowmeter is preferentially installed at an important bound-
ary. The importance of the boundary pipes of the three net-
works was evaluated (Fig. 7). The unimportant boundary 
pipes were closed successively, and the variation rule of the 
Ir was recorded and analyzed.

These simulations are performed in EPANET, the water 
level of the tank must be equal to or higher than the initial 
water level at the end of the simulation. If the water level 
is extremely low, a discarded solution is not required; how-
ever, pump or valve controls must be adjusted to maintain 
the water level (Herrera et al. 2010). The results show that 
when 40% of the boundary pipes of each DMA were closed 
in Hanoi, the pressure heads h of the 100% water demand 
nodes were at a reasonable level, and the Ir of the network 
was 0.35. When the same proportion of pipes was closed 
in C-town and E-town, the pressure heads h of 97% and 
95% of demand nodes were at a reasonable level, and the Ir 
of networks were 0.37 and 0.41, respectively. Therefore, a 
40% closure of boundary pipes is suitable for most networks. 
Compared to the heuristic method (Zhang et al. 2017), the 
GANDMA method reduced the damage of Ir by 17.1% when 
40% of the boundary pipe network of each DMA was closed. 
Notably, the GANDMA method clarifies the sequence of 

Table 1  Description of the data Network Nodes ID X-Coord Y-Coord Demand Surrounding nodes

Hanoi 1 5251.17 4485.98 179 2
2 5251.17 5268.69 247.22 1,14,32
3 5227.8 5969.63 236.11 2,4
4 6068.93 5969.63 36.11 3,5
5 6676.4 5969.63 201.39 4,6,10
6 7260.51 5969.63 279.17 6,7
⋯⋯⋯

C-town 1 -247075.89 147770.08 1.076586 2
2 -247536.76 147694.06 0.5797212 1,3
3 -247265.94 148064.65 0.1740539 2,4,5
4 -247508.25 148007.64 0.3090042 3,7
5 -247641.28 148045.65 0.1294744 3,6
6 -247042.63 147988.63 0.7212659 5,7,8,11
⋯⋯⋯

E-town 1 8099.52 17569.15 0 2
2 6073.94 19530.63 0.011977 1,3
3 6122.22 19538.3 0.047910 2,4
4 2328.87 15769.23 0.131753 3,5
5 2317.52 15772.81 0 4,6
6 3066.97 16038.31 0.08384 5,7
⋯⋯⋯

Table 2  Performance of node clustering with different methods in 
three networks

Network Method LocDiff DemDiff N
B

Hanoi GANDMA 0.120667 0.129542 5
K-Means 0.126084 0.290129 5
Spectral graph 0.125874 0.22028 5

C-town GANDMA 0.066669 0.266762 22
K-Means 0.070306 0.316714 27
Spectral graph 0.068932 0.31796 21

E-town GANDMA 0.056741 0.287505 1,126
K-Means 0.061445 0.350991 1,287
Spectral graph 0.057961 0.338763 1,187
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closing boundary pipes, prevents the rationality loss of 
previous methods and provides a foundation for dynamic 
boundary control.

Study implications

Clustering of demand nodes and division of boundary pipes 
to form DMAs is an effective method for managing WDNs 
(Charalambous 2008). Therefore, this study employs a deep 

learning method to optimize the DMAs construction and pro-
poses a network distribution method based on GANDMA for 
clustering demand nodes and determining the importance of 
boundary pipes. Specifically, a reasonable clustering is critical 
and some boundary pipes should be shut down for the overall 
management because the demand node features are diverse 
and the connections between nodes are complex. Moreover, 
a clear evaluative criterion and selection of closed pipes for 
the establishment of DMAs are indispensable (Brentan et al. 
2017). GANDMA aggregated the location feature for each 
node based on the connection between pipes, and the features 
were input into the neural network for an automatic cluster-
ing to ensure the similarity of nodes located in each area and 
the balance of total water demand between areas. The impor-
tance of the boundary pipes after clustering was evaluated, 
and unimportant pipes were prioritized for closure. The GAN-
DMA-based node clustering and boundary-division method 
not only realizes automated WNP with a high reliability but 
also realizes the importance of boundary pipe evaluation. This 
addresses a limitation of the traditional method: it does not 
provide a basis for the opening and closing of boundary pipes. 
Moreover, it provides reliable conditions for the subsequent 
dynamic control of DMAs (Giudicianni et al. 2020). In prac-
tical application, the structure of the water network and the 
features of the demand nodes are recorded as data, and the 
suitable positions of the valve installation are simulated by 
computer. The workers will install valves or flowmeters to 
realize partition control of the water network.

Conclusion

WNP to form DMAs is an effective method of water dis-
tribution network management, and the rationality of node 
clustering and division of boundary pipes directly affects 
the daily operations of DMAs. However, its implementation 

Fig. 5  Influence of number of DMAs on LocDiff, DemDiff, and boundary pipe’ number in the networks of Hanoi (left), C-town (middle), and 
E-town (right).

Table 3  Effect of number of DMAs on clustering results (aggregation 
range is set to 0)

Network DMAs number LocDiff DemDiff N
B

C-town 3 0.112712 0.525631 5
4 0.096386 0.525438 12
5 0.085993 0.503174 17
6 0.077584 0.429723 26
7 0.070827 0.324558 29
8 0.068216 0.31376 34
9 0.067178 0.340748 37
10 0.067061 0.26529 40
11 0.066044 0.259774 44

E-town 100 0.077035 0.534821 946
110 0.071977 0.514157 1,068
120 0.068638 0.500115 1,087
130 0.064288 0.424952 1,207
140 0.062436 0.424026 1,275
150 0.059247 0.403108 1,309
160 0.057883 0.39627 1,348
170 0.055823 0.386188 1,448
180 0.053298 0.391349 1,533
190 0.052832 0.387483 1,548
200 0.052404 0.383595 1599
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is difficult because of the diversity of node features and the 
complexity of the connections between nodes. Therefore, 
we proposed the GANDMA method to achieve an automatic 

and reasonable clustering of water demand nodes and dis-
cover the importance of evaluating and dividing boundary 
pipes. The main conclusions are as follows:

• The GANDMA method effectively aggregated the fea-
tures of demand nodes in water distribution networks and 
realized automatic node clustering. Experiments on three 
networks show that the average LocDiff and DemDiff 
values are 0.08 and 0.23, respectively, which are, respec-
tively, 6% and 55% lower than those of the traditional 
clustering method.

• The effects of the number of DMAs and the aggregation 
range of the GANDMA method in the clustering stage 
were evaluated, and the results showed that both had a 
significant impact on LocDiff and DemDiff. The cluster-
ing result was optimal when the number of connected 
populations was approximately 2500 in each DMA, and 
the appropriate aggregation range was five.

• In the division stage, the experimental results showed that 
the GANDMA method is effective and objectively pro-
vides the order of importance of boundary pipes. When 
40% of the relatively unimportant pipe were closed, the 
Ir decreased by 11.9% on an average, and 97% of the 
demand points satisfied the lowest pressure head. Com-
pared to the traditional method, the GANDMA method 
reduced the impact of the network by 17.1%.

Although GANDMA performs well in WNP, some prob-
lems remain unresolved. Similar to the traditional models, 
the GANDMA model realizes water network partitioning 
by clustering and dividing in two stages, which reduces the 
search range of the optimal solution. Therefore, future stud-
ies should focus on the development of a one-step water 
network-partitioning method. Moreover, a few dynamic 
DMAs exist. GANDMA's boundary-importance evaluation 
provides a basis for setting dynamic DMAs, and this should 
be explored further in the future.

Fig. 6  Influence of aggregation range on LocDiff, DemDiff, and boundary pipe number in the networks of Hanoi (left), C-town (middle), and 
E-town (right).

Table 4  Effect of aggregation range on clustering results (DMA num-
bers to 4, 7, and 160)

Network DMA num-
bers

LocDiff DemDiff N
B

Hanoi 1 0.126084 0.290129 6
2 0.126084 0.22028 6
3 0.125874 0.22028 5
4 0.121633 0.212022 5
5 0.120667 0.129542 5
6 0.120257 0.137211 5
7 0.119585 0.137211 5
8 0.119506 0.137211 5

C-town 1 0.070306 0.316714 27
2 0.06901 0.351561 24
3 0.068932 0.31796 21
4 0.067595 0.338657 21
5 0.066669 0.266762 22
6 0.066758 0.278827 24
7 0.066207 0.282487 24
8 0.067066 0.277661 24

E-town 1 0.061445 0.350991 1,287
2 0.060411 0.351546 1,203
3 0.057961 0.338763 1,187
4 0.058358 0.311454 1,222
5 0.056741 0.287505 1,126
6 0.055906 0.293643 1,149
7 0.055702 0.292866 1,167
8 0.055469 0.310068 1,140
9 0.0559 0.299252 1,096
10 0.055999 0.309362 1,115
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