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ABSTRACT: This article examines theoretically and numerically the effect of non-Fourier heat 

flux on non-Newtonian (Eyring-Powell) Sakiadis convective flow from a moving permeable 

surface accompanied by a parallel free-stream velocity, as a simulation of polymeric coating 

processes. The Cattaneo-Christov model is deployed which features thermal relaxation effects as 

these are important in thermal polymer processing. The physical flow problem is modelled in a 

Cartesian coordinate system and the governing conservation differential equations and associated 

boundary conditions are rendered dimensionless by applying suitable transformations. Liquid 

velocity and thermal distributions are computed considering numerical procedure namely, a 

shooting method in conjunction with the 5th order Runge-Kutta algorithm (R-K5) executed in a 

symbolic software. Validation with the three-stage Lobatto IIIA algorithm in MATLAB is 

included. The impact of key parameters on streamline distributions is also computed. Velocity is 

increased with increment in Eyring-Powell first parameter for the Sakiadis case whereas it is 

reduced with Eyring-Powell second parameter for the case where sheet and liquid are inspiring in 

the similar direction. The special case of Blasius flow is also examined (stationary sheet). For 

higher injection, there is a solid dampening in the boundary-layer flow for both Sakiadis and 

Blasius scenarios.  With increment in thermal relaxation parameter and Eyring-Powell first and 

second parameters, temperatures are strongly reduced, and thermal boundary-layer thickness is 

suppressed. Higher injection at the wall also depletes temperatures. The Cattaneo-Christov heat 
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flux model predicts lower temperature and thermal boundary layer thickness due to the thermal 

relaxation effect than the classical Fourier model. Flow patterns are displayed through 2D and 3D 

streamline contour plots and non-Newtonian characteristics are also found to exhibit strong 

modifications in these plots. The computations are useful in industrial high temperature coating 

flow designs using non-Newtonian materials on a moving substrate.   

 

KEYWORDS: Cattaneo-Christov non-Fourier heat flux; Eyring-Powell non-Newtonian fluid; 

Moving surface, thermal relaxation; Streamline plots; Runge-Kutta numerical solutions, Thermal 

polymer coating processes. 

 

1. INTRODUCTION 

Heat transfer analysis is fundamental to numerous technological processes including 

manufacturing of polymers, heat exchanger design, high temperature surface spray deposition, 

rocket combustion and renewable energy systems (solar and geothermal). This mechanism is 

encountered in many manufacturing and engineering processes such as nuclear reactor cooling, 

tribological systems, thermal regulation of electronic devices, gas turbine propulsion, and 

polymeric materials fabrication. Fourier [1] pioneered the study of thermal conductive heat transfer 

establishing the parabolic law for heat conduction known as Fourier’s law  [1]. His work 

established the basis for modern thermo-mechanics. However, in 1948 Cattaneo  [2]  refined the 

Fourier model by taking the effects of thermal relaxation. This non-Fourier model is hyperbolic in 

nature and achieves the correct behaviour for finite thermal waves in real materials, which is 

neglected in the classical Fourier model. Heat exchange (transfer) is known to occur due to the 

temperature difference between different locations. The Cattaneo non-Fourier model overcomes 

the shortcomings of Fourier’s law by determining initial disturbance immediately throughout the 

whole medium with heat transformation via thermal waves. The heat propagation by means of 

waves as opposed to diffusion has been explored by numerous researchers. Early investigations in 

this regard has revealed that this is not merely a low temperature phenomenon but instead it has 

promising imperative real applications in engineering and modern industrial processes including 

surface treatment of engineering components, food processing, power generation, skin burn 

treatment, micro/nanofluidic devices etc. Christov  [3] further modified the study of Cattaneo by 

including Oldroyd's upper convected derivatives to establish a more robust material conventional 

formulation, leading to the so-called generalized non-Fourier heat transfer model known as the 

Cattaneo-Christov heat flux model. Straughan  [4]  analyzed thermal convection in Newtonian 

liquids with the Cattaneo-Christov model, confirming that thermal relation effects are significant 



3 
 

3 
 

if the Cattaneo number (which accounts for inertial and length scale effects) is sufficiently large. 

Tibullo et al.  [5]  deployed the Cattaneo-Christov heat conduction model for incompressible 

viscous flow. Abbasi et al. [6]  performed an analytical study using the Oldroyd-B rheological 

model to describe attributes of heat transfer in frames of revised Fourier expression, noting that 

temperature along with thermal boundary-layer thickness reduce with thermal relaxation aspects, 

which are overlooked in Fourier model. Further studies utilizing the revised Fourier expression are 

available in [7 − 8]. 

Engineering applications of non-Newtonian fluid flows are increasing in the 21st century. Such 

fluids are encountered in chemical engineering fluidized beds, lubricants, emollients, medical 

linctus suspensions, sterilizing gels, foams, biotechnological and polymer processing (coatings) 

etc. Non-Newtonian effects cannot be simulated with the classical Navier-Stokes viscous flow 

model since it does not feature important phenomena such as couple stresses, stress relaxation, 

retardation, spurt, viscosity variation, molecular stretching etc. Several constitutive equations of 

non-Newtonian fluids have therefore been suggested to accurately mimic these characteristics and 

include the Bingham viscoplastic model, Walters-B viscoelastic model and others [9 − 10]. These 

models carefully modify the shear-stress behaviour via tensorial formulations to correctly predict 

non-Newtonian fluid dynamics. Boundary-layer flows of rate type fluids have been in particular 

investigated utilizing robust constitutive relationships in comparison to the other differential 

(Reiner-Rivlin) type fluids  [11 − 15] . The Eyring-Powell rheological model  [16, 17]  is an 

excellent example of a rate type fluid model which is more comprehensive than the conventional 

Ostwald DeWaele power law model. Although more complex than other non-Newtonian fluid 

models, since it is derived from kinetic theory of liquids rather than the empirical relation, it has 

the advantage that it reduces to Newtonian behavior for low and high shear rates. Further, Eyring-

Powell model describes shear flows of non-Newtonian fluids, derived from theory of rate 

processes. It quite accurately describes performance of polymer solutions and viscoelastic 

suspensions over an extensive range of shear rates  [18] . 

During various manufacturing processes, flow towards a moving surface is required. In all these 

procedures thermal treatment of the material traveling over a feed or wind-up roll or assembly line 

is significant. This scenario features in the fabrication of fibers in glass, polymers transported on 

conveyor belts, coating dynamics, metallurgical free surface flows, deposition of paints and gels, 

production of wrapping foils and plastic sheet synthesis. In such processes mass, heat and 
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momentum transfer play a key role. Polymeric layers may be stretched in specific directions to 

improve mechanical properties and different thermal loading conditions can be exploited to 

manipulate final product characteristics. Sakiadis  [19]  pioneering investigation explored the 

boundary layer flow with heat transfer over a moving rigid plate (conveyor belt surface). This 

analysis although confined to Newtonian fluids, established the foundation for modelling boundary 

layer flows on moving surfaces. Subsequently many researchers examined Sakiadis flows with a 

wide range of multi-physical effects (thermal radiation, magnetohydrodynamics, wall slip etc). 

Some relevant articles in this regard are cited in [20 − 23]. Recently, such flows in the presence 

of free stream velocity effects have been addressed analytically for different viscoelastic polymeric 

liquids (e.g. Jeffreys and Maxwell fluids) by Hayat et al.  [24 − 26]  and for the Eyring-Powell 

model by Zaman et al.  [27]. 

Inspection of the literature has revealed that thus far the Sakiadis flow of an Eyring-Powell 

polymeric non-Newtonian fluid from a moving surface with non-Fourier heat flux effects, has not 

been examined. This is the motivation of the present work. A two-dimensional, steady 

mathematical model is developed using boundary layer theory. The moving surface is porous and 

accompanied by a parallel free stream velocity. The Cattaneo-Christov model is deployed which 

features thermal relaxation effects as these are important in thermal polymer processing where a 

rheological coating material is deposited on a flat translating substrate with complex heat (and 

mass) transfer (thermal/solutal) effects. This constitutes a key practical application of the current 

mathematical study. The current work therefore extends the classical Newtonian fluid Sakiadis 

problem to consider non-Fourier thermal relaxation and Eyring-Powell rheological effects which 

are shown to modify transport characteristics considerably in the coating flow dynamics studied. 

The nonlinear transformed dimensionless ordinary differential boundary value problem is solved 

with a 5th order Runge-Kutta method (R-K5) executed in a symbolic software. Validation with the 

three-stage Lobatto IIIA algorithm in MATLAB is included. The impact of key parameters on 

velocity, temperature, skin friction and 3-D streamline distributions is also computed and 

interpreted in detail.   

 

2. SAKIADIS NON-NEWTONIAN NON-FOURIER FLOW MODEL 

Let us formulate the steady-state two-dimensional boundary-layer flow of an incompressible 

Eyring Powell liquid (shear-thinning polymer) towards moving surface having velocity  uw  in the 
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similar direction as that of uniform free-stream velocity  u∞ . The x-axis is selected along moving 

surface (i.e., in the direction of motion) and y-axis is in perpendicular direction. The temperature 

T takes constant value Tw at the moving wall (boundary). Moreover, T∞ denotes the ambient values 

of T. It is anticipated that wall and free-stream temperatures Tw and T∞ are constants with Tw >

T∞. The geometry of the regime is visualized in Fig. 𝟏. According to Powell and Eyring  [16] , 

the stress tensor for an Eyring-Powell fluid is: 

 

                                                          Λ = μ∇V +
1

β
sinh−1 (

1

C
∇V)                                                          (1) 

Here μ is dynamic viscosity, V is fluid velocity, β and C are Eyring-Powell non-Newtonian 

material parameters. Letting: 

                                 sinh−1 (
1

C
∇V) ≅

1

C
∇V −

1

6
(
1

C
∇V)

3

,           |
1

C

∂ui
∂xj
| < 1                                    (2) 

 

Fig. 1: Physical flow diagram.
 

 

Adopting the above relation, the governing boundary-layer equations for considered model are: 

                                                                  
∂u

∂x
+
∂v

∂y
= 0  ,                                                                             (3) 
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                              u
∂u

∂x
+ v

∂u

∂y
= (ν +

1

ρβC
)
∂2u

∂y2
−

1

2ρβC3
(
∂u

∂y
)
2 ∂2u

∂y2
  ,                                       (4) 

The prescribed boundary conditions at wall and in the free-stream are:  

u = uw(x) ,           v = vw           at        y = 0 , 

                                              u → u∞(x),           
∂u

∂y
→ 0           as        y → ∞                                       (5) 

in which ρ is denoted by density, u and v are velocity components along x and y directions 

respectively and ν  is liquid’s kinematic viscosity. In addition, the non-Fourier (Cattaneo-Christov) 

heat flux model (see Cattaneo [2]  and Christov [3] ) can be expressed as follows: 

                                q + λ3 (
∂q

∂t
+ V. ∇q − q. ∇V − (∇. V)q) = −k∇T  ,                                        (6) 

Here q is the heat flux, λ3 is the relaxation time for heat flux, k is the thermal conductivity and V 

is the velocity vector. In view of the above expression, the energy equation is modified to: 

  

    u
∂T

∂x
+ v

∂T

∂y
+ λ3

(

 
 

u
∂u

∂x

∂T

∂x
+ v

∂v

∂y

∂T

∂y
+ u

∂v

∂x

∂T

∂y

+v
∂u

∂y

∂T

∂x
+ 2uv

∂2T

∂x ∂y
+ u2

∂2T

∂x2
+ v2

∂2T

∂y2)

 
 
= α

∂2T

∂y2
                         (7) 

 

The associated thermal boundary conditions are:  

 

                               T = Tw(x)       at       y = 0;          T → T∞       as      y → ∞                             (8) 

In Eqns. (7) and (8), α is thermal diffusivity, Tw is temperature at the wall, and T∞ is the ambient 

fluid temperature. To proceed further, we introduce following dimensionless quantities: 

 

u = Uf ′(η),     v = −
1

2
√
Uν

x
[f(η) − ηf ′(η)] ,       η = y√

U

xν
  ,       θ(η) =

T − T∞
Tw − T∞

            (9) 

 

Here U = uw + u∞ . In view of Eqn. (9), Eqn. (1) is automatically fulfilled and other Eqns. 

(2), (3), (7) and (8) are reduced into following coupled momentum and thermal boundary layer 

equations: 
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                                         (1 + ϵ)f ′′′ +
1

2
ff ′′ − ϵδ(f ′′)2f ′′′ = 0                                                   (10) 

                                       θ′′ +
1

2
Pr fθ′ −

Prγ

4
(3ff ′θ′ + f2θ′′) = 0                                              (11) 

 

f ′(η) = λ ,        f(η) = S ,       θ(η) = 1       at       η = 0 

                                       f ′(η) = 1 − λ ,       θ(η) = 0       as       η → ∞                                          (12) 

 

Here f(0) = S with S < 0 corresponding to the suction case and S > 0 implying injection 

(blowing), λ is a parameter relating the wall velocity to free stream velocity, Pr is the Prandtl 

number, ϵ and δ are Eyring-Powell non-Newtonian material parameters and γ is the non-Fourier 

relaxation time (Cattaneo-Christov parameter). These dimensionless physical parameters take the 

following definitions: 

λ =
uw
U
 ,     Pr =

v

α
 ,       δ =

U3

2xvC2
 ,  

                                              γ =
λ3U

x
 ,        ϵ =

1

μβC
 ,       S = −(√

2x

vU
)vw                             (13) 

Here it is worth-mentioning that λ = 0 yields the flow by stationary surface induced by free-stream 

velocity (i.e., Blasius flow). The case, λ = 1 yields moving wall (Sakiadis flow). The situation 

0 < λ < 1 is when fluid and wall are persuading in the similar direction. Moreover, if λ > 1, the 

free-stream is directed towards the negative x - direction while the wall moves in positive x - 

direction. In materials processing operations, an important physical quantity (i.e., kin friction 

coefficient Cf) which is delineated as: 

                                                                           Cf =
τw
ρU2

                                                                    (14) 

In dimensionless form, one obtains the skin friction as: 

                                                     −Rex
1
2 Cf = (1 + ϵ)f

′′(0) −
ϵ

3
δf ′′

3
(0)                                   (15) 

Where Rex =
Ux

v
 is the local Reynolds number. 

 

3. RUNGE-KUTTA NUMERICAL SOLUTIONS  

This section describes the numerical solution of the governing Eqns. (10) and (11) subject to 
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boundary conditions (12) via the deployment of a shooting algorithm along with the 5th order 

Runge Kutta quadrature method (R-K-5). For this purpose, the nonlinear ordinary differential 

equations (10) and (11) are converted into a first order equations as an initial value problem and 

the variables are defined as follows:  

                     (f , f ′ , f ′′ , θ , θ′)T = (y1 ,   y1
′ = y2 , y2

′ = y3 , y4 , y4
′ = y5)

T                     (16) 

 

In view of above substitutions, the initial value problem can be defined as: 

 

(

 
 
 

y1
′

y2
′

y3
′

y4′

y5′
)

 
 
 
=

(

 
 
 
 
 
 

y2
y3

−(1 2⁄ )y1y3
(1 + ϵ − ϵδ(y3)2)

y5

(3 4⁄ )Prγy1y2y5 − (
1
2⁄ )Pry1y4

(1 − (1 4⁄ )Prγ(y1)
2)

)

 
 
 
 
 
 

 

(

 
 
 

y1(0)
y2(0)
y3(0)
y4(0)
y5(0)

)

 
 
 
=

(

  
 

S
λ
U1
1
U2)

  
 

 

            (17) 

Apposite estimations of unknown conditions (U1 and U2) are approximated via Newton's scheme 

until the boundary conditions (f ′(η) → 1 − λ, and θ(η) → 0   as η → ∞) are satisfied. 

 

4. VALIDATION WITH MATLAB BVP5C THREE-STAGE LOBATTO IIIA SOLVER  

We adopted the three-stage formula (Lobatto IIIA) to validate the RK-5 numerical shooting 

solutions.  The mesh size along with error control are reliant on the residue of continuous solution 

acquired from collocation polynomial which utilizes the fourth-order precision in interval [a, b].  

The technique followed is that non-linear differential systems are written again in first-order 

differential equations. The said numerical solver possessed eight decimal places of order. The 

successful execution of code saves the mesh data in sol. x, while the numerical results are saved 

in sol. y. This technique has been employed in a variety of nonlinear complex fluid dynamics 

problems including Bég et al. [28], Uddin et al. [29] and Sarkar and Sahoo [30]. Bvp5c is 
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implemented to compute the value of 
MIDY  along with gradient at the ends of subinterval. The 

formula used to calculate 
MIDY  is: 

1 1 2 3 4

17 40 15 5 40 15 5 1

192 192 192 192
MIDY Y K K K K

 + +
= + + + − 

 
                                      (18) 

Here Y1 is the initial guess and K1, K2, K3, K4 are the estimates having stepping distance . 

Exceptional stable solutions are obtained. Table 1 shows comparison of −Rex
1

2Cf  for λ = 1 i.e. 

Sakiadis flow and Blasius flow (λ = 0.2 ). Excellent correlation is achieved testifying to the 

accuracy of the R-K-5 numerical solutions. Computational values are displayed up to four decimal 

places. From this table it is also evident that for the case of Sakiadis flow i.e. λ = 1, coefficient of 

skin friction is enhanced for rising values of ϵ i. e. Eyring-Powell first non-Newtonian material 

parameter and S (wall injection) whereas it is decreased with increment in the Eyring-Powell 

second non-Newtonian material parameter (δ).  The different response in skin friction with 

different Eyring-Powell parameters is due to the different nature of the shear terms in which they 

appear in the momentum Eqn. (10).  

 

Table 1: Comparison of R-K and MATLAB BVP5C solutions for wall skin friction with 

different model parameters. 

 

ϵ δ S 
−Rex

1
2Cf (λ

= 1)  
 Sakiadis flow 

 

R-K scheme 

−Rex
1
2Cf (λ

= 1)  
Sakiadis flow 

[MATLAB 

three-stage 

Lobatto IIIA] 

−Rex
1
2Cf (λ

= 0.2)  
Blasius flow 

 

R-K Scheme 

−Rex
1
2Cf (λ

= 1)  
Blasius flow 

[MATLAB 

three-stage 

Lobatto IIIA] 

1.0 

2.0 

3.0 

4.0 

0.1 2.5 1.5519 

1.6670 

1.7714 

1.8694 

1.5522 

1.6672 

1.7717 

1.8693 

−0.9105 

−0.9676 

−1.0179 

−1.0639 

−0.9102 

−0.9673 

−1.0175 

−1.0636 

1.5 0.3 

0.5 

0.7 

0.9 

 1.6083 

1.6054 

1.6023 

1.5989 

1.6086 

1.6056 

1.6027 

1.5993 

−0.9398 

−0.9395 

−0.9392 

−0.9389 

−0.9392 

−0.9391 

−0.9397 

−0.9384 

 0.5 0.0 

0.5 

1.0 

1.5 

0.7024 

0.8567 

1.0260 

1.2085 

0.7028 

0.8570 

1.0264 

1.2088 

−0.3435 

−0.4499 

−0.5642 

−0.6847 

−0.3432 

−0.4493 

−0.5648 

−0.6841 
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The first parameter features in the momentum assisting term, (1 + ϵ)f ′′′, producing strong 

acceleration i. e. larger skin friction coefficient and a thicker momentum boundary layer. However, 

the second parameter is attached to the negative shear term, −ϵδ(f ′′)2f ′′′ leading to strong 

deceleration i. e. lower skin friction coefficient. Momentum boundary layer thickness is therefore 

increased. Injection clearly exacerbates the lateral mass flux through the wall and aids the 

boundary layer flow, inducing strong acceleration and larger skin friction coefficient. A very 

different response is observed for the classical Blasius flow (stationary wall, λ = 0.2). Here skin 

friction is decreased i. e. values are more negative with increment in Eyring-Powell first non-

Newtonian material parameter (ϵ) and injection parameter (S) whereas it is now enhanced (less 

negative values) with Eyring-Powell second non-Newtonian material parameter (δ). The negative 

values of skin friction imply back flow i. e. flow reversal.  In the next section all figures are based 

on the R-K-4 numerical method results.  

5.GRAPHICAL RESULTS AND DISCUSSION  

In this section, R-K-5 numerical results are displayed through graphs and tables. Graphs are 

designed to explore the influence of pertinent parameters i.e. velocity ratio, λ , Eyring-Powell first 

and second non-Newtonian material fluid parameters (ϵ and δ), suction/injection parameter S , 

Prandtl number Pr and non-Fourier thermal relaxation parameter, γ on thermo-fluid 

characteristics. Figures 2 to 8 are plotted for velocity distribution for various selected parameters. 

Here λ = 1 depicts the Sakiadis flow case while 0 ≤ λ < 1 demonstrates the Blasius flow case. 

Figure 2 is plotted for f ′(η) against η for significant values of λ by keeping ϵ , δ and S fixed. It is 

evident that for 0 ≤ λ ≤ 0.2 , liquid velocity is enhanced (acceleration) in the neighborhood of 

moving surface (i.e., momentum boundary-layer thickness is decreased) while subsequently it is a 

decreasing function of λ, (i.e., momentum boundary-layer thickness is augmented due to flow 

retardation) and this trend is continued into the free-stream. Asymptotically smooth results are 

computed at the maximum value of the transverse coordinate () i. e. in the free-stream, ratifying 

the prescription of an sufficiently large infinity boundary condition in the R-K-5 computations.  
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         Fig. 2: Influence of λ on f ′(η).          Fig. 3: Influence of ϵ on f ′(η) when λ = 1.0 

 

 

Fig. 4: Influence of ϵ on f ′(η) when λ = 0.2     Fig. 5: Influence of δ on f ′(η) when λ = 1.0 
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Fig. 6: Influence of δ on f ′(η) when λ = 0.2    Fig. 7: Influence of S on f ′(η) when λ = 1.0 

 

 

 

       Fig. 8: Influence of S on f ′(η) when λ = 0.2 
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                 Fig. 9: Influence of Pr on θ(η) 

 

            Fig. 10: Influence of  on θ(η)         Fig. 11: Influence of  and  on θ(η) 
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                Fig. 12: Influence of S on θ(η) 

 

 

 

 

  Fig. 13: Streamlines for Sakiadis flow when ϵ = 0.2 
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Fig. 14: Streamlines for Sakiadis flow when ϵ = 1.0 

 

 

 

Fig. 15: Streamlines for Blasius flow when ϵ = 0.2. 
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Fig. 16: Streamlines for Blasius flow when ϵ = 1.0 

 

 

 

 

Fig. 17: Streamlines for Sakiadis flow when δ = 1.0 
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Fig. 18: Streamlines for Sakiadis flow when δ = 3.0. 

 

 

Fig. 19: Streamlines for Blasius flow when δ = 1.0. 
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Fig. 20: Streamlines for Blasius flow when δ = 3.0 

 

Figures 3 and 5 illustrate the effect of fluid property parameter ϵ and δ for the Sakiadis flow 

(=1.0). It is noted, that greater ϵ contributes towards accelerating the fluid flow whereas 

increment in in δ produces deceleration, and as noted this is due to the assistive shear term for the 

former parameter and the negative shear term for the latter parameter in the momentum boundary 

layer eqn. (10). It is also noteworthy that ϵ =
1

μβC
  which indicates that it is inversely proportional 

to dynamic viscosity and thus, an increase in ϵ leads to a reduction in low resistance and hence 

acceleration and a thinner momentum boundary layer thickness (see figure 3). δ  is inversely 

related to streamwise coordinate, x. Thus, an increase in δ implies a decrease in sheet length which 

contributes to inhibited space for the boundary layer growth and results in deceleration and a 

thicker boundary layer thickness (see figure 5). The opposite behavior is observed for the case of 

Blasius flow (see figures 4 and 6) for the two fluid parameters. Therefore, the presence of a 

moving wall (Sakiadis flow) has a dramatic influence on the impact of Eyring-Powell non-

Newtonian parameters on momentum characteristics. The effects of wall injection,  S > 0 for 

Sakiadis and Blasius flows are displayed in figures 7 and 8, respectively. In case of Sakiadis flow 

(Fig. 7) the polymer fluid flow is decelerated with greater wall injection (blowing) and the 
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hydrodynamic (momentum) boundary layer thickness increases.  A similar trend is also computed 

in the case of Blasius flow (stationary wall) where the lateral mass flux introduced into the regime 

via the wall (injection) again results in strong flow deceleration and a thickening in momentum 

boundary layer thickness, as seen in figure 8. However, it is evident that the profile topologies are 

very different. The maximum velocity is computed at the wall with Sakiadis flow (fig. 7) and 

profiles follow a monotonic decay from the wall to the free stream. However, in Blasius flow, the 

profiles grow monotonically from the wall to attain a maximum value in the free-tream (edge of 

the boundary layer). In both cases again asymptotically smooth distributions are attained in the 

free-stream, verifying that a adequately larger infinity boundary condition has been used in R-K-

5 computations. 

The impact of key parameters on temperature distributions are visualized in Figures 9 to 12 for 

Sakiadis flow i. e. λ = 1. Fig. 9 shows that elevation in Prandtl number induces a strong depletion 

in temperature, θ(η). Higher values of Prandtl number (Pr =4) correspond to low density polymeric 

suspensions [31]. Prandtl number signifies the ratio of viscous to thermal diffusion rate. It is also 

contrariwise proportional to thermal conductivity. Higher Prandtl number (e.g. polymers) 

correspond to much lower thermal conductivities and this inhibits thermal diffusion leading to 

reduction in temperature and decrease in thermal boundary layer thickness. A strong monotonic 

decay in temperature is witnessed from the wall to the free stream at any value of Prandtl number. 

Fig. 10 shows the influence of thermal relaxation (non-Fourier) parameter on temperature 

evolution. γ =
λ3U

x
 and features in the augmented convective heat transfer terms, −

Prγ

4
(3ff ′θ′ +

f2θ′′) in Eqn. (11). The Fourier classical case is retrieved when γ =0 for which the thermal 

boundary layer Eqn. (11) reduces to the classical Prandtl version. With increment in γ 

thermal waves are intensified in the regime due to the hyperbolicity of the non-Fourier model. This 

inhibits thermal diffusion and suppresses temperature and also decreases thermal boundary layer 

thickness Effectively the Fourier model therefore over-predicts temperatures and much better 

accuracy is achieved with the non-Fourier (Cattaneo-Christov) heat flux approach. This is of 

particular interest in polymeric coating flows where properties of finished products e. g. coatings 

are very sensitive to temperature differences, as noted by Gaffar et al. [32]. Overall, it is observed 

that temperature along with thermal boundary-layer thickness are less in the case of revised Fourier 

model in comparison to classical Fourier heat-flux model. Figure 11 shows that a noticeable 

decrement in temperature θ(η) accompanies a rise in both first ( ϵ) and second (δ) Eyring-Powell 
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rheological material parameters. Both parameters, ϵ =
1

μβC
 and δ =

U3

2xvC2
  are inversely 

proportional to the polymer viscosity. This decreases the resistance to flow. Although these 

rheological parameters only arise in the momentum Eqn. (10), via the terms, 

+
1

2
Pr fθ′, −

Prγ

4
(3ff ′θ′ + f2θ′′) in the energy Eqn. (11) there is a strong coupling between 

velocity and temperature fields. Temperature is therefore indirectly influenced by the polymer 

rheology and therefore thermal boundary layer thickness is effectively reduced with increment in 

( ϵ) and (δ). Fig 12 displays that with increasing wall injection there is a significant decrease in 

temperatures in the boundary layer. The case of a solid wall (S = 0) achieves the maximum 

temperature. Injection therefore serves to cool the boundary layer regime and depletes thermal 

boundary layer thickness.  

Figures 13 − 20 illustrate the 2-dimensional streamline contour plot (flow pattern) and 3-D plots 

for different values of  ϵ and δ for both Sakiadis (λ = 1 ) as well as Blasius flows (λ < 1), 

respectively. It is evident that when ϵ = 0.2, i.e. the weakly non-Newtonian case, the flow pattern 

for Sakiadis flow is concave downwards (see Fig. 13 and 14) while it is concave upwards in 

Blasius flow when ϵ = 1.0 i.e. for the strongly non-Newtonian case (see Fig. 15 and 16). 

Furthermore when δ = 1.0 (again weakly non-Newtonian case) the streamline flow pattern for 

Sakiadis flow faces downwards (see Fig. 17 and 18) while it is directed upwards in Blasius flow 

when δ = 3.0 (see Fig. 19 and 20). Effectively the combination of non-Newtonian characteristics 

as simulated via the Eyring-Powell model and the nature of the regime (moving wall or stationary 

wall) have a dramatic influence on the patterns of flow in the boundary layer.  

 

6. CONCLUSIONS  

Motivated by rheological thermal flow processing applications (e.g. coating dynamics) a 

theoretical and computational study has been described to evaluate the effects of non-Fourier heat 

flux on non-Newtonian (Eyring-Powell) Sakiadis convective flow from a moving porous surface 

accompanied by a parallel free stream velocity. The Cattaneo-Christov hyperbolic heat flux model 

is deployed which features thermal relaxation effects. The transformed dimensionless boundary 

value problem is solved numerically with a shooting method in conjunction with the 5th order 

Runge-Kutta method (R-K5) executed in a symbolic software. Validation with the three-stage 

Lobatto IIIA algorithm in MATLAB software is included. The impact of key parameters on 
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velocity, temperature, skin friction and streamline distributions is computed. The principal 

findings of the current study may be summarized as follows: 

(i) Flow acceleration is induced with increment in Eyring-Powell first parameter for the Sakiadis 

case whereas flow deceleration is produced with increment in Eyring-Powell second parameter for 

Blasius flow (stationary wall). 

(ii) With increasing wall injection there is a strong dampening in the boundary layer flow for both 

Sakiadis and Blasius flow cases.  

(iii) With increment in thermal relaxation parameter and Eyring-Powell first and second 

parameters, temperatures are strongly reduced, and thermal boundary layer thickness is 

suppressed.  

(iv) Greater injection at the wall depletes temperatures and decreases thermal boundary layer 

thickness.  

(v)The Cattaneo-Christov heat flux model predicts lower temperature and thermal boundary layer 

thickness due to the thermal relaxation effect than the classical Fourier model.  

(vi) For the case of Sakiadis flow, skin friction is enhanced with greater values of Eyring-Powell 

first non-Newtonian material parameter and wall injection whereas it is decreased with increment 

in the Eyring-Powell second non-Newtonian material parameter. 

(vii) 2-D and 3-D streamline contour plots reveal that for the weakly non-Newtonian case, the flow 

pattern for Sakiadis flow is concave downwards while it is concave upwards in Blasius flow for 

the strongly non-Newtonian case.  

The present computations reveal some further insights into thermal polymer coating flows. 

However, in the current model mass transfer i. e. species diffusion [33] has been neglected. This 

may be considered in future studies.  
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