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Abstract
Predictive simulation of human walking has great potential in clinical motion analysis and rehabilitation engineering assess-
ment, but large computational cost and reliance on measurement data to provide initial guess have limited its wide use. We 
developed a computationally efficient model combining optimization and inverse dynamics to predict three-dimensional 
whole-body motions and forces during human walking without relying on measurement data. Using the model, we explored 
two different optimization objectives, mechanical energy expenditure and the time integral of normalized joint torque. Of 
the two criteria, the sum of the time integrals of the normalized joint torques produced a more realistic walking gait. The 
reason for this difference is that most of the mechanical energy expenditure is in the sagittal plane (based on measurement 
data) and this leads to difficulty in prediction in the other two planes. We conclude that mechanical energy may only account 
for part of the complex performance criteria driving human walking in three dimensions.

Keywords Locomotion · Inverse dynamics · Optimization · Predictive models · Three-dimensional

1 Introduction

Walking is a motor task requiring sophisticated coordi-
nation of multiple body segments and joints. A powerful 
approach to understand the biomechanics and control strat-
egies underpinning human walking is the use of predictive 
simulation that calculates movements based on a mathemati-
cal description of the neuro-musculoskeletal system (Chow 
and Jacobson 1971; Davy and Audu 1987; Yamaguchi 1990; 
Koopman et al. 1995; Anderson and Pandy 2001). Predic-
tive simulation using complex forward dynamics muscu-
loskeletal models, driven by the major muscles actuating 
the joints of the lower limbs, has achieved good predictions 
of body movements and motor control processes in gait 
(Anderson and Pandy 2001; Dorn et al. 2015; Shourijeh 
and McPhee 2014; Sreenivasa et al. 2017). This approach 

has been widely studied possibly because it coincides with 
the natural sequence of neuromuscular control (Zajac and 
Winters 1990). However, the solution of a large number 
of differential equations leads to expensive computation. 
Nowadays the use of direct collocation method and faster 
solvers (e.g., SNOPT and IPOPT) has sped up the com-
putation of optimization based on forward dynamics, but 
the initial guess or part of the initial guess (called quasi-
random initial guess) is required from walking data (Lee 
and Umberger 2016; Falisse et al. 2019). On the contrary, 
predictive simulation using inverse dynamics driven by kin-
ematics (such as joint motions) has the advantage of com-
putational efficiency and experimental independence. And it 
is more straightforward to impose the kinematic constraints 
that define walking in inverse dynamic model. Research that 
applied inverse dynamics in predictive simulation are less 
common but existing work have shown fast calculation speed 
(512CPU seconds on a Pentium (R) 4, 3.46 GHz computer, 
Xiang et al. 2009).

In the studies that have applied inverse dynamics in pre-
dictive simulation, some work focused on the lower limbs 
motion prediction (Martin and Schmiedeler 2014) and oth-
ers simplified upper body (trunk, arms and head) as one part 
(Yen and Nagurka 1987; Ren et al. 2007). These studies either 
predicted the gait during the single stance phase only (Yen 
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and Nagurka 1987) or in the sagittal plane only (Saidouni and 
Bessonnet 2003; Martin and Schmiedeler 2014). Although 
three-dimensional whole-body walking prediction has been 
implemented (Fregly et al. 2007; Kim et al. 2008; Xiang et al. 
2009; Bessonnet et al. 2010), the foot–ground interface was 
modelled using springs and dampers (Fregly et al. 2007) or 
predefined polygon points (Kim et al. 2008; Xiang et al. 2009; 
Bessonnet et al. 2010). These unnatural constraints are likely 
to adversely affect the quality of the gait prediction.

Considering the optimal criterion that represents the 
motor task objective during walking, various criteria have 
been studied (Marshall et al. 1989; Kai et al. 2012). Experi-
mental observations have shown minimal energy cost per 
unit distance is achieved at selected walking frequency and 
stride length (Cavagna and Kaneko 1977; Miller et al. 2012). 
Based on this observation, energy-based performance cri-
teria, such as mechanical or metabolic energy expenditure, 
have been applied to predict human walking (Anderson and 
Pandy 2001; Ren et al. 2007). However, criteria based on 
muscle effort and muscle fatigue have also shown promise 
(Ackermann and van de Bogert 2010; Miller et al. 2012), 
with some concluding that it predicted more realistic move-
ments comparing to energy-based criteria (Ackermann and 
van de Bogert 2010). A fact is that metabolic energy or mus-
cle effort-based criteria require the modelling of individual 
muscles, including solving for muscle redundancy, which 
will rise the computational expense. Another optimal crite-
rion is the time integrals of the normalized joint torques that 
can be applied without modelling muscles (Koopman et al. 
1995; Xiang et al. 2009).

Therefore, our aim was to construct a three-dimensional 
whole-body predictive model of walking. We included all 
the joints of a human body (ankle, knee, hip, waist, shoulder, 
elbow and neck) and imposed no artificial constraints on 
body movement. We aimed to apply different performance 
criteria and identify the criterion that produces more accu-
rate predictions: mechanical energy expenditure and the sum 
of the time integrals of the normalized joint torques. The 
model was established by building upon our previous work 
of a two-dimensional model, which achieved promising pre-
dictions of human walking in the sagittal plane (Ren et al. 
2007). Extending it to a three-dimensional predictive model 
has potential applications in areas such as walking balance 
study, three-dimensional clinical motion analysis and three-
dimensional rehabilitation engineering assessment.

2  Method

2.1  The multi‑segment model

Referring to Fig. 1, the human body is modelled as a three-
dimensional multi-segment articulated system, with 13 

segments and 12 joints. There are 13 segments including 
the head, torso, pelvis, upper arms, forearms, thighs, shanks, 
and feet. These segments are connected by the joints of the 
neck, waist, shoulder, elbow, hip, knee, and ankle. The neck, 
elbow and knee joints are modelled as simple hinge joints, 
each with one degree of freedom (DoF). The waist, shoulder 
and hip joints are modelled as ball and socket joints, each 
with three DoFs. The ankle joint is modelled as a universal 
joint, representing two anatomical joints (the Subtalar and 
Talocrural joints), with the two joint axes intersecting at the 
ankle joint centre. Therefore, the model has a total of 24 
DoFs. Anthropometric data for each body segment, includ-
ing segment mass, centre of mass positions, and moment of 
inertia, are based on the data of de Leva (Table 1) (de Leva 
1996).

2.2  Kinematics

Instead of using direction cosines or Euler angles to represent 
each joint rotation in three dimensions, we employed Euler 
parameters (also known as a unit quaternion). Compared to 
Euler angles, using quaternions avoids the problem of gimbal 
lock. Furthermore, the use of quaternion multiplication to map 
between coordinate systems has the advantage of less compu-
tational cost than matrix multiplication (Goldman 2009). If 
unit quaternion Λ is used to describe the orientation from coor-
dinate system 1 to 2 ( Λ� is the conjugate quaternion), 
⇀

x
2
= Λ⊗

⇀

x
1
⊗Λ� can be used to map �⃗x from system 1 to system 

2. Here the unit quaternion is calculated by Λ = [�0, �1, �2, �3] , 
�0 = cos(�∕2) , �i = ui sin(�∕2), i = 1, 2, 3 , where � is the 
joint rotation angle and �⃗u = [u1, u2, u3] is the direction of joint 
axis. The angular velocity � and angular acceleration � can be 

obtained using the simple linear calculations ⇀𝜔 = 2LΛ̇ and 
⇀

𝛼 = 2LΛ̈ , where Λ̇ = [�̇�0, �̇�1, �̇�2, �̇�3] , Λ̈ = [�̈�0, �̈�1, �̈�2, �̈�3] , 

and L =

⎡⎢⎢⎣

−�1 �0 �3 −�2
−�2 −�3 �0 �1
−�3 �2 −�1 �0

⎤⎥⎥⎦
.

The stance foot is modelled as a rigid body rolling on 
the ground without slipping (Fig. 2). Building on our previ-
ous work on foot kinematics (Ren et al. 2007), the three-
dimensional foot kinematics during the stance phase are 
described by 

where: Δxan = xan − x
(hs)
an  ; Δzan = zan − z

(hs)
an  ; xan , yan and zan 

are the x , y and z coordinates of the ankle joint centre; x(hs)an  
and z(hs)an  are the x and z coordinates of the ankle joint centre 
at the moment of heel strike; �3(ft) is an element of the unit 

(1)

⎧⎪⎨⎪⎩

Δxan = f (�3(ft))

yan = g(�3(ft))

Δzan = h(�3(ft))



A three-dimensional whole-body model to predict human walking on level ground  

1 3

Fig. 1  The three-dimensional 
whole-body skeletal model with 
13 segments and 12 connecting 
joints. The X axis of the global 
coordinate system points in the 
progression direction, the Y axis 
points vertically upwards, and 
the Z axis points in the lateral 
direction according to the right-
hand rule

Table 1  Anthropometric data

Table 1 shows the anthropometric data used in the whole human body

Segment Mass(kg) Moment Inertia along x 
axis (kg  m2)

Moment Inertial along y 
axis (kg  m2)

Moment Inertial 
along z axis (kg 
 m2)

Head 4.7886 0.0223 0.0165 0.0241
Torso 22.2801 0.5817 0.2778 0.4297
Pelvis 7.7073 0.0554 0.0505 0.0445
Humerus 1.8699 0.0184 0.0057 0.0164
Forearm 1.5387 0.0229 0.0018 0.0219
Thigh 9.7704 0.1664 0.0341 0.1664
Shank 2.9877 0.0344 0.0057 0.033
Foot 0.9453 0.0011 0.0003 0.0006



 D. Hu et al.

1 3

quaternion Λft . Figure 2 depicts the output of the foot model 
with respect to foot rotation when the plantar roll over shape is 
described by cubic spline interpolation knots. Based on Eq. 1, 
the accelerations of the ankle joint centre in three dimensions 
[ẍan, ÿan, z̈an] can be achieved by differentiating it twice.

As there is at least one foot contacting the ground 
throughout the walking cycle, the calculation sequence of 
the multi-body system starts from the stance foot. Thus, the 
coordinates of the joint centres in the multi-segment model 
are derived sequentially, starting at the ankle joint centre of 
the stance leg:

Here, 
⇀

r
i
 is the position vector of the i th joint centre. The i th 

joint connects the i th and i + 1 th segments. Λg

i
 is a unit quater-

nion indicating the orientation of the i th segment in the global 
system, and it is computed by Λg

i
= Λi−1 ⊗ Λi−2 ⋯⊗ Λft , 

where quaternion Λi represents the i th joint rotation. Λg

i
� is the 

conjugate quaternion of Λg

i
 . In Eq. 2, Pi+1

i
 indicates the position 

vector in the i th segment pointing from the i th joint centre to 
the i + 1 th joint centre. Differentiating Eq. 2 twice, the accel-
erations of the joint centre are given by:

(2)

⎧⎪⎨⎪⎩

⇀

r1 = [xan, yan, zan]

⇀

ri+1 =
⇀

ri + Λ
g

i
⊗ Pi+1

i
⊗ Λ

g�

i
i = 1, 2, 3, 4...

(3)
⎧⎪⎨⎪⎩

⇀̈

r1 =
�
ẍan, ÿan, z̈an

�
⇀̈

ri+1 =
⇀̈

ri + Λ̈
g

i
⊗ Pi+1

i
⊗ Λ

g�

i
+ Λ

g

i
⊗ Pi+1

i
⊗ Λ̈

g�

i
+ 2Λ̇

g

i
⊗ Pi+1

i
⊗ Λ̇

g�

i
i = 1, 2, 3, 4...

(a)

(b)

(c)

Fig. 2  Three-dimensional ankle–foot kinematics during foot rollo-
ver in the stance phase. The Euler parameters representing the foot 
segment orientation are derived from the rotation angle �ft and rota-
tion axis 

⇀

u = [u1(ft), u2(ft), u3(ft)] . As the angular motion of the foot is 
modelled as a 1 DoF rotation, the foot kinematics can be described 
as functions of quaternion element �3(ft) = u3(ft) sin(�ft∕2) . Top left 
is the time trajectory of quaternion element �3(ft) for stance foot rota-

tion from heel strike to toe off, i.e. from 36 to 100% of the gait cycle. 
On the right is the mathematical representation of the ankle–foot kin-
ematics during stance compared with measurement data (circles): a 
x coordinate of ankle joint position (relative to heel strike moment), 
unit: m; b y coordinate of ankle joint position, unit: m; and c z coor-
dinate of ankle joint position (relative to heel strike moment), unit: 
m. The subject (age: 25; weight: 68.8 kg; height: 177 cm) walked at 
1.3806  ms−1, and the cycle period was 1.08 s
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So given the quaternion of each joint rotation, Eqs. 1–3 
can be used to calculate the coordinates of the joint centre 
positions and their accelerations. Thereafter, the positions 
and accelerations of the mass centre of each segment are 
derived based on anthropometric data.

2.3  Kinetics

The inverse dynamics method was used to calculate the joint 
kinetics, external forces and external moments in walking. 
The dynamics of the i th body segment is determined as fol-
lows (Siegler and Liu 1997; Winter 2005):

Therefore, the sums of the external forces and moments 
(ground reactions) acting on the foot are thereby obtained by 
adding the motion equations of all body segments together:

In Eq. 4: mi is the mass of the i th segment; Ici is the 

moment of inertia of the i th segment; 
⇀̈

r ci is the translational 

acceleration vector of the i th segment center of mass; ⇀r
(i)

jk
 is 

the position vector of the k th joint force from the mass 

center of the i th segment; ⇀r
(i)

ek
 is the position vector of the k 

th external force from the mass center of the i th segment; 
⇀

F

(i)

jk
 is the k th joint force vector acting on the i th segment; 

⇀

F

(i)

ek
 is the k th external force vector acting on the i th seg-

ment; 
⇀

M

(i)

jk
 is the k th net muscle moment acting on the i th 

segment; 
⇀

M

(i)

ek
 is the k th external moment acting on the i th 

segment. In Eq. 5: 
⇀

F
gr
,
⇀

M
gr

 are the ground force and moment 

vectors acting on the right foot; 
⇀

F
gl
,
⇀

M
gl

 are the ground force 

and moment vectors acting on the left foot; n is the total 
number of segments; nji is the number of joint forces acting 

(4)

⎧
⎪⎪⎨⎪⎪⎩

mi

⇀̈

rci = mi

⇀

g +

nji�
k=1

⇀

F

(i)

jk
+

nei�
k=1

⇀

F

(i)

ek

Ici ⋅
⇀

𝛼i +
⇀

𝜔i × (Ici ⋅
⇀

𝜔i) =

nji�
k=1

⇀

M

(i)

jk
+

nei�
k=1

⇀

M

(i)

ek
+

nji�
k=1

(
⇀

r
(i)

jk
×

⇀

F

(i)

jk
)+

nei�
k=1

(
⇀

r
(i)

ek
×

⇀

F

(i)

ek
)

(5)

⎧⎪⎪⎨⎪⎪⎩

⇀

Fgr +
⇀

Fgl =

n�
i−1

[mi(
⇀̈

rci − g)]

⇀

Mgr +
⇀

Mgl =

n�
i=1

[Ici ⋅
⇀

𝛼i +
⇀

𝜔i × (Ici ⋅
⇀

𝜔i) −

n�
i=1

nei�
k=1

(
⇀

r
(i)

ek
×

⇀

F

(i)

ek
) −

n�
i=1

nji�
k=1

(
⇀

r
(i)

jk
×

⇀

F

(i)

jk
)

on i th segment; and nei is the number of external forces act-
ing on i th segment.

Therefore, the ground force and moment acting on the 
stance foot can be obtained directly from Eqs. 4–5 in the 
single stance phase. However, during double stance phase, 
the problem of determining the ground reactions under each 
foot becomes indeterminate.

2.4  Transition assumption

In order to solve the indeterminate problem, we applied a 
transition assumption function that closely fits the measured 

ground reactions. This function combined the linear trans-
fer assumption (Ren et al. 2007) and the smooth transition 
assumption (STA) (Ren et al. 2008) from previous work.

Analytical functions in exponential form were found to 
match the experiment data well, with the function values 
(ground forces and moments on the trailing foot) changing 
smoothly towards zero. Specifically, the transition functions 
for the ground reaction components Fy and Mz of the trailing 
foot are given by:

where: Tds is half the double support duration; Fyo is the ver-
tical force at contralateral heel strike; and Mzo is the sagittal 
plane moment at contralateral heel strike. The longitudinal 
and lateral forces, as well as the reaction moment in fron-
tal and transversal plane are obtained based on the linear 
assumption, as follows: 

(6)

⎧⎪⎪⎨⎪⎪⎩

Fy

Fyo

= e−(t∕Tds)
3

Mz

Mzo

= e−(t∕Tds)
3
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where �x , �z are the friction coefficients between horizontal 
forces Fx , Fz and vertical force Fy and �x , �y are the transfer 
ratios between Mx , My and Mz.

Figure 3 showed the calculated results using the tran-
sition assumption model compared with force plate data 
from a representative subject during normal walking. The 
figure indicates that the model is in good agreement with the 
ground reaction measurements. The same subject data was 
used to validate transition assumption model and to compare 
with predictive results later. We applied smooth transition 
to Fy (ground reaction force in vertical direction) and Mz 
(ground reaction moment in sagittal plane) due to its good 
fitting effect from previous research (Ren et al. 2008). The 
STA assumption has been validated against force plate data 
for three subjects walking at both normal and fast speed (Ren 
et al. 2008). Sensitivity analysis about the body segment 
parameters on the transition function was already conducted 
in previous research work (Ren et al. 2008). For the transi-
tion along the other two directions, we used linear transfer 

(7)Fx = �xFy, Fz = �zFy

(8)Mx = �xMz, My = �yMz

assumptions instead of smooth transition assumptions. We 
found that relating the ground reaction forces in x and z 
directions with Fy and relating the ground reaction moments 
in x and y directions with Mz benefitted the convergence of 
the optimization algorithm.

During walking, the simulated ground reaction forces 
and moment on each foot are calculated from Eq. 5 and the 
improved transfer relationships. Then, the resultant force and 
net muscle moment at each joint are calculated using Eq. 4, 
starting from the stance foot and working up, segment by 
segment.

2.5  Optimization problem

In the optimization process, joint trajectories are the 
unknowns to be obtained. In order to represent these vari-
ables, a set of fifth order Fourier series is used as follows:

(9)�i = a
(i)

0
+

5∑
k=1

(a
(i)

k
cos(k�t) + b

(i)

k
sin(k�t))

Fig. 3  Representative calculated ground forces and moments (dashed line) based on the transition assumption model compared with force plate 
data (solid line) in the double stance phase from left heel strike to right toe off. The subject walked at 1.3806  ms−1
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where � = 2�∕T  is the angular frequency, T  is the walk-
ing cycle period. A fifth-order Fourier series was chosen 
because the signal power of the measurement data is pre-
dominantly made up of frequencies below 6 Hz (Winter 
2005). Each Fourier series has 11 coefficients, therefore, 
the total number of unknown parameters amounts to 165 
(11 coefficients multiplied by 15 DoFs due to the symmetry 
of walking gait).

Various performance objectives have been studied and 
applied in human movement prediction (Marshall et al. 
1989; Kai et al. 2012). Mechanical energy expenditure as 
a criterion has shown promising results with a two-dimen-
sional model (Ren et al. 2007), but its application with a 
three-dimensional model has not been reported. On the other 
hand, the sum of the time integrals of the normalized joint 
torques has been used in predictive simulations (Koopman 
et al. 1995; Xiang et al. 2009). Here we explored these two 
criteria in our model.

The mechanical energy during the walking cycle is 
defined as:

where: k denotes the coordinate number; M(k)

ji
 is the net mus-

cle moment acting at the i th joint about the k th coordinate 
axis; �(k)

pi
 and �(k)

di
 are the k th components of the angular 

velocities of the i th joint’s proximal and distal segments, 
respectively; �(k)

ji
 is “1” when joint rotation about the k th 

coordinate axis is allowed and is “0” when there is no rota-
tion about that axis; and N is the number of joints.

The sum of the time integrals of the absolute normalized 
joint torques is given by (Koopman et al. 1995):

 where: M(k)

max,ji
 is the maximum absolute value of isometric 

muscle moment about the k th coordinate axis obtained from 
the literature (Kumar 1996, Kaminski et al. 1999, Martins 
et al. 2017, and Gonosova et al. 2018).

The optimization constraints associated with walking and 
anatomical limitations are as follows:

(1) Joint motion constraints:

 Since the quaterion λ is calculated by joint rotation 
angle θ, constraining the quaternion value is to constrain 
the joint rotation angle. Most of the joints rotation angles 
were constrained in the motion range that the human body 

(10)Cen(�) = ∫
T

0

N∑
i=1

3∑
k=1

�
(k)

ji

|||M
(k)

ji
(�

(k)

pi
− �

(k)

di
)
|||dt

(11)Ctor(�) =

N∑
i=1

3∑
k=1

∫
T

t=0

�
(k)

ji

||||||

M
(k)

ji

M
(k)

max,ji

||||||
dt

�min,i ≤ �i ≤ �max,i

could maximally achieve. Waist joints were constrained 
in a smaller motion range to keep the upper body upright. 
Neck joint was also constrained in a smaller motion range 
to ensure the eyes looking forward.

(2) Segment motion constraints:

 �g
min,i

≤ �
g

i
≤ �

g

max,i
 , where �g

i
 is the quaternion of the i th 

segment in the global coordinate system.
The global quaternion λg represents the rotation of the 

segment in the global coordinate system. In our model, only 
the torso segment rotation in the global coordinates was con-
strained. The reason is also to keep the upper body upright.

(3) Kinematic constraints:

 ytip(t) > 0 for a swing foot and ytip(t) = 0 for a stance 
foot, where ytip is the vertical position of the foot’s lowest 
point. This constrain is to ensure the swing foot is always 
above the ground and the stance foot is always on the 
ground.zleft(t) − zright(t) < 0 , the left foot is always to the 
left of the right foot in the lateral direction so two legs will 
not interfere.

�ft(t) = 0 for a stance foot during the single stance phase 
(foot flat).

(4) Kinetic constraints:

Fy(t) > 0 ,  −𝜇x < (Fx(t)∕Fy(t)) < 𝜇x  and − �z < (Fz(t)
∕Fy(t)) < �z for a stance foot, where �x and �z are the fric-
tion coefficient between the foot and the ground surface. 

(5) Task constraint:

 This means after a complete walking cycle, the ankle posi-
tion (or any joint position) has travelled one stride length.

The optimization scheme was implemented in MATLAB 
using a Sequential Quadratic Programming (SQP) algorithm 
from the Optimization Toolbox (Gill et al. 1981). 3D whole-
body gait measurement for a healthy male subject (age: 
25; weight: 68.8 kg; height: 177 cm) was used to support 
and validate the modelling, and a detailed description of 
experimental procedures can be found in a previous study 
(Ren et al. 2005). The three input gait descriptors taken 
from the measurement data were: average walking speed 
V = 1.3806  ms−1; gait cycle period T = 1.08 s; and double 
stance duration Td = 0.16 s. The initial values for the Fou-
rier series coefficients were set to correspond to the model 
standing upright and stationary. However, to obtain as many 

xan(T) − xan(0) = VT
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local minima as possible, these initial values were varied by 
uniformly distributed random numbers. Of the hundreds of 
predictions attempted, most have successfully converged on 
a different local minimum.

3  Results

Our predictive model successfully simulated three-dimen-
sional whole-body walking cycle from converged solutions 
in an average of 37 min of CPU time on a standard laptop 
(Intel Core i5-6440HQ, 2.60 GHz). Values of 165 Fourier 
series coefficients were achieved for each simulation and 
over 100 converged simulations were obtained. Thereafter, 
we ranked the converged simulations according to the val-
ues of their objective functions and we present the simula-
tion with the minimum value in Figs. 4, 5 and 6. Five best 

simulations with minimum objective function values for 
each criterion are shown in the Appendix (Figs. A1, A2, 
and A3).

Comparison with measurement data indicates that 
criterion Ctor (sum of the time integrals of the normal-
ized joint torques, we call it effort criterion) predicts a 
more realistic walking gait than criterion Cen (mechanical 
energy expenditure, we call it energy criterion). Specifi-
cally, the GRFs (horizontal force Fx and vertical force Fz ) 
are in better agreement for effort criterion (see Fig. 4). 
The absolute root mean square errors (RMSEs) and rela-
tive RMSE (effort compared to energy) shown in Table 2 
confirms that, for the majority of parameters, effort outper-
forms energy criterion. The comparison of predicted joint 
torque to the results from the force plate based method 
(Ren et al. 2008) also shows that effort criterion beats 
energy criterion except for the knee joint torque (relative 
RMSE 134.54%, see Fig. 7 and Table 2). However, energy 
criterion produced better predictions in the upper body 

Fig. 4  Predicted (solid line) anterior–posterior ground reaction force 
(top), vertical ground reaction force (middle), and lateral ground 
reaction force (bottom), compared with recorded force plate data 
(mean ± SD shaded area) from five repeated trials for one subject 
(age: 25; weight: 68.8  kg; height: 177  cm). The ground reaction 
forces on the left are from the model using performance criterion Cen 

and the results on the right are from the model using criterion Ctor . 
The average walking speed was 1.3806   ms−1, and the average cycle 
period was 1.08  s. The swing phase is from 0 to 36%, and stance 
phase is from 36 to 100%. The double stance phase is from 36 to 50% 
and from 86 to 100%
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joint rotation, such as waist joint rotation (relative RMSE 
85.25% in left–right lateral direction) and elbow joint rota-
tion (relative RMSE 98.59%). Although effort criterion 
showed good prediction in the lower limb joints and some 
upper body joints, it presented synchronous prediction of 
both shoulder rotations in flexion–extension, while in real-
ity the arms move half a cycle out of phase with each other 
(see Fig. 6 and Appendix S2).

The Cen (mechanical energy expenditure) and Ctor(sum 
of the time integrals of the normalized joint torques) objec-
tive function values of these two simulations that we have 
selected were calculated and shown in Table 3. Both simu-
lations present lower objective function values than the 
measurement data. To figure out how the energy and effort 
are shared in three dimensions during normal walking, we 
also calculated the components of both objective functions 
along x, y and z axis and their percentages with respect to 
the objective function values (Table 3). From Table 3 we 
find that the predictions based on effort criterion have a very 
similar distribution to the measurement (within 2% along all 

three directions), but the predictions based on energy crite-
rion have a quite different distribution to the measurement, 
especially along z axis (68 vs 89%). These results are used 
to support the discussion below.

4  Discussion

We developed a three-dimensional whole-body model to 
predict human walking on level ground, and then used it to 
explore the control strategies underpinning walking. In this 
study, all joint motions and ground reactions were predicted 
from only three simply gait descriptors: average forward 
velocity, gait cycle period and double stance duration. The 
use of inverse dynamics instead of forward dynamics has the 
advantage of computational efficiency because no numeri-
cal integration of the differential equations is involved, and 
this greatly reduced the execution time for each optimization 
iteration. Using quaternions to represent spatial rotations 
may also contribute to computational efficiency (Goldman 

Fig. 5  Predicted rotations of the foot, ankle, knee, and hip joints 
(solid line) using two performance criteria Cen (dash-dot line) and Ctor

(solid line), compared with measured data (mean ± SD shaded area) 
from five repeated trials for one subject (age: 25; weight: 68.8  kg; 

height: 177  cm). The average walking speed was 1.3806   ms−1, and 
the average cycle period was 1.08  s. The swing phase is from 0 to 
36%, and stance phase is from 36 to 100%. The double stance phase 
is from 36 to 50% and from 86 to 100%
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2009). Our model used average 37 min of CPU time on a 
standard laptop (Intel Core i5-6440HQ, 2.60 GHz) to con-
verge on a solution. Although an existing simulation with 
similar complex model has much shorter calculation time 
(512 CPU seconds), it is not fair comparison since they used 
much faster software SNOPT for its SQP algorithm (Xiang 
et al. 2009).

Our three-dimensional model was informed by our previ-
ous work on a two-dimensional walking model (Ren et al. 
2007). However, it is more complex than just adding one 
dimension to the existing model. Firstly, the joint axis ori-
entation in space requires accurate expression since it will 
work with joint rotation angles to determine the special 
position of the next connecting segment. In order to achieve 
better prediction results, we optimized the orientation of the 
joint axes for ankle, knee, elbow and neck joint by mini-
mizing the least square error of rotation matrix between the 
calculated values and the measurement data. We believe 
these optimal three-dimensional axis orientations, that bet-
ter represent the anatomical structure, can help to improve 
prediction accuracy. We want to point out that joint axes 

from literature or OpenSim can also achieve reasonable 
walking gaits, although the kinematics prediction may be 
not as close to the measurement data as using optimized 
joint axes. Joint axes will affect the prediction of joint rota-
tion but not the walking optimization (prediction) process. 
For example, our two-dimensional predictive model (Ren 
et al. 2007) still achieved reasonably good prediction, and 
all the joint axes were perpendicular to the sagittal plane. 
Therefore, the measurement data here is nice to have but 
not essential to have for the joint axes. Secondly, the two hip 
joints (represented by two ball-in-socket joints) and the waist 
joint (represented by one ball-in-socket joint) in the three-
dimensional model has greatly increased the complexity of 
the model. Extra constraints in frontal and transversal plane 
were added, such as the foot swing (left foot is always to the 
left side of right foot) and the trunk rotation (the transver-
sal rotation of trunk is constrained to keep vision straight 
ahead).

Mechanical energy has proved to be a good performance 
criterion with a two-dimensional HAT (head, arm and trunk) 
model (Ren et al. 2007) but it did not perform well in this 

Fig. 6  Predicted rotations of waist, shoulder, elbow and neck joints 
using two different performance criteria Cen(dash-dot line) and Ctor

(solid line), compared with measured data (mean ± SD shaded area) 
from five repeated trials for one subject (age: 25; weight: 68.8  kg; 

height: 177  cm). The average walking speed was 1.3806   ms−1, and 
the average cycle period was 1.08  s. The swing phase is from 0 to 
36%, and stance phase is from 36 to 100%. The double stance phase 
is from 36 to 50% and from 86 to 100%



A three-dimensional whole-body model to predict human walking on level ground  

1 3

three-dimensional prediction. The GRFs had stronger fluctu-
ation and larger amplitude comparing to GRFs predicted by 
effort criterion. Additionally, we noticed the step width was 
much larger than the normal walking gait. The leg swung 
outwards during swing phase and it caused insufficient knee 
flexion (Fig. 5 and Appendix S1). In other words, the hip 
joint abducted to achieve floor clearance instead of bending 
the knee. However, in two-dimensional model, the ground 
clearance can only be completed by knee flexion in the sag-
ittal plane. This demonstrates how the three-dimensional 
model allows a wider range of control strategies to satisfy 
the constraints defining walking. The large step width from 
this prediction based on minimizing mechanical energy 
indicates the optimization may need to include the walking 
stability objective in the frontal plane too.

Although theoretical studies using simple biped models 
have indicated that, in walking, energy is minimized (Srini-
vasan and Ruina 2006; Srinivasan 2011), mechanical energy 
is not seen in any existing three-dimensional gait prediction. 
Minimizing the joint torque has been widely used in the past 
(Nubar and Contini 1961; Gruver et al. 1979; Redfield and 

Hull 1986; Koopman et al. 1995; Xiang et al. 2009). The 
reason of this criterion being used less in nowadays may be 
that the joint moment/torque has no “scaling factor” directly 
related to the physiological characteristics of muscle, such 
as the muscle activation or the muscle stress. However, the 
minimization of joint torque criterion has its own advan-
tages: first, it can predict the kinematics without building 
complex muscle models inside the optimization, therefore, 
it can reduce the computation load and increase the predic-
tion speed; secondly, although joint torque does not directly 
relate to the physiology of muscles, research on the com-
parison of sum of the absolute values of the joint torque to 
metabolic energy measurements (Burdett et al. 1983) has 
indicated that joint moments can be used as predictors of 
metabolic energy consumption; thirdly, the normalization of 
joint torque by its maximal isometric value in each rotational 
direction represents the load sharing between synergistic 
muscles (Dul et al. 1984). Therefore, this criterion can also 
be referred to as a fatigue criterion (Koopman et al. 1995; 

Fig. 7  Predicted joint moments of ankle, knee, hip, waist, and neck 
using two different performance criteria Cen (dash-dot line) and Ctor

(solid line), compared with an inverse dynamics solution based on the 
measured force plate data (mean ± SD shaded area) from five repeated 
trials for one subject (age: 25; weight 68.8 kg; height 177 cm). The 

average walking speed was 1.3806  ms−1, and the average cycle period 
was 1.08  s. The swing phase is from 0 to 36%, and stance phase is 
from 36 to 100%. The double stance phase is from 36 to 50% and 
from 86 to 100%
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Ackermann and van de Bogert 2010). Finally, the minimisa-
tion of joint torque criterion have performed well in previ-
ous researchers’ work (Marshall et al. 1989; Koopman et al. 
1995; Xiang et al. 2009), for example, the comparison of 
prediction of segmental kinematics between different crite-
ria has shown that minimizing joint torque produces one of 
the best three simulations of single stance phase of walking 
(Marshall et al. 1989).

Other criteria were not considered in our model, such as 
head stability and the foot–ground impact. The head stabil-
ity criterion shows best prediction for the HAT kinematics 
in the simulation of single stance phase of walking (Mar-
shall et al. 1989). But head stability by its own has lim-
ited capability in the lower limb kinematics prediction. The 
head stability criterion could be considered and combined 
with existing optimization criteria (mechanical energy or 
the time integral of joint torque) to help predict the motion 

Table 2  RMSEs and relative 
RMSEs

Table 2 shows the absolute RMSEs in ground reaction forces  (Nkg−1), joint moments  (Nmkg−1) and joint 
rotations (deg) from energy criterion and effort criterion based prediction and the relative RMSE change 
between these two

Category Name RMSE of Cen RMSE of Ctor RMSE of Ctor 
w.r.t. RMSE of 
Cen (%)

GRFs  (Nkg−1) Fx 1.00 0.65 −35.22
Fy 2.03 1.79 −11.93
Fz 0.65 0.65 0.00

Joint Moments 
 (Nmkg−1)

Mj_ankle 0.57 0.51 −10.63
Mj_knee 0.21 0.49 134.54
Mj_hip (adduction-abduction) 0.38 0.35 −5.78
Mj_hip (internal–external) 0.11 0.09 −16.70
Mj_hip (flexion–extension) 0.33 0.31 −4.94
Mj_waist (left–right lateral) 0.51 0.17 −65.56
Mj_waist (left–right) 0.10 0.05 −48.35
Mj_waist (forward backward) 0.38 0.36 −3.62
Mj_neck 0.03 0.01 −60.74

Joint Rotations 
(deg)

Foot 23.05 3.60 −84.38
Ankle 7.46 4.02 −46.12
Knee 30.96 7.64 −75.32
Hip (adduction–abduction) 9.37 6.92 −26.13
Hip (internal–external) 18.25 12.89 −29.37
Hip (flexion–extension) 8.11 8.33 2.71
Waist (left–right lateral) 3.11 5.76 85.25
Waist (left–right) 5.85 6.14 5.07
Waist (forward backward) 5.10 3.02 −40.75
Shoulder (flexion–extension) 8.95 7.45 −16.69
Elbow 19.26 38.24 98.59
Neck 11.55 2.56 −77.83

Table 3  Objective function 
values of two best simulations

Table 3 shows the objective function values of two simulation that we have selected for Cen and Ctor, the 
components along x, y and z axis and the percentage of these components with respective to the summa-
tion. Measurement results of Cen and Ctor were obtained by inverse dynamics driven by measured joint 
rotations

Cen Ctor

Measurement (J) Prediction (J) Measurement (Nm/
Nm)

Prediction (Nm/Nm)

Total 227.14 178.72 8.47 5.45
Z axis 89% (202.42) 68% (122.73) 46% (3.88) 47% (2.65)
X axis 9% (20.12) 21% (38.53) 38% (3.23) 39% (2.11)
Y axis 2% (4.60) 11% (17.46) 16% (1.36) 14% (0.69)
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of head and trunk. Our model for now has constrained the 
rotation of trunk and head by constraining the waist and 
head joint to a smaller range. The predicted rotation of 
these two joints show that they follow the measurement 
data well. The foot–ground impact criterion on its own has 
shown good prediction close to experimental data for lower 
limb kinematics but less good prediction in ground reaction 
force and joint moments (Veerkamp et al. 2021). Combin-
ing the foot–ground impact with other criteria have shown 
better prediction in kinematics, ground reaction forces and 
joint moments. But the prediction capacity of foot–ground 
impact criterion in the upper body, such as the torso and 
head motion were not shown. We understand that the three-
dimensional whole-body prediction will need more than one 
criterion to perform well. The setup of a three-dimensional 
predictive model based on inverse dynamics was introduced 
and the independent criterion was explored first. The mul-
tiple criteria study including introducing the body stability 
and the trade-off between walking energy and stability into 
the predictive model will be the focus of our next paper.

In order to understand how the energy and effort are 
shared in three dimensions and why the two criteria lead to 
different outcomes, we calculated the components of both 
objective functions along x, y and z axis and their percent-
ages with respect to the objective function values (Table 3). 
From the measurement data, we found the majority of 
mechanical energy was consumed along z axis (89%), with 
9% along x axis and only 2% along y axis. This distribution 
explains why mechanical energy criterion leads to good gait 
predictions with a two-dimensional model (Ren et al. 2007). 
Table 3 also shows the distribution of the predictive model 
based on two different criteria. The effort criterion exhibits 
almost the same distribution of joint torque in three dimen-
sions as the measurement: 47 vs. 46% (z axis), 39 vs. 38% (x 
axis), and 14 vs. 16% (y axis). However, the energy criterion 
presented a much different distribution of mechanical energy 
to measurement: 68 vs 89% (z axis), 21 vs 9% (x axis), and 
11 vs 2% (y axis). We believe this distribution is achieved 
because, in the criterion, the joint torque about each joint 
axis is normalized by its expected maximum (from the litera-
ture). However, the mechanical energy expenditure criterion 
doesn’t involve any weighting about the three joint axes, 
and this may be one reason why it performed less well. This 
indicates the energy sharing between the three dimensions 
may play an important role in the human walking control. 
The values of objective function for those two simulations 
we have selected are found smaller than the values obtained 
from measurement data (Table 3). This indicates that a 
trade-off between the energy or effort criterion and other 
criteria (such as stability) underlies the control strategy of 
human walking. Other criteria may partially sacrifice the 
energy or effort efficiency.

Although the prediction of lower limb joints and waist 
joints rotations is good by using effort criterion, a limita-
tion of this model is the upper limb joints prediction is poor. 
Specifically, the anterior–posterior motion of the shoulder 
joints is such that the two arms move in a synchronous man-
ner, with the two arms passively swaying out of phase with 
the motion of trunk body. This was due to our effort criterion 
seeking to minimize joint torque. Therefore, a combination 
of objective functions may be required, possibly including 
minimization of the deviation of joint angles from their neu-
tral angle positions (Kwon et al. 2017) or including whole-
body stability criterion (Herr and Popovic 2008).

Our three-dimensional whole-body predictive model pro-
vides a powerful tool for understanding human locomotion. 
It can predict the kinematics without building complex mus-
cle models inside the optimization, therefore, it can reduce 
the computation load and increase the prediction speed. 
Comparing to those complex muscle driven models that are 
based on forward dynamics method (Falisse et al. 2019), 
our kinematics driven model can be combined with inverse 
muscle models to predict muscle excitations and muscle 
energy consumption as well. In fact, the underlying phys-
ics is the same for forward or inverse dynamic method. We 
use our model to explore the underlying control strategies 
by comparing different performance criteria. In this paper, 
we compared mechanical energy expenditure with the sum 
of the time integrals of the normalized joint torques. Good 
prediction of lower limbs, trunk and the head motion can be 
achieved by minimizing the joint torque, but the poor predic-
tion of upper limbs needs multiple criteria into the model. It 
has the potential to apply in the rehabilitation engineering 
if our model is extended to meet the requirement accord-
ingly. An example of application is to assess how altered 
neuro-musculoskeletal properties affect gait performance 
by including inverse muscle models in our model to predict 
muscle excitations. Finally, gait cycle duration and stride 
length could be unknowns to be predicted during optimi-
zation, thereby enabling investigation of the velocity-stride 
length relationship during walking.
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