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Abstract 
This thesis studies degradation and restoration policies for a pressure vessel in a reverse 

osmosis (RO) desalination plant. In the study context,  biofouling is the primary cause of the 

degradation of the RO membrane elements, amplified by seasonal algal blooms. This 

research developed a decision support system (DSS) for evaluating membrane restoration 

strategy. The engine of the DSS is a digital twin (DT), a virtual representation of wear 

(degradation) and restoration of membrane elements in a RO pressure vessel. The basis of the 

DT is a mathematical model that describes an RO pressure vessel as a novel multi-component 

system in which the hidden wear-states of individual elements (components) are quantified, 

and elements can be swapped or replaced. This contrasts with the contemporary presentation 

of a membrane system as a single system in the literature. The parameters of the model are 

estimated using statistical methods. The research approach is described in the context of a 

case study on the Carlsbad Desalination Plant in California. Results show a good fit between 

the observed and the modelled wear-states. Competing policies are compared based on risk, 

cost, downtime, and the number of stoppages. Projections indicate that a significant cost-

saving can be achieved while not compromising the integrity of the plant. Alternative policies 

11 and 12 showed better wear management than the current policy 10 of the maintenance 

company while reducing costs between $0.7 to $1.7 million for the next five years. 

The research in the thesis contributes toward maintenance modelling. New models of 

multivariate degradation and imperfect repair are presented. The research makes an important 

contribution to desalination and water treatment engineering, providing a unique membrane 

maintenance management approach currently absent from the literature. The thesis also 

contributes to the maintenance theory. It proposes a general approach for applying a decision 

support system (DSS) for maintenance requirements analysis, involving a digital twin (DT) 

for wear and repair projections when wear is stochastic, and repair effects are not 

immediately apparent. The essential elements of a DSS are discussed. This research 

encourages a dialogue between researchers of maintenance theory and modelling and 

practitioners of maintenance planning about decision support systems and digital twins that 

not only project the when but also evaluate the what in maintenance strategy. The presented 

concept of a DSS driven by a DT for maintenance requirement analysis has valuable practical 

implications,  and the thesis, in discussing this concept, makes an essential contribution to the 

discussion about Industry 4.0, digital twins, and maintenance.
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1 Introduction 
Maintenance is part of daily life. Anybody who owns or takes care of a house or car 

knows that it needs continuous maintenance, or they fall apart or break down. We usually do 

not wait until the latter occurs. Cars undergo an oil change at regular intervals instead of 

waiting until the low oil warning comes up on the dashboard. Production facilities are no 

different. Equipment deteriorates and malfunctions, resulting in poor quality performance, 

production instabilities or even a complete halt. Malfunction of equipment can further impact 

operational safety. Maintenance practitioners do not wait until equipment fails in today's 

competitive markets but undertake planned actions to keep the equipment in an acceptable 

state. Maintenance planning involves when and what interventions to undertake to warrant 

the reliability of the equipment.  

Risk management is undertaken to determine what maintenance planning is required. This 

risk assessment can be based on previous equipment history,  accelerated life testing or 

maintenance modelling. The latter involves the probability and intensity of equipment 

deterioration, establishing the lifecycle and simulation of different repair strategies to 

determine the restoration of the state of the equipment to establish the most efficient and cost-

effective maintenance policies.  

This research is about maintenance modelling. Managing a system's long-term reliability 

in stochastic wear conditions involving imperfect maintenance, whereby the long-term results 

are uncertain. This research is motivated by an actual maintenance topic. The following 

approach is adopted. A solution to a practical maintenance problem is demonstrated. The 

proposed answer is a decision support system (DSS). Subsequently, the thesis proposes 

general requirements for a DSS towards the research community and that of practitioners of 

maintenance planning. 

The thesis then focuses on the details of the development and implementation of the DSS 

in a novel case study, a niche branch in the process industry: The Carlsbad Desalination Plant 

in California, which suffers from biofouling due to seasonal algae blooms. A mathematical 

model is developed that provides the concept of a digital replica of the wear and the repair of 

the cascaded membrane elements in an RO vessel.  This thesis will use repair and restoration 

interchangeably. 

The mathematical model is then implemented as a simulation application, a Seawater 

Reverse Osmosis (SWRO) vessel's Digital Twin (DT). The DT is embedded in a DSS where 
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various maintenance policies can be evaluated on risk, cost, downtime, and the number of 

stoppages. The DT provides long-term projections of the state of a stack of Reverse Osmosis 

(RO) vessels, also referred to as a RO train, in the presence of uncertain extrinsic wear 

conditions. Specifically, the uncertainty in occurrence, length, and intensity of algal blooms 

in this case.  

The solution presented has the potential to reduce the costs of operations and maintenance 

(O&M) companies by optimising membrane maintenance management and eliminating ad 

hoc decision-making. The DSS aims to provide the maintenance practitioner with a tool to 

establish the most cost-effective maintenance plan. The research further offers a unique 

example of maintenance requirement analysis for stochastic degradation processes involving 

uncertain imperfect repairs by designing and implementing a DSS driven by a DT. This 

research, therefore, provides a unique contribution to the body of knowledge of maintenance 

theory and modelling. 

1.1 Research aim and objectives 
This research aims to establish a maintenance planning methodology for an engineered 

object (EO). Of interest is the long-term reliability of the EO in the presence of stochastic 

wear conditions.  Consider that a multitude of possible maintenance policies can be applied, 

but maintenance involves imperfect repair, and the long-term effectiveness of the policies is 

unknown. Without a degree of knowledge about the probability of the level of repair the 

policies will provide, in consideration of the cost, any decision is ad hoc and could not be the 

right strategy. The objective is a Decision Support System (DSS) to forecast the effectiveness 

before implementing the policies.  

This thesis starts with presenting principles for designing a DSS for maintenance 

requirements. These principles are outlined in Figure 1.1. Subsequently, general requirements 

for a DSS towards the research community and practitioners of maintenance planning are 

proposed. With this thesis, the author seeks to demonstrate how such DSS can be 

implemented using a novel case study. The thesis, therefore, addresses the following research 

questions (RQ): 

RQ1: What are the general requirements of a DSS for restoration so that the DSS is fit for 

purpose? 

Next, a case study is demonstrated using a DSS to solve an actual maintenance problem. A 

DSS is used for the long-term maintenance planning of reverse osmosis (RO) membranes in 
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seawater desalination, affected by biofouling due to seasonal algae blooms. A second RQ is, 

therefore: 

RQ2: How should the restoration of membrane elements in RO desalination in the presence 

of seasonal algal blooms be managed? 

This research contributes in two ways to the body of existing work of maintenance 

modelling and the simulation literature. Firstly, the thesis discusses an essential issue in 

maintenance theory. It proposes an answer to RQ1 that requires further debate (see section 

1.2 Maintenance theory), which the thesis author encourages by a dialogue between 

researchers of maintenance theory and practitioners of maintenance planning. 

Secondly, this thesis addresses in detail RQ2. The study is publicised in brief in the 

journal Desalination (van Rooij et al., 2021). See page xxiv for a list of publications and 

presentations. The article in Desalination has to date been sited by three papers. Sun et al. 

(2022) refered to the article to illustrate an example of a DT for modeling real systems: the 

introduction of DTs to monitoring systems in industrial facilities and  and the relevant 

issues… are actively used to solve the problems of building systems for modeling the 

behavior of real objects. 

The novelty of this research is first that a general framework for the design of a DT for 

maintenance planning has been introduced. To date, this has been absent from the literature 

and will provide important guidence for academics and practitioners pursuing a DT for 

maintenance management support. 

Folowing a real practical example is presented for the desalination industry. Jamieson et 

al. (2021) expressed the desire for future research to focus on the fouling timeline, especially 

regarding the fouling of all the RO membranes within a vessel. This research fulfils this gap 

for membranes subjected to biofouling.The journal editor and reviewers appraised the 

contribution in Desalination as an interesting and novel approach to [the] maintenance of RO 

systems. The idea of creating a digital twin of the SWRO membrane trains in terms of 

simulation of their fouling process is very important, interesting and innovative.  

The presented novel model of degradation of a multi-component system and its DT 

simulation application are further unique contributions to the body of existing work of 

maintenance modelling and the simulation literature. 

1.1.1 Position of this work within the related literature 

Within the body of existing work, the presented research contributes towards maintenance 

theory and modelling. The presented work is related to multivariate degradation processes 
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and imperfect repair models. A mathematical model is developed of the degeneration and 

restoration of the RO train. From this model, a simulator is built, a digital twin of an RO 

train.  

This research is also situated generally in desalination and water treatment engineering. 

The presented work is situated in the body of the existing works that identify biofouling due 

to algal blooms as a dominant source of membrane degeneration. The research reviews 

publications about membrane maintenance strategies. Despite the potential severity of 

biofouling and the costly consequences, little attention has been given so far in the literature 

to the management of membrane maintenance. To this thesis author's knowledge, only 

Koutsakos and Moxey (2007) describe a maintenance protocol for membranes. However, 

while their system records the position of every element in an RO vessel, it quantifies neither 

the states of elements nor the long-run costs of interventions. This research intends to fill this 

gap in knowledge, both theoretically and practically. 

The research is relevant to managers, practitioners and applications. The study 

demonstrates a solution to a real maintenance planning problem, demonstrating an advance 

toward maintenance 4.0 (Jasiulewicz-Kaczmarek and Gola, 2019) and Industry 4.0 (Silvestri 

et al., 2020). 

1.2 Maintenance theory 
Maintenance has been defined by many (e.g. Gits, 1992; Ben-Daya et al., 2000; 

Waeyenbergh and Pintelon, 2002; Ben-Daya et al., 2016; Brundage et al., 2019). Broadly, it 

is the planning, execution, and review of actions for the care of engineered objects. 

Maintenance is one activity within the four phases of asset management: acquisition; 

deployment; operation and maintenance; and disposal (El-Akruti et al., 2018). Maintenance 

theory is the body of knowledge about maintenance that can be summarised in a framework 

of maintenance principles and sub-principles. This thesis uses the definition of EO by Ben-

Daya et al. (2016) to denote human-made systems. Note that an EO can be a sub-unit 

composition, and the maintenance intervention is being directed to the sub-unit. In this thesis, 

maintenance is referred to as the activities that retain or restore the function of an EO (Gits, 

1992; Murthy, 2000; Ben-Daya et al., 2016).  

1.2.1 A framework of maintenance principles 
The thesis author proposes a framework of maintenance principles and sub-principles 

shown in Figure 1-1. The latter does not yet exist in the literature. The framework's purpose 

is to provide guidelines for designing a maintenance decision support system driven by a DT.  



@00419918  Fredericus I. M. (Frits) van Rooij 

5 

 
Figure 1-1. Maintenance theory framework. 
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The maintenance principles have been classified into several layers to derive the 

requirements for designing a DSS for the maintenance concept of a specific unit. The 

maintenance principles and sub-principles are classified into levels.  

Each successive level of sub-principles is derived from the previous level. The first level is 

the general principles of maintenance. Level 2 principles of planned maintenance follow 

them. From principles of planned maintenance, we obtain a new level, principles of how to 

manage planned maintenance. Finally, we obtain the last level, level 4, Principles for 

designing a DSS for a specific unit. Level 4 proposes that the DSS is dedicated to a particular 

unit of the EO. The objective of the DSS is to test competing maintenance policies, also 

referred to as the maintenance concept (Pintelon and Parodi-Herz, 2008; Ben-Daya et al., 

2016) and defined by Gits (1992) as a set of rules that recommend what maintenance is 

required for a unit of the EO and when.  

Testing maintenance policies at a physical unit are costly and potentially will sacrifice the 

unit. Therefore, testing the maintenance policies for a unit requires a simulator. This testing 

cannot be seen separately from the degradation process.  

However, the degradation process or some of the drivers of the degeneration can be 

stochastic. Therefore, these known unknowns need to be represented in the DSS. Thus, level 

4, principles for the design of a DSS for a specific unit, implies that those policies can be 

tested using a simulator that encodes a stochastic model of degradation and restoration. 

1.2.1.1 Level 1. General principles of maintenance 

This thesis proposes the first layer as the primary maintenance principle in these contents. 

Gits (1992) and Ben-Daya et al. (2016) state that an EO in operation and not maintained will 

eventually fail; therefore, maintenance is inherent, or the EO is disposed of.  Research has 

shown that planned maintenance, in general, is preferred to unplanned maintenance, although 

there are cases where to operate to fail (OTF) should be considered as an informed decision 

(Gits, 1992; Waeyenbergh and Pintelon, 2002; Labib, 2008; Ben-Daya et al., 2016; Brundage 

et al., 2019). Maintenance should take into consideration the cost. Imperfect repair could 

cost-wise be more effective than perfect repair. Although an EO should only exist if the cost 

of safe operation is bearable (Gits, 1992; Waeyenbergh and Pintelon, 2002; Riane et al., 

2009), maintenance bears only partial responsibility for the safe operation of an EO. Thus, 

uncontrollable risks can be inherent to the architecture of the EO (Hansson, 2013; Verhulst, 

2014).  
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1.2.1.2 Level 2. Principles of planned maintenance 

Following the first layer of primary principles, we can derive the following sub-class that 

deals with the principles of planned maintenance. Maintenance should use knowledge of both 

degradation and the effect of restoration (Ben-Daya and Duffuaa, 2000). Consequently, better 

maintenance planning derives from a better understanding of the EO and its operational 

environment (Riane et al., 2009; Liyanage et al., 2009; Dwight et al., 2012; Ben-Daya et al., 

2016). The stakeholders decide planned maintenance actions and protocols for the execution 

of activities. Stakeholders are:   

• Original Equipment Manufacturers (OEM) 

• Operators and maintenance (O&M) providers 

• Asset owners 

• Clients 

• Extended Warranty providers 

• Consultants 

• Regulators 

Maintenance stakeholders act according to their own priorities (Dwight, 1999; Murthy, 

2000; Waeyenbergh and Pintelon, 2002; Murthy and Jack, 2008; Pintelon and Parodi-Herz, 

2008; Labib, 2008; Diallo et al., 2009; Duffuaa and Ben-Daya, 2009; Raouf, 2009; 

Waeyenbergh and Pintelon, 2009; Duffuaa and Raouf, 2015; Lai et al., 2019). 

Asset owners and extended warranty providers often engage consultants as auditors. 

Auditors usually base their assessment on common assumed standards of what is good 

maintenance. Practically this means that the maintenance concept is based on the time-based 

maintenance schedule of OEM manuals. Consultants barge the time-based method out of lack 

of a deep understanding of the organisation's business (Dwight, 1999).  

Another group of stakeholders are, e.g., Occupational Safety and Health Administration 

(OSHA) and Environmental Protection Agency (EPA) in the US (Mobley, 2002; Duffuaa and 

Raouf, 2015). These governmental regulators for public safety (Murthy and Jack 2008) have 

no interest in maintenance cost-saving and, as a result, intend to address maintenance in the 

same perspective as consultants of owners and warranty providers.  

O&M providers can also approach consultants. These consultants are often professional 

reliability engineers.  Their services are offered as short-term consultants rather than become 

long-term employees. These consultants do not necessarily have the basic knowledge 

required for the specific organisation (Mobley, 2002). Other consultants are pushing distinct 
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business philosophies concerning maintenance motivated by their own profit gains. Typical 

examples of business philosophies are Total Productive Maintenance (TPM), Reliability-

Centered Maintenance (RCM) and Life Cycle Costing (LCC) approaches. Obviously, these 

concepts have both advantages and shortcomings (Pintelon and Muchiri, 2009; Pintelon and 

Parodi-Herz, 2008; Waeyenbergh and Pintelon, 2002). Others promote their "off-the-shelf" 

maintenance concept for the same own profit gains (Waeyenbergh and Pintelon, 2009).   

Companies are often locked into the OEM to buy spare parts (Murthy, 2000; Murthy and 

Jack, 2008). Frequently, maintenance policies are directly copied from the O&M manual of 

the OEM. The recommended Time-based maintenance schedules at these O&M manuals can 

be biased by commercial interests (Diallo et al., 2009). 

1.2.1.3 Level 3. Principles of how to manage planned maintenance 

From the second layer of principles of planned maintenance, another sub-class can be 

derived dealing with principles of how to manage planned maintenance. Triggers for 

maintenance action, the action itself and the results need to be documented to enable tangible 

metrics of the effectiveness of these maintenance policies (Dwight et al., 2012). Therefore, 

maintenance should be systematically managed so that the cues for actions are announced, 

and the outcomes of actions are recorded at a computerised maintenance management system 

(CMMS) (Labib, 2008; Raouf, 2009; Duffuaa and Haroun, 2009; Ben-Daya et al., 2016; 

Bakri and Januddi, 2020; Catt, 2020). The DSS to design the maintenance concept should be 

dedicated to a unit or sub-unit (Labib, 2008; Liyanage et al., 2009; Burhanuddin et al., 2011; 

Sharma and Govindaraju, 2020), positioned next to the CMMS and simultaneously data-

driven from it. However, Labib (2008), referring to CMMS implementation, stated that there 

is a black hole when it comes to the DSS. Further, maintenance should evolve as the EO ages 

and knowledge improves, and failure data are useful for deciding the focus of investment in 

maintenance (Dwight et al., 2012; Ruiz et al., 2014). 

1.2.1.4 Level 4. Principles for the design of a DSS for a specific unit 

Last, from the third layer of principles of how to manage planned maintenance, we derive 

the final sub-class that deals with principles for the design of a DSS for a specific unit (RQ1). 

The objective of the DSS is to optimise the maintenance concept of a particular unit of the 

EO. The latter requires an analysis of the degradation process and its severity to understand 

the level of degradation, i.e., the state of wear at a given time. Data for analysis can be 

gathered by monitoring the degradation or the degradation indicators in case we cannot 

observe the degradation directly. Monitoring can be an inspection or continuous real-time 
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sensor data. So, a DSS should monitor degradation or the indicators of degradation. 

Degradation is often stochastic to a degree due to the severity and occurrence of extrinsic 

factors. (Dohi et al., 2000; Ben-Daya et al., 2016).  

The state of wear imposes the need for maintenance intervention. Maintenance is often 

partial restoration, even if components are being replaced with new ones. EO units are often 

complex multi-component systems, and frequently only some of the components are 

reworked or replaced. The maintenance practitioner has various options resulting in different 

stochastic levels of restoration. The unit's state can vary even more when multiple different 

maintenance actions are undertaken during the unit's lifespan. Therefore, by assessing 

maintenance policies, the impact of the policies must be known to a certain degree. If the 

maintenance policies can be tested at the DSS without undergoing the physical lifecycle 

process, this will reduce the decision time, cost and improve effectiveness (Dohi et al., 2000; 

Nakagawa, 2000; Ben-Daya et al., 2016). Therefore, competing maintenance policies should 

be testable in the DSS (Labib, 2008; Liyanage et al., 2009; Burhanuddin et al., 2011).  

So, both degradation and restoration are to a degree stochastic. These are the known 

unknowns in projections. These known uncertainties in projections due to uncertainties of 

factors that drive condition deterioration  (Duffuaa and Ben-Daya, 2009; Duffuaa and Raouf, 

2015) should be represented in the DSS. Finally, time, knowledge, skills, and high 

implementation costs are often significant barriers (Noor et al., 2021). Therefore, the cost of 

developing a DSS is bearable for only some units of the EO. 

1.2.2 Positioning of the DSS in regard to the CMMS 
This thesis proposes that the DSS be positioned alongside the CMMS. The DSS should be 

dedicated to specific units of EO. This is instead of an integrated module of the CMMS 

dedicated to the overall EO. We can illustrate the reasoning of this architecture with an 

analogy of the evolution of the computerised Industrial Control Systems (ICS) since the 

1960s. The ICS evolved in two different philosophies. Decentralised Control Systems (DCS), 

which is the standard in the Oil-and-Gas and power generation sectors and Programmable 

Logic Controllers (PLC) with a Human-Machine-Interface (HMI) what is the standard in the 

discrete manufacturing industry. The HMI was added in the later years. Nowadays, both 

architectures can do technically the same thing. However, the philosophy between the two is 

different. PLC/HMI is the lean architecture, where the System Integrator (SI) must program 

everything from scratch and involves a significant amount of engineering hours. The DCS 

has the philosophy that engineering by the SI should be minimised, and the role of the SI 
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should focus on configuration instead of programming. Therefore, the DCS comes with a 

library of standard control blocks for each EO, e.g., an automated valve actuator or motor 

drive (Mazur et al., 2021). 

However, each customer has different demands, so the DCS vendors responded to this by 

adding more and more options. In the end, the control blocks are so giant, with so many whistles 

and bells, that it becomes heavy in resources and quite confusing for the SI. The latter must go 

through a handbook of the specific control block to understand the various options, most of 

which the SI will not use. Worst of all, the particular functionality the SI is looking for is often 

not fully supported, so the integrator must build ways around it. 

Like the ICS, this would be the same for a DSS as part of a CMMS intended to cover all 

the units of the EO. Most organisations today have some CMMS (Duffuaa and Raouf, 2015). 

The particulars of an EO at a specific environment and operational conditions are so diverse 

that an "out of the box" would be inefficient. A DSS will have to be tailored to the particular 

category of EO to perform effectively. Integrating a tailored DSS at an existing CMMS 

requires significant customisation of the CMMS software, and implementation often fails this 

alignment (Catt, 2020). 

 
Figure 1-2. Positioning of the DSS in the maintenance management system 

Therefore, the researcher's proposal is for a practical reason. Position the DSS next to the 

CMMS and dedicate a DSS to a particular maintenance requirements analysis of a category 



@00419918  Fredericus I. M. (Frits) van Rooij 

11 

of EOs. Thus, not as a module on top of the CMMS serving the overall EO. Consequently, in 

this architecture, several DSS can exist. A production facility has numerous of EOs with their 

sub-units. The Carlsbad Desalination Plant (CDP), as an example, has approximately 23,500 

assets registered in the CMMS, including tools. Developing a DSS for even a fraction of 

these units will be unendurable. 

Further, the thesis author proposes that the DSS is data-driven by the CMMS's maintenance 

history and operational data. If the ICS and CMMS are not directly integrated, the DSS must 

further be data-driven by the Operational Technology (OT) historian. This data-driven 

linkage will enable the DT-driven DSS to monitor degradation or the degradation indicators 

and maintenance effects. A block diagram of the concept is shown in Figure1-2. 

A DSS designed for a specific category of EO further simplifies the DSS design process 

since specific maintenance requirements can be picked out one at a time. So the concept is 

divided into manageable segments. A DSS for a particular category of EO will be 

demonstrated further in this thesis. 

1.3 Methodology 
The research applies the following methodology to address the RQs. The methodology to 

address RQ1 is inference. This thesis opens a debate to establish the required characteristics 

of a good DSS for a maintenance concept by proposing a group of principles (Figure 1-1) and 

from contributions of others in the literature.  The debate on the requirements of a good DSS 

for maintenance is addressed in the previous section, 1.2 Maintenance theory. Then, this 

methodology of DSS for maintenance requirements is demonstrated by a real example from 

the practice (RQ2). 

1.3.1 Case study 
The case study involves the Carlsbad Desalination Plant in California, suffering from 

biofouling due to seasonal algae blooms. First, the theoretical background of the specific 

degeneration characteristics is reviewed, followed by standard mitigation methods. The 

events of the plant are thereby evaluated against the literature. After that, data is collected on 

the degeneration and restoration of the case study and analysed. Then, the literature is 

reviewed about publications regarding maintenance strategies to deal with this specific 

degeneration process. The thesis further places the case study against the maintenance theory 

literature. From the previous steps, we then derive a mathematical model of degeneration and 

restoration of this particular case study and use this mathematical model as the engine of a 

virtual representation, a digital twin, that enables us to project long-term behaviour of 
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degeneration and restoration. The digital twin is embedded in a DSS that allows for 

evaluating different maintenance policies. Before evaluating competing policies, the model 

parameters are first established using statistical methods. Finally, competing policies are 

compared based on risk, cost, downtime, and the number of stoppages. In more detail, the 

research is conducted as follow: 

• Evaluate the theoretical background of SWRO membrane degeneration, particularly 

biofouling due to algae blooms, and what has been published on membrane 

maintenance strategies. 

• Evaluate membrane degeneration and restoration from the perspective of maintenance 

modelling theory. 

• Develop a mathematical model of wear and restoration of an RO vessel. 

• Estimate the model parameters using statistical methods. 

• Build a simulator in MATLAB that enables the analyses of the history of the RO train 

and provides a mid-to-long-term projection. 

• Evaluate different policies to conduct the most efficient membrane maintenance 

strategy. 

Sensitivity analysis is conducted on several fronts. First, the data analysis module of the 

DSS is utilised for the sensitivity analysis of the parameters of the model (see section 7.6.1). 

Further, the robustness of the model is tested by running the same projections multiple times 

at different sampling methods from a distribution for the stochastic extrinsic wear 

dependency and imperfect repair factor. In addition, various data smoothing regimes are 

applied when bootstrap sampling is utilized for the stochastic extrinsic wear dependency (see 

chapters 6.2 and 7.6.1). The results of the projections utilizing different sampling methods 

and smoothing regimes are then compared against each other for robustness (see chapter 8.2). 

The thesis author has chosen not to develop a DT-based DSS that would generate an 

optimum maintenance policy, but for a DT-based DSS where various policies drawn up by 

the practitioner can be tested on long-term wear management and cost. The researcher 

believes that the latter would be less likely to be met with scepticism from the practitioner. 

1.3.2 Research Design 
The primary data of this research is retrieved from the Historical Database of the OT 

system and the Computerized Maintenance Management System (CMMS). Further, reports 

from the O&M company to the stakeholders are consulted. Although this is primary data 

directly retrieved for the purpose of this research, the data storage is an integral aspect of the 
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O&M. From a research methodological perspective, the retrieval of the data can be 

considered as secondary data collected through a case study. The plant started commercial 

operation in December 2015, and data is available from that date onwards. This research used 

the data of the RO trains from November 2015 to October 2020, so approximately five years. 

Although the secondary data is collected from the SWRO desalination plant in California, the 

research is not limited to this plant. The plant is merely used as a test case for a global 

problem of the desalination industry.  

The research design, conducted as described in section 1.3.1, is a positivist, quantitative 

deductive research in character (Jonker and Pennink, 2010).  More details on the research 

design are given in chapter 3, Research methodology.   

1.4 How the thesis is organised 
The structure of this thesis is comparable to that used in physical sciences, described by 

Dunleavy (2003) as the opening out model. The opening out model contrasts the classic focus 

down model, often used in social sciences and humanities. The former directly informs the 

reader of the contributions to the academic community. It builds the literature review, 

research set up, and analyses around it. The classic focus down model involves the 

introduction, literature review, and methodology before the thesis addresses the research 

contributions. The reader often must go through a significant part of the already established 

knowledge to acquaint the reader with what is new in the presented research. The thesis 

author is of the opinion that the chosen style provides a better flow in presenting the research. 

The thesis is structured as follows. Chapter 2 establish the baseline of the research. 

Performance indicators are defined and calculated. This chapter was presented as a paper at 

the 29th European Safety and Reliability Conference (ESREL) in Hannover, Germany (van 

Rooij and Scarf, 2019).  

Following the opening out model thesis structure, the research methodology is often 

discussed in an appendix, as Dunleavy (2003) proposed. Since this research is conducted at a 

business school, a combination is made between the opening out model and to classic focus 

down model thesis structure. Thus, the research methodology is discussed in chapter 3. 

Then, Chapter 4 concentrates on the main aspect of RO membrane degradation, 

biofouling, from a process engineering approach. The phenomena of algae blooms and how 

this affects the biofouling of the RO membranes. Further, the mitigation of membrane 

degeneration is reviewed. Chapter 5 describes an RO train from the perspective of 

maintenance modelling theory as a unique multi-component system. The degeneration 
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processes are compared with that of other multi-component systems specified in the 

literature. 

Following Chapter 6, the mathematical model is set out, followed by the parameter 

estimation of the model. Chapter 7 describes the implementation of the model into the DT, 

which in turn is embedded into the DSS applied to this case study. In Chapter 8, the research 

applies the DSS of the case study to evaluate the maintenance requirement. Various 

maintenance policies are described for testing, and the results and analysis of the projections 

are provided. 

Before concluding this research, the thesis returns to the baseline of the research in chapter 

9. The outcome of the study is compared against the performance indicators of the baseline. 

Finally, the conclusions, limitations, and recommendations for further research are drawn up.  

The thesis has not a single literature chapter, but the literature is consulted throughout the 

thesis. Here are some examples. The thesis describes the case study first from a water 

engineering perspective and embedded a literature review of membrane fouling, particularly 

biofouling and preventative, corrective actions. Then, the reverse osmosis vessel is 

approached from the perspective of maintenance theory. This chapter, a literature review of 

maintenance theory, is embedded specifically towards a reverse osmosis pressure vessel. 

After that, the thesis concentrates on the mathematical model of degeneration and restoration 

of the membrane elements in the vessel. This chapter again involves existing literature on 

maintenance modelling. The parameters of the model are established using statistical 

methods. These methods are established knowledge, and the literature about these methods is 

consulted. Following a DSS incorporating a DT of an RO vessel is developed. Here the 

literature around DTs is consulted. 

The next chapter, setting the baseline of the research, is an initial evaluation of where the 

plant in this case study stands after the first three years of operation. The purpose of the 

baseline was to establish metrics that would allow tangible measurements of O&M 

performance improvement. The chapter further presents the initial maintenance requirements 

analyses, which led to this thesis topic. 

 

 



@00419918  Fredericus I. M. (Frits) van Rooij 

15 

2 Setting the baseline of the research3  
This chapter describes preliminary work on the case study. The chapter was presented at 

the 29th European Safety and Reliability Conference (ESREL) in Hannover, Germany. The 

study identified three categories of possible improvement: shortfall of delivery; the share of 

failure based unplanned maintenance activity;  and the rate of membrane replacement. 

Performance indicators were set for all three categories. Further, to measure operations and 

maintenance planning effectiveness, a baseline for maintenance performance must be set. It 

provides the metrics by which the effectiveness of future maintenance policies can be 

measured.  

The analysis of the plant data indicates that the shortfall of the first three years of 

operation, especially that in the second year of operation, is characteristic of a ‘break-in’ 

period. This phenomenon is referred to as the bathtub curve, which identifies a higher failure 

rate at the beginning and the end of the equipment lifespan (Mobley, 2002; Duffuaa & Raouf, 

2015). However, the latter does not apply to the membrane replacement requirements, with 

an annual element replacement rate higher than initially projected. Improvement of the 

membrane lifespan is not expected due to passing the ‘break-in’ period; therefore, 

improvement of this particular EO directly results from improvement of maintenance 

planning. Thus, following this study, the research concentrates mainly on membrane 

maintenance performance analysis. Membrane maintenance management is a niche speciality 

under maintenance practitioners and academics in the maintenance research disciplines. More 

details on membrane maintenance management are provided, starting with chapter 4. 

2.1 Maintenance, one of the pillars of business strategy  
Industries are under constant pressure to reduce production costs and improve 

performance simultaneously (Wang et al., 2007). Maintenance has an important role in this.  

In the early post-World War period, business strategy neglected maintenance. This changed 

in the 1970s. For example, in the 1980s, a prominent US car manufacturer increased the 

production output of one of its production lines from 70% to 99%, thereby increasing its 

annual profit by approx. $30M. This was achieved principally by adopting preventive 

maintenance in place of corrective maintenance (Gallimore and Penlesky, 1988). By the 

 
3 This chapter is a slightly modified version of Towards a maintenance requirements analysis for maximizing 

production presented at the 29th European Safety and Reliability Conference (ESREL) in Hannover, Germany. 
Published by Research Publishing Services and has been reproduced here with the permission of the copyright 
holder. 
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1990s, maintenance was recognized as a potential “profit contributor” (Pintelon and Parodi-

Herz, 2008). Today, maintenance is recognized as one of the pillars of business strategy.   

Nevertheless, maintenance is frequently still driven by short-term issues such as costs and 

resources, and often maintenance strategy is not sufficiently focused on competitiveness and 

sustainability (Carnero Moya, 2004). Furthermore, maintenance policies are often not directly 

associated with the production itself. It is then difficult to relate maintenance spending to 

production targets (Scarf, 1997). The absence of a long-term vision and the roadmap towards 

it means that management cannot see the short-term benefits of maintenance. Consequently, 

confidence is easily lost, and the essential resources for establishing effective maintenance 

policies are not made available (Carnero Moya, 2004). 

This is especially the case for the introduction of predictive maintenance. In the early stage 

of design and implementation, data and expertise on the condition of critical equipment must 

be gathered before predictive maintenance policies can be turned into practice. Often, small 

O&M teams do not have the resources to implement successfully predictive maintenance 

policies (Carnero Moya 2004, Önel et al. 2009). Only 10% of those surveyed around the 

change of the millennium indicated that condition-based maintenance added value to plant 

performance; 50% indicated that it did not provide a return on investment.  Often an 

important reason for this was that no baseline was established before introducing the new 

maintenance policies, and therefore no metrics were available to measure success (Mobley, 

2002). A baseline must be more than an isolated summary of maintenance and operations 

records; it must provide data on the effectiveness of the current maintenance policies 

(VanHorenbeek and Pintelon, 2013). We address these issues in the case study of this 

research. 

The structure of the chapter is as follows. We first discuss briefly maintenance 

performance measurement. Then we describe the context, define the performance indicators 

and the baseline derived from these performance indicators. The baseline is then calculated 

based on the initial plant data. Finally, we analyze how maintenance performance can be 

improved. 

2.2 Establishing the baseline  
Maintenance can be defined as “the total of activities required to retain the systems in or 

restore them to the state necessary for the fulfilment of the production function” (Gits, 1992, 

p. 217). The maintenance concept, or maintenance requirements analysis, can be defined as a 

set of rules that recommend what maintenance is required and when (Gits, 1992). Ben-Daya, 
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Kumar, and Murthy (2016) defined the maintenance concept, based on terminology proposed 

by Pintelon and Parodi-Herz (2008), as “a set of maintenance policies and actions of various 

types and the general decision structure in which these are planned and supported”. 

A key part of the maintenance requirements analysis is a maintenance performance 

measurement system, with performance indicators that are determined from corporate goals 

(Parida and Kumar 2006, Van Horenbeek and Pintelon 2013). Arts et al. (1998) define 

performance indicators as “a numeric value for an aspect of a (sub) process that is not 

influenced by related processes and is representative as a measure for the effectiveness and, 

or efficiency of that aspect of the (sub) processes”. These performance indicators will form 

the baseline. The effectiveness of a change in the maintenance requirements analysis can then 

be evaluated based on tangible metrics (Parida 2007, Åhrén and Aditya 2009). The resources 

required for improvements in maintenance to close the gap between potential performance 

and actual performance can then be justified (Van Horenbeek and Pintelon, 2013), and 

reviews of maintenance policies can be driven by asset requirements rather than financial 

contingency (Dwight et al., 2012). 

This research involves a case study of a Seawater Reverse Osmosis (SWRO) Desalination 

Plant. The plant processes seawater into high-quality potable water. The plant, currently the 

largest of its kind in the Western Hemisphere, is owned by a project development company. 

The company that is contracted to operate and maintain the plant we shall call the O&M 

company. This company, highly specialized in desalination, also designed the plant. The 

plant was commissioned in 2015, and delivery of product began in December of 2015. 

Figure 2-1 shows a simplified process diagram of the plant. The primary sub-systems are as 

follow:  

• Intake pumps (IP) 
• Low-Pressure Booster (LPB) Pumps 
• High-Pressure Booster (HPB) pumps   
• High-Pressure pumps (HPP)  
• Energy Recovery System (ERS) units  
• Reverse Osmosis Trains (RO)   
• Product Water Pumps (PWP). 
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Figure 2-1. Simplified process diagram of the plant involving the main equipment. 

The O&M contract stipulates that the plant should deliver a daily-specified volume of 

potable water, the demand, to the end client, the regional water authority. The O&M 

company is penalized if the cumulative amount of potable water supplied in a month, which 

we shall call the delivery, does not meet the demand for that month. When supply has not met 

demand, the daily delivery is allowed to exceed the daily demand by at most five percent in 

order to make up this deficit. The accumulated deficit over a month, which we shall call the 

shortfall, is evaluated. Notice then that production capacity can exceed the delivery. We call 

the total production capacity in a month the availability for that month.  

Thus, operation and maintenance aim to minimize shortfall rather than maximize (plant or 

product) availability. This case study focuses on one aspect of an overall objective to explore 

the improvement of system performance through the joint planning of production and 

maintenance. This joint planning aims to manage production output so that maintenance pit-

stops and planned maintenance shutdowns can be postponed when demand is high and 

executed when demand is low. Such policies require continuous monitoring of equipment 

conditions, demand, and environmental conditions. Equipment condition needs to be 

monitored to prevent more costly faults and longer downtime due to the postponement of 

maintenance. The Carlsbad Desalination Plant (CDP) is rich in continuous field 

measurements. It has approximately 990 analogue sensors, of which 31% measure 

temperature, 17% pressure, 16% flow, 14% water analytics, 9% vibrations, 8% levels, and 

5% power. Thus a broad spectrum of environmental and operational data that is logged in the 

Operational Technology (OT) historical database. 

Demand needs to be monitored and forecasted to anticipate suitable maintenance and 

shutdown periods and prepare resources for these. It is important that maintenance activities 

are not dominated by surprise failure-based reactive repairs to plan maintenance but by 

scheduled preventive maintenance. According to Emerson process management (2003), the 

target of failure-based maintenance should be less than 25% of overall maintenance. 
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An important part of condition-based maintenance of SWRO plants is the reversal of 

membrane deterioration due to fouling. Pre-treatment should mitigate fouling but will not 

prevent this. Clean-in-place (CIP) is a condition-based maintenance activity to reverse the 

deterioration of the membranes due to fouling. CIP should be undertaken when the 

normalized Pressure Differential (PD) or salt passage has increased by 10 to 15% or when the 

permeate flow decreased by 10 to 15% (Kim et al., 2017). See section 3.3.2 for RO data 

normalization. 

The knowledge of how to deal with the environmental conditions resulting in fouling and 

more sophisticated cleaning procedures to reverse the degeneration has shortcomings. A 

successful CIP program in one part of the world might be unsuitable in other regions due to 

different environmental conditions leading to the fouling (Ruiz-García et al., 2017). If CIP is 

not effective or performed too late, degeneration will be irreversible. Those membranes 

where the degeneration cannot be reversed with CIP need to be replaced. An 11.5% 

replacement of membranes annually is acceptable.  

The objectives expressed by the CEO of the O&M company are to reduce shortfall and 

reduce costs. Membrane replacement is a substantial part of the costs. Based on the above 

objectives, we identify performance indicators that relate to:  

• the shortfall;    
• failure-based maintenance activity of the main equipment (see Figure 2-1);   
• membrane replacement.  

The derived performance indicators are considered annually by the O&M company, they are 

expressed in a common unit, days of lost production, and defined in the following way. 

• P1: The ratio of shortfall (volume of potable water) to designed capacity (volume 
of potable water per day).  

• P2: Ratio of failure-based to all maintenance activity, expressed in days of lost 
production.   

• P3: Annual percentage of membrane replacement, expressed in days of lost 
production.  

To convert the ratio of failure-based to all maintenance activity to days of lost production, 

we estimate the marginal cost of an increase in this ratio (due to the additional cost of 

equipment failure and emergency orders for spare parts). We then convert this cost to days of 

lost production using the known penalty cost of the shortfall. We find that the cost of a one 

percent increase in this ratio is equivalent to half a day of lost production. The known cost of 

membrane replacement is treated in a similar manner so that the cost of replacement of one 

percent of membranes is equal to the penalty cost of 5.4 days of lost production. 
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The overall performance is the sum of these performance indicators, expressed in days of 

lost production. The baseline is then the value of this overall performance indicator. 

Although, following the maintenance performance analysis in section 2.5, the research will 

concentrate on just one of the three performance indicators, setting the baseline for all three 

indicators identified will prevent pulling away resources from other fields. Thus giving a one-

sided improvement at the expense of other aspects of O&M. For instance, excessive 

downtime of RO trains for maintenance could negatively affect the shortfall.  

2.3 Calculation of the performance indicators 
The data to calculate the performance indicators are retrieved from a historical database and 

the Computerized Maintenance Management System (CMMS). The historical database is 

used to retrieve information on demand, delivery, shortfall, and availability. The CMMS 

provides information on maintenance activity and the labour hours used. The number of 

membranes replaced annually is also retrieved from the CMMS. 

To define availability, we consider operational technology, according to Kranendonk 

(2016), as the hardware and software controlling all physical processes on production sites. 

We classify the pumps, RO Trains, and ERS units as complete units, including valves and 

other auxiliary equipment. For example, a fault on auxiliary equipment, e.g., a suction or 

discharge valve of an intake pump, results in a master fault of the specific pump. The same 

applies if there is a fault from the motor drive of a pump.  

Each pump sub-system (IP, LPB, HPB, HPP, and PWP) has one standby unit 

(redundancy). Introduction of standby equipment is a maintenance policy applied when either 

the costs or risk of breakdown is extremely high (Gallimore and Penlesky, 1988). The ERS 

and RO trains do not have standby units. Failure of systems with redundancy can still impact 

on production (Table 2-1).  

Table 2-1. Impact of availability of the production resources on plant-designed capacity. 

Sub-
System Units 

Units required (R) for 
nominal production 

 

Availability reduction 
when units up is R-1 

IP 3 2 46% 

LPB 3 2 46% 

HPB 4 3 26% 

HPP 4 3 26% 

ERS 8 8 3% 

RO 14 14 7% 

PWP 8 7 5% 
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Availability must be looked at in relation to the demand since equipment can be taken 

offline for preventive maintenance when the demand is low. Thus, a unit is idle since it is not 

required for the demand at the time, and the maintenance team uses the opportunity to 

conduct preventive maintenance. 

Further, shortcomings in delivery are not always due to (un-)availability. Figure 2-2 below 

shows the availability and delivery in relation to the demand, whereby the demand for water 

delivery is taken as a baseline (100%).  

 

Figure 2-2. Availability and delivery relative to the demand for each month of operation. 

Thus, although availability in several cases is higher than the demand, there is still a 

shortfall. Shortfall in these cases is caused by operational or external factors. The annual 

demand over the first three years of operation varies, and due to this, we cannot compare 

directly the shortfalls. We, therefore, introduced a correction factor that equals the designed 

availability divided by the demand. Table 2-2 below shows the adjusted shortfall in million 

US Gallons (MG) over the first three years of operation. The shortfall is further expressed in 

days of lost production. 

Table 2-2. Performance Indicator 1: adjusted shortfall in production in 2016, 2017, and 2018. 

Year  
Correction factor 

Availability/Demand 
Shortfall 

(MG) 
Lost days of 
production 

2016 1.18 447 8 

2017 1.15 3,116 59 

2018 1.12 672 13 
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In addition to the availability, we retrieved the manhours spent on the various maintenance 

activities.  Figure 2-3 shows the percentage of maintenance hours spent on failure-based, 

preventive maintenance, and inspections per each primary subsystem, the combined primary 

subsystems and further for the plant overall. At the level of the primary subsystems, failure-

based maintenance accounts for 45% of maintenance manhours in 2018. The CMMS does not 

make a distinction between time-based and condition-based maintenance. Both are classified 

as preventive maintenance. 

 

Figure 2-3. Performance Indicator 2: Percentage of maintenance activity by type and by unit for 2018. 
“Overall” involves all the plant equipment (primary and secondary sub-systems together). 

 

Figure 2-4. Average normalized RO PD. 
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An important issue for condition-based maintenance of SWRO desalination plants is the 

fouling of the membranes. Figure 2-4 shows the average normalized PD of all RO trains 

combined over the years 2017 and 2018. The increase of differential pressure, starting in 

March/April 2017, is the effect of fouling. This phenomenon occurs with the annual season of 

an algae bloom. The rate of increase in PD was so severe that the O&M team was unable to 

catch up with the required frequency of CIP. As a result, 25% of the membranes were 

replaced during the summer of 2017. 2018 shows a repetition of 2017. 

2.4 Calculation of the baseline 
We defined earlier three performance indicators derived from the O&M company objectives. 

These performance indicators provide the metrics to establish the baseline by which future 

improvements of the maintenance policies can be verified. The first two performance 

indicators are directly measured annually. Membrane replacement varies greatly from year to 

year. Therefore, we use a two-year moving average so that, for example, P3 in 2018 is the 

mean of the percentage of membrane replacements in 2017 and 2018.    

P1 is given in Table 2-2. The corrected shortfall in 2018 was 672 MG or 13 days of lost 

production. For P2, the hours spent on failure-based maintenance for the primary subsystems 

was 45% in 2018. The target for P2 is 25%. Using the percentage-days conversion (1% above 

25% is equivalent to half a day of lost production) described in chapter 4, we have that P2 in 

2018 is ten days of lost production. The two-year moving average of membrane replacement 

over the years 2017 and 2018 was 12.5% annually. The target is 11.5%. The difference is 

equivalent to 5 days of lost production. We use 2018 to define the baseline since we can 

assume that by 2018 the plant had passed the ‘break-in’ period. So, summing the PIs for 

2018, we have that the baseline is 13+10+5=28 days of lost production.  

2.5 Improving maintenance performance 
Labib (2004) proposed to use multi-dimensional Pareto diagrams as a guide for maintenance 

planning. The inputs of these analyses are typically the average downtime per failure and the 

number of failures per unit. These charts can be used to identify those sub-systems whose 

failure most impacts upon plant performance. They can also give an indication of the stage of 

the maintenance lifecycle of the plant, in this case, whether the plant is in or has passed the 

period of ‘break-in’ or start-up period, wherein reliability and availability can be low due to 

installation and design problems (Mobley, 2002; Ben-Daya et al., 2016).  
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Careful presentation of these data is required, particularly where there is redundancy. 

Therefore, we present the data in two ways. Firstly, we count only those failures that are 

production-critical. That is, they affect availability (Figure 2-5). For example, for intake 

pump failure, production capacity is affected only if the number of available pumps is less 

than two. We count the frequency of these failures. We then calculate the median downtime 

of these failures for the sub-system. Thus, demand does not impact upon the calculation here, 

so it is possible that such a failure does not contribute to the shortfall. Using the mean instead 

of the median downtime can give a distorted impression in the case when a sub-system is 

unavailable for an unusually long time. Secondly, we repeat this calculation for all failures 

regardless of whether plant-production capacity is affected (Figure 2-6). E.g., the failures and 

downtime of the HPB in 2017 are substantial in Figure 2-6. However, Figure 2-5 indicates 

that the RO trains and PWP had a much greater impact on the production. 

 
Figure 2-5. Total number of failures per unit vs median downtime per failure for production-critical 

failures. 

 
Figure 2-6. Total number of failures per unit vs median downtime per failure including production-

noncritical failures 
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Planned plant shutdowns are disregarded since the equipment is taken out of service 

during these periods of routine, preventive maintenance. In both charts, the size of the plotted 

symbols is representative of the number of individual units in the subsystem. 

These charts can then inform maintenance planning in the manner described by Labib 

(2014). Thus, maintenance policies for sub-systems with low frequency of failure and low 

downtime can be considered as operate to fail (OTF). Those systems with high in frequency 

of failure and low downtime require skill level upgrade (SLU), i.e., operator training. 

Systems with failures resulting in high downtime but are less frequent would be the best 

addresses with condition-based maintenance (CBM). Failures high in frequency and high in 

downtime are design shortcomings and require design out maintenance (DOM). Those 

failures that cannot be classified by any of the above groups are best addressed by time-based 

maintenance (TBM). 

Interpreting the data of Figures 2-5 and 2-6, we see that in both 2016 and 2017, the first 

and second years of operation, the frequency and downtime duration are slightly higher than 

in 2018. 2017 is the worst year, and suggesting to the O&M team that there were design-

related failures and lack of experience by the contractor at the construction phase, e.g., the 

loading of the membranes. We can identify the following circumstances as design-related 

failures (DOM) and training related (SLU):  

• Failed o-rings at RO membrane inter-connectors during 2017 indicates improper 
shimming between the membranes and the endcap in vessels (SLU)  

• The use of pump packing instead of mechanical seals at the product water pumps 
(DOM)  

• Incorrect material selection for suction valves of Booster and HP pumps to 
withstand corrosive seawater (DOM)  

 

Figure 2-7. Total annual equipment downtime in hours. 

The overall annual downtime of the equipment (Figure 2-7) shows a starker contrast 

between the first two years and the third year. The data of 2018 suggests that the plant has 
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started to leave the ‘break-in’ period behind. However, it is still too early to ratify this 

conclusion. 

Implementation of predictive maintenance should mitigate unforeseen equipment 

breakdowns. Health-deterioration indicators will be established for critical equipment based 

on a combination of real-time field measurements and modelling of deterioration rates to 

overcome the constrained resources of the relatively small team in the O&M company. 

Our analysis of the multi-dimensional Pareto diagrams indicates that sub-systems with a 

redundant unit mitigate production-critical failures. The analysis further indicates that the 

plant underwent a ‘break-in’ period during the first two years of operation. Some sub-systems 

were subject to DOM, others to SLU. Finally, the analysis suggests an OTF policies for the 

IPS, LPB and HPB systems and a CBM policies for HPP, ERS, RO and PWP systems. 

2.6 Summary 
A baseline has been established using three performance indicators: shortfall in delivery, 

the ratio of hours spent on failure-based maintenance to overall maintenance activities, and 

the percentage of annual replacement of membranes. The performance indicators are 

expressed in a common unit, days of lost production. 2018 is used as the baseline year, and 

the baseline is 37 days of lost production per annum. The performance indicators are derived 

from the corporate objectives: reduction of shortfall of delivery and reduction of O&M costs. 

Analysis of failure data by means of multi-dimensional Pareto diagrams indicates that the 

plant went through its ‘break-in’ period during 2016 and 2017, the first two years of 

operation. There are indications that the operation and maintenance of the plant are now more 

mature. This, to an extent, justifies using 2018 as the baseline year. 

Our analysis of the multidimensional Pareto diagrams suggests an operate to failure (OTF) 

policies for the IPS, LPB and HPB systems. However, this may be rather short-sighted, given 

the cost and the long lead-time for these pumps. OTF is further unacceptable if it affects 

safety (Ben-Daya, Kumar, and Murthy, 2016).  Therefore, following this research, it is 

recommended that condition-based maintenance (CBM) be considered for these systems. The 

analysis further suggests CBM for HPP, ERS, RO and PWP. Predictive maintenance is 

therefore recommended for all the analysed subsystems.  

Predictive maintenance programs have a high chance of failure if the organization is not 

adequately prepared. This applies more so to industries with a small O&M team with 

constrained resources. We assume that automation of predictive maintenance within the 

Operational Technology (OT) system can mitigate the lack of resources. The predictive 
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maintenance system can be established by modelling health-deterioration indicators. By 

integrating predictive maintenance within the OT system, the plant operators can strengthen 

the expert team. 

Further research should also focus on improving system performance by the joint planning 

of production and maintenance. This improvemrnt entails three approaches. The demand 

must be forecasted. An attempt to forecast demand is presented in chapter 9.1. Production 

planning further requires the collaboration of all stakeholders, especially the client, to project 

medium-term demand. Secondly, degradation must be modelled and forecasted. Finally, 

reducing the time spent on failure-based maintenance will reduce unpredictability so that 

planned maintenance can be carried out more effectively. Some simple tools for condition-

based maintenance for centrifugal pumps are presented in Chapter 9.2.  

Membrane deterioration contributes to O&M costs. Particular attention should be given to 

the predictive maintenance of the RO membranes. The latter requires a membrane condition-

based monitoring system. In this way, continuous improvements in RO operating conditions 

can slow down the deterioration. Further, improvements of the clean-in-place (CIP) 

procedure and schedule, which can reverse membrane deterioration to acceptable levels, is 

vital for the maintenance policy. In chapter 9, we return to the results of all three performance 

indicators following three years of operation since the baseline was set. The performance 

indicators at the end of the research are compared to the baseline. 

In contrast to condition-based maintenance of centrifugal pumps and demand forecasting, 

RO membrane maintenance received little attention in the literature. This research, therefore, 

further concentrates on managing the restoration of RO membranes.  The next chapter first 

outlines the research methodology so that the research is founded on a solid base. 
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3 Research Methodology 
The study in this thesis is positivist, quantitative deductive research. This chapter outlines 

the philosophical framework of the research. The chapter is organised as follows. First, the 

research problem statement is outlined in section 3.1. The chapter then concentrates on the 

researcher’s philosophical choices, the approach to theory development, and methodological 

choice in section 3.2 Research Design. Then section 3.3 concentrates on the practical 

methods applied in this research. Section 3.4 deals with ethics.  

3.1 Research problem statement 
This research considers maintenance modelling. Managing the long-term reliability of a 

system in the presence of stochastic wear conditions involving imperfect maintenance, with 

uncertain long-term effectiveness of the interventions. This research is motivated by a real 

practical maintenance problem: a seawater desalination plant, where the wear of the Reverse 

Osmosis (RO) membranes was higher than initially expected. The wear is accelerated due to 

a physical-biochemical reaction, known as biofouling (Stoodley et al., 2002), driven by 

seasonal algae blooms (Chiou et al., 2010; Villacorte et al., 2015; Li et al., 2015; Villacorte et 

al., 2017). 

The corporate CEO of the operations and maintenance (O&M) company expressed his 

concern about the projection of long-term maintenance costs. The latter was due to the high 

rate of annual membrane replacements during the first several years of operation. The 

strategic aim of the O&M company is to bring the long-term membrane replacement ratio 

more in line with the initial projection. The above objective is outlined further in Chapter 2 of 

the thesis.  

3.1.1 Observations prior to the research 
The reason for the rapid degeneration of the membranes was identified before the launch 

of the research. Elevated pressure differentials (PD) were noted over the RO trains after the 

first half-year (see chapter 4.3.2. RO Desalination in practice). The Carlsbad Desalination 

Plant (CDP) has been in commercial operation since December 2015 (for system 

configuration, see chapter 4.3.2. RO Desalination in practice for system configuration). An 

increase of 10 to 15 per cent of the normalised pressure differential (NPD) over an RO train 

(see section 3.3.2. Monitoring membrane fouling and RO performance data normalization)  

indicates RO membrane fouling (Li et al., 2015; Jiang et al., 2017; Kim et al., 2017; 

Villacorte et al., 2017). 
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To determine the fouling type, the O&M team of CDP removed the lead and the tail 

membrane element from a random vessel. The membranes were sent for membrane autopsy 

(see chapter 4.4.2. Membrane Autopsy to determine the fouling type ). The autopsy 

concluded that the degeneration of the membranes resulted from biofouling. Following this, 

the O&M team undertook a clean-in-place (CIP) of a few RO trains with the highest PD, with 

limited success (see chapter 4.5.2. Restoration). Another ad-hoc action applied at one of the 

trains was to swap the lead and the tail element. The lead membrane element now positioned 

at the tail was thereby turned around, so the feed side became the rejected side. This action 

provided some improvement.  

The deterioration of the RO membranes during the first year of operation followed a 

period of deteriorating pre-treatment. However, the two events were not put in context. The 

declining runtime of the pre-treatment multimedia gravity filters was assumed to result from 

operational inexperience and the need for operational optimisation. The following year, the 

O&M team struggled again with the pre-treatment around the start of spring. This time, 

however, an algae bloom was identified as the cause. Simultaneously, the PD over the RO 

trains accelerated. In a matter of weeks, the degeneration of the RO membranes was so severe 

that immediate action was required. 

In the following months, the first significant membrane replacement took place. Per train, 

every membrane was weighted to observe the elements with the highest biomass. In practice, 

the first two elements had significantly higher weights. Consequently, per train, two elements 

were replaced. The reconfiguration of the position of the elements was further arbitrary. 

Although the knowledge of the preceding observations can be deducted from theories 

presented in the engineering literature, conclusions by the O&M team was often a result of 

perceptional assumptions. The swapping of the lead and the tail element, undertaken at one of 

the trains, illustrate this. The action was in response to the critical state of the train. Although 

the action improved the train's condition slightly (See chapter 6.1.1. for an explanation of this 

phenomenon), the intervention was driven by trial and error.  

Science provides a considerably more nuanced approach to reasoning than the layperson. 

Pruzan (2016) illustrates the difference in reasoning using an example from Hempel (1948) to 

explain the observation of a mercury thermometer that is rapidly immersed in hot water. First, 

the thermometer drops in the mercury column, then a swift temperature rise follows. The 

layperson could reason that the temperature first is dropping, followed by a rapid increase. 

However, from a scientific inference, the glass tube holding the mercury is first heated, 

whereby the tube expands and thus provides a larger volume for the mercury. Following the 
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heath, conduction raises the temperature of the mercury, and its coefficient of expansion is 

considerably higher than that of glass. 

The scientific inference, in this case, is deducted from general laws of physics, i.e., the 

thermic expansion of mercury and glass and the thermic conductivity of glass. Thus, although 

the cause of the business challenge was known, the thesis author does not take the latter 

assumptions for granted. Therefore, this research re-examines previous observations.  

3.2 Research design 
As the response of the O&M company for restoration was initially merely based on ad-hoc 

decisions, the researcher intends to develop a scientific solution for a cost-effective long-term 

membrane maintenance plan. The research aims to provide the tools to implement the 

corporate strategy as stated in the introduction: to bring the long-term membrane maintenance 

cost more in line with the initial projection. 

Chapter 1 of this thesis outlines the research problem and approach. For research 

methodology design, here follows an interpretation: 

• The researcher must resolve a strategic business issue.  

• The nature of the business issue is increased long-term maintenance cost due to 

unforeseen stochastic wear of a vital part of a technical system. The maintenance 

practitioner can apply a multitude of imperfect maintenance actions. However, the 

long-term results are uncertain. 

• The researcher presents a decision support system (DSS) to evaluate the longterm-

maintenance requirements as the solution. 

• Following the researcher translate the requirements of the DSS for general-

purpose. So, the presented method of a DSS for maintenance requirements can 

benefit researchers and practitioners of maintenance in general. 

To conduct scientific research, we first need to define the approach of the research. It is 

crucial to identify the nature of the study. The methodology provides a framework for solid 

research, independently of unacquainted bias due to the researcher’s perception (Growther 

and Lancaster, 2005; Paltridge and Starfield, 2007; Jonker and Pennink, 2010; Pruzan, 2016). 

The latter is particularly prominent in qualitative research, where the data is descriptive. 

Qualitative research not founded on a solid methodology has insignificant scientific value. 

Perception is less likely to influence positivist quantitative research, where data is based on 

measurable numbers. Thus, in natural science research, typically, a reference is made to the 

methods used and rarely emphasises methodology (Gauch Jr, 2003; Pruzan, 2016). The 
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methodological approach needs to be adopted accordingly to the research problem we want to 

resolve. Saunders et al. (2009), referencing Johnson and Clark (2006), maintain that it is not 

essential whether the research should be philosophically-informed, rather than how correctly 

we can reflect on the philosophical choices and defend these choices. So, we must undertake 

the research methodology design departing from the research problem and the path we intend 

to resolve it. 

The knowledge of what is known and what is unknown at the onset of the research is vital 

for the research direction. The preceding section, 3.1.1, outlined the conclusions of the 

observations made prior to the research. From the outset of the study, the cause of the 

business challenge was presumed to be known. The researcher might be influenced by his 

engineering background in taking a clear decision that the research direction should be 

oriented towards predictive analytics. However, besides that, there is no other alternative. To 

optimise the maintenance of an engineered object, we have to deal with the specifics of this 

engineered object. 

Predictive analytics inherent involves maintenance modelling. A management study 

dealing with maintenance modelling concentrates predominantly on engineering and 

statistical inference, i.e., applied natural and applied formal science. The research philosophy 

becomes that of positivism. Saunders et al. (2009) have outlined the research philosophies in 

management research in a convenient table. The thesis author has applied this table to a 

flowchart to define the philosophical direction of the research (see Figure 3-1). According to 

this flowchart, we can summarise the philosophical choices made in this research as an 

external objective without social actors. Quantitative data provide only observable 

phenomena, whereby the researcher can not influence the interpretation of the data. So, the 

research is positivist using quantitative data. The researcher’s epistemologist view of what 

constitutes proper knowledge is further of minor importance in case we deal with pure 

deductive inferences. However, if the approach to theory development involves inductive 

inference, this is another matter. 
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Figure 3-1: Philosophical direction of the research, defined by Saunders et al. (2009) as a table of 
research philosophies in management research and translated into a flowchart by the thesis author. 
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3.2.1 Role of Modelling and Simulation in Scientific Discovery 
Management scientists frequently utilise modelling and computer simulations to deal with 

feasibility options in a decision problem. In management science, it is the most commonly 

used method (Pidd, 2004). Several review papers have been published on the subject of 

modelling in manufacturing and supply chain management. Jahangirian et al. (2010) 

presented a literature review on the role of simulation techniques within manufacturing and 

business between 1997 and 2006; (Mourtzis et al. (2014) gave a review of significant 

milestones in simulation technologies in industrial and research between 1970 and 2014 and 

future recommendations; Negahban and Smith (2014) reviewed discrete event simulation, 

published between 2002 and 2013; Xu et al. (2015) reviewed, and classified simulation 

optimization techniques in health care, logistics and manufacturing; Utomo et al. (2018) 

presented a literature review on agri-food supply chains based on agent-based modelling. 

More recent literature reviews are conducted involving simulation and modelling in the 

context of Industry 4.0. Negri et al. (2017) reviewed the conception of the Digital Twin (DT) 

from the aerospace field to the manufacturing domain in Industry 4.0 and smart 

manufacturing research; Zhong et al. (2017) and Alcácer and Cruz-Machado (2019) reviewed 

topics such as intelligent manufacturing, Internet of Things (IoT)-enabled manufacturing, and 

cloud manufacturing and other enabling technologies and systems of the  manufacturing 

environment in the context of Industry 4.0; Kritzinger et al. (2018) presented a literature 

review on the guidelines for DTs in manufacturing; Tao et al. (2019) reviewed the differences 

between cyber–physical systems and DTs; Silvestri et al. (2020) presented a literature review 

on changing management strategies in the context of Industry 4.0, involving simulations and 

digital representations; Jasiulewicz-Kaczmarek and Gola (2019) presented a literature review 

on Maintenance 4.0 involving big data; Cui et al. (2020) reviewed the state-of-the-art of big 

data in manufacturing; Mourtzis (2020) reviewed the major milestones of manufacturing 

simulation technologies and recent industrial and research approaches in key fields of 

manufacturing; Zhang et al. (2019) presented a review of research and application of 

modeling and simulation technology involving intelligent manufacturing; van der Zee (2019) 

reviewed manufacturing simulation and proposed model simplification; Finally, Machado et 

al. (2020) gave a review on the identification and recommendations of sustainable 

manufacturing in the development of Industry 4.0. 
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In placing supply chain management in the context of Industry 4.0, Panetto et al. (2019) 

presented a review paper on the integration of Cyber-Physical Manufacturing with Cyber 

Supply Chain, and Rebs et al. (2019) presented a Literature review on sustainable supply 

chain management (SSCM) simulation. Rebs et al. propose system dynamics (SD) modelling 

guidelines in SSCM research. 

The office of Nuclear Energy in the US (NEAC, 2013) defines the process of the scientific 

method as the scientific discovery, or knowledge, that entails three aspects: 

• Formulation of theory to explain observed phenomena.  

• Design and execution of experiments to test a theory  

• Feedback of experimental results to advance theory. 

Modelling and simulation are positioned at the crossroad between theory and experiment. 

The model itself is an expression of theory. At the same time, the simulation tool or a DT, 

founded on the model, is, when executed, in essence, a virtual experiment (NEAC, 2013). 

The researcher applied this methodology in the research. 

Maintenance modelling involves mathematical equations, whereby the output and input of 

the model are quantitative numerical data. Mathematics is not natural science but is defined 

as formal science and is deductive in nature. Nevertheless, mathematics is essential in natural 

sciences. The laws of nature are expressed in mathematical equations (Pruzan, 2016). Thus, 

according to Jonker and Pennink (2010), quantitative research based on an empirical cycle is, 

in nature, deductive. 

3.2.2 Positivist research 
The natural sciences, as taught and understood by most scientists, are bound to realism. 

Natural science is footed on rational methods that provide objective facts about an 

independent physical reality. The realistic epistemological method aims at ontological 

knowledge. Ontological realism considers that objective scientific statements can represent 

the physical world, even those parts of nature that are not available to our senses, like black 

holes in the universe (Pruzan, 2016).  

At the same time, natural sciences are considered to be positivists. Realism is an apparent 

contradiction to positivism. In the positivist epistemological view, reality does not claim to 

present a true picture of the universe but only enables us to interpret its laws (Pruzan, 2016). 

Stephen Hawking takes a clear positivist position that absolute truth is meaningless:  I don’t 

demand that a theory corresponds to reality because I don’t know what it is. Reality is not a 

quality you can test with litmus paper. All I’m concerned with is that the theory should 
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predict the results of measurement (Hawking and Penrose, 1996, p. 121). Positivism rejects 

metaphysics and theism. Reasonings like that as God exists or not is entirely unscientific in 

this view since we cannot prove God exists, nor can we prove that God does not exist 

(Dawkins, 2008).  

Positivism should not be confused by philosophical Realism. Realism is the philosophy 

that claims that the world exists independent of the mind. Positivism does not claim that. The 

researcher does not take a realist position, rather that of positivism. The positivist perspective 

is that scientific investigation should not be influenced by human perception by utilizing only 

well-founded data and free from philosophical speculation. Hypotheses must be scientifically 

verified by logical or mathematical proof. 

On the other hand, realism is metaphysical and allows non-scientific sources of knowledge 

based on the assumption that they are independent of the mind. Science is not based on 

realism but rationalism (Kuhn, 1996), i.e., reason and knowledge rather than religious belief 

or emotional response. Positivism, also referred to as logical empiricism or logical 

positivism, holds the perspective that scientific statements have no place for metaphysics or 

presuppositions. What is real is measurable. 

Further, a single, understandable, measurable physical reality reducible to elements can be 

studied independently. In principle, this external reality can be exhaustively scientifically 

described, where true propositions are in a one-to-one relation to facts about reality, including 

facts that are not observable. Independent observers can study reality since the knower is 

autonomous of the known. Observations can be made independent of existing theory and an 

observer’s values. There are real causes that temporally precede or are simultaneous with 

their effects. Generalizations can be made time- and context-free (Pruzan, 2016). 

As stated in section 3.1, Research problem statement, this research is motivated by a 

practical maintenance problem. Does this research, therefore, incorporate pragmatism 

philosophically? The thesis author thinks it does not. Pragmatism has much in common with 

positivism. Both pragmatism and positivism see philosophy as a method rather than a theory. 

However, there is a distinct difference. Pragmatism does not reject metaphysics. The 

pragmatist circle originally included several theologians (Nekrašas, 2001). The thesis author 

agrees with Dawkins (2008) that religion and other metaphysics have no place in the 

scientific method. We do not require pragmatism in a philosophical sense to resolve a 

practical problem. The positive mind is itself already only interested in what is useful and 

practical (Nekrašas, 2001).  
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3.2.3 Deductive and inductive inference  
In deductive inference, the conclusions are deduced logically from known presuppositions, 

whether proven (theory) or not (hypothesis). In a simplified definition, deductive reasoning is 

an inference from generalization top-down towards specific instances, while inductive 

reasoning is an inference from specific instances bottom up towards generalization (Pruzan, 

2016).  

Deductive reasoning starts with general premises and then looks at a specific situation. 

This research starts with the general physical, biochemical premises of biofouling of RO 

membranes. The research further starts with the general maintenance theory that identifies an 

engineered object (EO) consisting of several parts as a multi-component system. Following, 

we look at an RO vessel as a specific novel multi-component system. A mathematical model 

is deducted on how biofouling unequally spreads among the cascaded components in the 

vessel. Therefore, we deduct from the general to the particular (see chapters 4 and 5). This 

deductive approach is very specific and therefore objective. The presented mathematical 

model of degradation and restoration of an RO vessel is thereby a simplification of reality. 

Having established the mathematical foundation based on deductive inference, the 

researcher must apply the latter to build an RO train’s DT. A DT is not just a simulator. It 

must include forecasting capabilities (Julien and Martin, 2021). In this research, the DT 

provides a long-term projection of several years under uncertain stochastic degradation and 

imperfect restoration.  

Projection, in this case, involves predicting extrinsic wear conditions and imperfect repair. 

Such predictions are a crucial concept in the scientific method to test a hypothesis. 

Predictions are generated from deductive inference from a hypothesis or, in the case of this 

research, the mathematical equations of deterioration and restoration of RO membrane 

elements (see chapter 6). Then the analysis from the observations or experiments is evaluated 

against the predictions. The results will confirm whether the hypothesis is confirmed or 

rejected. Therefore, predictions are the application of logical, mathematical inference of a 

dynamic physical system. This mathematical system is entirely indifferent from time. Note 

that predictions do not always can or need to be evaluated by experiment to be scientific. 

(Pruzan, 2016). 

Presuming that our physical-biological degradation and imperfect maintenance 

assumptions and theories are valid implies that the deductive inference leading to the 

mathematical model is truth-preserving. Gómez and Fontaine (2017), citing Gabbay and 
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Woods, claim that deduction is truth-preserving and induction is probability-ampliative. 

Deductive reasoning leads to certainty, inductive reasoning towards probability. 

One can argue that these projections involve inductive generalisation  (Oh, 2012; 

McMullin, 2013; Beirlaen, 2017). According to King et al. (1994), deductive and inductive 

inference applied together in research is not a contradiction. Although it is possible to 

formulate universal rules for deductive inference, this is not the case for inductive inference. 

In natural sciences, the inductive hypothesis is applied to reason from the particular to the 

universal. In the latter case, the relationship between observations and evidence is always 

influenced by perception (Salmon, 2017). Inductive generalisation is common in natural 

science. Beirlaen (2017) illustrates how the physics research community inferred from the 

particular to the universal involving the electrical charge of an electron using an inductive 

generalisation. So far, the charge of only a few electrons has been measured. The result was -

1.6x10-19 Coulombs. So, we assume that this value is the case for all electrons. 

Can one presume the same inductive generalisation is valid when projecting future 

extrinsic wear severity? We do not know when annually algae blooms occur, nor the length 

and the severity. However, we have five years of data for 14 trains of the daily extrinsic wear 

coefficient κ (See chapter 6.2 Parameter estimation). So this gives us 70 data points per day. 

Applying random sampling with replacement, we can extend the quantity to any value. The 

research uses 100 data points per day. We denote this data set as 
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So, for each projected day of the 365 days a year (leap year disregarded for convenience), 

any daily future dκ is a group element of dK ∴ d dKκ∀ ∈ . 

The above reasoning is not truth-preserving, but that is not the aim. Crucially, we do not 

reason from the particular to the universal nor develop a hypothesis:  I see only white swans, 

so all swans are white. The latter would be a hypothesis through inductive generalisation. A 

weak hypothesis, according to Salmon (2017).  

Deterministic prediction is not achievable, neither in principle nor in practice (Pruzan, 

2016). Pruzan, citing Hawking and Mlodinow (2010; 72), states that the outcomes of physical 

processes cannot be predicted with certainty because they are not determined with certainty. 
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Instead, given the initial state of a system, nature determines its future state through a 

process that is fundamentally uncertain. 

Nevertheless, the method to predict uncertain stochastic wear and imperfect repair is not a 

generalisation. Yes, the DT might not give an absolute true representative of the actual 

degeneration and restoration process. However, we use probability theory for the known 

unknowns. We are not seeking truth but evaluating the probability using statistical logic 

inference: probably the next swan I see is white. Nevertheless, although probability is 

inductive reasoning (Salmon, 2017), probability theory can be subjective or objective, 

depending on the statisticians’ school of thought being followed. 

According to Adams and  Levine (1975), probability theorems are mathematically 

deducted. Pruzan (2016) refers to Hempel (1945) reasons that formal analysis applies to 

scientific prediction. Say we have statements of initial conditions 1 2, ,..., kC C C and scientific 

laws 1 2, ,..., rL L L , the logic deduction based on these statements and laws leads to E. We 

speak of reason if the phenomenon has already occurred. However, if we derive E before the 

actual phenomenon has occurred, then we speak of prediction. An example of criticism of 

Hempel’s reasoning is illustrated by game theory. Theoretical knowledge of why a roulette 

wheel stops at a specific number has no basis for predicting the number beforehand. 

3.2.4 Objective and subjective inference 
Adams and  Levine (1975) reason that probability theorems are deductive, Salmon (2017) 

claim that probability theory is not deductive but inductive inference. The seeming 

contradiction arises from the divide in the thought of the statisticians’ community, which 

often confuses. Gelman (2011) divides the schools into Frequentist and Bayesian thought, 

whereby the Frequentist school orient towards the objective, deductive inference and the 

Bayesian school towards subjective, inductive inference. Bayesian hypothesis testing permits 

assigning strong assumptions to probabilities (Lehmann, 1993). 

The researcher approaches the philosophy from the Frequentist school of thought. A direct 

reference is a method for long-term projections, which the researcher applied in this study. 

Martin (2015) proposes bootstrap for frequentist plausibility function-based tests and 

confidence regions. This research uses two sampling methods for ensemble forecasts, 

Bootstrap and Weibull distribution, from a sample of the previous five years of operation. 

The main division in the scientific community concentrated around the inference of 

statistical significance between Fisher’s ideas on significance testing and inductive inference 

and Neyman-Pearson’s views on hypothesis testing and inductive behaviour (Lehmann, 
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1993; Hubbard et al., 2003). Fisher, Neyman and Pearson are the main contributors to 

frequentists classical methods. All three scientists were hostile to the Bayesian interpretation 

of probability theory. The formulation and philosophy of hypothesis testing in a Fisherian or 

Neyman-Pearsonian mode have become the most used quantitative methodologies. Although 

Fisher uses the term significance testing, both doctrines are concerned with the testing of 

hypotheses. Fisher’s significance test is based on the deviation from the null hypothesis (H0), 

e.g. P-value. Rather than relying on approximations, the P-value can be precisely calculated. 

Neyman and Pearson introduced a competing hypothesis allowing investigating two types of 

errors (Lehmann, 1993). Fisher objected to the type II hypothesis of Neyman and Pearson. 

Indebt review of the difference between Fisher, Neyman and Pearson is further irrelevant for 

this research. 

Bayesian probability considers that only subjective probabilities exist instead of objective 

probabilities based on the prior distribution frequency. Probabilities arise from a person 

degree of belief of an event at a given moment and with a given set of knowledge. The 

irrationality of Bayesian subjective probabilities was illustrated during the investigation of 

the Challenger space shuttle disaster of 1986. The Rogers Commission that investigated the 

cause of the catastrophe learned that NASA officially estimated the probability of failure 1 in 

100,000. However, historically the failure rate of solid rocket boosters was about 1 in 25 

(Salmon, 2017). 

According to Bayesian reasoning, a theory cannot be falsified following an outcome of an 

experiment. Experiments disapproving of the theory can fail due to other reasons or are not 

essential. Further, other angles of the theory can yet not be explored. Theories can neither be 

approved nor disapproved. The degree of belief in a hypothesis will only change when more 

evidence occur (De Finetti, 2017). 

The Bayesian reasoning that hypothesis can neither be approved nor disapproved has 

resulted in a tendency under Bayesian statisticians to neglect predictive model checking. In 

some cases, these statisticians are uninterested in checking the fit of their models and even 

consider such checks illegitimate. This sloppiness has taken hold under quantitative 

researchers in social sciences who also regularly ignore to stress test their models (Gelman, 

2011). The scientific inference is not inductive but deductive, according to Popper 

objectivism. We infer from the particular to the general through models, and this inference is 

deductive (Gelman, 2011). 
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3.2.5 Testing and validation 
One of the 20th century's most influential philosophers of science, Karl Popper (Thornton, 

2015), developed his reasoning of the scientific method in response to influential scholars at 

his time, Einstein’s theory of relativity, Marx’s theory of history, Freud’s psychoanalysis and 

Adler’s so-called individual psychology. Popper questioned the scientific validity of the last 

three scholars. These scholars' theories could be interpreted so that they would always be 

correct, no matter the path of future evidence. In Poppers’ view, this resembles weakness, and 

he branded these theories as pseudo-science. In contrast, Einstein’s theory of relativity 

involved reasoning that could be tested by observations and thereby confirmed or refuted. 

The British astronomer, mathematician and physicist Arthur Eddington just did that. He 

performed observations that confirmed that light bends under the influence of heavy bodies, 

like our sun. If his observation had shown that light did not bend, then that had refuted 

Einstein’s gravitational theory (Pruzan, 2016). 

It is the fallibility, according to Popper (1959), that distinguishes science from 

pseudoscience. If a theory can not be confirmed or unconfirmed empirically, there is no 

evidence of the theory’s truth. So, the scientific method requires that theories are falsifiable, 

or refutable or testable. In more detail, this means the following  (Pruzan, 2016): 

• It is easy to confirm or verify nearly every theory if we look for them. 

• Confirmations are only valid if the results are risky predictions. 

• Good scientific theory forbids certain things to happen. The more, the better. 

• Theory not refutable by any plausible event is non-science. 

• An honest test of a theory attempts to refute it. 

• Some theories are more testable than others, i.e., they forbid certain things to 

happen. 

• Evidence should be based on serious but unsuccessful attempts to falsify it. 

• If testable theories, when found to be false, are still upheld by their followers, this 

is at the price of lowering their scientific status. 

A more recent example of the inability of falsification is the ‘string theory’ advocated by a 

small group of theorists. String theorists claim their hypothesis is sufficiently elegant and 

explanatory; therefore, it does not need to be verified experimentally. Since the hypothesis is 

unprovable, there is no method to prove that the theory is true or false. Therefore it cannot be 

scientifically (Ellis and Silk, 2014). 
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The same applies to an experiment that cannot be replicated. In 1989, two scientists, Pons 

and Fleischmann, claimed that they succeeded in a simple experiment to generate a cold 

fusion reaction. They presented their research not in a respected peer-reviewed journal but in 

a press release. So far, the experiment has not been replicated successfully (Pruzan, 2016). 

The experiment’s outcome has little value if it cannot be confirmed by replication by other 

scientists. Therefore, the cold fusion experiment by Pons and Fleischmann did not find 

recognition in the scientific community. 

As hypotheses need to be tested to be verified to compare the compatibility with the 

physical world or real world, so do need models in maintenance science. To enable us to 

compare the model with the real world, we need to understand what the real world is. A 

model is an interpretation by the creator, while the real word is an observation by the latter. 

Pidd (2004), referring to Popper, defines scientific theory as the inference of the real world. 

Experimentation may support the theory or refute the theory. As we have reasoned earlier, a 

model, when executed, is a virtual experiment (NEAC, 2013). Ideally, a simulation model is 

directly compared against the real world. However, since the real world is subjective, the 

modeller can be satisfied that the observation of the model displays identical characteristics 

to the observations of the real world (Pidd, 2004). 

Pidd refers to the experimental framework of Zeigler (1976) in computer modelling. In 

this experimental frame, the real system as the source of observable data is replicated in a 

base model that defines a hypothetical model. The hypothetical model accounts for all of the 

input and output behaviour of the former. Then a lumped model is defined as an explicit and 

simplified version of the base model. The lumped model is then deployed as a computer 

program. The purpose is to simplify the model to the intention of the modelling. 

Common mistakes in simulation modelling are over-elaboration and over-simplification. 

In the case of the former, this is an attempt to capture as much realism as possible. The model 

becomes too heavy, whereby the running of the simulations becomes slow, and the wrong 

issues are addressed. In the case of over-simplification, the danger arises that essential details 

are overseen, and the model does not handle the full complexity of the simulated system 

(Pidd, 2004). The right balance of model simplification requires an in-depth understanding of 

the drivers of the process being simulated (see chapters 4 and 5). 

In this research, the base model of an RO pressure vessel includes, among other 

characteristics, the observed pressure differential (PD), salt rejection, and ageing of 

membranes. The lumped model of the RO vessel is reduced to the PD characteristics. We are 

interested in the latter in this research and not the other characteristics. 
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Verification is then the process by which we assure ourselves that the lumped model is 

deployed correctly in the computer program. Besides verification that the lumped model is 

correctly implemented, a model needs credibility. Credibility is the willingness of the 

manager to base decisions on the output of the model. Finally, acceptability includes the 

whole scope, i.e., the definition of the lumped model to capture the research, the verification 

and credibility (Pidd, 2004). 

3.2.6 Research onion by Sanders et al. 
Academics at business schools often emphasise a research methodology structured 

according to the research onion proposed by Sanders et al. (2017). The researcher is of the 

opinion that this works well for social studies and studies in humanities, but not always for 

applied natural sciences. Researchers of social studies and studies in humanities can decide to 

conduct qualitative or quantitative research based on philosophical choices. The researcher is 

driven in this choice by their epistemological views, i.e., the researcher’s view about the 

development and nature of knowledge. 

However, we cannot always characterise studies at a business school as social studies. For 

instance, today, maintenance is recognised as one of the pillars of business strategy (See 

chapter 2, Setting the baseline of the research). Therefore, maintenance theory and 

maintenance modelling have a rightful place in the business school. Especially maintenance 

modelling studies can be classified as applied natural sciences research involving quantitative 

data. 

In the case of (applied) natural sciences, philosophical choices are limited, and the 

methodology design does not follow the structure of the research ring. Quantitative research 

is the offset of the research in the case of the latter. The approach to theory development is of 

interest only if the model includes probability theory. If probability is involved, the 

researcher needs to clarify if his view orients towards the frequentists or the Bayesian school 

of thought. The research is positivist, deductive or subjective inductive based on the 

researcher’s view towards the statistical school of thought. The thesis author’s epistemology 

follows the first school of thought. 

Referring to Saunders et al. research onion, the strategy choice is an experiment since 

maintenance modelling and DTs are virtual experiments (NEAC, 2013). At the same time, 

this research uses a case study. According to Blatter and Haverland (2012), case studies are 

conducted to explain and compare the value of opposing or matching theories. Often, many 

complex causes of a specific phenomenon must be explored, or a particular niche case makes 
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a difference. The degradation (in the presence of biofouling) and imperfect restoration of RO 

membrane elements is a niche case of maintenance modelling. The research infers the DSS of 

this novel case study from the particular to the universal requirements of a decision support 

system (DSS) for restoration so that the DSS is fit for purpose.  

 

Figure 3-2: Cross-section research onion of Saunders et al. (2017). applied to this research 

Although primary data is retrieved for the purpose of this research, data storage is an 

integral aspect of the O&M. From a research methodological perspective, the retrieval of the 

data can be considered secondary data. The most extensive dataset is retrieved from the 

historical database of Operational Technology (OT). This data involves daily PD, the status, 

recoveries and other operational data of the trains. Saunders et al. (2009) refer to this type of 

data retrieval as data collection over a longitudinal time horizon. Large time-series quantities 

of a small selection of data are retrieved. However, since this data involves quantitative data 

retrieved at discrete time intervals, we do not refer to time-series data as Longitudinal Data. 

The latter, also called panel data, is data collected through a series of repeated observations 

widely used in the social sciences. It can be compared towards a repetition of cross-sectional 

data but observing the same objects, e.g., individuals. Cross-sectional data, in contrast to 

Time series data, captures a point-in-time. 

Further data containing the maintenance interventions are retrieved from the Computerised 

Maintenance Management System (CMMS). In addition, an aspect of archival research is 

conducted. Reports from the O&M company towards stakeholders are consulted to retrieve 

recorded periods of algae blooms, annual demand versus supplied water and records of 

membrane autopsies. 
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Finally, we can summarise the research methodology. This research methodology is positivist 

deductive research using quantitative secondary data. The strategic approach is that of a 

virtual experiment, i.e., DT, involving objective statistical logic. The researcher believes 

whether the DT makes an exact copy of the reality is of minor importance, as long as the 

results provide enough confidence for the best maintenance strategy. In his book, The 

Universe in a Nutshell, Steven Hawking, defending the theory of time, made a similar 

judgement. 

[any] sound scientific theory, whether of time or of any other concept, should in 

my opinion be based on the most workable philosophy of science … [A] scientific 

theory is a mathematical model that describes and codifies the observations we 

make. A good theory will describe a large range of phenomena on the basis of a 

few simple postulates and will make definite predictions that can be tested. If the 

predictions agree with the observations, the theory survives that test, though it can 

never be proved to be correct. On the other hand, if the observations disagree with 

the predictions, one has to discard or modify the theory. If one takes the positivist 

position, as I do, one cannot say what time actually is. All one can do is describe 

what has been found to be a very good mathematical model for time and say what 

predictions it makes (Hawking, 2001, p. 31). 

We can summarize the research philosophy of this research. This research is a 

positivist, quantitative deductive research in character involving only quantitative 

secondary data. The research follows a logical and rational driven approach and is 

objective, focusing on facts. In line with the positivist method, the research involves 

testing and verification. Finally, the research is outcome-oriented, presenting a practical 

solution for a real problem in the industry. 

3.3 Techniques and procedures  
Having outlined the philosophical choices the researcher has taken in this research, we can 

further outline the methods applied in this research experiment. The methods involved can be 

ordered as follows: 

• Data collection. 

• RO performance normalization. 

• Data analysis and identification of the effects of maintenance. 

• Model development and Coding of the DSS and DT. 
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• Statistical procedures for parameter estimation.   

• Simulation of NPD and comparison against the observed NPD. 

• Statistical probabilities for stochastic parameters projection. 

• Run projections involving different maintenance policies 

• Analyses involving statistical procedures for risk assessment 

• Conclusions and preferred maintenance policies 

Figure 3-3 gives a more detailed diagram of the experiment setup of this research. The 

numbering shows the flow sequence of the research setup. The literature review is not 

assigned as a fixed step since the literature is consulted throughout the research. 

 
Figure 3-3. Experiment setup 
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Items 09 to 18 of the experiment (see Figure 3-3) are generated in MATLAB. The full 

code is too long to attach as an appendix to this thesis. However, the most crucial part, 

modelling the historical state-space and the projections, is included in Appendix D. The code 

is available on request. Some supporting subsequences are performed in MS excel, as are the 

inputs and output of the DSS. Analysis and discussions of the sections shown in the flow 

chart are detailed in the thesis's main content. In this section, the researcher limits himself to 

technical procedures, which are not addressed in the main body of the thesis. These 

procedures involve the following:  

• Data collection;  

• RO performance data normalization;  

• MATLAB applications as part of the experiment and;  

• Instructions to download the MATLAB applications and run the DSS for 

experiment replication. 

3.3.1 Data Collection 
All data collected is secondary data. Data has been collected from November 8, 2015, until 

September 30 2020. The most extensive is operational data retrieved from the Historian 

database (01 Experiment setup, Figure 3-3). The Historian database is a time-series dataset. 

Further, data on maintenance activities are collected from the CMMS (02 Experiment setup, 

Figure 3-3). Finally, dates on the start and end of algae blooms, membrane autopsy reports, 

production demand and delivery are retrieved from monthly reports to the stakeholders (03 

Experiment setup, Figure 3-3). Figure 3-4 shows a slightly simplified diagram of the 

operational data collection. Field sensors provide real-time data to the remote input/output 

(RIO) modules of the Programmable Logic Controllers (PLC). 

Data applicable for this research is analogue data transferred to the Analogue-to-Digital 

converter modules at the RIO. The converted digital data is polled by the PLC's Central 

Processor Unit (CPU) at every program scan. Program scans of PLCs vary, but in the case of 

this case study, they are approx. 25 mili-seconds. The PLC has only real-time data storage. 

The PLC provides control sequences, like Proportional, Integral, and Derivative (PID) 

controls and interlocking. From the PLC, the data is transferred into different channels. 

The data is polled from the PLC by the Supervisory Control and Data Acquisition 

(SCADA) and displayed as part of graphical presentations of the process for the operator. 

The SCADA incorporates a dedicated database from which the operator can retrieve time-

series data trends. Data retrieval by SCADA is not utilized in this research and is omitted 
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from the diagram in Figures 3-4.  

Besides SCADA, the data is further retrieved by an independent OPC server. OPC (Open 

Platform Communications) is a well-known group of standards and specifications for 

industrial telecommunication. The OPC server collects data from the PLCs using Alan 

Bradley EtherNet/IP protocol and converts it into SQL server protocol. The OPC functions as 

an intermediary between the PLC and the Management Information System (MIS).  

 
Figure 3-4: Operational data retrieval from Historian database 
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The agent of the MIS at the OT network level collects the data in cycle or delta retrieval 

from the OPC and stores it in a rational database. Most commonly, as is with the data utilized 

in this research, the data is stored in cycle intervals of one minute. The database is replicated 

from the OT to an identical database at the corporate level through a Unidirectional Security 

Gateway, a more recent type of data diodes. A data diode means that the data can only leave 

the OT network, and no reverse traffic is possible (Ginter, 2012). Reporting and data analysis 

are conducted at the mirrored MIS. A reference will be made simply to MIS when referring 

to the mirrored database in this research. Table 3-1 shows the data collected from the MIS, 

involving SWRO performance data. 

Table 3-1. Data collection of SWRO performance data from the MIS operational database 

Variable units Retrieval interval Data type and range 

Common for all SWRO trains 

Seawater Specific Conductance (SC) [SWSC] mS/cm 1h weighted average 40 52.2 :SWSC SWSC +< ≤ ∈  
Seawater temperature [T] °F 1h weighted average 57.2 95 :T T +< ≤ ∈  

For each individual train i: 0 14 :i i +< ≤ ∈  
Traini Feed pressure [PF] PSI 1h weighted average 300 1130 :PF PF +< ≤ ∈  
Traini Feed-Rejected pressure differential [PD] PSI 1h weighted average 0 50 :PD PD +< ≤ ∈  
Traini Front Product flow [QPF] GPM 1h weighted average 0 3200 :QPF QPF +< ≤ ∈  

Traini Rear Product flow [QPR] GPM 1h weighted average 0 1000 :QPR QPR +< ≤ ∈  

Traini Rejected flow [QR] GPM 1h weighted average 0 6000 :QR QR +< ≤ ∈  

Traini SC front product [FPSC] μS/cm 1h weighted average 0 1500 :FPSC FPSC +< ≤ ∈  
Traini SC rear product [RPSC] μS/cm 1h weighted average 0 2000 :RPSC RPSC +< ≤ ∈  
Traini SC rejected [RSC] mS/cm 1h weighted average 0 150 :RSC RSC +< ≤ ∈  
Traini Status - Last without interval 

(each hour) 
0 13 :Status Status≤ < ∈  

 

Variables in Real numbers (all of the above variables except Status) are retrieved as the 

weighted average of the 60 stored numbers per hour. The weighted average is the following: 

if a stored number is missing, then the MIS conducts an interpolation of that number. Thus, in 

this case, a weighted average equalizes the frequency of the values in a data set. 

The last number is retrieved for those variables with an integer data type, i.e., status since 

averaging would result in data loss. For example, the status value of a train on standby is two 

and that in operation five.  If a train goes from standby to online halfway the hour, then the 

average weight would be 3.5. The number 3.5 does not represent a state condition. ‘Last 

without (w/o) interval’ is to prevent gathering NULL values during the retrieval. The option 

‘Last’ gives a value per hour if the value has changed. Those hours without a change, no 

value is output. ‘Last without interval’, repeat the previous value until the value changes. 

Therefore no NULL values are generated. 
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Specific Conductance (SC) is an indication of total dissolved solids (salt concentration) in 

cold dilute water, whereby the temperature is adjusted to 25 °C.  The unit is expressed in 

Siemens per centimetre (Thomas, 1986). High saline water, like seawater or concentrate 

(rejected), is expressed in mS/cm. Low saline water is expressed in μS/cm.  

For other operational parameters, the MIS uses imperial units. These are pounds per 

square inch (PSI) for pressure, US gallons per minute (GPM) for flow rate and Fahrenheit 

(°F) for temperature. In the following data manipulation process, imperial units are converted 

to metric. 

In addition to the above data for SWRO performance normalisation, the status of the 

primary equipment is collected for the maintenance performance analysis in chapter 2.4. 

SWRO status data for the maintenance performance analysis is independently collected from 

the SWRO performance data normalisation data. Table 3-2 shows the data collected from the 

MIS. 

Table 3-2. Data collection of primary equipment status from the MIS operational database 

Variable units Retrieval interval Data type and range 

Intake pump status IPi.status: 0 3 :i i
+

< ≤ ∈  - Last w/o interval (1h) 0 6 :Status Status≤ < ∈  

LPB pump status LPBi.status: 0 4 :i i
+

< ≤ ∈  - Last w/o interval (1h) 0 6 :Status Status≤ < ∈  

HPB pump status HPBi.status: 0 4 :i i
+

< ≤ ∈  - Last w/o interval (1h) 0 6 :Status Status≤ < ∈  

HP pump status HPi.status: 0 4 :i i
+

< ≤ ∈  - Last w/o interval (1h) 0 9 :Status Status≤ < ∈  

ERS status ERSi.status: 0 8 :i i
+

< ≤ ∈  - Last w/o interval (1h) 0 12 :Status Status≤ < ∈  

SWRO Traini.status: 0 14 :i i
+

< ≤ ∈  - Last w/o interval (1h) 0 13 :Status Status≤ < ∈  

PWS Pumpi.status PWSi.status: 0 3 :i i
+

< ≤ ∈  - Last w/o interval (1h) 0 6 :Status Status≤ < ∈  

The status represents a discrete operational condition, e.g., for all pumps, except the HP 

pumps, 0 is off-line, not available; 1 is Fault; 2 is standby; 3 is starting up; 4 is running, and 5 

is shutting down. For an SWRO train, status 5 is online, and 12 is clean-in-place (CIP). 

Maintenance-related data is collected from the Computerized Maintenance Management 

System (CMMS). As with the MIS, data storage at the CMMS is at a rational database. 

However, the CMMS in this case study is not directly connected to the OT. All data is 

entered manually by the Maintenance Planner and other maintenance personnel. Work orders 

(WO) are automatically generated based on a planned time-based preventative maintenance 

schedule, condition-based following inspections, or manually issued work order requests by 

O&M staff. 

Appendix B shows examples of WOs for membrane replacement and CIP. The latter is 

divided into two WOs, first SBS soaking, then another work order for High and Low CIP. A 

WO comes in some cases with attachments, as is shown with the WO of membrane 
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replacement, which includes a Standard Operating Procedure (SOP), instructions about which 

elements to replace and how to swap the element and the serial numbers of the elements. 

These attachments are stored at the CMMS and automatically pulled up with the WO. WO 

for membrane replacement or CIP is not automatically generated. The O&M management 

team decides annually on the membrane replacement plan and on a weekly basis if a CIP is 

required and applied to which RO train. 

Further, the Carlsbad Desalination Plant Annual Operations and Maintenance Report for 

the years from 2015/2016 to 2020/2021 are consulted. The reports cover the annual contract 

period, including July to June the following calendar year. Data collected from the annual 

O&M reports are the monthly production demand, delivered volumes and observations on 

starting and ending periods of algae blooms.  

3.3.2 RO performance data normalisation 
RO performance data normalisation aims to standardise RO performance data from 

seasonal and operational effects. As described in chapter 4.4.1, permeate flow, salt passage, 

and PD vary without deterioration of the membranes due to changes in feedwater 

temperature, salinity and flows. For example, lowering the feedwater temperature results in 

compacting the membrane elements, whereby the DP increases, permeate flow reduces, and 

the salt rejection improves. An increase in feedwater temperature expands the elements, 

resulting in lower differential pressure, increased permeate flow, and a reduction of salt 

rejection.  

The method of calculating the NPD can differ slightly in the industry. Some membrane 

manufacturers apply an element-specific version of NPD based on the following equation 

 BPD C Flow= ×                 (1)  

whereby B is typically 1.45 to 1.68 and C is a coefficient specific to the membrane element 

(Wolfe, 2003).  

This research applies normalisation equations used by the O&M company and specified 

by the membrane manufacturer (internal document). Table 3-1 shows the data required for 

the normalization calculation. SC affects normalized permeate flow and salt passage. Feed 

pressure affects the normalized driving pressure calculation. This research only requires NPD 

calculations. For calculating NPD, SC and feed pressure are not required. However, the 

parameters could be of interest in future research and are therefore collected. NPD involves 

only a feed and rejected flow component and a viscosity component. The variable in the 
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viscosity (μ) calculation is the temperature of the water (Tw). The viscosity equation is given 

here. 
578.9193.7188

137.546 273.15

1000

Tweµ
− +

− + +

=          (2) 

The flow (Q) component consists of the sum of the initial feed ( ),f r efQ  and rejected flow 

( ),r refQ  divided by the current sum of the feed ( ),f tQ  and rejected flow ( ),r tQ  to the power of 

1.4. The viscosity (μ) component consists of the initial viscosity  ( )refµ  divided by the present 

viscosity ( )tµ  to the power of 0.6. Initial is referred to the data commencing the operation of 

the plant. The NPD equation is given here. 
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 +  
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      (3) 

where: 

Temp = Feedwater temperature in °C. The conversion from °F to °C is (°F-32)/1.8 

μ = Viscosity [N s/m2] 

Qf = Feed flow  

Qr = Rejected flow  

t=time of data collection (in intervals of hours) 

ref=reference condition (initial data) 

PD=Measured PD (Feed pressure – rejected pressure) 

NPD=Normalized pressure differential 

RO performance can only be calculated when the RO train is in stable operation. Thus, the 

calculations are only performed when the RO train status is five, normal operation.  

To reduce noise at the NPD from, e.g., stoppages, at 00:00 hrs every day, the mean over 

the previous 24 hours of the hourly NPD is calculated, excluding periods when the train was 

not operating. The mean over 24 hours is the NPD used in the analysis of the research. In this 

way, the pressure is adjusted for temperature and production hourly, and degradation is 

monitored daily. 
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3.3.3 MATLAB  
The main functionality of the DSS and the DT module is developed at the app platform in 

MATLAB. The platform provides complete flexibility for writing code and, at the same time, 

has built-in tools for the creation of the Human-Machine-Interface (HMI). The DSS can be 

shared as a stand-alone application for stakeholders who do not have a MATLAB license or 

as a MATLAB app. The application, including the supported data files, can be accessed at 

https://drive.google.com/drive/folders/1eUCKvJkl2rn7Qu_J6kfx-1ikpaWI9z-u?usp=sharing. 

MATLAB is a proprietary programming Language of MathWorks. It allows matrix 

manipulations and plotting of functions and data, creation of user interface, and importantly 

various algorithms can also be implemented. MATLAB has a substantial audience in the 

applied mathematics community. It supports languages, including C, C++, Java, Fortran and 

Python (UpSkill, 2016). The MATLAB coding language is similar to structured text (ST), an 

imperative language defined by the open international standard IEC 61131-3 for PLCs. ST is 

one of the five standard programming languages for the software development of PLCs. 

Further, MATLAB/Simulink models can be migrated directly to ST and Continuous 

Function Charts (CFC), another standard PLC language defined in IEC 61131-3 (Wenger 

and Zoitl, 2012). MATLAB was first adopted by researchers and practitioners in control 

engineering. The researcher, a practitioner in control engineering himself, is highly 

knowledgeable in the programming and development of  PLC/SCADA and DCS systems due 

to more than 25 years of experience in this field as a Control System Integrator. 

 

Figure 3-5. Surface plot of the difference between inspected biomass and modelled wear distribution 
at parameter α values 0.4 to 0.8 for the 14 RO trains 

Besides the app platform, Live Editor was utilised for statistical analysis of the parameter 

estimation and risk analysis of the various maintenance policies. There is no difference in 

code between the application platform and Live Editor. The difference, as the word ‘Live’ 

https://drive.google.com/drive/folders/1eUCKvJkl2rn7Qu_J6kfx-1ikpaWI9z-u?usp=sharing
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already indicates, is that the code can be directly executed while developing the program.  

Figure 3-5 shows an example of code in Live Editor that visualizes the difference between 

inspected biomass and modelled wear distribution at parameter α values 0.4 to 0.8 for the 14 

RO trains in a surface plot. Code developed in Live Editor can be downloaded from the same 

link above. 

3.4 Research ethics 
Early at the commencement of this research, the researcher has undertaken an online 

Module on Induction & Research Ethics and completed an ethics approval request, 

application SBSR1920-014. Confirmation of approval was sent on 22 May 2020. The 

research is conducted following the principles of good ethical standards outlined by the 

Academic Ethics Policy (V1.0) of the University of Salford (UoS). These principles, although 

not restricted by it, include the following: 

• The dignity, interests, rights, safety and well-being of all actual and potential 

participants, observers and all others involved in the academic activity. 

• The welfare and interests of those carrying out the activity. 

• The welfare and interests of the University’s partners and collaborators and the 

individuals associated with those organisations. 

• Animal welfare. 

• Cultural Heritage. 

• The natural environment. 

• The reputation of the University and the wider academic community. 

• The welfare and interests of the wider community. 

(Associate Director Research UoS, 2017, p. 4) 

This research involves only secondary data retrieved from an engineered system. 

Therefore the research does not include any data collection of individuals. However, the 

researcher recognizes that there are other ethical responsibilities as outlined above. These 

responsibilities are towards humanity in general and further to the company that allowed to 

conduct the research and provided partial compensation for the research. The researcher will 

not violate the required confidentiality regulations. Secondary data retrieved will not be 

published without solid approval.  

Ethical responsibilities towards humanity are honest scientific research to contribute to the 

scientific knowledge in general, avoiding plagiarism. A consequence of this research is the 

extension of the useful life of a RO membrane not only for the plant in this case study but 
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potentially for other plants subjected to the same conditions. Therefore the research promotes 

sustainability in contributing both ethically and physically to reducing waste. The research 

further does not contribute to the unethical use of technology. 

3.5 Summary 
This research addresses general requirements of a decision support system (DSS) for 

restoration so that the DSS is fit for purpose. The researcher demonstrates this with the 

development and implementation of the DSS in a novel case study. A seawater desalination 

plant in California, where the wear of the Reverse Osmosis (RO) membranes was higher than 

initially expected due to biofouling accelerated by seasonal algae blooms. 

This research considers the maintenance modelling of an engineered object. Therefore, 

this management improvement study is engineering-based in character and founded on 

applied natural science involving deducted formal science. Data collection is limited to 

secondary data of a technical system. No data collection of individuals is involved. The data 

is quantitative. 

Maintenance modelling is objective. Although the research involves projections of 

uncertain outcomes, frequentist statistical probabilities are applied, which again are objective 

in character. The researcher presents Positivist Deductive research involving quantitative 

secondary data. The strategy followed in the research is that of a virtual experiment: the 

demonstration of a DSS powered by a DT.  

The philosophical approach of the presented methodology should be evaluated against this 

background. The researcher is of the opinion that the philosophical approach taken in this 

study is based on the most workable scientific method for this specific problem. The next 

chapter concentrates on the main aspect of RO membrane degradation, biofouling, from a 

process engineering point of view.
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4 Reverse Osmosis seawater desalination 
This research uses a practical example of a decision support system (DSS) for the long-

term maintenance planning of reverse osmosis (RO) membranes in seawater desalination, 

affected by biofouling due to seasonal algae blooms. This chapter describes reverse osmosis 

desalination to provide the required process engineering background. First, the need for 

seawater desalination and the current lack of research in RO maintenance management are 

evaluated. Before the specifics of membrane degradation are addressed, the principle of RO 

and its practice application is clarified. Then, this chapter concentrates on membrane 

degradation and algae blooms. Finally, the mitigation of membrane degeneration is 

addressed. 

4.1 Desalination to combat water shortage 
We refer to the Earth as the water planet. We cannot live without water. Our planet has 

more water than land. Seventy-one percent of the earth’s surface contains water. However, 

97.5 percent of the water is saltwater. Thus, not suitable for human consumption, land 

animals or plants. Only 2.5 percent is freshwater. 

Nevertheless, two-thirds of this freshwater is frozen in snow, ice and permafrost. Only one-

third of the total freshwater is available from aquifers below the ground, springs, lakes, rivers, 

and reservoirs collecting rainwater and melted ice. Reoccurring draughts over the last 

decennia has put freshwater resources under stress. Although the root cause of drought is still 

not fully understood, climate change has a substantial impact, which is expected to increase 

during this century. Besides the increase in droughts, freshwater resources are further stressed 

due to growing water demand (Haile et al., 2020).  

Water scarcity affects currently 40% of the population worldwide (Jamieson et al., 2021). 

The limited freshwater resource must be shared by about 7 billion people worldwide. Over a 

period of 50 years, from 1967 to 2017, the world population has doubled. At the same time, 

freshwater per capita has fallen by half over this period (Zapata-Sierra et al., 2022). The 

world population is expected to grow further to 8 billion by 2025 and 9 billion by 2040 

(Gaskin-Reyes, 2016). It is estimated that by 2030, 700 million people will potentially 

become displaced due to drought (Jamieson et al., 2021). 

Urbanisation has resulted in further deterioration of freshwater resources and, in some 

cases, resulted in the depletion of lakes, rivers and aquifers. The United States' Southwestern 

region comprises seven water resource regions. These regions are the Pacific Northwest, the 
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Great Basin, California, Upper Colorado, Lower Colorado, the Rio Grande and the Texas 

Gulf regions (see figure 4-1a). Water demand is now outpacing supply in much of this 

drought-stricken region., While the water supply is decreasing, water demand, on the other 

hand, is growing. Except for the Texas Gulf regions, the water supply relies primarily on the 

dwindling seasonal snowpack (Miller et al., 2021). The cross border flow of the Colorado 

River into Mexico (see figure 4-1b) has shrunk by nearly 75% in less than 15 years due to 

significant overuse of domestic and agricultural water demand (Day et al., 2021). Nowadays, 

the river is sometimes dry when it reaches the outlet in the Gulf of California. Decades of 

sinking levels of the Great Salt Lake in the Great Basin resulted further in additional 

environmental damage (Miller et al., 2021). Freshwater reductions at the Colorado delta have 

resulted in hypersaline conditions and widespread wetland death (Day et al., 2021).  

In other areas, increased demand for freshwater has a devastating effect on ancient 

aquafers. Parts of Houston, Texas, are sinking at 5 centimetres per year due to excessive 

groundwater pumping. Like Jakarta, the capital of Indonesia, which is even sinking up to 17 

centimetres per year, the sinking results from the depletion of aquifers beneath it. Both 

Jakarta, Houston and nine other sinking cities could disappear by 2100 (Lakritz, 2019).  

  
a)   b) 

Figure 4-1 a) Seven water resource regions Southwestern region of the United States. Map data 
©OpenStreetMap contributors, available under the Open Database License (http://www.openstreetmap. 
org/copyright), accessed through Stamen OpenSource Tools (https://stamen.com/open-source/).  b) 
Drainage basin of the Colorado River in the Southwestern United States and Mexico (Public domain 
image from USGS). 

The shortage of freshwater sources around the globe has led to an increased focus on RO 

desalination to meet clean-water demand for industrial and domestic use. By 2015 
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desalination, both seawater RO (SWRO) and thermal provided only around 1 percent of the 

world’s drinking water. Approximately 18,000 desalination plants exist worldwide. Nearly 

half of this capacity is in the Middle East and North Africa (Voutchkov, 2016). By 2020 the 

total contracted capacity has reached 100 million m3/day (Bashitialshaaer, 2020), and 

desalination is now a multi-billion industry. The growth of desalination over the next decade 

is expected to be Asia, the US and Latin America. An important factor is cost breakthroughs. 

The energy needed to produce freshwater from seawater for one household per year is less 

than that used by the household’s refrigerator (Voutchkov, 2016). Rejected brine is returned 

to the ocean. Thus Desalination is sustainable, identical to ocean evaporation and rainfall.  

The number of scientific productions available further emphasises the interest in 

desalination. The Scopus database generated 35,845 results of publications on the topic of 

Desalination in the period between 2000 and 2020, with a peak of more than 3000 

publications in 2016. Most publications originated from China, the USA, India, Iran and 

South Korea, followed by Saudi Arabia, Australia, Spain, Egypt and the United Kindom 

(Zapata-Sierra et al., 2022).  

4.1.1 What is Reverse Osmosis 
Reverse Osmosis (RO) is a membrane-based separation technology used to remove 

dissolved solids from a liquid. It is predominantly applied in water treatment. Osmosis is an 

essential process in animal and plant cells. Osmosis is the natural, spontaneous migration of a 

solvent such as pure water through a semipermeable membrane into a solution of higher 

solute concertation, e.g., seawater (see figure 4-2a).  

 

Figure 4-2. Principle of reverse osmosis 

This flow continued until the pressure difference between the low solvent, and high 

solvent side of the semipermeable membrane reached an equilibrium. This equilibrium is 

called the osmotic pressure (Figure 4-2b). The process can be reversed by applying pressure 
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at the high solute concertation above the osmotic pressure. The smaller water molecules pass 

the semipermeable membrane, but the larger salt molecules are rejected. This process is 

called reverse osmosis (Figure 4-2c). 

The University of California, Los Angeles (UCLA) began developing the first RO 

membrane in the 1950s. The research was encouraged by President John F. Kennedy, then a 

senator, who advocated the idea of largescale desalination. In the aftermath of World War II, 

it became evident that the United States would increasingly struggle with water shortages. In 

1959 researchers Sidney Loeb and Srinivasa Sourirajan created the prototype of a RO 

membrane (Wiles and Peirtsegaele, 2018; Takabatake et al., 2021).  

Due to the initial high operating costs, energy consumption, and poor performance of the 

membranes, SWRO desalination plants could not compete with plants based on the thermal 

desalination process. However, the improvement of SWRO membrane technology has 

exponentially expanded since the 1990s. SWRO desalination now has replaced thermal 

desalination as the preferable process.  The preference for SWRO desalination follows 

continuing technological improvement, decreased production costs of SWRO membranes, 

and the introduction of energy recovery systems. Almost all new desalination plants since 

2000 were SWRO membrane desalination plants. Particularly large scale plants of over 

100,000 m3/day (Takabatake et al., 2021).  

4.1.2 RO Desalination in practice 
The original Loeb-Sourirajan membrane was of a flat sheet format in a plate-and-frame 

module and was far less efficient than current element types. Nowadays, the most common 

membrane element construction for RO applications is the multi-leaf spiral-wound element.  

 

Figure 4-3. Spiral-wound element construction (courtesy Wiles and Peirtsegaele, 2018) 
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A leaf consists of two sheets of flat-sheet membranes. The active side is faced outwards, 

and a permeate carrier separates the sheets. The leaves are glued on three sides so the 

permeate can only exit at the permeate collector, a perforated tube (Figure 4-3a). Multiple 

leaves are laid on top of each other, separated by a feed spacer (thickness of 0.7 mm), so the 

feed water is able to pass through the element. The leaves are then rolled around the permeate 

collector (Figures 4-3b and 4-3c). The spiral wounded element is finally covert with a 

fibreglass outer wrap to maintain its cylindrical shape (Wilf, 2015; Wiles and Peirtsegaele, 

2018). 

Concentration polarization is controlled by limiting the recovery rate between 10 to 20% 

per element (Wilf, 2015). This polarization leads to a decrease in the available driving force 

and reduces the overall efficiency of separation. Concentration polarization is the 

accumulation of the retained salt ions and depletion of the water molecules at the boundary 

layer adjected to the membrane. (Bhattacharya and Hwang, 1997). Combined with colloidal 

fouling, this can lead to cake-enhanced concentration polarization, resulting in flux decline 

and decreased salt rejection (Hoek and Elimelech, 2003). Thus, in order to operate at a higher 

recovery, multiple elements are interconnected in series in the pressure vessel. Vessel 

configurations vary between three to eight membrane elements per vessel (Wilf, 2015). 

The number of elements and element types varies per plant design. However, at the 

Carlsbad Desalination Plant (CDP), the 1st Pass RO is configured with single type membrane 

elements. Thus, multiple elements are loaded into a pressure vessel with permeate connectors 

between them. Each vessel is loaded with eight identical (when new) FilmTec™ 

SW30HRLE-400 Elements (Figure 4-4). The active area of an SW30HRLE-400 element is 

37 m2; permeate flow rate of 28 m3/day and a salt rejection of 99.8%. 

 
Figure 4-4. A single first pass RO vessel with eight membrane elements 

There are more than 2000 pressure vessels at CDP. Of these, 1932 vessels belong to the 1st 

Pass RO system, and of these, 1792 are filled with membrane elements. The rest are spare for 

future expansion of production. The vessels are divided into 14 stacks, and each stack is 

referred to as an RO train. Thus, there are 128 vessels in parallel in each train. Clarified 

seawater enters at the feed (left at Figure 4-4), and the concentrated rejected brine is 
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discharged at the tail of the vessel (right at Figure 4-4). The front permeate goes directly to 

the post-treatment for re-mineralization. The rear goes first to a brackish water RO system for 

further desalination. 

Although each train is subject to identical operating conditions and maintenance 

interventions, from the maintenance perspective, each train is operated and monitored 

independently of every other. Demand for permeate (drinking water) is typically met when 13 

of the 14 trains are operating. More precisely, the plant's mean peak demand for water is 204 

Km3/day and recommended maximum allowable supply per train is 631 m3/hour. 

 

Figure 4-5. A view of the 14 RO trains of the case study 

4.2 Biofouling the Achilles’ heel of desalination plants 
However, membrane fouling significantly threatens the efficiency of RO technology 

(Kerdi et al., 2020; Jafari et al., 2021; Jamieson et al., 2021). Biofouling is regarded as the 

most severe and the most difficult to manage (Jiang et al., 2017; Kerdi et al., 2020), and algal 

blooms are the principal root cause of biofouling in RO membranes (Chiou et al., 2010; 

Villacorte et al., 2015; Li et al., 2015; Villacorte et al., 2017). In particular, desalination 

plants on the Pacific coast (California and Chile), the Middle East (the Red Sea and the 

Persian Gulf coasts) and China report that operations are impacted by algal blooms 

(Villacorte et al., 2015a).  
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Degradation or wear of membranes caused by biofouling manifests as a loss in pressure, 

and maintenance is required. Otherwise, membranes will fail. Biofouling results in a 

shortening of the membrane life. Membrane replacement is an essential contributor to the 

cost of operations and maintenance (O&M). Matin et al. (2020) estimate that biofouling costs 

the desalination industry $15 billion annually. Jafari et al. (2021) noted that O&M companies 

do not provide a breakdown of biofouling costs. However, besides loss of revenue due to 

production interruption, maintenance cost is primarily membrane replacement since clean-in-

place (CIP) is just a fraction of the former. 

4.2.1 Lack of research in RO maintenance management 
Despite the potential severity of biofouling and the costly consequences, little attention has 

been given so far in the literature to the management of membrane maintenance. The 

bibliometric study carried out by Zapata-Sierra et al. (2022) on publications related to 

desalination between 2000 and 2020 does not mention membrane maintenance management.  

To the author's knowledge, only Koutsakos and Moxey (2007) describe a maintenance 

protocol for membranes. However, while their system records the position of every element 

in an RO vessel, it quantifies neither the states of elements nor the long-run costs of 

interventions. Membrane replacement requires careful planning and should involve computer 

modelling (Duranceau, 2000). To the author's knowledge, the latter has not yet been 

addressed.  

This research presents a unique maintenance management approach for RO membrane 

maintenance restoration under biofouling conditions. In doing so, we first must address 

membrane fouling in general and that biofouling in particular. We will explain from a process 

engineering stance why biofouling does not cause equal wear over all the elements in an RO 

vessel. This unequal distribution of wear profoundly affects the maintenance decision for 

swapping membranes and which elements to replace. The unequal distribution of wear over 

the vessel’s elements justifies the thesis author's point of view to regard a RO pressure vessel 

as a multi-component system. Further, we provide the reasoning for varying intensity of 

degradation over time. Both aspects will be captured in the wear increment and restoration 

equation in chapter 6.  

Maintenance planning is interesting because membrane elements can be replaced, swapped, 

cascaded, or cleaned, and these different interventions have different restorative effects. 

Cleanings and replacements are standard practices in the industry, and section 4.4.2 

Restoration addresses these practices. However, this research differs from the usual approach 
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of first cleaning and replacing the most fouled membranes if that is not enough. This research 

models membrane wear and maintenance in a novel way, describing the hidden states through 

time of individual membrane elements in a RO pressure vessel. Thus, we can evaluate the 

effects of the various maintenance choices beforehand. 

4.2.2 Membrane degeneration due to fouling  
Degeneration of the membranes due to fouling manifests as a decrease in permeate flow, 

an increase in the salt passage and an increase in the pressure differential (PD) (Li et al., 

2015; Jiang et al., 2017; Kim et al., 2017; Villacorte et al., 2017). Membrane fouling is 

inevitable (Landaburu-Aguirre et al., 2016; Jiang et al., 2017; Qasim et al., 2019). The 

relevance of the topic is emphasised by the results of a search request at Google Scholar on 

the topic RO membrane fouling for the year 2020, limited only to Elsevier publications. The 

response was nearly 2300 articles. The fouling type and behaviour are, however, particular to 

the application. Fouling of RO membranes in water reclaim of wastewater is fundamentally 

different from seawater RO applications. Calcium phosphate scaling on membrane surfaces 

in water reclaim plants is a big problem. However, calcium phosphate scaling in SWRO is 

minimal. Common types of fouling in SWRO are colloidal fouling, inorganic scaling, organic 

fouling and biofouling (Jiang et al., 2017; Qasim et al., 2019). 

Colloids are fine suspended particles. The size ranges from a few nanometres to a few 

micrometres. Fouling results by depositing of these colloids on the membrane surface. 

Colloidal foulants can be divided into inorganic foulants and organic. Common inorganic 

foulants in seawater are minerals, e.g., calcium carbonate, calcium sulphate, magnesium, 

aluminium, iron and silica, e.g., silt particles (Jiang et al., 2017; Qasim et al., 2019; Gutiérrez 

Ruiz et al., 2020). Organic macromolecules in the water mainly consist of materials such as 

polysaccharides, proteins, carbohydrates, and some other natural organic matter (NOM) 

(Jiang et al., 2017; Qasim et al., 2019). The colloidal fouling potential of RO feedwater is 

commonly measured by the silt density index (SDI). SDI is a measurement of the fouling 

potential of suspended solids (Gutiérrez Ruiz et al., 2020). Colloidal fouling is reversible 

(Qasim et al., 2019). Pre-treatment filtration can mitigate colloidal fouling (Jiang et al., 2017; 

Qasim et al., 2019). 

Like colloidal fouling generally, inorganic scaling is the deposition of substances on the 

membrane surface, however inorganic. The most common scalants are calcium sulphate and 

calcium carbonate. Since minerals are rejected during the RO process, the concertation of 

these minerals is the highest at the tail of the vessel. Inorganic scaling occurs when these 
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minerals become supersaturated and undergo homogenous or heterogeneous crystal growth 

processes. The formation of a cake layer due to the inorganic precipitation could prevent 

water from permeating through the membrane (Jiang et al., 2017; Liu et al., 2019; Qasim et 

al., 2019). Physical damage due to the gypsum crystals' perforations of membrane surface can 

occur. These perforations are exposed after cleaning when the crystals are dissolved 

(Benecke et al., 2018). The latter then results in decreased salt rejection. Inorganic scaling 

can be mitigated by adding a scaling inhibitor to the RO feed (Jiang et al., 2017; Liu et al., 

2019; Qasim et al., 2019).  

Organic fouling in seawater desalination is caused by NOM. NOM in RO seawater feed 

includes, e.g., algal, transparent exopolymer particles (TEP), proteins and humic acids. NOM 

with low molecular weight is difficult to remove from the RO feedwater by conventional pre-

treatment (Jiang et al., 2017; Qasim et al., 2019).   

4.2.3 Biofouling 
Biofouling, in particular, increases the PD due to the build-up of the biofilm at the 

membrane surface and the feed water carrier (Bereschenko et al., 2010; Matin et al., 2011; 

Villacorte et al., 2015a; Villacorte et al., 2017; Badruzzaman et al., 2019). Therefore, the PD 

provides a measure of the level of degeneration (wear) of an RO train.  

Nearly half of all membrane fouling is due to biofouling (Qasim et al., 2019). The effect of 

bio-fouling is continuous and long-lasting and regarded as the most severe and the most 

difficult to manage. Living microorganisms cause biofouling. Initially, organic 

macromolecules, mainly anionic biopolymers, settle on the surface of a clean membrane and 

form a conditioning film. Due to its flexible character, TEP has explicitly the ability to pass 

through pores much smaller than its size. There is a direct correlation between TEP 

concentration in the feed and the severity of fouling. TEP provides a conditioning layer on 

the membrane. The latter provides a stable environment for bacteria to proliferate and 

develop biofilms.  (Jamieson et al., 2021). The conditioning film increases the capacity of the 

surface to absorb and concentrate nutrients from the RO feed water. This organic adsorption 

is a precondition for bacterial attachment (Baier et al., 1968). Bacterial species that produce 

large amounts of extracellular polymeric substances then colonize the surface, forming a 

slime layer known as a biofilm.  

A biofilm is a community of surface-attached microbial organisms. Their phenotypic and 

biochemical properties are distinctly different from floating planktonic cells. The switch from 
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a planktonic phase to a surface biofilm formation is thought to be triggered when the bacteria 

sense environmental conditions for this (Kadouri and O’Toole, 2005). 

Worldwide, Proteobacteria and Actinobacteria are frequently the most dominant 

organisms identified within the feed water and on fouled membranes. Proteobacteria have the 

ability to dominate SWRO biofilms as they are small enough (0.22 μm) to bypass all the pre-

treatment systems within the plant. Observations show that both α- and γ- proteobacteria 

increased in their relative abundance after pre-treatment. α-proteobacteria are often the 

primary colonisers within biofilms. The physiological and phenotypic traits of surface-

associated bacteria differ from those in a planktonic state. The cells undergo a range of 

phenotypic switches throughout biofilm formation. As the bacteria respond to their 

surrounding environment, concentration gradients, diffusional processes, signalling 

compounds, and waste result in a heterogeneous structure within the biofilm.  

Consequently, the cells within the biofilm are physiologically distant from planktonic 

bacteria. Proteobacteria are known for forming biofilms and producing unique and individual 

EPS/TEP products, potentially leading to further settlement of the organic matter and 

accumulation of microorganisms to spread the biofilm further (Jamieson et al., 2021). 

The latter was examined at CDP, where a study independent of this research observed a 

high abundance of Shewanella species on membrane samples. These metabolically versatile 

species belongs to γ- proteobacteria species and are known to form biofilms. The Shewanella 

species were nearly absent prior in samples from the cartridge filters (Podar et al., 2021).  

Attachment of the biofilm is irreversible. Depending on the supply of nutrients, the 

biofilm can grow in a matter of days or even hours. Figure 4-6 shows the lifecycle of the 

biofilm. When the biofilm has matured, and the colony gets overcrowded, some bacteria 

disperse and starts to colonize the next area of the membrane surface (Stoodley et al., 2002; 

Bereschenko et al., 2010; Matin et al., 2011; Villacorte et al., 2015a; Badruzzaman et al., 

2019). Trulear and Characklis (1982) refer to detachment as the partial detachment of the 

biofilm by shearing.  
Reversible 

attachment of 
bacteria cells 

(seconds) 

First colonizers 
become irreversible 
attached (seconds, 

minutes). 

Growth and 
cell division 

(hours, 
days). 

Production of extracellular 
polymeric substances (EPS) 

and formation of water 
channels (hours, days). 

Attachment of secondary 
colonizers and dispersion of 

microbes to the next membrane 
area/element (hours, days). 

 

Figure 4-6. Lifecycle of the biofilm (Modification of work by American Society for Microbiology). 
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When this biofilm starts affecting the RO system, we speak of biofouling (Li et al., 2015; 

Jiang et al., 2017; Villacorte et al., 2017; Qasim et al., 2019). Membrane autopsies by 

elements throughout a vessel by Fortunato et al. (2020) at an SWRO desalination on the Red 

Sea confirmed the gradual spread of biomass over the elements, depending on the module 

position in the vessel. 

Scale inhibitors are also prone to contribute to biofilm growth (Landaburu-Aguirre et al., 

2016). However, most importantly, biofouling in RO membranes accelerates due to algal 

blooms. The direct cause of this acceleration of deterioration is not the algae cells themselves 

but Algal Organic Matter (AOM), particularly Transparent Exopolymer Particles (TEP). Pre-

treatment can reduce the amount of TEP in the RO feed water, but low amounts will still 

reach the SWRO membranes.  

Dead algae cells disintegrate and release AOM, which like TEP, adheres to clean 

membranes and even more so to AOM-fouled membranes. Thus, by settling these organic 

macromolecules on the surface of a clean membrane, the surface is conditioned, increasing 

the capacity of the surface to absorb nutrients. This surface conditioning helps the initial 

bacteria adhesive to the surface and form micro-colonies.  (Li et al., 2015; Villacorte et al., 

2017). Therefore, AOM facilitates the onset of wear, resulting in the formation of a biofilm 

by the bacteria. Besides AOM, organic macromolecules occur as TEP. High absorption of 

TEP can be observed as a slimy substance sticking to surfaces when coming into contact. 

Dinoflagellates, a group of phytoplankton responsible for algal blooms, generate large 

quantities of TEP once nutrients have been exhausted (Zamanillo et al., 2019). 

After the onset of wear, AOM and TEP then accelerate the growth of the biofilm by 

delivering the required nutrient source. Previous studies have observed the presence of TEP 

on fouled membranes. However, how far TEP is brought in by the source water or produced 

by bacteria remains unclear. In matured biofilms, the dominant TEP source is bacteria 

(Jamieson et al., 2021).  

A high proportion of the biofilm is exopolymer material. The latter is essential in 

maintaining the structural integrity of the biofilm matrix. As the biofilm develops, the 

exopolymer content changes (Trulear and Characklis, 1982).  

The complexity of the ecosystem promotes the coexistence of organisms creating niches 

and increasing the diversity within the communities. The biofilm also provides an 

environment for settlement and growth for other organisms such as diatoms, dinoflagellates, 

and ciliates. Due to their complementary lifestyles, a collaborating relationship develops 

between diatoms and bacteria (Jamieson et al., 2021).  
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Therefore, a biofilm is a complex ecosystem that protects the settled communities. 

Biofilms mitigate attacks by Bdellovibrio, a bacteria predator species. The survival rate of 

planktonic cells by a Bdellovibrio attack is much lower (Kadouri and O’Toole, 2005). 

Among other functions, the biofilm deals with nutrient transport and storage (Battin et al., 

2003) and oxygen to the biofilm’s lower levels (Trulear and Characklis, 1982). Thus, the 

degeneration due to bio-fouling continues beyond the period of an algal bloom. The decay is 

exponential (Agawin et al., 2000). 

4.3 Monitoring membrane fouling 
As mentioned in section 4.2.3, PD provides a measure of an RO train's level of 

degeneration (wear). However, permeate flow, salt passage and PD vary without deterioration 

of the membranes due to changes in feedwater temperature, salinity and flows.  

For example, lowering the feedwater temperature results in compacting of the membrane 

elements, whereby the DP increases, permeate flow reduces, and the salt rejection improves. 

An increase in feedwater temperature expands the elements, resulting in lower differential 

pressure, an increase of permeate flow, and a reduction of salt rejection. 

Before we can monitor the actual membrane deterioration, the effects of feedwater 

temperature, salinity and flows must be filtered out. The process of standardizing RO 

performance data is defined in the industry as normalization. Data normalization enables the 

performance of the RO data at a specific time to be compared against the initial performance. 

The American Society for Testing Materials (ASTM) defines the standard practice for 

standardizing RO performance data in ASTM Methods 4516. However, there is no 

specification for PD normalization in this standard (Wolfe, 2003). 

A normalization equation has been adopted, specified by the membrane manufacturer. RO 

real-time performance data is monitored continuously and recorded in intervals of 60 

seconds. The normalized pressure differential (NPD) is calculated from the hourly means of 

the recorded data. Then, to reduce noise from, e.g., stoppages, at 00:00 hours every day, the 

mean NPD is calculated over the previous 24 hours. So, this daily mean NPD provides a 

measure of the level of deterioration of the vessels in an RO train (Figure 4-7). Interruptions 

of the NPD (red pen) and product (blue pen) are due to the train being offline. 

The observed NPD's first sudden acceleration started around June 2016 (week 30). The 

first maintenance action took place in February 2017 (week 66/67). Therefore, up to month 

14 of operation shows the initial deterioration of the membranes without interventions.  
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Figure 4-7. Normalized DP (pressure) for each train from the start of operation of the plant. 
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4.3.1 Membrane Autopsy to determine the fouling type 
The only way to examine what is taking place inside the membrane element is to cut it 

open and have a look (Fortunato et al., 2020). This destructive inspection technique is called 

membrane autopsy. Membrane autopsies are performed as long as synthetic membrane 

elements exist. Specialized laboratory services usually perform membrane autopsies (Dalton 

et al., 2004). 

In October 2016, a front membrane and a tail membrane of one of the trains was removed 

and sent to an external Lab for membrane autopsy. The front membrane weighed 18 kg. A 

new element is expected to weigh between 13.5 and 16 kg. The element was coated with an 

orange gelatinous material. The foulant was denser on the element's feed end, and increased 

foulant streaks were noted on all the membrane leaves in areas furthest from the permeate 

tube. A slight biological odour was noted upon dissection. The feed spacer material was 

lightly coated in orange-coloured material and was more heavily coated on the feed end of 

the element. The foulant was identified as 91% organic (bio-slime, fungi, algae, bacteria) 

with particles embedded in the organics. The remaining 9% represents inorganic particulates. 

 

Figure 4-8. Membrane surface of the front element and feed spacer during the autopsy. 

The tail element weighed 16 kg. Minimal foulant was observed on the tail membrane, only 

trace salts and organics. Testing under brackish water conditions of both elements separately 

showed that the pressure drop of the front element was more than double than the tail 

element. 
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Figure 4-9. Membrane surface of the tail element and feed spacer during the autopsy. 

4.3.2 Seasonal algal blooms 
As mentioned above, algal blooms amplify biofouling. So far, algal blooms have affected 

the desalination plant mainly during the spring season and close to the spring season.  The 

timings of algal blooms are shown in Table 4-1. 

 
Table 4-1. Dates of algal blooms (week number of operation of the plant in brackets) 

Detected change in P Reported start Reported end Detected end effects 

June 8, 2016 (30) N/A 
N/A November 20, 2016 (54) 

March 12, 2017 (70) April 12, 2017 (74) 
April 27, 2017 (76) July 30, 2017 (90) 

April 8, 2018 (126) April 8, 2018 (126) 
April 9, 2018 (126) August 26, 2018 (146) 

April 9, 2019 (178) April 9, 2019 (178) 
April 13, 2019 (179)  

 
June 6, 2019 (186) 

June 12, 2019 (187) September 23, 2020 (202) 

  April 10, 2020 (231) 
May 5, 2020 (234)   

Fluctuations in environmental conditions can explain the seasonal occurrence of algal 

blooms. The desalination plant of the case study is positioned at the Southern California 

Bight (SCB) above San Diego (see map Figure 4-10). The SCB is a significant portion of the 

Californian west coast. The coastal islands act as a buffer of the southern California coast 

from the direct impact of the oceanic California Current and meteoritical effects (Smith et al., 

2018). 
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Figure 4-10. Map of the Southern California Bight. Courtesy Smith et al. (2018). 

The most hazardous group of algae identified at CDP, contributing to the biofouling of RO 

membranes, are dinoflagellates. Besides AOM from disintegrating algae cells, an essential 

trigger for biofouling is also the TEP, produced by some algae. However, not only 

dinoflagellates but also diatoms generate large quantities of TEP once nutrients have been 

exhausted (Zamanillo et al., 2019). 

Dinoflagellates are a group of phytoplankton. Phytoplankton is concentrated at the upper 

sunlit layer of the ocean, called the euphotic zone that supports net photosynthesis. The depth 

of the euphotic zone is defined as the depth at which the photon flux equals 1% of the flux 

measured just above the air-sea interface (Letelier et al., 2004, p. 508). These 

photoautotrophs species harvest light to convert inorganic to organic carbon. Phytoplankton 

requires, therefore, light and nutrients (Sigman and Hain, 2012).  

The increase in seawater temperature and the mild UV radiation at shallow waters explains 

the occurrence of algal blooms during the spring season. As the waters warmed in early 

spring and wind reduced, conditions appeared perfect for developing widespread algal 

blooms (Anderson and Hepner-Medina, 2020). However, although these are essential 
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conditions for inoculation into the planktonic phase, other dependencies exist. Rengefors et 

al. (1998) suggest that the composition of the food web is one of the triggers of an algae 

bloom. Nutrient charging differs significantly throughout the SCB.  An essential source of 

nutrients at the SCB is the North Pacific Subtropical Gyre, the largest contiguous ecosystem 

on earth (Di Lorenzo et al., 2008). Observations undertaken in the North Pacific Subtropical 

Gyre exhibited an upper region of the euphotic zone (0-90 m) that is almost permanently 

under nutrient limiting conditions. Blooms in the upper euphotic zone at this oceanic region 

are stochastic and short-lived. The lower euphotic region (90 – 200 m) is seasonal richer in 

nutrients, which supports better conditions for annual algae blooms. (Letelier et al., 2004). 

Spring phytoplankton blooms are caused in this period when the upwelling of deeper water 

delivers nutrients to the well-lit surface layer (Anderson and Hepner-Medina, 2020). 

The source of nutrients supplied by the California Current from the North Pacific 

Subtropical Gyre at the SCB is only one part of the supply. Nutrients are further supplied 

from the shores. The demographic diversity of the coastal region, a mixture of agricultural 

and highly urbanized regions, results in variability of magnitude and type of nutrient loading 

to the near-shore waters. Therefore, an essential source of nutrients is the effluent discharge 

of public wastewater treatment plants  (Smith et al., 2018). 

The algae bloom of Spring 2020 occurred after heavy rainfall in March, which resulted in 

high storm drain effluent from the shore to the lagoon. The lagoon is connected to the Pacific 

Ocean, and CDP receives its source water from this lagoon. The Southern California coast 

experienced precipitation levels of 200 to 400% above average (Anderson ans Hepner-

Medina, 2020). The seawater colour at the lagoon became a caramel brownish. The inlet 

turbidity increased above the plant’s operations and maintenance (O&M) contractual limit. 

The following months, April and May 2020, saw the worst algae bloom since 1983, when the 

systematic recording of chlorophyll concentrations started (Anderson and Hepner-Medina, 

2020). This algae bloom was referred to as a Red Tide. The seawater was dark rust-brown. 

95% of abundance were dinoflagellates, with Lingulodinium polyedra as the dominant group. 

There was an intense odorous sulphur smell from water, foam, and numerous dead fish 

(Carter, 2020). Similar conditions were observed at the intake lagoon of the plant (Figures 4-

11, 4-12 and 4-13). The algae bloom conditions were so severe that the plant was forced to 

shut down for weeks. Large quantities of TEP, observed as slime, were noted during Net Tow 

sampling on some days and nearly absent on others. 
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Figure 4-11. Intake Lagoon 
condition during Red Tide in Spring 

2020 

 

Figure 4-12. 
Net Tow 
sample 

seawater 

 

Figure 4-13. Observed dead fish at the 
Intake Lagoon associated with the Red 

Tide in Spring 2020 

Table 4-2. Average RO feed source water condition during algae bloom and non-algae bloom 
conditions between 2017 and 2020 (ND = non detect). In those cases, SDI > 5 or Turbidity > 0.35 
NTU, RO feed water supply is interrupted. 

  
SDI Turbidity 

(NTU) 

2-5 μm 
particle 

(counts/ml) 

ORP 
(mV) 

DOC 
(ppm) 

TOC 
(ppm) 

non-algae bloom 3.08 0.07 41.59 222.51 ND 0.71 
algae bloom 4.62 0.13 157.47 232.12 1.88 2.21 

 

Lingulodinium polyedra is an armoured bioluminescent dinoflagellates species associated 

with fish and shellfish mortality events (Dodge, 1989). Following the algae bloom in 2020, 

CDP started monitoring residual algae species of the source water in-house. Figure 4-14: 

showing several algae species observed by CDP internal lab utilizing a 40X-1500X 

Trinocular Inverted Infinity-corrected Phase-contrast Microscope with Koehler Illumination. 

Magnification is 40x. The algae observed in Figures 4-14 are from the same seawater sample 

taken on 30 March 2021 (pre-bloom conditions).   

 

Figure 4-14. Protoperidinium and Ceratium species (left), Pseudo-nitzschia species (middle) and 
Dinophysis,   Lingulodinium polyedra and Cochlodinium species (right). 
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The Lingulodinium polyedra, see figure 4-14 at the right, is among the dinoflagellates 

species that has a resting cysts stage (Lewis, 2018). A significant number of marine 

dinoflagellate species undergo a benthic phase in their lifecycle. During unfavourable 

vegetative conditions, the planktonic dinoflagellates lose their flagellate and produce a cyst. 

The cysts settle in the sediment layer of the benthic zone and reinoculate the water column 

when favourable conditions are restored, resulting in bloom. This survival strategy is to 

protect the species from unfavourable conditions. The latter can be a multitude of factors, 

e.g., temperature, depletion of nutrition, UV radiation, avoidance of grazing or defence 

against parasitic attack. The benthic phase can last several hours to several years (Bravo and 

Figueroa, 2014).  

The fundamental dynamics of planktonic blooms have not been established yet. Patterns of 

seasonal algal blooms can further change in the future due to climate change (Hallegraeff, 

2010). Increasing ocean temperature has been linked to the intensification of algal blooms 

(Gobler et al., 2017; McKibben et al., 2017). Although algae blooms seem to occur mainly in 

the spring season, blooms in later seasons cannot be excluded. For instance, the whole 

coastline of the SCB was hit by a dinoflagellate bloom during the summer-fall period of the 

year 2005. Recently in 2021, a bloom of Lingulodinium polyedra occurred in November. 

The National Oceanic and Atmospheric Administration, a US governmental institution, is 

developing a forecast for harmful algae blooms (HOB). The focus is on algae, which are 

toxic for marine animals, birds and humans (Smith et al., 2018). However, algae resulting in 

excessive biofouling at RO membranes are not limited to HOB species.  This research 

considers that algal blooms affecting the desalination plant will mainly occur in the spring 

season, considering that an algal bloom could occur in the summer-fall period. 

 

Figure 4-15. Feedwater CDP, magnification 10x Left 5 May, Middle 8 Nov., Right 18 Nov. 2021 
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4.4 Mitigation of Membrane degeneration 
Mitigating biofouling by improving the pre-treatment should be considered first (Matin, 

Khan, Zaidi, and Boyce, 2011; Villacorte et al., 2015; Jiang et al., 2017; Badruzzaman et al., 

2019). Pre-treatment aims to filter out organic and inorganic foulants from the feed water to 

the RO. Granular media filtration is the most common applied source water pretreatment 

process for RO desalination. However, over the last decade, the application of membrane 

filtration as a pretreatment strategy has increased (Voutchkov, 2017).   

4.4.1 Prevention 
According to Villacorte et al. (2017), granular media filtration is unable to deal with an 

algae bloom attack. Although granular media filtration is still the most common, ultra-filtration 

(UF) has made significant inroads. UF requires less footprint, provides better filtration and is 

less affected by changes in seawater quality. On the other side, the operation of  UF is more 

complex. It requires a delicate balancing of coagulation, run time, controlling filtration flux, 

backwashing and chemically enhanced backwash to prevent irrecoverable fouling (Brover et 

al., 2022). 

Membrane-based methods such as microfiltration (MF) and UF are better in preventing 

biopolymers from reaching the RO membranes. However, consequently, MF and UF undergo 

rapid biofouling themselves during an algae bloom. As with granular media filtration, low 

molecular weight organic compounds, e.g., humic-like substances, are also poorly rejected by 

MF/UF membranes  (Villacorte et al., 2017). A pilot study by Nakaya et al. (2021) showed that 

UF reduced living biomass by 75%. That means 25% survive the UF and continue towards the 

RO membranes.  

Although MF and UF are now standard in RO desalination plants, in addition to 

disinfectants and chemical dosing, these treatments only temporarily improve mitigating 

biofouling. Colonization of RO membranes by microorganisms is inevitable. Research by 

Jamieson et al. (2021) showed that only selective bacterial groups are removed.  Pre-treatment 

systems can become niche environments for the proliferation of adaptable bacteria due to the 

steady inflow of nutrients. These environments potentially become a reservoir for diverse 

microorganisms. Even limited amounts of microorganisms passing the pretreatment have 

serious results due to proliferation and biofilm formation (Jamieson et al., 2021). 

Franks et al. (2006) reported on a pilot study of several years at the SCB that involved 

conventional pre-treatment, MF and UF. During the three years of the pilot test, heavy rains 
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and red tide occurred. The pre-treatment systems studied were all unable to prevent biofouling 

during heavy rainfall and algae bloom conditions. 

Dissolved air flotation (DAF) incorporating filtration (DAFF) is the most promising solution 

to improve filtration in the case of algae blooms (Badruzzaman et al., 2019). However, 

biofouling mitigation is often limited for economic, environmental or practical reasons, e.g., 

available footprint. Even with reasonably healthy pre-treatment performance, organic and 

biofouling are practically unavoidable (Karanasiou et al., 2021). The use of additional cartridge 

filters as a final safety net to catch particles that escaped the pre-treatment exacerbates 

biofouling. Cartridge filters provide a unique ecosystem for microorganisms (Jamieson et al., 

2021). A study by (Fortunato et al., 2020) at an SWRO plant on the Red Sea showed similar 

observations. Water samples collected after cartridge filters had a significantly higher biomass 

activity than water samples after pre-treatment. Jamieson et al. (2021) proposed removing the 

cartridge filters as an additional safety net. 

4.4.2 Restoration 
So, O&M teams often must accept a degree of biofouling. Cleaning of membranes in-situ, 

so-called clean-in-place (CIP), is the most apparent initial maintenance action to reverse 

membrane degeneration. The CIP method depends on the membrane fouling layer 

composition (Jiang et al., 2017). In this case study, the O&M team started CIP after 

confirming biofouling as the main reason for membrane degeneration (see section 3.5). Since 

the dominant fouling occurred at the lead membranes in the vessel, the cleaning direction was 

configured as reverse, i.e., cleaning flow direction from the tail (brine) to the lead (feed) side 

of the vessels (Andes et al., 2013). Initially, the cleaning solution used was standard in the 

industry when dealing with biofouling. Consecutive high pH (NaOH solution) and low pH 

cleaning (HCl solution). This CIP activity gave a poor to a moderate reversal of the 

degeneration. The high and low CIP procedure is shown in Table 4-3. 

Table 4-3. Procedure high and low pH CIP (C1) 

  
 Stage 1 Stage 2 Stage 3 Stage 4 

 pH Chemical low flow per vessel high flow per vessel Soaking high flow per vessel 

High pH 12 NaOH 4 m3/h (15 min) 7 m3/h (60-90 min) 60 min 7 m3/h (60 min) 

Low pH 2 HCl 4 m3/h (15 min) 7 m3/h (30-45 min) 30 min 7 m3/h (60 min) 

Sodium Bisulfite (SBS) is commonly used for dechlorination and dechloramination of RO 

feed water (Kucera, 2019). Farooque et al. (2002) reported using SBS as a low pH solution 

for cleaning biofouled nano-filtration (NF) membranes, however, without success. 
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Nevertheless, SBS removes oxygen from water (Kucera, 2019) and therefore suffocates 

bacteria. An SBS treatment to kill the bacteria, followed by high and low pH cleanings to 

remove the biomass, improves the restoration significantly. Therefore, the O&M team mainly 

conducted soaking the membranes with SBS (1% SBS solution, 0.7 m3/h per vessel for 24 hr) 

followed with a high and low pH CIP from August 2018 onwards. This maintenance action 

gave, on average, better restoration of membranes than the standard high and low cleaning. 

Initially, also a third method was conducted. This experimental cleaning method would 

remove the lead element from the vessel and clean it externally. This method was only 

applied to two trains and was discontinued after that. 

Furthermore, when biofouling is severe, CIP is insufficient to restore an RO train to an 

acceptable state over time. Replacement of the most fouled membrane elements then 

becomes unavoidable (Koutsakos and Moxey, 2007). Membrane maintenance can become 

costly when the number of elements to be replaced surpasses significantly that of the initial 

projection during the plant-design phase. These unforeseen costs are not limited to the cost of 

new elements but also labour and downtime (Jafari et al., 2021). 

Some authors report a cost of membrane replacement of a 5% figure (Miller, 2003; 

Younos, 2005), others 10% (Poullikkas, 2001; Stover et al., 2017). Emamjome et al. (2019) 

report the percentage of membrane replaced annually at 10%. This rate of membrane 

replacement is according to the recommendations of membrane manufacturers. However, the 

estimates of Miller, Younos, Poullikkas,  Stover et al. and Emamjome et al. do not consider 

the variations in feedwater quality at different locations in the world. Considering the design 

and feedwater conditions, Jiang et al. (2015) estimate the annual membrane replacement cost 

at 15 to 20% of total operational expenses (OPEX). A recent study of fouling cost as a 

fraction of OPEX by Jafari et al. (2021) of two surface water RO plants and one secondary 

industrial wastewater effluent RO plant in the Netherlands concluded that the figure was 

approx. 24%. Membrane replacement was the main cost factor.  

Despite the potential severity of biofouling and the costly consequences, little attention has 

been given so far in the literature on the management of membrane restoration. Mitra et al. 

(2009) reported a decision to replace 25% of membrane elements in a plant in one go after 

three years of operation. They discussed the performance effect but not the cost-efficiency of 

this intervention. Vrouwenvelder et al. (2007) and Bartman et al. (2011) developed a 

simulation tool for monitoring biofouling in spiral-wound membranes. This tool notionally 

monitors the first element in a vessel so that a complete picture of the states of all elements in 

the vessel is missing. Koutsakos and Moxey (2007) describe a protocol for membrane 
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maintenance. The first step is CIP, and the second step is the replacement or swapping of 

elements if CIP is not sufficiently effective. However, as stated earlier, while their system 

records the position of every element in an RO train, it quantifies neither the states of 

elements nor the long-run costs of interventions.  

This research presents a new approach in which the (degradation) states of all elements in 

RO are quantified throughout the life of the train. Furthermore, in this research approach, the 

degradation of trains is continuously monitored, and the cost and effectiveness of 

interventions (cleaning, replacement, swapping) are measured. The state of the elements is 

quantified by modelling the evolution of degradation, and hence performance, of a train. 

Thereby, the feed water quality (extent of algal contamination) and the effects of cleaning, 

swapping and replacing elements are accounted for. The ordering of the components is also 

called permutations (Miller and Childers, 2012). Except when a distinct difference is made 

between cascading and swapping of components, a reference to permutations is made further 

onwards. 

 
Figure 4-16. Membrane replacement 

4.5 Summary 
Seawater desalination has become an essential solution to deal with the increase in 

droughts and, at the same time, growing water demand. With seawater accounting for 97.5 

percent of all water, the available resources are substantial. Improved reverse osmosis (RO) 
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membrane technology and energy recovery has made RO affordable. Thus in the last decade, 

the capacity of SWRO has increased significantly, as has the academic interest.  

However, membrane fouling is the Achilles’ heel of desalination plants. Biofouling is the 

most challenging, and algae blooms are the principal root cause of biofouling in RO 

membranes. We have seen reports from operators of several desalination plants worldwide 

that algal blooms impact their operations. Biofouling manifests itself in increased hydraulic 

pressure differential (PD) between the feed and concentrates side of the membrane elements 

due to biofilm growth at the membrane surface and feedwater spacers. When this PD over the 

vessel exceeds the limit of 3.5 bar, elements can fail irrecoverably. 

Biofouling is a physical-, biochemical reaction by settling of planktonic bacteria at the 

surface of the membrane and thereby switching to surface-attached microbial organisms. 

Surface adjustment by organic fouling is a precondition. The switch from a planktonic phase 

to a surface biofilm formation is triggered when the bacteria sense environmental conditions 

for this. A biofilm is a complex ecosystem that supports surface-attached microbial 

organisms. Attachment of the biofilm is irreversible. Natural organic matter (NOM) that first 

adjusted the surface of the membrane now becomes nutrients for the microbial organisms. 

Depending on the supply of nutrients, the biofilm can grow in a matter of days or even hours. 

When the colony becomes too big, some bacteria disperse and colonize the next area of the 

membrane surface. So, biofouling starts at the first element’s feed then spreads to the tail. 

Standard in an SWRO desalination plant, a pre-treatment is preseeding the RO process to 

mitigate biofouling and fouling in general. Pre-treatment aims to filter out organic and 

inorganic foulants from the feed water to the RO. However, filtration cannot entirely remove 

NOM due to its physical molecular size. The latter is especially the case when only 

traditional granular media filtration is applied for pre-treatment.  

During algae blooms increase in nutrients occur not by algae cells escaping the pre-

treatment, but Algal Organic Matter (AOM), which is released after dead algae cells 

disintegrate. An additional source of nutrients is the Transparent Exopolymer Particles (TEP) 

produced by some algae species under stress. TEP can be observed as a slimy substance 

sticking to surfaces when coming into contact. Due to its flexible character, TEP has 

explicitly the ability to pass through pores much smaller than its size. Algae blooms mainly 

occur during spring. However, rarely blooms have been observed in autumn. Patterns of 

seasonal algal blooms can change in the future due to climate change, especially increasing 

ocean temperature, which has been linked to the intensification of algal blooms. 
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So, operation and maintenance (O&M) teams often must accept a degree of biofouling. 

Cleaning membranes in-situ, so-called clean-in-place (CIP), is the most apparent initial 

maintenance action to reverse membrane degeneration. CIP is a physical-chemical process to 

remove the biofilm. However, CIP can only partially remove a matured biofilm. Therefore 

this is an imperfect maintenance procedure. Over time, the most fouled membrane elements 

must be replaced. Despite the potential severity of biofouling and the costly consequences, 

little attention has been given so far in the literature on the management of membrane 

restoration. The literature to date generally describes a membrane system and its associated 

wear as a single system. In this research, an RO vessel is approached as a unique multi-

component system describing the hidden states through time of the individual elements. The 

next chapter will evaluate this unique multi-component system from a maintenance 

engineering point of view. 
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5 A RO vessel as a multi-component system 
The previous chapter explored the degradation and restoration of a reverse osmosis (RO) 

pressure vessel from an RO process engineering perspective. This chapter evaluates the 

degradation and restoration of RO membranes compared to other systems in the maintenance 

theory literature. The previous and this approach are both essential, but one cannot be seen as 

a sheer extension of the other. Thus, both comprehend different approaches to the research. 

Suppose the EO would be a centrifugal pump, then a mechanical and specific hydraulic 

engineering understanding would be required instead of physical-biochemical processes. 

Maintenance engineering, however, would look at both EOs from a similar perspective. 

Maintenance engineering must not be seen of how an EO is to be disassembled and 

reassembled, but how the maintenance of an EO is planned. It deals with reliability, 

maintenance requirements analysis and establishing suitable maintenance policies. An 

essential part of maintenance engineering is maintenance modelling. Maintenance modelling 

gives insight into the potential degradation and restoration projections when both degradation 

and restoration are stochastic.  

In this chapter, first, the definition of multi-component systems is explored. Following 

different degradation dependencies and models are evaluated. Finally, the management of 

restoration is evaluated. The chapter concludes with a summary. 

5.1 Multi-component systems in maintenance theory 
Maintenance optimization involves developing and analysing mathematical models to 

improve or optimise maintenance policies (de Jonge and Scarf, 2020). In their review paper, 

de Jong and Scarf (2020) referred to single- and multi-component systems. Zhang et al. 

(2016, p. 159) defined a multi-component system as a structural system consisting of a 

certain number of components of specific form, a container and the supporting structure that 

interconnects the components and the container for its integrity. The components can be 

connected in series, parallel, or as a combination of both. The components themselves can be 

complex structures or single mass-produced components (Birnbaum et al., 1961). Wang and 

Chen (2016) refer to multi-component systems as complex systems consisting of several 

individual assets, e.g., a group of pumps as part of a common system or an engineered object 

(EO) consisting of more than one component, e.g., a pump itself. 

Chapter 4.2 described the SWRO system consisting of vessels, each with eight identical 

membrane elements in series. A vessel corresponds precisely with the definition of a multi-
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component system as defined by Zhang et al. (2016). As Figure 4-3 shows, a spiral-wound 

element construction is a complex structure in itself. However, in this research, a membrane 

element is regarded as a single component since it cannot be taken apart and re-assembled. 

On the other hand, the train is a multi-component system of 128 vessels interconnected in 

parallel. Finally, the RO plant design is configured as a common pressure centre, meaning 

that the inlet and outlets of the trains are connected to common headers. Therefore, while the 

individual trains are in operation, the RO system is a multi-component system of various 

trains in parallel. The RO system itself is part of a broader multi-component system, as 

shown in Figure 5-1. This research concentrates on the RO train. Production-wise, vessels are 

in parallel, but reliability-wise, they are in series.  A failure of any vessel component results 

in the train's complete failure. It is unlikely that a failure of this type results from biofouling, 

except if the train is operated at a pressure differential above 3.5 bar.  

 
Figure 5-1. Multiple stacks (trains) of vessels in parallel with multiple membrane elements in series.  

This chapter first concentrates on the basic multi-component system, the pressure vessel 

loaded with multiple membrane elements in series. Later on, the RO train as a multi-

component unit and the RO system acting as a multi-component system is addressed. For 

now, we can state that it is essential to balance the wear of the vessels equally due to the 
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hydraulic process. Vessels with less wear have a higher permeate flux and therefore work 

harder. Due to the increased hydraulic load, the components of these vessels deteriorate 

faster, whereafter some time, an equilibrium of wear is reached between the vessels.  

So, from the perspective of maintenance modelling theory, we can classify an RO vessel 

as a novel multi-component system. The fouling of an RO train, observed mainly as an 

increase of observed NPD (section 4.3 and 4.4), is approached as the wear of the 

components.  

The maintenance literature distinguishes between three types of dependence. These are 

economic dependence, structural dependence and stochastic dependence (Dekker et al., 1997; 

Vu et al., 2015; Shi and Zeng, 2016; Olde Keizer et al., 2017; de Jonge and Scarf, 2020). In 

the early days, models for multi-component maintenance only considered one category of 

dependence since combining all categories would make the model too complicated (Dekker 

et al., 1997). Shi and Zeng (2016) argue that the components have both structurally and 

stochastic interdependence in complex largescale systems. Therefore, a model should not be 

limited to only a single dependence. This research considers all three categories of 

dependence, with the main emphasis on stochastic dependence. 

The complexity is simplified by classifying the dependencies into two separate groups. In 

this research, the dependencies are classified as affecting deterioration and affecting 

maintenance. Camci (2009) refers to functional dependence instead of structural dependence. 

He describes functional dependence as causing other system components to stop due to the 

failure or maintenance of one of the components. In the presented RO vessel as a multi-

component system, each component has a functional dependence from the other components. 

A component cannot be taken offline individually, and a failure of one component will result 

in the need to take offline the complete system. However, this thesis will not differentiate 

between functional and structural dependence since the structure does not allow a single 

component to be taken offline separately. 

5.2 Dependencies affecting degeneration 
Stochastic processes are generalizations of families of random variables. The 

interpretation of a stochastic process usually involves modelling a random characteristic of a 

system over time. Every stochastic process can be expressed as a function of the two 

variables, time (t) and the random variable κ ( )tX κ∴  (Žitković, 2010).  

Dependencies affecting degeneration are stochastic (Dekker et al., 1997; Gorjian et al., 

2010). Jolly and Wreathall (1977), cited by Carfagno and Gibson (1980), distinguish between 
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internal or intrinsic causes and external or extrinsic causes of wear dependencies. Intrinsic 

wear dependence means that the state of a component affects the wear rate of other 

components (Dekker et al., 1997). If more than one dependency affects the degradation, we 

speak of multivariate dependencies. 

Common mode degradation can be defined as dependencies due to a common mechanism, 

applying to both extrinsic and intrinsic wear dependencies. This type of failure is referred to 

as gradual failure, soft or degradation failure. An EO fails when the degradation reaches a 

specific failure threshold (Gorjian et al., 2010). The latter is called soft failure since the EO 

often can still be operated (Balali et al., 2020).  The maintenance interventions in this case 

study intents to prevent reaching this threshold. 

There is a distinct difference between common mode failures and random failures. 

Random failures have an utterly random probability. The failure cannot be detected by 

condition monitoring or measuring age. The EO fails without prior indication and is termed 

sudden or hard failure (Gorjian et al., 2010). The latter often apply to the classic “bathtub” 

curve of failure change over time. Unlike common-mode degradation, the classic bathtub 

curve does not consider extrinsic and intrinsic wear dependencies (Carfagno and Gibson, 

1980).  

As with age-related failure processes, the degradation of membrane elements in a vessel is 

both random and deterministic to some extent. If degradation was limited to a single RO 

train, in this case, we could define the wear process as random. However, since it co-occurs at 

all 14 trains, we speak of common-mode degradation. 

According to Carfagno and Gibson (1980), dependencies of wear, common to 

components, can originate from several types of shared similarities. Carfagno and Gibson 

proposed the following classification of common failure mode types: 

i. Conceptual or engineering design error or inadequacy. 

ii. Manufacturing error; shortcoming or poor practice. 

iii. Testing or qualification error or omission. 

iv. Installation error, omission or lack of validation of proper installation.  

v. In-service ageing or deterioration due to environmental or operational stress.  

vi. Operational misuse. 

In the case of this research, stochastic dependencies of wear of a component involve both 

extrinsic and intrinsic dependencies belonging to the class v. Besides the wear dependence, 

the effect of wear is further dependent on the structural dependence from a performance point 

of view. The latter was first introduced by Olde Keizer et al. (2017) and involved the 
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configuration of the components when the performance is not just the sum of wear of the 

individual units.  

In the case of an RO pressure vessel, the vessel's performance is dependent on the position 

of the component with specific wear. The vessel's performance is worse if a component with 

high wear is positioned in the first socket rather than the last socket. The latter is an example 

of structural dependence from a performance point of view. In chapter 6.1, the structural 

performance dependence of components in an RO vessel is addressed from a hydraulic 

perspective. 

However, although the effects of wear are improved in the short term by moving the 

component with high wear to the tail, the latter increases the intrinsic wear dependence.  The 

intrinsic wear dependence is addressed in section 5.1.3. 

5.2.1 Extrinsic and intrinsic wear 
Olde Keizer et al. (2017) reviewed publications on stochastic dependencies. They 

classified stochastic dependencies as failure-induced damage, load-sharing and common-

mode deterioration. Failure-induced damage involves one-time damage of a component if one 

or more other components fail. An example given was when a propeller of an aeroplane 

comes off and pierce the fuselage. Failure-induced damage in an SWRO train would occur 

following a sudden rapid depressurization due to an endcap blown off or the common header 

dislocating. Although this does happen in practice, this is not part of membrane degradation 

due to biofouling. 

Load sharing involves the degradation of components, having to work harder due to 

failure or degradation of another component. The latter is defined as intrinsic wear, addressed 

under section 5.1.3 Rate-state interactions. Finally, common-mode or external shared 

deterioration is the dominant cause of degeneration due to biofouling in RO membranes. 

Wear dependencies that result from external shared or common causes are referred to as 

extrinsic dependencies. Extrinsic dependencies originate from shared physical or 

environmental stresses (Zhou et al., 2020). Although extrinsic dependencies like oxidants can 

result in chemical degeneration of seawater RO membranes (Sandin et al., 2012), such 

dependencies are strongly related to operational decisions. On the other hand, physical stress, 

like telescoping, can be a direct result of environmental stress (Bristow et al., 2020). This 

research concentrate on extrinsic environmental dependencies, i.e., biofouling amplified by 

seasonal algae blooms. As has been highlighted in the literature reviewed in chapter 4, these 

extrinsic dependencies are difficult to mitigate.  
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Observing the degradation during the first 500 days after the plant was taken into 

operation will give the impression that the degradation is non-monotonic (Figure 5-2). 

However, when a train is taken offline for some days, the membranes are flushed with 

permeate, i.e., low salinity. The reason to perform a low salinity flushing is to replace 

seawater with permeate water to preserve the membranes and keep them hydrated. Low 

salinity flushing can be considered a hydraulic physical cleaning method whereby flushing 

water through the membranes in a forward direction remove unintentionally part of the 

accumulated biomass and organic foulants. The partially removed biomass provides short-

term restoration of the lead element. However, it can cause further biofouling as the removed 

biomass are pushed downstream, where they form nearly instantly new biofilms (Bucs et al., 

2018).  

 
Figure 5-2. Train 8: Observation of limited restoration following an interruption of operation due to 

low salinity flushing after stopping the train. 

Thus, the small restorations following a low salinity flushing can be considered a 

mechanical cleaning, whereby parts of the matured biofilm can be sheared off from the most 

fouled elements. However, low salinity flushing is intended to preserve the elements and is 

not a conscious maintenance intervention. Further, as described earlier, the effects of 

restoration are short-lived and result in spreading the biofilm to the elements downstream. 

The deterioration is a stochastic process with independent non-negative increments, also 

known as a gamma process (van Noortwijk, 2009; Balali et al., 2020). 

According to Ben-Daya et al. (2016), there are two categories of failure mechanisms: 

overstress and wear-out. Overstress means that the stress which is subjected to an engineered 

object (EO) exceeds its maximum strength. If the stress is below the strength threshold, no 

permanent damage occurs. In case of wear-out, stress causes damage that usually irreversible 
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cumulates until the EO is weakened to a threshold above its endurance limit and subsequently 

breaks. Typical examples of wear-out stress are material loss due to friction and corrosion. As 

mentioned earlier, these are typically gamma processes. Examples are the erosion of the 

height of dikes due to crest-level decline, the thickness of steel coating and car brake pads 

(van Noortwijk, 2009). 

This research adds an additional degradation category, the buildup of foulants as an 

obstruction. The latter is a known phenomenon in pipes and heat exchangers. Biological 

growth, mineral scaling or heavy organic precipitation reduces the effective diameter limiting 

flow and sometimes blocks the pipe or tubes and shells in case of a heat exchanger 

(Mansoori, 2001; Hoang et al., 2007; Nebot et al., 2007). 

In the case of this research, the space to transport seawater along the high salinity side of 

the membrane is blocked due to biofilm growth at the membrane surface and the feedwater 

spacers (see Figure 5-3 and Figure 4-3 spiral-wound element construction). As a result, the 

hydraulic pressure loss increases. The individual components do not necessarily reach the 

point of failure, even after severe fouling. However, when cascaded, the sum of the 

differential pressure exceeding the threshold could result in unrecoverable failure of the 

individual components. So, in this case, failure occurs due to stress but not due to applying 

additional force. Further, the sum of the differential pressure depends on the position of the 

components. Section 6.1 will provide the theoretical reasoning of the latter. 

 
Figure 5-3. (a) Three-dimensional Optical Coherence Tomography image with biomass (brown colour), 
feed spacer, membrane. (b) Three-dimensional simulation of particle deposition on top (red) and bottom 
(black) membranes in a spacer-filled feed channel. Source Bucs et al. (2018). 



@00419918  Fredericus I. M. (Frits) van Rooij 

87 

The literature on biofouling accelerated by algae blooms, reviewed in section 4.2, 

describes that the surface is conditioned by organic fouling. This surface conditioning only 

occurs in the initial state when the element is new. Following an algal bloom, the organic 

macromolecules from AOM and TEP amplify these conditions. After biofilm-producing 

bacteria have colonized the surface, the membrane surface is irreversibly changed. Organic 

macromolecules no longer condition the surface of the membrane elements but now provide 

nutrients for bacteria.  

Since the initial stage of surface conditioning of a new element is difficult to quantify and 

in the case of increased AOM and TEP concentration of the feedwater during increased algae 

abundance, this process is assumed to be instant. This research acknowledges that surface 

conditioning is a necessary first step, the surface conditioning is also inevitable. The latter is 

therefore not taken into account in the degradation model. 

Thus, the extrinsic or common-cause wear dependency in this research is the feed water 

condition, supplying nutrients. The extrinsic wear dependency is specifically the 

concentration of NOM in general and the organic macromolecules from AOM and TEP. 

Therefore, the degeneration continues to occur post-bloom.  

The changes in nutrients are random and can be defined as a Markov process (Kim et al., 

2020). Markov processes are widely used in engineering, science, and business modelling. 

They are used to model systems that have limited memory of their past (Ibe, 2014). The 

annual nutrient load, as observed over the previous five years (see chapter 6, section 6.2.3), 

follow a reoccurring pattern with a typical Weibull right-skewed distribution. As described in 

chapter 4.4.3, the extrinsic dependence is seasonally influenced due to algae blooms. The 

annual start of an algae bloom, intensity and duration can be considered a Weibull 

distribution. Section 6.2.3 provides the reasoning for the Weibull characteristic of the 

extrinsic dependence data. 

Biofouling causing degeneration of an EO can have various forms, from bacterial-

influenced corrosion in the form of stainless steel pitting (Brenna et al., 2014; Adumene et 

al., 2020) to barnacle settlement (Ip et al., 2021). Figure 5-4 is an illustration of the latter. 

Most models involving degradation due to ageing or, in particular, degradation due to 

biofouling are based on a Markov process, applying Markov chains, Poisson, Petri nets and 

Bayesian networks (Carfagno and Gibson, 1980; Adumene et al., 2020). Despite the 

randomness of the feedwater quality, and although biological processes, like biofilm growth, 

are typically random to a degree, the wear process is gradual and monotone, following a 

gamma process (van Noortwijk, 2009). Thus, this research considers the extrinsic dependence 
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a stochastic continuous-time Markov process, but the associated wear, a gamma process, is 

modelled deterministically. 

After the wear increase model has been determined, we can then derive the feedwater 

quality parameter from the history between maintenance interventions, i.e., cleaning activities 

and permutations of the components. Statistical methods, i.e., Weibull distribution or 

bootstrapping, can then be applied to project future feedwater conditions. 

 

   
Figure 5-4. Biofouling at a 15.5 thousand m3/h submersible Brine dilution pump at CDP after one year 
of operation. Left: Pump body covered by mussels and barnacles. Middle: Pump discharge covered with 
barnacles. Right: Close-up of attached barnacles. 

5.2.2 A multi-component system with non-identical components 
Multi-component systems with non-identical components consist of a system with several 

assets or an asset constructed out of unidentical components. An example of the first category 

is the assembly platform Iung et al. (2016) referred to, consisting of a conveyor, a pallet 

loading station, assembly stations, and a pallet unloading station. The assembly workstations 

consisted of pneumatic jacks and a pneumatic suction cup. Laggoune et al. (2010) give an 

example of the second category, a centrifugal compressor. The multi-stage compressor in that 

research is driven by a steam turbine consisting of a stator, i.e., diaphragms, landings, 

tightness subsystem and the rotor, consisting of components such as shaft, wheels, 

equilibrium piston. An example of multi-component systems with identical components has 

been presented by Scarf and Cavalcante (2010). Scarf and Cavalcante considered an 8-

identical component series system consisting of bearings while disregarding other non-
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identical components. Assaf et al. (2018) considered a lab bench gearbox consisting of three 

identical gears. 

This research considers a multi-component system of an 8-component series system, a RO 

pressure vessel with eight elements. When the system is new, all components are new. Thus, 

the vessel can initially be considered a multi-component system with identical components. 

Scarf and Cavalcante did not consider interactions between components and considered the 

components' wear to be stochastic. Although systems consisting of a known number of 

identical components are standard in the industry, military, and medical sectors, these 

systems often operate separately, according to Zhang and Zeng (2017). Thus, there is no 

stochastic dependence among the components in those cases. 

The presented multi-component system in this thesis differs from the systems referred to 

by Zhang and Zeng (2017) and that presented by Scarf and Cavalcante. The presented multi-

component system in this research comprises cascaded components in vessels. The vessels 

are further interconnected in parallel in stacks (a train). Therefore, in the case of this multi-

component system, interactions between components exist. The interactions between 

components are addressed in the next section, 5.2.3 Rate-state interactions.  

 
Figure 5-5. Pressure vessels connected in parallel in CDP. Courtesy WaterWorld 2018. 

Biofouling tends to degrade membranes at the lead side faster than membranes at the tail 

side by the process of attachment, growth and disperse of the bacteria (see section 4.2). Thus, 
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the wear rate varies with position in a vessel. Although a new vessel is a multi-component 

system with identical components, the vessel can be considered a multi-component system 

with non-identical components (Nicolai and Dekker, 2008) as soon it is taken into operation. 

The multi-component system of this research differs further from that referred to in the 

maintenance modelling research. The RO vessel is not a k-out-of-n system with non-identical 

components (Sharma and Govindaraju, 2020). The components of the RO vessel does not 

have a discrete good-fail state. The wear increase of the components is continuous. Although 

the state of the multi-component system can be impaired, therefore, failed, that of the 

individual components does not necessarily have to fail. A train, impaired due to excessive 

PD due to significant wear of the lead component of the vessels, can be made operational by 

moving the most severe deteriorated components to the vessel's tail and pushing the other 

elements to the front. Permutations of bad components at a critical location to a less critical 

location at a multi-component system were proposed by Najem and Coolen (2018). 

5.2.3 Rate-state interactions 
The rate of wear also depends on intrinsic wear conditions. The intrinsic wear of a 

membrane element depends on the state (level of wear) of the others, particularly the trailing 

elements. This dependence is because clean elements tend to have a higher flux when trailed 

by fouled elements. Colloidal fouling of RO membranes is a function of permeate flux and 

the extrinsic water quality. Under deteriorating feedwater conditions, higher flux accelerates 

fouling more than under low flux (Singh, 2014).  

When replacing the lead element, the new element is therefore always inserted further 

down in the direction of the tail. Thus, there is stochastic dependence between components in 

the system in which the rate of wear of one depends on the state of the others. The 

quantification of interactions of components in the degradation of the multi-element system is 

the so-called rate-state wear-dependence (Bian and Gebraeel, 2014; Iung et al., 2016; Assaf et 

al., 2018; Do et al., 2019). Rate-state interaction parameters are estimated using actual data 

on vessel performance. 

A further novel aspect of the multi-component system is that the individual components' 

degradation states (wear) are hidden (unobservable). In most systems involving condition-

based maintenance (CBM), each component has its dedicated sensors, and the extrinsic and 

the component health can be individually monitored from the sensor data (Camci, 2009). In 

an RO vessel, the components are hidden, and only the combined health state of the multi-

component system can be observed. 
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Nonetheless, the model presented in chapter 6 can estimate the individual components' 

deterioration state and quantify the effect (on performance) of components replacements and 

swaps. The details of these innovations are further presented in chapter 6. Although this 

research focuses on biofouling, the presented model is not limited to this and potentially can 

be used in cases of mineral scaling.  

Commonly in CBM, maintenance performance optimization involves the prognostics of 

the Remaining Useful Life (RUL) before undertaking the maintenance (Camci, 2009). Thus, 

in RO membrane maintenance practices, the standard is to perform maintenance if the 

normalized RO performance parameters have passed the recommended threshold (see chapter 

2.2 Establishing the baseline). The difference in the presented research is that this research 

aims not to project when to undertake the following maintenance but what the cumulation of 

maintenance practices, i.e., which policy, will be the most effective.   

Shi and Zeng (2016) presented an RUL model by applying statistical analysis to condition 

data. Their motivation was that a purely statistical analysis approach fitting the available data 

under probabilistic and mathematical properties would not require relying on physics or 

engineering principles. However, as mentioned earlier, the sensor data only provides an 

overall presentation of the degradation in this case. The individual degradation of the 

components can not directly be interpreted from the sensor data. Therefore the presented 

model in this research does require applied physics and engineering know-how. 

5.2.4 Degradation models 
Degradation modelling is the core activity in reliability engineering. Many degradation 

models have been developed to predict the current state of degradation of an EO. Since 

degradation is a kind of stochastic phenomenon, this process can be modelled in multiple 

ways. Commonly, an EO degrades due to ageing or specific degradation dependencies, also 

termed covariates. In normal degradation models, a distinction is made between models that 

involve and do not involve stress. Degradation processes that do not involve stress are 

entirely random. A popular method to model random degradation involves the Wiener 

Process model. A Wiener process model is a stochastic process that randomly projects the 

degradation based on shift and drift parameters of a Brownian motion (Balali et al., 2020).  

This research refers to stress factors as degradation dependencies. Previously, extrinsic 

and intrinsic degradation dependencies were defined. Therefore the presented model in this 

research involves stress factors  (Gorjian et al., 2010). The dependencies affecting the EO's 

degradation addressed in this research are covered in the above sections.   
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Gorjian et al. (2010) classified degradation models in various groups. The classification is 

based on the prognostic approaches of degradation. The four main groups are experienced-

based, model-based, knowledge-based and data-driven approaches. From these groups, 

model-based and data-driven approaches involve performance data for reliability assessment. 

The simplest form of fault prognosis is experienced-based, requiring less detailed 

information than other approaches. The Weibull distribution is the most popular approach 

among the traditional experienced-based models. These models only require historical repair 

and failure data. 

The traditional knowledge-based approach is based on human specialism and is, therefore, 

qualitative. A knowledge-based approach can be used as a prognostics level in combining 

other quantitative approaches, like data-driven approaches. The latter is the approach for 

condition-based maintenance of centrifugal pumps applied by the maintenance practitioner in 

this case study (see also Chapter 9.2). However, knowledge-based approaches are automated 

using expert and fuzzy logic systems. Like expert systems, the physical model approach in 

this research is limited to the current knowledge base of degradation. Nevertheless, unlike 

expert systems, the presented model is not the primary automation of human expertise. 

Recently, expert systems have undergone increased competition from artificial intelligence 

(AI). AI is a data-driven approach based on learning techniques involving pattern recognition. 

Typically AI uses Artificial Neural networks (ANN) and Hidden Markov Models (HMM) 

(Gorjian et al., 2010). The arrival of the Industrial Internet of things (IIoT) has increased data 

availability. Increased data availability is one of the conditions that have made AI possible  

(Balali et al., 2020; Zonta et al., 2020). 

Model-based approaches use mathematical modelling based on physical laws or statistical 

methods. A typical example of a physics-based model is the initiation and propagation of 

cracks and other anomalies in an aircraft. Statistical models are developed from collected 

input and output data, and then a Bayesian posterior Probability density function (PDF) is 

applied (Gorjian et al., 2010). 

Most data collected by conventional DCS and PLCs are sensor data, such as pressures, 

flows and vibrations. IIoT provides additional data. However, nor sensor data nor data from 

IIoT provides direct information on the failure. As long as the failure mechanism is 

understood, the underlying degradation process can be visualised before the actual failure 

occurs (Balali et al., 2020). Thus, this data needs to be interpreted. Interpretation can be made 

by a mathematical model derived from expertise knowledge or by recognising patterns in the 

case of AI. 
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The model presented in this research is data-driven in combination with engineering 

expertise. The mathematical model is based on engineering expertise, while the parameters 

for the model are data-driven. The advantage of this approach against AI is that the latter 

would need a much larger set of data for training. Nevertheless, in cases where the physics of 

a system are well known, mathematical equations can model the degradation (Balali et al., 

2020). 

This research concentrate on a biochemical-physical model-based approach. As illustrated 

in this chapter, engineering know-how of the specific degradation processes is used to 

formulate mathematical equations describing the extrinsic degeneration process due to 

biofouling with the intrinsic rate-state dependence. Thus, a deterioration function is 

developed and applied in this research instead of a model based on a purely stochastic 

process (van Noortwijk, 2009). 

5.2.5 Economic dependence from operational performance  
Similar to structural dependence from technical and operational performance, we also can 

consider economic dependence from operational performance. According to Bereschenko et 

al. (2010), Matin et al. (2011), Jiang et al. (2017) and Jafari et al. (2021), membrane fouling 

increases specific power consumption (SPC). In this case study, an investigation has been 

conducted to see if increased NPD of the combined trains results in increased SPC. In the 

study by Jafari et al. (2021), increased SPC was the second fouling cost factor. Although 

between January 2017 and September 2019, a substantial variation in the average NPD can 

be observed, the SPC is almost constant, as shown in Figure 5-6.  

 
Figure 5-6. Average NPD vs the SPC (intake and product pumps excluded). 

The small fluctuations in SPC do not correlate with the significant changes of NPD due to the 

wear and maintenance restoration activities. The increase in NPD is insignificant for power 

consumption. No correlation between differential pressure and specific power consumption 
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can be noted. Jafari et al. (2021) investigated brackish water RO, where increased NPD has a 

higher impact in relation to the feed pressure. The feed pressure at brackish water RO is 

approximately a tenth of that of SWRO, despite the differential pressures being equal. 

Adding the SPC costs due to the NPD increase would slightly increase the model complexity. 

This cost is an operational cost increase due to wear, and the reduction should be subtracted 

from the maintenance cost. The latter requires data to model the relationship, which would 

benefit brackish water RO. In SWRO, however, there is no incentive for restoration for the 

purpose of lowering power consumption.  Thus, in the presented model, the impact on SPC is 

ignored. 

5.3 Management of restoration 
Turning now to the management of restoration, the state of the vessel can be improved by 

various methods. Dependencies affecting maintenance are economic dependencies and 

structural dependencies from a technical point of view (Olde Keizer et al., 2017). Typical 

economic dependencies are fixed setup costs to perform maintenance (Scarf and Deara, 

2003). This research refers to structural dependencies from a technical point of view when 

other components have to be removed before the component being maintained can be 

accessed. 

The improvement of the state of a vessel is hereby called restoration. Restorations are 

typically partial restorations (Pham and Wang, 1996). A vessel can be partially restored by 

various methods.  

(i) Cleaning is maintenance whereby biomass is partially removed from all elements 

(without removing an element from a vessel). For example, two cleaning methods were 

used for the trains in Figure 4-7. The first (C1) is a standard cleaning method that uses 

high pH cleaning followed by low pH cleaning. The second (C2) first soaks the 

elements with sodium bisulphate and then follows C1 (see also section 4.4.2). 

(ii) Cascading is a permutation that involves a combination of partial replacement and 

component reallocation (Fu et al., 2019) that focuses on the replacement of elements 

with the most accumulated biomass. Here, typically, the membrane element in the 

leading socket (S1) is replaced by the element in the second socket (S2), that in S2 by 

that in S3, and so on, and a new element is placed in S8. In general, r elements can be 

replaced, and 8-r cascaded. 
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(iii) Swapping is another permutation that involves component-reallocation intervention 

that partially restores a vessel. Elements in leading sockets are systematically swapped 

with elements in trailing sockets, and no new elements are used.  

5.3.1 Structural dependence 
Structural dependence from a technical perspective entails the physical, static relationship 

between different components. Structural dependence implies that replacing a component 

requires removing or replacing other components (Dekker et al., 1997; Nicolai and Dekker, 

2008; Olde Keizer et al., 2017; de Jong and Scarf, 2020). 

Nguyen et al. (2015) present a model involving technical, structural dependence based on 

a fictive complex Reliability block diagram of a 14-component system. Zhou et al. (2015) 

present a fictive multi-component machine tool model. Do et al. (2019) demonstrate a lab 

experiment of a gearbox system consisting of two interacting gears. The presented case study 

is unique since it involves an actual production facility with both technical-structured 

dependence and structurally dependence from a performance view (see Figure 5-1). 

 
Figure 5-7. Membrane permutation. The first element is discharged, and the new element is inserted at 

socket 4. Elements 2, 3 and 4 need to be removed before the new element can be inserted. 

With membrane interventions, elements are always inserted from the lead to the tail side 

of the vessel to prevent displacement or damage to the O-rings of the element permeate 

interconnectors. So, when an element in Sn is removed, elements from S1 to Sn-1 must be 

removed. The latter is structural dependence seen from a technical point of view (Geng et al., 

2015; Dao and Zuo, 2017), while the positional dependence, discussed previously, is 

structural-performance dependence (Olde Keizer et al., 2017).  

Figure 5-8 shows all components of a RO vessel. Each element contains a brine seal at the 

front end of the element in the form of a flexible o-ring. The function of this brine seal is to 

prevent feedwater from bypassing the element. Shortcircuiting of the feedwater means less 

water flows through the element, resulting in a high recovery per element. The permeate 

tubes of the elements are interconnected through a permeate connector, whereby the permeate 

tubes of all the elements form a common permeate tube. The permeate tubes of the feed of 

the first element and the rear of the last element are connected to the vessel permeate outlets 
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utilizing end adapters. The head or end cap seals the vessel.  The end caps are kept in place 

with a retaining ring. A thrust cone is installed at the rear of the vessel to absorb the pressure 

(Wilf, 2015).  

 
Figure 5-8. Components of a RO vessel. Source: Wilf (2015) 

Vessel opening is required before the elements can be accessed for permutations. Due to 

corrosion and salt settlement at the end cap, it is sometimes challenging to remove it. 

Permutations are equally performed at each vessel of the train. Therefore 128 end-caps need 

to be removed before the actual membrane permutations occur. If only the first four elements 

need to be accessed, only the front of the vessel needs to be opened. However, if cascading 

involves all the elements, the vessel needs to be opened on both sides. Due to a lower 

frequency of opening of the rear end-caps, combined with higher levels of corrosion and 

settlements, the opening of the vessel's rear is the most challenging. 

Membrane permutation requires expertise, e.g., to prevent O-rings slippage and shimming 

to prevent movement of the elements during vessel pressurisation. However, due to the level 

of expertise by the maintenance crew, the impact of disassembly and assembly operations on 

the deterioration of the components, as considered by Dinh et al. (2020), can be ignored. 

5.3.2 Economic dependence 
Permutations are membrane interventions with a fixed set-up cost (vessel opening). These 

fixed setups cost double when permutations involve elements at the front and tail sides. It is 

often economical to perform maintenance in groups, so set-up costs need to be considered 

only once (Scarf and Deara, 2003). It is considered unpractically not to perform all the train 

vessels simultaneously in this case. 

Nevertheless, economic dependence might be less noticeable when scheduling 

permutations for all trains. However, fixed set-up costs can be minimised when permutations 

of trains are planned in a continuous sequence. If an external workforce needs to be hired and 
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trained (Olde Keizer et al., 2017), as happens in this case study, the training only has to be 

performed once. Also, as the workforce gets more experienced after the first few trains, this 

would speed up the job and reduce the overall maintenance time.  Multiple trains involving 

multiple vessels have all the same components. Maintenance procedures, preparations, 

techniques and maintenance equipment are all identical and need to be prepared only once. 

Further, spare parts inventory can be procured in bulk (Zhang and Zeng, 2017), reducing the 

shipping cost and can be an incentive for lower cost of the parts. So, the RO plant as a system 

exhibits economic dependence. 

Economic dependence can be negative or positive (Vu et al., 2015; Olde Keizer et al., 

2017). Performing membrane maintenance of all the vessels simultaneously at a train, 

whereby the interventions occur in one sequence train after train, is considered positive 

economic dependence. The same hired workforce can continue to do the job without 

replacing each time the crew and train them all over again. However, performing the 

maintenance simultaneously at all trains would result in negative economic dependence due 

to production losses. No economic losses result from taking one train offline when 

permutations are planned during the winter months when the demand for production is lower.  

5.3.3 Block replacement  
Scarf and Deara (2003) considered block replacement policies for a two-component 

system, having the components in series. Their block replacement policy is considered a 

perfect restoration or complete restoration. Complete restoration, in theory, is the replacement 

of all n elements in a vessel by new elements. The latter should only be considered if this 

results in an economic benefit or is dictated by human safety. 

However, in the case of an RO plant, complete restoration is prohibitively expensive since 

it cannot be limited to a single vessel because the states of the vessels must be balanced. 

When vessels operate parallel with different states, a vessel with minor wear has a higher flux 

than other more worn vessels. It so degenerates faster (see also section 5.2.3 Rate-state 

interactions). This accelerated wear then brings the vessel to the same state as the other 

vessels over time. The latter is also the case when operating trains in parallel in a pressure 

centre configuration (multiple trains sharing the same pump), as is the case at the Carlsbad 

plant. Therefore trains are managed collectively whereby trains are operated and maintained 

to keep both the flux and the state of the trains balanced. 

An example was Train 5. The Train was since mid-2017 out of operation due to a 

construction failure. Failure-induced damage to the membranes occurred following a sudden 
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rapid depressurization after the common header dislocated (see also chapter 5.2.1 first 

paragraph). All membranes were disposed of, and the insurance covered the cost. Following 

the repair of the train at the beginning of 2019, the membranes of Train 10 were shared with 

train 5. Both trains received new membranes for the remaining membranes. Although both 

trains had half new elements, the NPD were similar to that of the other trains due to 

performed permutations. 

Nonetheless, some differentiation between trains is unavoidable. This unavoidability is 

because trains must be taken offline for maintenance or due to demand reduction. Note: when 

a train is offline for several days, it is flushed with permeate water, which has low salinity 

(LS). As described in chapter 5.11, an LS flushing can be considered an ineffective 

mechanical cleaning. Further, biofouling is temporally slowed down since the nutrient-rich 

seawater is displaced with nutrient-poor LS water. As mentioned before, for this reason, the 

effect of LS flushing in the presented model is ignored. 

Thus, the permutations and cleanings are identically for all vessels of a train. However, 

between trains, there are some differences in operation and maintenance. Thus, in the model, 

we assume that the states of vessels in the same train are identical, but trains are not. 

Therefore, the model we build considers a single, idealized vessel in a train. 

Dekker and Smeitink (1991) developed an opportunity-based block replacement applied in 

the Royal Shell's process industry. In contrast to the discrete industry, performing 

maintenance may cause problems in the process industry because the equipment is required 

continuously. Dekker and Smeitink considered thereby the long-term cost. Reflecting this 

methodology on a RO vessel, replacing additional elements than the lead element will not 

make much of a difference in the short term but could increase the length of time between 

permutations and reduce the rate of membrane replacements. On the other hand, it could not 

make much of a difference in the need for maintenance interventions and unnecessarily 

increased membrane replacement rate. The DSS presented in this research allows testing 

these options. Opportunistic replacement of several components per vessel simultaneously 

will be tested against other policies involving only the most deteriorated element. The reader 

should be aware that this research considers a niche industry, and other industries require a 

different approach. 

5.4 Summary 
A simplified description of a reverse-osmosis (RO) vessel is a container that holds 

multiple components, RO membrane elements, in series. Therefore from the perspective of 
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maintenance theory, an RO vessel can be seen as a multi-component system. Although some 

RO plants have a hybrid configuration, whereby a vessel contains a combination of different 

element types, in this case, the vessels contain eight elements of an identical type. 

The maintenance theory framework applied to this research is outlined in the maintenance 

principles and sub-principles in Chapter 1.2. Level 2, Principles of planned maintenance, 

defined that maintenance should use knowledge of both degradation and the effects of 

restoration. Level 4, Principles for the design of a decision support system (DSS), stated that 

a DSS should monitor degradation or the indicators of degradation. This chapter went into 

more detail about the specific degradation process, the indicators of degradation, e.g., 

extrinsic and intrinsic dependencies, and restoration management. 

Multivariate dependencies are affecting the degradation. These dependencies are 

stochastic and are both intrinsic and extrinsic. Although the intrinsic and extrinsic 

dependencies are stochastic, these are common-mode degradations rather than random 

deterioration. Intrinsic dependencies are defined as rate-state interactions, and the degradation 

of the components is due to the load-sharing mechanism. Specifically, in this research, the 

degradation rate of a component depends on the state of wear of the succeeding components. 

The higher the wear of the succeeding components, to higher the load on the preceding 

components. 

The extrinsic dependency is the load of nutrients in the RO feedwater. Algae blooms 

amplify the latter. Although seasonal waves of algae blooms are observed, the fundamental 

dynamic of these planktonic blooms has not yet been established. The change in nutrients can 

be considered a continuous-time Markov process.  

The unique characteristics of this Markov process are also known as a gamma process. 

Both the intrinsic and extrinsic degradation process is monotonic with independent non-

negative increments. Intentional and unintentional maintenance interventions can explain the 

negative increments over the degradation timeline. 

There are different methods to model stochastic degradation processes. Although 

biological processes like biofilm formation are stochastic, deterministic rules are applied to 

determine the degradation. This research has opted for a model-based approach using 

mathematical modelling based on physical laws. The mathematical model is based on 

engineering know-how, while the parameters for the model are data-driven. Statistical 

methods, i.e., Weibull distribution or bootstrapping, are applied to project extrinsic feedwater 

conditions. The intrinsic degradation component has been considered fully deterministic. 
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Although the thesis author acknowledges the stochastic degradation process, this is a 

practical, workable solution. 

There are various restoration methods. A partial restoration can be accomplished by 

removing the biofilm from all elements without removing the elements from the vessel. The 

latter is a clean-in-place (CIP). CIP is a partial restoration since the biofilm can not be 

entirely removed. Another restoration method is a permutation of the elements, whether or 

not discharging the most deteriorated elements and replacing them with new ones. 

Permutations involve both structural and economic dependence. A vessel needs to be 

opened before the elements can be accessed. When relocating an element, at least some of the 

elements need to be removed. Economic dependencies involve fixed set-up costs and 

economics of scale. Economic gain can be achieved by planning the permutation 

interventions in an interruptable continuous sequence of one train after another. Fixed set-up 

cost involving vessel opening is of minor importance for a RO train. In this case, it is 

considered impractical not to perform all the train vessels simultaneously. 

The DSS presented in this research allows testing the efficiency of opportunistic block 

replacement involving multiple renewals of degraded elements. In theory, complete 

restoration replaces all elements with new elements in a vessel and is prohibitively expensive 

since it cannot be limited to a single vessel. The states of the vessels must be balanced to 

prevent unbalanced load sharing. However, some differentiation between trains is 

unavoidable due to the need to take individual trains offline for maintenance and reduced 

demand for water. Thus, the model assumes that the states of vessels in the same train are 

identical, but trains are not. 
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6 Modelling degeneration and restoration of an RO vessel 
The degeneration of the elements in an RO vessel has been presented in Chapter 4. That 

chapter provided the theoretical background of membrane degeneration due to biofouling in 

the presence of seasonal algae blooms. Chapter 5 presented the degradation processes from 

the perspective of maintenance theory. This research opts for a physical, mathematical model 

of degradation and restoration, while statistical methods estimate the model dependencies 

after reviewing the various methods of modelling the degradation. 

In this chapter, the mathematical model is first outlined, involving the manifestation of the 

wear, that is, the pressure distribution over the individual components, the wear increments, 

and the membrane restoration. Then in the second part, the statistical methods are outlined for 

the model parameter estimation. 

6.1 Mathematical model  
Based on the novel multi-component characteristics described in chapter 5,  a 

mathematical model is defined that provides a digital replica of the wear and the repair of the 

cascaded membrane elements in an RO vessel. Conceptually, a vessel has n sockets in series 

and in each socket is placed an element. It is convenient to define sockets and elements 

(components) in this way because the sockets are fixed while elements can be replaced or 

swapped. This conceptual notion of sockets and elements is standard terminology in 

maintenance modelling that was first articulated by Ascher and Feingold (1984).  

The wear state of the element in socket i  is continuous and at time t   is ,i tX , and the 

(unobserved) pressure-differential across the socket i  is ,i tP , 1,...,i n= . The pressure-

differential across the vessel (and hence all parallel vessels in the train), which is observed, is 

given by 

,1
n

t i tiP P
=

=∑ .                                                                     (4)                                                        

where n is the total number of elements in a vessel. When an element is new, the model 

supposes that its state is 0 1X = , and 1iX >=  afterwards. When a vessel is new (all elements 

are new), its pressure-differential is 0P . 

Note that a reference is made to pressure differential (PD) when discussing this conceptual 

model. However, when discussing the reality, a reference shall be made to the normalized 
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pressure differential (NPD), which is the observed pressure differential after the pre-

processing discussed in Chapter 3.3.2. 

6.1.1 Modelling pressure distribution 
The hydraulics of saline flow in an RO vessel (Figure 6-1) implies that the pressure-

differential ,i tP  across socket i  depends both on the state of the element in socket i  and the 

position of the socket. Assuming  

, 0 ,i t i i tP P Xω= , 1,...,i n= ,                                                  (5)   

with iω  a set of known (dimensionless) position constants such that  1 1n
ii ω= =∑ . This set of 

constants will be called the pressure distribution. This models pressure variation across the 

socket.  

The variation iω  arises broadly because the salinity of the feed at each element increases 

along the vessel. In simplified terms, a vessel has a feed/brine (saline) side and a permeate 

(drinking water) side. A vessel is a sequence of elements in series. Seawater is pumped into a 

vessel under high pressure and flows first into element one, then into element two and so on. 

Water passes through a membrane element provided there is a positive net driving pressure 

(NDP), i.e., the pressure on the feed-side (Pfeed in Figure 6-1) is higher than the osmotic 

pressure (Π  in Figure 6-1). The net driving pressure at element 1 is  

1
12feed permeate

PP P− −Π −   and at element i ( 2,...,i n= ) is 

1
1 ,

2
i i

feed j i permeatej
PP P P−

=− − −Π −∑         (6) 

where iΠ  is the osmotic pressure of the feed/brine side minus the osmotic pressure of the 

permeate side of the element.          

 
Figure 6-1: Hydraulic representation of an RO vessel with eight membrane elements. The stronger the 

shade of green, the stronger the salinity. 

Pfeed decreases from one socket to the next. This decrease is the pressure differential across 

a socket and is a function of the state of the membrane element in that socket. The osmotic 
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pressure is a function of the relative salinities of the feed and the permeate, noting that the 

permeate is not perfectly desaline. Thus, the osmotic pressure is that pressure difference 

across a prefect membrane such that water just starts to pass to the permeate side and salt is 

retained on the feed side. The higher the salinity, the higher is the osmotic pressure. As a 

membrane wears, that is, as it becomes biofouled, its pressure-differential increases. Now, 

assuming there is permeate flow, that is, the feed pressure is sufficiently high, as water flows 

on the feed-side from one element to the next. The salinity of the feed-side increases from 

one element to the next so that the osmotic pressure increases from one element to the next, 

and the permeate flow rate through each element correspondingly decreases. The permeate 

flow rate of an element depends on the difference between the feed-side pressure and the 

osmotic pressure.  

Now, consider a vessel with a set of new elements. The saline flow per element can be 

defined as iQ  and the permeate flow per element as iQ . Recovery is defined as 

/i iiR Q Q= .                                                                   (7) 

An assumption is made that the recovery reduces proportionally with the increase of 

salinity of the feed. Furthermore, the salt rejection rate is 99.8% (see chapter 4.1.2). 

Therefore, the salinity of the feed for socket i  relative to socket i-1 increases by the factor  

1isR −  ( )0.998s = , and so 1 1/{1 }i i iR R sR− −= +  and so  

1 1/{1 ( 1) }iR R i sR= + − ,  2,...,i n= .                               (8) 

The system recovery is given by 11 /n
iiR Q Q== ∑ , and since 1 1(1 )i i iQ Q R− −= − , the following 

can be derived  

( ) 11
1

1 12 2

1 1 ( 2)
1 ( 1) 1 ( 2)

in

i j

j s RRR R
i sR j sR= =

 − − − = +  + − + −  
∑ ∏ .      (9)                              

Because R is known (it is continuously monitored at train level), 1R  can be calculated 

numerically using Eq. (9), and the recoveries for each trailing element can then be obtained 

from Eq. (8). In this way, we obtain  

1/ n
i i iiR Rω == ∑ , 1,...,i n= ,  1 1n

ii ω= =∑ .                          (10)                                                                         

These constants represent the variation of PD across the sockets in an as-new vessel and 

correspond with the Darcy-Weisbach head-loss model that describes the relationship between 
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flow and pressure loss (Brkić, 2012): if the flow reduces, the pressure loss reduces.  The 

constants iω  do not depend on the states of the elements. The latter is a reasonable 

assumption for a typical vessel under normal operation, although it would not apply under 

unusual operating conditions, which themselves would jeopardize the integrity of a vessel.  

6.1.2 Modelling wear increase 
Time is for convenience discretised, and the day is used as the unit of time to model the 

evolution of the wear state of the element in socket i over time. The increment of wear in the 

element in socket i  is denoted from day 1t −   to day t  by 

, , , 1i t i t i tX X X −∆ = − .                                                          (11) 

The wear increment of an element is being supposed to be given by  

1
, , 11{ / ( )}ni R

i t t j tj iX X n i γκ α −
−= +∆ = −∑ ,        (12) 

for 1,..., 1i n= − , and  

1
,

n
n t tX κ α −∆ = .                                                               (13) 

where 

• tκ  is the extrinsic (common-cause) wear effect due to the feed water quality on day t. 

Notice that when all elements in the vessel are new (either when the plant is new or 

hypothetically when all the elements in the vessel are replaced), the wear increment in 

the element in socket 1 (S1) is precise tκ  because the other terms are equal to 1.  

• (0,1)α ∈  quantifies the variation in biofouling along a vessel due to preferential 

attachment of bacteria, and hence the growth of biomass, to leading elements, as 

discussed in Section 4.4. This exponential decay is a specific way to model the 

biofouling-position effect with a single unknown parameter. 

• , 11{ / ( )}n R
j tj i X n i γ
−= + −∑ , with γ  as a decay factor, models the wear in an element that 

accrues because the trailing elements, elements further along the vessel, are worn. This 

wear interaction is the multi-component rate-state effect as described in section 5.3. A 

vessel generally works harder when its recovery is higher, and so R  here represents the 

operational extrinsic wear component. When the elements in trailing sockets are all 

new, this term is null. The latter is justified because the effect of varying recovery is 
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negligible when the vessel is as-new. Notice that when the system is not operating, 

0R = , and so that 1
,

i
i t tX κ α −∆ = . 

When a train is offline, it is flushed daily with seawater (to prevent hydrating the 

elements). In this case, there is neither rate-state dependent wear nor operational extrinsic 

wear because the recovery is zero. Thus, the term , 11{ / ( )}n R
j tj i X n i γ
−= + −∑  is unity when the 

train is offline, and the wear increment is limited to  1
,

n
n t tX κ α −∆ = . 

Returning to the feed water quality effect, tκ , there are various ways to model the 

development of this parameter over time. The simplest supposes that feed water is either 

good ( 1tκ κ= ) or bad (algal bloom is present) ( 2tκ κ= ). After the finish of an algae bloom, 

we observe that the wear rate does not decrease abruptly but slowly decays. This slow decay 

is exponential due to the initial high availability of nutrients following an algal bloom and the 

exponential decline at the end (see section 4.2.3). So, when applying a Weibull distribution, 

the following is assumed. Before an algal bloom 1tκ κ=  and after an algal bloom, 

2 1( ) ,t e βτκ κ κ −= −                    (14) 

where β  is the decay factor and τ  the days since the finish of the algae bloom. In the case of 

bootstrapping, tκ  can be sampled with replacement from the historical dataset 

6.1.3 Modelling membrane restoration  
When the element in socket i  is replaced by a new element at time t , it is supposed that 

,
1,

i t
X + =  where t+  denotes the time immediately following the restoration. During any 

restoration (which typically takes one to two weeks to complete for a train), the vessel is not 

operating, and element states are otherwise unchanged.   

When the element in socket i  is swapped with the element in socket j  at time t , then 

immediately following restoration we have  

, , , ,,i t j t j t i tX X X X+ − + −= = ,                             (15) 

where t−  denotes the time of operation immediately prior to the restoration. In this way, the 

model captures the state of an element in its socket. 

Cleaning can be modelled in a number of ways. The thesis author supposes that the 

cleaning effect is proportional to the wear so that an element in a poorer state is cleaned to a 
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greater absolute extent. Thus, if a vessel is cleaned at time t , then the state of the cleaned 

element in socket i  is given by 
, , ,

(1 )( 1) 1 (1 )
i t i t i t

X X Xδ δ δ+ − −= − − + = − + ,            (16) 

and the NPD across the vessel (overall) immediately following cleaning is  

0(1 )
t t

P P Pδ δ+ −= − +                                                             (17) 

Thus, the cleaning effect is proportional to the excess NPD above 0P . Here δ  is the 

cleaning effect parameter. If  0δ = , 
t t

P P+ −= , so cleaning has no effect. If 1δ = , 0t
P P+ = , so 

cleaning is as good as a replacement of all elements in the vessel (like new). An absolute 

cleaning effect would be unnatural because, potentially, this could imply 0t
P P+ < . 

6.2 Parameter estimation   
Now that the mathematical model has been determined, the parameters must be estimated 

based on its goodness of fit, i.e., finding parameter values that best fit the model output with 

the observed data. Generally, there are two methods to find the goodness of fit, least-squares 

estimation (LSE) and maximum likelihood estimation (MLE). LSE is a popular choice in 

linear regression. The proportion of variance can be expressed in r2. Unlike MLE, LSE 

requires minimal distributional assumptions (Myung, 2003). However, the parameters of the 

model presented does not behave linearly. 

The earlier presented degeneration model is continuous, and a first conservative estimate 

would assume a normal distribution, also called a Gaussian distribution. Gaussian 

distributions are the most well-known engineering, statistics, and physics assumptions. The 

Gaussian distribution can be applied in most situations due to the Central limit theorem 

(CLT), a probability theorem (Park et al., 2013). According to CLT, the sampling distribution 

of the sum or mean of size n is approximately normal for large samples of n observations 

from a population with finite mean and variance (Anderson, 2010). A Gaussian probability 

distribution can be applied to estimate unknown deterministic or random parameters (Park et 

al., 2013).  

The presented mathematical models involve the following parameters: 

• The variation of PD across the sockets, parameter ω, is directly derived from the 

recovery R by eq. (10). No other estimations are required. 

• Biomass distribution parameter α. 

• The severity parameter κ of the extrinsic feedwater quality. 

• The decay of the severity of κ following the end of an Algae bloom, parameter β. 
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• The severity of the rate-state interactions, parameter γ. Note that the severity of the 

rate-state interactions also depends on R. However, the latter is known. 

• The imperfect restoration following a cleaning, restoration parameter δ. There are two 

different cleaning methods, so δ must be estimated separately for C1 and C2. 

Although parameters α, β and γ are stochastic to a degree, they are approached as 

deterministic in this research for practical reasons. The parameters are estimated once but 

separately per train.  Parameters κ and δ are stochastic and variating constantly, both 

parameters following a Gaussian distribution and can be estimated by a probability 

distribution (Park et al., 2013). MLE can, in this case, find the goodness of fit and is widely 

applied in parameter estimation and interference in statistics. The MLE is explained by 

Myung (2003), where also MATLAB codes are given for MLE and LSE. We will return to 

the probability distribution of κ in sections 6.2.3 to 6.2.5 and δ in section 6.2.6. First, the 

deterministic parameters α, β and γ must be estimated. 

6.2.1 Results wear parameters α   
First, the biofouling-wear distribution parameter α (see Eq. 12) is estimated from the 

deterministic parameters. Once α is specified, the particle filter method (Kantas et al., 2015) 

can be utilized to estimate γ and β using a restricted set of values for κt.  

 

Figure 6-2. Inspection of biomass accumulation at the elements by weighting. 
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Before estimating parameter α, we must inspect a random vessel per train, remove all 

elements and identify them in the same order as they were at their last location in the vessel. 

We estimate α per train.  Sampling several or all vessels per train will give a better result, but 

the time required does not allow that. Selecting only one vessel during the start of membrane 

replacement is not time-consuming. The vessel must be opened regardless. So this is a 

reasonable compromise. We can revisit cases like train 8 with a poor fit by repeating the 

inspection during future membrane replacement interventions. Then, the elements are 

weighed individually to determine the element's accumulated biomass. The original weight of 

the elements is required to determine the biomass. However, this information is not available. 

As was mentioned in chapter 4.4.2, a new wet element is expected to weigh between 13.5 and 

16 kg. So, we cannot use the weight of a new element instead. As a compromise, the biomass 

distribution is estimated as follows: 

{ }
{ }

1 2

1 2

min , ,...,
min , ,...,

i n
i

n

W W W W
w

W W W
−

=                   (18) 

where Wi is the element's weight, and wi is the proportional biomass. This assumption 

neglects any biomass build-up at the element with the lowest weight. Therefore an unknown 

factor should have been included. The error in the distribution of the biomass is, for this 

research, neglectable. 

The parameter α is estimated by comparing the modelled wear distribution across 

individual elements with the measured distribution of biomass obtained at vessel inspections 

when a vessel is opened, and individual elements are weighed. This method is as follows. We 

fix 1γ = (the effect of γ  on the outcome of α is small, so it is being neglected). Eqs. (1-2, 8-

9) imply that 

( )
1

1
0 1 ,

t t
t n Ri

ii

P P

P f x i γ
κ

α ω
−

−
=

−
=

∑
,                                                                                             (19) 

where, 

( )
, 11 ,,

1 else.

n
j tj i X

i nf x i n i
−= +


 <=  −



∑
 

Then, tκ  can be calculated recursively as follows. On day 1t = , ,0 1iX =   (all elements are 

new), 1 0P P−   is observed (this is the NPD increment), R is known, the constants  iω  are 

known, and α  is specified (and 1γ = ). Therefore,  1κ  can be calculated using Eq. (19) and 
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,1iX  ( 1,..., )i n=  can be calculated using Eqs. (11, 12). Then, in turn, 2κ   can be calculated 

using  2 1P P−   (observed) and the known ,1iX  ( 1,..., )i n= , and so on. When elements are 

swapped, Eq. (15) is used to update the wear-states. Then, on day τ when elements in a vessel 

are weighed, we know the weights iw  and the states ,iX τ  of each element (Figure 6-4), and 

the deviation  
2

,
1

n i i
i

X w
X w

τ

τ
=

 
− 

 
∑  ,                (20) 

can be calculated. The procedure is repeated for different values of α, and this researcher’s 

estimate is the value of α that minimizes this deviation. Figure 6-3 (a) and (b) show a plot of 

various values of α and the resulting deviation from the inspected biomass distribution. 

Figure 6-3 (c) shows a surface plot of the deviation of all 14 trains. The numerical values per 

train for α are shown in Table 6-2. The fit between the biomass and modelled wear 

distribution is good overall, as shown in Figure 6-4. However, this is not always the case, like 

train 8. There are multiple reasons for this. First, the vessel inspected could have undergone 

additional maintenance, e.g., a failed element was replaced. Secondly, the model uses a 

deterministic equation for biomass distribution. In the real world, there is probably also a 

stochastic element. 

 
(a) 

 
(b)  
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(c) 

Figure 6-3, (a) and (b) Deviation from the 

measured distribution with α from 0.4 to 

0.8 for all 14 trains. The surface plot is 

shown at different angles. 

(c) Deviation from the measured 

distribution with α from 0.4 to 0.8 for train 

11. 
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Figure 6-4: Relative element weights (▪) and relative modelled wear-states (---) for all trains (train 
number and time of weighing indicated with α at the best value for the specific train). 
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6.2.2 Results wear parameters β and γ   
Next, the other parameters are estimated using the particle filter (Doucet et al., 2001; 

Candy, 2007; Kantas et al., 2015; Elfring et al., 2021). The primary purpose of Particle 

filtering (PF) in this research is to estimate parameters β and γ. Further, the mean value for κ 

before the first algae bloom occurred (κ1) and the mean value for κ afterwards (κ2). By 

establishing a κ1 or κlow for non-algae bloom conditions and a κ2 or κhigh for algae bloom 

conditions, a probability distribution function can be applied for random values of κ with 

seasonal variation. The seasonal variation, thereby, is the algae blooms. The implementation 

is presented in the next section, as is an alternative method of probability given.  Here we 

estimate only κ1 or κlow and κ2 or κhigh. 

PF has emerged as the most successful method for parameter estimation when confronted 

with nonlinear non-Gaussian state-space models. PF is suitable for parallel implementation, 

as is the case of this research, where we need to estimate four parameters. Further, PF is often 

more accurate than standard alternatives such as the Extended Kalman filter (Kantas et al., 

2015). Widespread tutorial material and code examples are available, making PF easy to 

implement (Elfring et al., 2021).  

A prevalent example of PF is the localization problem of domestic robots, like the type 

that vacuum the floors of a house, using a Lidor sensor to identify obstacles or walls. 

Simplified the procedure of the PF estimation is as follows: 

1. Take multiple samples (particles) from an original uniform distribution. 
2. Weight the sampled particles against the observed data. 
3. Discard the low-weight particles and resample with replacement of the high-weight 

particles.  Then return to step 2. 

The PF uses the Bayesian probability theorem for particle filtering (Candy, 2007; Elfring 

et al., 2021). In contrast to the robot example, where the particles can be directly weighed 

against the observed data, the PF estimations applied here are indirect. The particles represent 

the parameters and need to be applied to the mathematical model, whereby the weighting is 

based on the model output versus the observed NPD. 

The implementation of FT is as follows, a function (Eqs. 2,5-9) that seeks to model the 

data (observed NPD) has been specified. Given the data, some parameter values are more 

probable than others, and this defines a probability distribution over the parameter space (the 

set of all possible values of the parameters). PF uses sequential simulation to approximate 

this distribution. Then, this distribution can then be used to determine the best estimate (e.g. 

the mean value of the parameter vector). Figure 6-5 presents the principle of implementation. 
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Figure 6-5. Principle of PF for parameter estimation 

PF was run for each train separately for the first 500 days. Up to the first 500 days, there 

were no element permutations up to that time. To simplify the problem, now a fixed value κ1  

is assumed up to day 213 (the known start of the first algal bloom) and a different fixed κ2 

after that. The decay in NPD increments after the finish of an algae bloom, κt decays with 

2 1( )t e βτκ κ κ −= −  (see section 6.1.2). This way, the estimates of γ, β, κ1 and κ2 for each train 

are obtained. PF has not been utilized to estimate α since the method described in section 

6.2.1 is preferred, whereby information about α that is available in the measured biomass 

distribution at the time of the inspection is utilized. 

One of the issues with PF is the chance of failure to provide an output due to particle 

weight loss. An example of a failed run of the PF is shown in Figure 6-6. The modelled NPD 

in figure 6-6 starts to divert from the observed NPD between days 200 and 250. The initial 

deviating is such that the particles, in general, lose weight, the continuing increase in 

deviation results in the collapse of the particles. As a remedy, first, the range of the 

parameters has been limited to a realistic range. The configured ranges are shown in Table 6-

1. 

Table 6-1. Limitations parameters for the PF. 

  γ β κ1 κ2 

Lower limit 0.40 0.01 0.001 0.014 

upper limit 1.10 0.10 0.005 0.040 



@00419918  Fredericus I. M. (Frits) van Rooij 

114 

 
Figure 6-6. PF collapse 

Bengtsson et al. (2008), Doucet and Johansen (2009), and Robinson et al. (2018) 

recommend smoothing and filtering to minimize the change of collapse of the PF. Thus, 

before using the PF, the NPD has been smoothed using the Savitzky-Golay (S-G) filter to 

improve its accuracy by removing various partial spikes in NPD. These spikes arise when a 

train is taken offline for a brief period and are likely related to low salinity flushing at this 

time. An S-G filter is a polynomial lowpass filter originally developed by Savitzky and Golay 

to smooth noise data obtained from a chemical spectrum analyser. The filtering is done by 

local least-squares polynomial approximation. A least-squares polynomial approximation is a 

procedure to fit a curve by finding the least-squares of the vertical offsets of the data points to 

the curve (Hamming, 1973). 

The S-G filter works as follows, a sequence of input data points is fitted with a polynomial 

trend curve based on the least-square approximation. The polynomial degree and the 

approximation interval are configuration inputs of the filter. The advantage of an S-G filter, 

in contrast to a moving average smoothing, is that the S-G filter reduces the noise while 

maintaining the shape and height of the waveform peaks. Therefore, the input dataset must 

behave as a (semi)-Gaussian process (Schafer, 2011).  

The “Smooth Data” function in MATLAB supports several smoothing options, of which 

the moving average and the S-G are applied in this research. The performance of the S-G 

filter is illustrated in Figure 6-7. 
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Figure 6-7. Illustration of the S-G filter for the NPD of Train 8. The polynomial degree of the filter is 
4, and the approximation interval by a moving window of 150 

A polynomial degree of 4 and a moving window of 150 were used for the PF’s input data 

S-G filter. Smoothing and limiting the range of the parameters reduces the change of the PF 

collapses but does not prevent that. In some cases, the PF collapse or gives an unsatisfied 

output is computed with a low r2. Consequently, the running of the PF is repeated multiple 

times per train until ten results are attained where the r2 is above 0.95. Then the mean of γ, β, 

κ1 and κ2 are taken. Figures 6-8, 6-9 and 6-10 show the histograms using ten bins for 200k 

particles of γ, β, κ1 and κ2 and fits a normal density function. The result per parameter is the 

sum of the particles times the weight. The histograms selected per train are for the PF run 

with the highest r2. 

 
Train 1 

 
Train 2 

Figure 6-8: Histogram using ten bins for 200k particles of γ, β, κ1 and κ2 and fits a normal density 
function. The result per parameter is the sum of the particles times the weight. Plots train 1 and 2. 
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Train 3 

 
Train 4 

 
Train 5 

 
Train 6 

 
Train 7 

 
Train 8 

Figure 6-9: Histogram using ten bins for 200k particles of γ, β, κ1 and κ2 and fits a normal density 
function. The result per parameter is the sum of the particles times the weight. Plots train 3 to 8. 
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Train 9 

 
Train 10 

 
Train 11 

 
Train 12 
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Train 14 

Figure 6-10: Histogram using ten bins for 200k particles of γ, β, κ1 and κ2 and fits a normal density 
function. The result per parameter is the sum of the particles times the weight. Plots train 9 to 14. 
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6.2.3 The (non)-Gaussian character of  wear parameter κ   
The introduction of chapter 6.2 stated that the parameter κ is stochastic, follows a 

Gaussian distribution and can be estimated by a probability distribution. The equation to 

calculate the state-space values of κ has been presented in section 6.2.1 (eq 15). Now that α 

and γ are estimated, the state-space values of κ can be more precise re-calculated. The state-

space values of κ resulted in 365 days over five years, covering 14 trains. Therefore, we have 

70 values for each day of the year from which we can sample. February 29th is ignored. 

Figure 6-11 (top left) shows a plot of all state-space values of κ (grey dots) ordered 

according to the year's day. Further, the daily mean of κ (μκ –blue dots) is calculated. As can 

be observed, both κ and μκ are somewhat random. No visual pattern recognition can be 

established of periods of increased κ due to algae bloom conditions and periods where this 

condition is absent.  

(a) (b) 

(c) (d) 

Figure 6-11. State-space values of κ (grey dots) and daily mean of κ (μκ –blue dots) ordered according 
to the year's day. Top left (a): unsmoothed, top right (b): smoothing of -1,4, bottom left (c): -2,8, and 
bottom right (d): -4, 16. 

A moving average with different strengths has been applied to intensify the contrast. Three 

different smoothing windows are applied to ensure the results are robust to the smoothing one 
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before, four after (-1,4), (-2,8), and (-4, 16), corresponding to windows of width 5, 10 and 20 

days, respectively. The results of smoothening κ (grey dots) ordered according to the year's 

day and the corresponding daily mean of κ (μκ –blue dots) are shown in Figure 6-11, where 

(top right) represents a smoothing of -1,4, (bottom left) -2,8, and (bottom right) -4, 16.  

Further, a cumulative distribution function (CDF) and the PDF are applied and plotted in 

Figure 6-13 to demonstrate a Gaussian distribution. Diagrams at the left are the distributions 

of κ with a smoothing of -1,4, -2,8, and -4, 16. The diagrams at the right are the distributions 

of μκ following the same smoothing. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 6-12. CDF and PDF with top smoothing of -1,4, (a) κ and (b) μκ. Middle smoothing of -2,8 (c) 
κ and (d) μκ. Bottom smoothing of -4, 16 (e) κ and (f) μκ. 
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Observation of Figure 6-12 gives an impression of a Gaussian distribution for κ, but the 

PDF of the daily average skews slightly to the right. A histogram has been plotted for the data 

using a smoothing of -1,4 to verify this. Then, the MLE is added to the plot and shown in 

Figure-13 on the left. We observe that the MLE is symmetric while the histogram skews 

slightly to the right. 

  
Figure 6-13. Histogram and PDF of daily κ (a) MLE for parameters with normal distribution, (b) MLE 
for parameters with Weibull distribution 

The same histogram is shown on the right side of Figure 6-13. However, the MLE is 

following a Weibull distribution. We can observe that the MLE with a Weibull distribution 

fits the right-skewed histogram. If we can utilize a normal distribution to project a random 

distribution for the probability of κ, the slight deviation of the MLE would be neglectable. 

However, we must incorporate the stochastic seasonal effect of algae blooms. Therefore 

additional normal distributions must be applied for the start day and length of the algae 

bloom in days. 

The limited data on algae blooms' annual start and duration gives a high standard 

deviation. Because Normal distribution is unbounded, a too-large standard deviation results 

in nonphysical sampled values at the lower tail (Mishra and Datta-Gupta, 2017). The reported 

duration of algae blooms between 2017 and 2020 (see Table 6-2 chapter 4.3.2) provides a 

mean for the algae blooms of 23.5 days and a standard deviation of 33.7, which is excessive 

for the mean. Generating random values for the projection of the length of algae blooms 

utilizing a normal distribution resulted in a range of -59 to +115 days (see Figure 6-14). A 

negative value is problematic. A Weibull distribution is, therefore, more practically. The 

equation below gives the PDF of the Weibull distribution (Mishra and Datta-Gupta, 2017). 
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exp ; , 0,0
k kk x xf x k x
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Figure 6-14. Random duration algae bloom by Normal Distribution with a mean of 23.5 and σ of 33.7 

where k is the shape parameter, and λ is the scale parameter.  

A function to fit the PDF of a Weibull distribution and the corresponding Weibull 

distribution of random values are available in MATLAB and is derived from the above 

equation. The code used to generate Figure 6-13 (b) is shown below. The parameter 

estimation for the Weibull fit will be addressed in section 6.2.5. First, we concentrate on the 

other method this research applies for sampling stochastic parameters, bootstrapping. 

% Weibull fit 
[KappaHat, KappaCi]=wblfit(DailyKappa); 
h =  histogram(DailyKappa); 
hold on 
Y = wblpdf(sort(DailyKappa),KappaHat(1),KappaHat(2)); 
yScaled = Y * (1/max(Y)) * max(h.Values); 
% Plot scaled pdf (the pdf should overlap with the hist) 
plot(sort(DailyKappa), yScaled, 'r-', 'LineWidth', 3) 
legend('\muDaily\kappa', 'scaled pdf') 
hold off 

6.2.4 Bootstrap sampling 
Finding the parametric confidence intervals, standard errors, and bias of state-space spatial 

structures can sometimes be challenging. In 1979 Brad Efron introduced a nonparametric 

statistical approach that he called the bootstrap. Bootstrap is a resampling method that does 

not need a mean and standard deviation in the case of a normal distribution or a shape 

parameter k, and a scale parameter λ in the case of Weibull distribution. At its foundation, 

bootstrapping involves a Monte Carlo approximation of a sample from an original 

observation with a population of n with replacement, so a bootstrap sample of a population of 

n! can be generated. Mathematically nn permutations can be made from a population of n. 
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However, some results would be equivalent since they are permutations of each other. 

Therefore the bootstrap sample n! does not grow as fast as nn (Chernick and LaBudde, 2011). 

Bootstrap then generates the MLE of the bootstrap sample without defining parameters 

(Hinrichsen and Holmes, 2009). This research intends to project the entire possibility of the 

likelihood instead of the MLE. So, of interest is the bootstrap sample rather than the bootstrap 

itself. When we apply Bootstrapping in MATLAB utilizing the “bootstrp” function, this 

results in the MLE of the bootstrap sample from the original data. The bootstrap sample itself 

is temporal for applying the bootstrap and is not accessible. 

On the other hand, the function “datasample” is identical to the bootstrap sampling step 

and needs to be utilized to compute the bootstrap sample. The MATLAB code below 

illustrates the differences between the original data, bootstrap sample and the bootstrap 

function. Figure 6-15 gives the output. 

%Bootstrap sample  
DayKappa=Kappa(:,55); % Sample of a random day: 55 
Bootstrapsample=datasample(DayKappa,100); %Bootstrap sample n!=100 
HisBootstrapsample=histogram(Bootstrapsample); %Histogram 
[bootstat,bootsam] =bootstrp(100,@mean,DayKappa); % MLE Bootstrap 
hold on 
HisObs=histogram(DayKappa); % Histogram observed data 
HisBootstrap=histogram(bootstat); % Histogram MLE Bootstrap 
HisBootstrap.FaceColor="k"; 
legend('Bootstrap sample','Original', 'Bootstrap @mean'); 
xlabel('\kappa',"FontSize",14); 
hold off 

 

Figure 6-15. Histogram of the population on a random day 55 of κ smoothen -1,4 dataset, bootstrap 
sample and Bootstrap at the mean. 

In the previous section,  the daily κ were ordered as a multivariate state-space model. 

Assumed that the years are statistically identical, five values are obtained for each day and 
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each train with five years of observed data in total. Estimates for trains are then pooled, 

yielding a bootstrap sample of size 70 (5x14) for each day of the year and, therefore, a 

70x365 bootstrap sample matrix. The daily tκ  for each train has been smoothed using a 

moving average. Three different smoothing windows were applied, -1,4, -2,8, and -4, 16, to 

ensure the results were robust to the smoothing. The effect of algae blooms is automatically 

included in the multivariate state-space model, as shown in Figures 6-11. 

These three datasets with different smoothing provide the original observation for 

projections (see chapter 7) involving bootstrap sampling as a forecasting method. In the latter 

case, bootstrap samples of δ are generated separately for clean-in-place (CIP) methods C1 

and C2 (see section 6.2.6).  

6.2.5 Results wear parameter κ utilizing Weibull distribution 
Weibull distribution as an alternative for Bootstrap sampling was presented in section 

6.2.3. We recall from section 6.2.2 that κ needs to be separately estimated during Algae 

bloom (κ2) and non-bloom periods (κ1). Utilizing PF (see section 6.2.2), κ1 and κ2 were 

estimated over the first 500 days of operation, whereby κ1 covers the period up to the first 

signs of membrane fouling. However, the first 500 days might not represent the severity of κ2 

over the entire state-space. Of interest are the mean values of κ during periods of algae 

blooms. 

Although the records of the O&M team mentioned the start and end dates of the algae 

blooms since 2017 (see Table 4-1), the recorded days might not cover the full extent of the 

duration. Therefore, change-point analysis is applied to the NPD to find the starts and finishes 

of the algal blooms effect. The changepoint analysis aims not to define the number and 

duration of algae blooms but to identify periods that allocate κ2. After segments of κ2 have 

been allocated, the mean κ over the segment is calculated. Then the maximum mean value of 

κ2 over the state-space of the individual train is recorded. So, similar to the PF analyses, 14 

new values of κ2 are estimated, covering the entire state-space instead of the first 500 days. 

A changepoint analysis is a method that identifies within a dataset of points where the 

statistical properties change (Killick et al., 2012). These changes in statistical properties can 

be a change in the mean, variance or a combination of these parameters within a Gaussian 

distribution (Lavielle, 2005; Killick et al., 2012) or a known number of changepoints (Picard 

et al., 2005).  

MATLAB has a standard function, “ischange”, for changepoint analysis. The “ischange” 

function has been utilized in this research to identify periods where κ can be identified as κ1 
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or κ2. Besides mean or variance, defining the statistical properties of the change, a linear 

change detection method can be applied. The latter is helpful for non-Gaussian distributions 

and detects abrupt changes in the slope and intercept of the data. Additional parameters can 

be a threshold or the maximum number of changepoints4, similar as mentioned by Picard et 

al. (2005). A threshold, when specified, will adjust the change point detection sensitivity.  

Smoothing of the NPD was applied beforehand to filter out noise. The smoothing method 

was the S-G filter with a polynomial degree of 4, and a smoothing factor of 0.1 was applied. 

First, a linear regime (black pen in Figures 6-16 to 6-18) is applied to the NPD (red dotted 

pen). Then change points are determined based on changes in the linear regime. Change 

points reflect the end of an algae bloom or maintenance interventions. After obtaining the 

changepoint times, the mean of the daily κ between these times is calculated. The daily κ is 

first smoothened by moving mean of one before and one after. Following the mean κ between 

changepoints is calculated from the daily κ. The highest mean as κ2 per train is recorded. 

 

 
Figure 6-16: Outputs of the change-point analysis of RO trains 1 to 4 
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Figure 6-17: Outputs of the change-point analysis of RO trains 5 to 12 
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Figure 6-18: Outputs of the change-point analysis of RO trains 13 and 14 

Multiple reasons exist for the variation of the changepoint output between the trains. First, 

there are different intervals of changepoints between trains. These changepoints are triggered 

due to the slope of the observed NPD. The time the trains are in operation varies; therefore, 

the trains are not exposed equally to extrinsic feedwater conditions. Further, after the first 500 

days of operation, the trains underwent different maintenance schedules. While some trains 

operate during worsening extrinsic feedwater conditions, other trains are offline, flushed with 

nutrient-poor low salinity water or underwent a CIP. The results of the parameter estimation 

are given in table 6-2. 
Table 6-2: Estimates of parameters. 

Train        r2  RMSE α γ β κ1 κ2 
1 0.992  0.06 0.65 0.74 0.026 0.0014 0.021 

2 0.964  0.10 0.65 0.73 0.026 0.0028 0.022 

3 0.975  0.10 0.64 0.66 0.031 0.0011 0.023 

4 0.980  0.09 0.62 0.86 0.023 0.0017 0.017 

5 0.984  0.08 0.47 0.80 0.023 0.0025 0.024 

6 0.988  0.06 0.55 0.72 0.017 0.0016 0.028 

7 0.983  0.07 0.53 0.73 0.020 0.0010 0.030 

8 0.983  0.09 0.66 0.92 0.023 0.0018 0.020 

9 0.975  0.07 0.60 0.90 0.026 0.0019 0.026 

10 0.979  0.09 0.55 0.82 0.028 0.0021 0.019 

11 0.990  0.06 0.60 0.86 0.014 0.0023 0.038 

12 0.973  0.09 0.70 0.55 0.021 0.0015 0.017 

13 0.979  0.08 0.61 0.70 0.020 0.0011 0.018 

14 0.969  0.07 0.74 0.54 0.034 0.0010 0.034 

mean 0.980  0.08 0.60 0.75 0.023 0.0017 0.024 

min 0.969  0.06 0.47 0.54 0.014 0.0010 0.017 

max 0.990  0.09 0.74 0.92 0.034 0.0025 0.038 

Std 0.006  0.010 0.078 0.126 0.005 0.0005 0.0062 
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For Weibull distribution projections, we need to calculate the shape parameter k and scale 

parameter λ to forecast the stochastic parameter κ. The parameters are determined separately 

for 1κ  and 2κ  by utilizing a Weibull fit function at MATLAB. For κlow  λ = 0.0019 and           

k = 3.3567.  For κhigh  λ = 0.0265 and k = 4.0043. 

We must also forecast the annual start of algae bloom and the duration of the forecast 

method utilising Weibull distribution. The recorded start and end dates are used from the 

O&M records. Since there are no recorded data for the first year of operation, the observed 

beginning of the rapid degeneration and the observed end for the first year is considered.  

(a)  (b)  
Figure 6-19. Histogram of κ with scaled PDF from the Weibull fit, (a) κlow and (b) κhigh 

Considered are further the records for the remaining period from 2017 to 2020 (see Table 

4-1 in section 4.3.2). Based on this data, a Weibull fit has been applied. For the annual start 

day λ = 122 and k = 3.88.  For the duration in days λ = 20 and k = 0.76. 

(a)  (b)  
Figure 6-20. Histogram of (a) day of year start algae bloom and (b) duration in days with scaled PDF 

from the Weibull fit 
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6.2.6 Results restoration parameter δ  for C1 and C2   
The cleaning effect δ  was calculated using Eq. (17) for each cleaning operation. Note, the 

effects of cleaning can have a lag of a few days after a train returns to normal operation, so 

tP+  must be carefully specified. In total, 64 CIP restorations were performed up to September 

2020, of which 33 were C1 (standard high and low pH cleaning), and 31 were C2 (socking 

with Bisulphate then a standard high and low pH cleaning). C1 gave, on average, a reduction 

of NPD of 14%. However, it was less than 10% in one-fifth of the cases. C2 gave, on 

average, a reduction of NPD of 26%. Only 4% of the cases was the reduction less than the 

average reduction by C1. For C1, λ = 0.2625 and k = 1.7476.  For C2,  λ = 0.4211 and k = 

3.9152. (figure 6-20). 

(a)   (b)  
 
Figure 6-21: Histograms with scaled PDF from the Weibull fit of the observed effects for cleaning-in-
place for cleaning modes C1 (a) and C2 (b) 

6.3 Summary 
A mathematical model of degradation (in the presence of biofouling) and restoration of 

membrane elements have been presented. The degradation is due to the built-up of biomass 

and is denoted as the degradation or wear X.  Although the wear is a continuous process, the 

vessel is approached at discrete intervals per socket for practical reasons. The wear state of 

the element in socket i  at time t  is ,i tX , and this wear variates. 

The wear manifests in operational conditions of the vessel as an increase of normalized 

pressure differential (NPD) over the feed inlet and the concentrate or reject outlet.  The NPD 

of a vessel is the sum of the NPD of the elements. When the element is new, Xi =1 and when 

all elements are new, Pt is P0. 
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Despite equal wear, the NPD per succeeding elements decreases due to hydraulic laws, 

known as the Darcy-Weisbach head-loss model that describes the relationship between flow 

and pressure loss. Thus,  although the components, the membrane elements, are cascaded, the 

manifestation of the wear as NPD is not simply the sum of the individual wear Xi but 

distributed with iω  a set of known (dimensionless) constants such that the sum is unity. This 

set of constants will be called the pressure distribution due to the decreasing flow. 

The feed flow to each succeeding element reduces, and the salinity increases due to 

permeation from a discrete perspective. The permeation of the succeeding elements decreases 

relatively due to increased salinity resulting in higher osmotic pressure and lower net driving 

pressure. The recovery is the permeate flow divided by the saline flow. Since the overall 

vessel recovery and the salt rejection are known, the recovery and the pressure distribution 

constants per socket can be calculated. 

The thesis author supposes the wear increment of an element when the vessel is in 

operation is given by the extrinsic dependency κ, the wear distribution dependency α and the 

rate-state dependency (see equation 9). When the vessel is offline, there is no longer a rate-

state dependency. The recovery is zero, and this part of the wear increment equation               

, 11{ / ( )}n R
j tj i X n i γ
−= + −∑ becomes unity. 

Restoration is done by permutations and clean-in-place (CIP). When swapping, Xi moves 

with the element to the new socket. Furthermore, if replaced with a new one, the wear state 

becomes unity (Xi = 1). CIP is an imperfect restoration that reduces the wear increase 

partially (see equations 12 and 13). Thus, the cleaning effect is proportional to the excess 

NPD above 0P . So we partially remove the biomass. Here δ  is the cleaning effect parameter. 

The parameters of the model are estimated using statistical analysis. First, biofouling-wear 

distribution parameter α is estimated. The parameter α is estimated by comparing the 

modelled wear distribution across individual elements with the measured distribution of 

biomass obtained at vessel inspections when a vessel is opened and individual elements are 

weighed. The value of α from the logical range of 0.4 to 0.8 minimizes this deviation. 

Once α is specified, the particle filtering (PF) method is utilized to estimate γ and β using a 

restricted set of values for κt. The input data to the PF is first smoothed with a Savitzky-Golay 

(S-G) filter to reduce noise. The time series is limited up to day 500, which includes exposure 

to an algae bloom, but no maintenance actions have been performed up to this day. Up to the 

algae bloom, a fixed value for κ1 is assumed and a different fixed κ2 after that. To account for 
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the decay in NPD increments after the finish of an algae bloom, the model supposes that κt 

decays according to equation 14.                                                                                        

Finally, the daily values of κt are calculated to predict future NPD, where κt is assumed to 

be a random value retrieved by bootstrap sampling or Weibull distribution. Bootstrapping 

involves random sampling from a 70x365 matrix composed of daily values of κt from 14 

trains over five years. Eq. (19) is used to re-calculate κt daily for each train and smooth these 

using a moving average. Three different smoothing windows are applied to ensure the results 

are robust to the smoothing, one before, four after (-1,4), (-2,8), and (-4, 16), corresponding 

to windows of width 5, 10 and 20 days, respectively. 

The shape parameter k and a scale parameter λ of κ1 for the Weibull distribution are fitted 

from the PF results. However, fitting the parameters for κ2 from the results of the PF will not 

cover the whole range of the state-space. Therefore changepoint analyses are being applied to 

identify periods of κ2. Then, the maximum value of the means of these intersections is used 

for the value of κ2 per train. The individual values of the 14 trains are used for the Weibull 

shape parameter k and a scale parameter λ of κ2. Note that the value of κ is common in the 

projections for all the trains since they see the same source water. The trigger for applying κ1 

or κ2 depends on the projection of the start and duration of an algae bloom. A Weibull fit has 

been applied to the algae bloom recording of Table 4-1 in chapter 4.3.2. 

The cleaning effect parameter δ is sampled in the same manner. Each cleaning method, C1 

and C2, has its dedicated parameter δ. Of the 64 performed CIP restorations, 33 were C1 with 

five just before a permutation, and 31 were C2 with six just before a permutation. The latter 

gives 28 known values for C1 and 24 known values for C2. The cleaning results provide two 

vectors for bootstrap sampling. Further, Weibull fits have been applied to the vectors. 
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7 The Digital Twin 
The Mathematical equations of degradation and restoration of RO membranes set out in 

Chapter 6 are the basis of a simulation application for projecting an RO vessel's long-term 

degradation and restoration. Thus, the simulations are founded on mathematical modelling 

based on physical laws (see Chapter 6.1) and statistical methods. The forecast methodology 

includes Monte Carlo simulation (Wilks & Vannitsem, 2018) and discrete-event simulation 

(Lawson & Leemis, 2008). The extrinsic parameter κ of the equations provides the common 

feedwater quality dependency for degradation and varies continuously. The cleaning 

parameter δ that gives the effect of imperfect restoration by clean-in-place (CIP) varies per 

intervention. Both parameters are stochastic and projected from data over the previous five 

years. The parameters κ and δ are fitted to a Weibull distribution and used when predicting 

future projections by sampling from these distributions. Alternatively, the simulation allows 

bootstrap sampling directly from the previous data (see Chapter 6.2).  This chapter 

concentrates on the simulation application deployed as a digital twin (DT). 

7.1 Industry 4.0 and smart maintenance 
Pintelon and Parodi-Herz (2008) stated nearly one and a half decades ago (chapter 2) that 

maintenance had been recognized as one of the pillars of business strategy. A scientific 

approach toward maintenance management started in the 1950s and 1960s. Time-based 

preventative maintenance was encouraged to reduce failures and unplanned downtime. 

Condition-based maintenance was developed in the 1970s as a cost-effective alternative to 

large time-based preventative maintenance programs. Computerization of maintenance 

started in the 1980s with the introduction of the PC, initially for administrative purposes, 

followed by the application MAINOPT as the first maintenance analysis program (Dekker, 

1996). Computerised maintenance analysis gave rise to predictive forecasting maintenance. 

The importance of maintenance has not diminished. Recently, in 2016, US manufacturers 

spent an estimated $50 billion on maintenance and repair, which corresponds to between 15% 

and 70% of the costs of produced goods (Brundage et al., 2019). Zonta et al. (2020) estimate 

the maintenance costs between 15 and 60% but notes that companies often mismeasure the 

spending ratio. The growing complexity of the supply chain, i.e., the interactions between 

different production segments in an increasingly extended manufacturing environment, has 

given maintenance even more importance. An interruption of one production segment can 

have severe consequences for other manufacturing processes (Zonta et al., 2020). 
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An example is the recent semiconductor shortage that interrupted car production, phones,  

entertainment consoles, and TVs. Loss of revenue in the automobile industry due to the chip 

shortage is estimated at around $61 billion for 2021. Apple estimated a loss due to a chip 

shortage of between $3 to $4 billion in the second quarter of 2021 (Voas et al., 2021). 

Therefore, it is unsurprising that maintenance improvement is emphasized again in the 

current orientation towards the digital transformation of the industry, also referred to as 

Industry 4.0. 

The term fourth industrial revolution originated from German Industries to meet the 

demand for innovation in response to new technologies (Zhou et al., 2015). These new 

technologies, e.g., connectivity, big data, and new devices, especially the Industrial Internet 

of Things (IIoT), is expected to provide further inventory reduction, customisation, and 

production control. The philosophy behind this innovation is that predictive decisions can be 

made from information involving big data.  

Internet of Things (IoT) is an intelligent device that can communicate wireless over the 

internet with other intelligent devices using Internet Protocol (IP) without interference from 

computers or humans. A vital business application is the tracking of goods in the supply-

chain network. The industrial variant is the IIoT, involving intelligent devices that 

communicate wireless or wired through the internet or the local ethernet. IIoT devices do not 

necessarily communicate between themselves but can be linked to a service platform, an 

operational technology system. Besides the feedback of their actions, IIoT devices can give a 

multitude of additional information, e.g., their health status (Jaidka et al., 2020). The 

manufacturing sector's share of deployment of IoT devices will be 33% by 2025. A smart 

connected factory can produce approximately one Petabyte of data per day (Liu et al., 2019). 

Although Industry 4.0 mainly focus on addressing data analytics and machine learning 

methods to change production processes (Zonta et al., 2020), a critical part of Industry 4.0 is 

the digitalization of maintenance from both a technological and a management perspective  

(Silvestri et al., 2020).  

Digitalization of maintenance involves maintenance modelling. The prominence of 

maintenance modelling in operational research goes back decades (Pidd, 2004). Academic 

publications on maintenance modelling started in 1965. Of notice of these early publications 

are a book The Mathematical Theory of Reliability by Barlow and Proschan (1965, cited in 

Cho and Parlar, 1991) and the papers, Maintenance Policies for Stochastically Failing 

Equipment: A Survey by McCall (1965),  A Survey of Maintenance Models: The Control and 

Surveillance of Deteriorating Systems by Pierskalla and Voelker (1976, cited in Cho and 
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Parlar, 1991) and Optimal Maintenance Models for Systems Subject to Failure by Sherif 

(1982). The models were categorized by the knowledge of the system's state or the model 

relevance to the maintenance problem (Cho and Parlar, 1991). 

With the evolution of maintenance strategy from time-based and condition-based 

maintenance to predictive and prescriptive maintenance, the role of maintenance modelling 

has increased in importance. Predictive and prescriptive maintenance is fed by field data but 

driven by mathematical modelling (Errandonea et al., 2020). Lately, a focus on artificial 

neural networks (ANN) has become popular due to increased data acquisition (Zonta et al., 

2020). This tendency is reflected in the discussions about digital twins (DT) in maintenance. 

After production planning and control, the primary utilization of DTs is in maintenance 

(Kritzinger et al., 2018). This focus on DT in maintenance has increased in the last years 

(Errandonea et al., 2020). 

7.2 A different approach towards a digital twin 
The digitalization of physical systems goes back some two decades and since then has 

been referred to as digital twins (Grieves and Vickers, 2017). A  digital twin (DT) was first 

conceptualised as a finite-element model of an aircraft structure (Tuegel et al., 2011) but is 

now understood as any virtual representation of an engineered object on a computer for the 

purpose of product or process planning. Another term for DT being used is the Cyber-

Physical System (CPS), introduced around 2006 by the National Science Foundation (NSF) 

in the United States. It is referred to as the next generation of engineered systems (Zonta et 

al., 2020). However, the concept of the DT is still undetermined (Kritzinger et al., 2018).  

A prominence in predictive and prescriptive maintenance research has resulted so far in 

the domination in the literature of the DT for maintenance modelling, focusing on early 

failure prediction and diagnosing the causes of failures and the symptoms (Errandonea et al., 

2020; Silvestri et al., 2020: Zonta et al., 2020). This approach of a DT is mainly driven by 

Artificial Intelligence (AI) based on artificial neural networks (ANN). Adaptation of 

advanced maintenance strategies by implementing technology is oriented towards reducing 

unplanned corrective work and assistance to operators and maintainers. Academic research 

has further predominately addressed maintenance scheduling (Brundage et al., 2019). 

Following the above, the DT functions as a short-term controller of an EO. Thus, probably 

seen from this perspective, Kritzinger et al. (2018) and Errandonea et al. (2020) claim that a 

true DT should involve all aspects of the physical system. Further, both the physical system 

and its DT should have fully automated interaction. In the thesis author’s opinion, this is a 
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narrow view. That opinion is also supported by Liu et al. (2021). They conclude that a DT is 

not a specific technology but an idea that can be implemented with many advanced 

technologies. Therefore, the concept of a DT should be kept to its core,  a digital entity that 

reflects the behaviour of the physical entity and keeps updating through the whole lifecycle 

(Liu et al., 2021). 

So far, the DT in maintenance has been used to analyse the health condition by monitoring 

failure or modelling the reliability of the asset. Further, lifecycle optimization from the design 

phase onwards mirroring the physical object. A practical example of health condition 

monitoring is the aerospace industry, where aircraft reliability is simulated according to flight 

hours, integrating historical data and maintenance history (Negri et al., 2017).   

The thesis author recognizes the vital role of the DT in monitoring failure and modelling 

the reliability of the asset, and mirroring the lifecycle for maintenance. However, another 

functionality a DT has to offer has been overlooked so far. This research proposes an 

additional role of a DT for maintenance modelling and projections. Besides projecting causes 

of failure, asset lifespan, and when to schedule interventions, modelling simulations can be 

applied to model maintenance effects in the presence of stochastic degradations, complicated 

by the fact that the maintenance interventions are imperfect repairs. To the thesis author’s 

knowledge, no research has been published on this role of a DT so far. 

A DT, in this case, does not need to represent all characteristics of the physical counterpart 

but can be limited to the specifics being investigated, using only relevant data and models  

(Haag and Anderl 2018). Similar, referring back to chapter 3.2.5, testing and validation, Pidd 

(2004) refers to a lumped model in computer modelling as a definitive and simplified version 

of the base model, the complete comprehensive hypothetical model. 

The DT, as here proposed, bears some similarity to accelerated life testing (Elsayed, 2003) 

because a DT can show degradation and failure behaviours without having to wait for the real 

system to degrade and fail. Accelerated life testing has extensively been conducted in the 

weapons and space programs, where the lifetime requirements are limited to five to ten years. 

Compared to the nuclear power industry, where accelerated ageing testing is preferred due to 

safety concerns, the desired lifetime expectation is up to 40 years. Although accelerated life 

testing is supposed to speed up this process, this testing is still time-consuming for systems 

with long life expectancy (Carfagno and Gibson, 1980). Thus, safety concerns of systems 

with a long life expectancy can be tested in a much shorter time with a DT than with 

conventional accelerated life testing.  
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Equally, interventions that may slow degradation, prevent failure, restore functionality, 

and thereby reduce risk and increase performance, can be investigated quickly. Such 

interventions may extend over the entire product life cycle. The primary purpose of the here 

presented digital twin of an RO vessel is to study such interventions. 

Maintenance modelling on its own has limited value. It must have a practical, workable 

connection with practitioners in the field. The latter is not always the case in academic 

publications, where published research, evaluated by their peers, often have no access to real-

world problems. Consequently, part of the scientific literature on maintenance optimisation 

models is incompatible with an engineering mindset. The presented models are too specialist 

and lack an overall systems engineering viewpoint (van Rijn, 2007). According to the quoted 

author, a research manager at Shell in Amsterdam for decades, the real value of maintenance 

modelling lies in using a DSS, which helps the practitioner select a course of action among 

various alternatives. 

This research, therefore, demonstrates a different approach to maintenance modelling. A 

DT is presented as a Decision Support System (DSS) engine. A DSS involving a DT was 

presented in the health care sector by Patrone et al. (2018). The purpose was to improve the 

management of operating rooms. Zhou et al. (2021) presented a DSS involving a DT for 

maritime port resilience analysis. Neto et al. (2021) presented a DSS involving a DT for 

opportunistic preventive maintenance scheduling. Here, the DT is a model of the shop floor. 

That DSS aims to exploit unexpected opportunities in the shop floor that resulted in low 

production throughput to undertake maintenance pitstops. 

The presented DSS involving a DT in this thesis aims to establish the most effective 

maintenance requirements for (a subsystem) of an engineered object (EO). Therefore, the DT 

must simulate the current wear of the EO and further project the prolonged long-term state of 

the EO under stochastic wear conditions and uncertain imperfect repair. 

In contrast to the black-box approach, i.e., a DT is driven by AI, the methodology of the 

proposed DSS and its underlying DT involves a combination of expertise in operational 

research and maintenance modelling with that of the specific engineering expertise of the 

system. The mathematical model and the DT derived from the model must collaborate these 

two fields of expertise. Process engineering expertise identified the unequal distribution of 

wear due to the amount of nutrition fed to the biofilm-developing microorganism, additional 

wear due to fouled trailing membranes and the restoration methods (chapter 4). Operational 

research identified the system as a unique multi-component system with stochastic extrinsic 

wear dependencies, intrinsic rate-state wear dependency, and stochastic imperfect repair 
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(chapter 5). Maintenance modelling expertise translated the mechanisms of degeneration and 

restoration into mathematical equations (chapter 6) and estimated the model parameters 

(chapter 6.2). Therefore, the DT, the thesis author developed, is a computer simulation of the 

model described in chapter 6.  

With this simulator, we can investigate the effect of alternative restoration policies upon 

performance criteria of interest. These criteria are specifically the pressure and the cost rate 

(restoration). Without maintenance, the pressure differential (PD) will exceed the critical 

threshold of 3.5 bar, resulting in irrecoverable failure of the elements (see chapter 8.3). If the 

PD exceeds this threshold, the operation is no longer possible. Also, importantly, since 

decision-making about policies must acknowledge that there exist uncertainties about system 

behaviour and our knowledge of the system encoded in the model, and hence the DT, 

sensitivity to model parameters can be studied so that robust policies can be developed.  

7.3 The architecture of the DSS 
A DSS involving a DT of an RO vessel has been built using the mathematical model of 

degradation described previously. Figure 7-1 presents a schematic view of the DSS.  

 
Figure 7-1. The architecture of DSS. (1) Data analyse module, (2) Planning module, and 3) DT.  
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The DSS is data-driven, and the data source can be updated as needed. The DSS selects 

what data is required for the task and sends that to the DT. The modelling output of the DT is 

then returned to the DSS, where it is visualized and can be exported for external processing.  

The DSS and its DT have been built in MATLAB utilizing App Designer, an object-

oriented programming platform that includes a Graphical User Interface (GUI). MATLAB is 

a proprietary programming language that supports programs written in other languages, e.g., 

C, C++, Java, Fortran and Python. MATLAB was first utilized by researchers and engineers 

in control engineering (UpSkill, 2016). Besides the object-oriented programming of GUIs, 

there is further no difference in approach between App Designer and the standard or Live 

editor. The App Designer code of the DSS can be transferred to the MATLAB editor with the 

same results. A comprehensive explanation on how to program with MATLAB, including the 

App Designer, has been presented by Attaway (2018). 

The user interface of the DSS is graphical, showing tables, numeric inputs, trend plots and 

buttons. The DSS is presented as a typical computer application, with the coding hidden 

behind the interface. So, the practitioner does not need any programming skills, nor is 

deterred by a presented programming code. The GUI of the DSS is shown in Figure 7-2.  

 
Figure 7-2. Interface (GUI) of the decision support system (DSS). 

A functional presentation of the GUI will follow. Here is a brief architectural presentation. 

Each item displayed is a user interface (UI). Some of the UIs are shown here. 

        UIFigure                       matlab.ui.Figure 

        Method                         matlab.ui.container.ButtonGroup 
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        Ensembleforecast               matlab.ui.control.RadioButton 

        MaintHistory                   matlab.ui.control.Table 

        DataAnalysisModuleBanner_2     matlab.ui.control.TextArea 

        DSSLabel                       matlab.ui.control.Label 

        RunHis                         matlab.ui.control.Button 

        TrainDropDown                  matlab.ui.control.DropDown 

        Vessels                        matlab.ui.control.NumericEditField 

        DataAnalysisModuleBanner       matlab.ui.control.TextArea 

The program in App Designer is ordered in sub-programs. Triggers (events) are radio 

buttons, buttons, and dropdown lists. Each event is a UI (see above). These UIs, having an 

event, are separate sub-programs. An example of an event exporting the Modelled variables 

of a train is presented below. 
% Button pushed function: HisDataToXLS 

        function HisDataToXLSButtonPushed(app, event) 

            switch app.DigitalTwinofTrain.Value 

                case 0 

                    % No action 

                case 1 

                    writetable(app.UITableHis.Data,'Train1.xls'); 

   ... 

                case 14 

                    writetable(app.UITableHis.Data,'Train14.xls'); 

            end 

        end 

A flowchart of the DSS program in MATLAB App Design is shown in Figure 7-3. Any 

variable declared in a sub-program is considered local and not transferred to the next program 

section. The notation “app.” is placed before the variable name to enable a variable to be 

retrained and transferred throughout the program. These app variables must be declared at the 

beginning of the program under properties. For example, the following program command 

contains local variables, x, i, j and a global variable, app.Xhis.  
x = x - app.Xhis(i-1,j); 
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Figure 7-3. Flowchart App Design DSS 
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7.3.1 Data sources  
The data being fed to the DT is in Microsoft Excel format. Importing data from excel files 

allows the practitioner to review and make modifications beforehand. Similarly, the OT 

management information system (MIS) data and the CMMS are produced in excel. Besides 

the MIS and the CMMS data, separate excel files containing the parameters for the model and 

the bootstrap matrixes and maintenance policies.  The supporting excel files of the DSS are 

shown below. The extensions of the excel files are omitted: 

1. CIPHIS, containing the bootstrap vectors of δ for CIPs with C1 and C2 methods. 

2. InspectTi, {1≤i≤14}, containing the day and results from the membrane inspection.  

3. Traini, {1≤i≤14}, containing the historical OT data of the train. 

4. MaintHisTraini, {1≤i≤14}, containing the maintenance data from the CMMS. 

5. PresvTi, {1≤i≤14}, containing the CMMS data of day and length of SBS 

preservation of the train. 

6. Kappai, {1≤i≤14}, containing mean κ between changepoints. 

7. Parameters containing the parameters α, β, γ, and κ1 and κ2 for Weibull 

distribution. 

8. Policyi, {1≤i≤12}, containing the maintenance policies. 

9. KappaMatrix, containing the bootstrap source matrix of κ. 

The DT gives a separate output of the state-space data analysis and the projections. The DT 

allows for sensitivity analysis used in this research (see section 7.6.1. Data analysis module). 

Further, data can be exported from the DSS to excel. 

The state-space analysis is rewritten to the excel file Traini, {1≤i≤14}, where the daily κ, 

Xj, ΣP, and Pj {1≤j≤8} are added to the table. Xj is the modelled wear per element, ΣP is the 

modelled NPD of the vessel, and Pj is the modelled NPD per socket. The DT projection is 

simultaneously exported into two excel files.  

1. EnsembleTraini, {1≤i≤14}, provides a matrix of the ensemble envelope. 

2. ProjectionTraini, {1≤i≤14} provides the mean of Xj, ΣP, and Pj {1≤j≤8} and the 

max ΣP of the ensemble envelope. ΣP, and Pj {1≤j≤8} can also be exported as a 

plot figure, which includes the modelled historical state-space. 

MATLAB makes it easier to perform computations on matrices instead of tables. 

Therefore the tables are converted to a native matrix format. Excel file read command and 

conversion to a native matrix format is presented below, followed by a write command. 
Table = readtable("Table.xlsx"); 
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Matrix = table2array(Table); 

writetable(Projection,'ProjectionTrain1.xlsx'); 

7.4 Modelling Historical State-Space 
The functions ‘Model Historical State-Space’ and ‘projections’ (See Figure 7-3) are of 

most interest for the discussion of this chapter. The source code of these two functions is 

presented in Appendix D. Below (Figure 7-4), a simplified block diagram of the function 

‘Model Historical State-Space’ is presented. 

 
Figure 7-4. Flow chart diagram function ‘Model Historical State-Space.’ 

The purpose of the function ‘Model Historical State-Space’ is to build a virtual replica of 

the observed NPD by modelling the degradation Xi,t per element. Knowing the latter is 



@00419918  Fredericus I. M. (Frits) van Rooij 

142 

essential for any decision-making and refers to the first principle of level 4 of the 

Maintenance theory framework presented in chapter 1.2.1 (see also Figure 1-1). The 

modelled NPD over the elements and the sum, the modelled NPD over the vessel, are derived 

from the modelled Xi,t.  

The state Xi,n, where n is the last day of the modelled State-Space, is the point of departure for 

the projections, so this function must be performed before projections occur. 

There are two methods to derive κ for modelling the state-space. Daily, the first method 

derives κ at discrete daily intervals from the difference between the observed NPD from one 

day to the next, using eq. (19). Since the observed NPD is only known when the train is in 

operation, κ can only be defined during this state. 

As mentioned in chapter 5.1.1, a sudden reduction of NPD can occur after a train has been 

offline. This reduction is be expected to be a reaction to Low Salinity (LS) flushing, which 

can be considered an unplanned hydraulic physical cleaning. Consequently, the modelled 

NPD will continue from the last observed NPD and do not compensate for the effect of  LS 

flushing. A maintenance event can be included to correct this behaviour, modelled the same 

as cleaning. The maintenance or action code “2” (see below) marks that this was not a 

planned intervention. The daily κ method further gives the best fit between modelled and 

observed NPD.  

The alternative method is by mean κ between changepoints. The mean κ between 

changepoints must be defined before the modelling occurs. Section 7.6.1 Data analyse 

module presents methods for configuring the mean κ between changepoints. 

Since this method intends to fit κ over longer discrete intervals, based on observed 

changes in the slope of the observed NPD or by changepoint analysis, this method provides a 

lesser fit than the former method.  This method aims to provide another tool for parameter 

estimation to that presented in chapter 6.2. 

As described in chapter 6.2.2, κ becomes κlow before and between algae blooms and as 

κhigh during algae blooms. The severity of κlow and κhigh can change at each new event, i.e., 

bloom or non-bloom. These events do not have to follow the recorded algae bloom events of 

the O&M reports but can be based on the observations of the observed NPD. Then a new 

period where κhigh is replaced with κlow, κt decays using eq. (14), where τ the days since 

returning to κlow. 

The daily and the mean κ methods generate a vector κt at discrete daily intervals with 

identical properties. The vector length is 1 ≤ t ≤ n, where n is the end day of the state space. 
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Thus, the following model sequence is identical, regardless of the method defining κ. 

Four options are possible: the train is online, offline standby or offline undergoing 

permutations or cleaning, depending on the state of the train and if the maintenance history 

records an action. The status of the train is an integer that represents the following conditions: 

0.     Shutdown, Train set to not available by operator 
1.     Master Fault 
2.     Standby 
3.     Individual Seawater (SW) filling/flushing 
4.     Individual Pressurization or bacterial sampling off-spec 
5.     Operation 
6.     Individual depressurization 
7.     SW Flushing 
8.     Waiting for Low Salinity (LS) Flushing 
9.     LS flushing 
10.  Cold startup (Full RO Plant common startup) 
11.  Cold shutdown (Full RO Plant common shutdown) 
12.  CIP (not including C3) 

The DT needs to know when the train is online; therefore, only state 5 is of interest. An 

integer representing a maintenance action code identifies maintenance actions from the 

maintenance history file. The action code stands for the following: 

1.     CIP. 
2.     Unidentified correction, e.g., LS flushing or instrument adjustment. 
3.     C3, a discontinued cleaning experiment (see chapter 8). 
4.     Permutations. 

The wear Xi,t is calculated as follows, if online eq. (12) followed by eq. (11) are executed. 

In case of a maintenance intervention, when performing permutations,  eq. (15). In the case of 

a CIP or an unidentified correction, eq. (16). C3 involves permutations and an externally 

cleaned lead element placed in socket 8. Since we cannot measure the effect of the single 

element cleaned, an approximation of this elements degradation is given as X8,t = 1.1; The 

modelled NPD per socket and overall are then derived from eq. (5) and eq. (4). 

7.5 Modelling Projections 
A simplified block diagram of the function ‘Projection’ is presented below (Figure 7-5). 

Essentially the modelling of the projections is identical with the modelling of the historical 

state-space, with two differences, instead of deriving κ from the changes in the observed NPD 

by eq. (19), κ is a probability estimation, and a hundred different estimations per day are 

generated. The latter also applies to the cleaning effect δ. When modelling the historical 

state-space, δ is calculated from the changes in observed NPD before and after the 
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intervention utilizing eq. (17). For the projection, δ is a probability estimation, and a hundred 

different estimations per cleaning event are generated. A hundred samples of these stochastic 

dependencies will result in a forecast envelope from the most likely best to the worst 

outcome. 

The dependencies κ and δ are derived in two different methods, bootstrap sampling and 

Weibull distribution, discussed in chapter 6.2. The results are similar matrixes for κ and δ, in 

the case of κ, a 100 rows, 365 columns matrix. In the case of δ, a vector of 100 is generated 

separately for every cleaning event. The estimations of the dependencies are further equally 

applied for the wear estimation Xi,t,m, and restoration by cleaning. 

The projection covers five years. Each year is probably different with the different 

occurrence of algae blooms. The seasonal variation is built into the source sample in 

bootstrapping sampling method. Each of the 365 columns of the source matrix provides 70 

elements. Bootstrap sampling converts this to 100 samples per day. For the cleaning, 

bootstrap sampling provides 100 samples from the 28 usable C1 cleaning results and another 

100 samples from the 24 usable C2 cleaning results. 

In the case of the other method, Webull distribution, first, the total projection span must be 

divided into lumps of a year.  Then probabilities for the start and duration of algae bloom 

must be forecasted from a Weibull distribution. The start and duration of the blooms provide 

change points of periods where κhigh can be applied from a Weibull distribution, and the other 

parts decay from algae bloom conditions to κlow, applying eq. (14). This procedure is then 

reapplied for every calendar year. 

The wear Xi,t,m is calculated equally to the historical state-space model. The model 

assumes the train is online if no maintenance is scheduled, resulting in eq. (12) followed by 

eq. (11). The dimension m represents the 100 probabilities. The number 100 is a compromise 

between the accuracy of the probability uncertainty and the computing load of the 

projections. In case of a maintenance intervention according to the policy under evaluation, 

when performing permutations,  eq. (15) is applied to each preseeding probability Xi,t,m. In the 

case of a CIP, eq. (16) is applied to each preseeding probability Xi,t,m, selecting a different 

sample m from the vector δC1 or δC1, depending on the policy.  

The modelled NPD per socket and overall are then derived from eq. (5) and eq. (4), for each 

probability of Xi,t,m. For the indicative purpose only, a mean estimation is given. The 

complete DSS application with the source files of this research is available on request. The 

application is shared as a stand-alone application for stakeholders who do not have a 

MATLAB license or a MATLAB app (see appendix A).  
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Figure 7-5. Flow chart diagram function ‘Projection’. 
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7.6 Modules of the DSS 
The DSS has three modules: a data analysis module, a planning module, and the DT. The 

planning module allows for different restoration policies to be studied. It uses the DT to 

simulate NPD and cost trajectories for a specific policy. The DSS runs the DT in the 

background. The DT first models the NPD according to the model parameters (red pen in 

figure 7-2) and compares that against the observed NPD (black pen). According to the 

modelled wear per element, the DT calculates the NPD per socket (other coloured pens). The 

planning module allows for different restoration policies to be studied.  

7.6.1 Data analysis module 
The data analysis module lets the user select a train, and consequently, the corresponding 

historical state-space data from the OT, parameters and maintenance history are loaded into 

the DT. Updated data files can be placed into the working folder before starting the DSS.  

 
Figure 7-6. Data analysis module of the decision support system (DSS). 
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Several excel files are imported from the background by selecting a train from the drop-down 

menu. These files are tables of pre-configured data and are located in the working folder of 

the application. The tables being loaded are as follows: 

• Historical RO performance data, including the day of operation, daily NPD, Train 

state, and recovery.   

• Maintenance history of CIP with corresponding δ value; element replacements and 

relocations. 

• Biomass inspection with the day of inspection and distribution of biomass per 

element. 

• Periods of prolonged preservation with SBS (from April to May 2020). 

• Mean values κ  from the changepoint analysis. 

• Deterioration parameters α, γ, β, 1κ   and 2κ  . 

• Matrix of daily κ (70,365) for bootstrapping. 

• Vector of C1 cleanings and vector of C2 cleanings for bootstrapping 

Except for bootstrapping, all imported tables are presented at the DSS output screen. 

Although the imported NPD data is in bar, the DSS converts the units to PSI if preferred. 

Radio buttons for bar or PSI units are provided (see figure 7-6). 

Besides adjusting the parameter file externally in advance, the parameters can be updated 

interactively from the screen. The parameters α, γ, β, the number of elements in the vessel, 

vessel quantity per train and the Weibull parameters for κ can be interactively updated from 

the screen. Manual manipulation allows for exploring the effects of the parameters. These 

updates are, however, not saved. Saving of parameters must be done directly at the parameter 

excel file. When another train is selected, the parameters are overwritten for the newly 

selected train. Therefore the entered values in the data analysis module are lost, except if they 

are updated in the parameter excel file (see Figure 7-1). 

The purpose of the data analysis module is for sensitivity analysis of the parameters. A 

reference for sensitivity analysis is the preparation for estimating α (see chapter 6.2.1). 

During this estimation,  the historical State-Space was modelled for discrete values of α 

between 0.4 to 0.8. The plot in the data analysis module gives a visual impression of the fit. 

To demonstrate, below the plots for α 0.4, 0.6 and 0.8 at train 11 are presented in Figure 7-7. 

Another sensitivity analysis example is the value assigned to γ  for the above procedure. From 

the sensitivity analysis, setting γ = 1  will not significantly influence α, as stated in chapter 

6.2.1. Figure 7-8, generated by the data analysis module, confirm this.  
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Figure 7-7. Model – biomass fit plots for train 11 at the Data analysis module. For α left 0.4, middle 
0.6 and right 0.8.  

 

Figure 7-8. Model – biomass fit plots for train 11 at the Data analysis module with α=0.6 and γ left 
0.4, middle 0.8 and right 1.2. 

The estimation of the Weibull parameters for κlow, κhigh and β can be evaluated, whereby 

the modelled or simulated trajectory is compared against the observed historical state-space. 

The Weibull distribution parameters for κ are intended for the projection and do not affect the 

historical state-space modelling. However, sensitivity analysis allows comparing the 

bootstrap sampling method against the Weibull distribution for projection. 

The mean κ option must be selected to perform this approximation. Two radio buttons are 

provided at the data analysis module to select the method (see Figure 7-6). In this option, the 

parameter β is utilized. This method for defining κ utilizes the imported mean values κ from 

the changepoint analysis. Any changes must be made at the Kappai, {1≤i≤14} import file and 

then reloaded. However, the mean values of κ give a less precise fit between modelled and 

observed NPD, and the purpose is mainly for sensitivity analysis.  

The modelled or simulated trajectory and the actual trajectory are visualized in the plot 

and table at the right of the data analysis module. The DSS runs the DT in the background. 

As described in section 7.3, the DT first models the wear X and after that, the NPD according 

to the model parameters (red pen in Figure 7-9) and compares that against the observed NPD 
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(black pen). According to the modelled wear per element, the DT calculates the NPD per 

socket (other coloured pens).  

After executing the DT, by clicking on the “Analyse History” button, the wear per element 

at each socket, the overall modelled NPD and that per socket are calculated per day. The 

results are shown in the table above the plot (see Figure 7-9). Further, the observed NPD and 

the modelled NPD of the vessel and per socket are plotted. The modelled data of the data 

analysis module can be exported to excel by clicking on the “Export His data to Excel” (see 

figure 7-6). The excel file will be stored in the working folder of the application. 

 
Figure 7-9. The output of the DT of the modelled state-space. Top in a table, bottom a plot. 

7.6.2 Planning module 
The planning module allows for different restoration policies to be studied. Thus, neither 

the DT nor the DSS generates a policy. The DSS uses the DT to simulate NPD and cost 

trajectories for a specific policy. The Planning module allows drawing various maintenance 

policies. Maintenance parameters for δ at CIP methods C1 and C2; the cost of CIP according 

to the method; the cost of a new membrane element; and the labour cost for membrane 

replacement/relocation can be adjusted at the planning module. The application loads the 

default values for CDP at the time of the building of the simulator. Maintenance policies can 

be created directly by interacting with the planning module, or pre-defined policies can be 

loaded from the dropdown menu. These predefined policies are Excel files located in the 
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working folder of the application. The maintenance policies can be adjusted externally or in 

the planning module. In the latter case, the policy can be saved by clicking “save policy”. The 

policy is stored again in the working folder. 

According to the policy, the corresponding costs per maintenance activity are calculated, 

and the total sum is shown below the table. Besides the cost, the 10-year element replacement 

rate is also calculated based on the policy and train history (see Figure 7-10). 

 
Figure 7-10. Data analysis tool and planning module of the decision support system (DSS). 

As mentioned, the planning module does not require updating the external excel file and 

importing the updated file again to make any changes to the policy. Figure 7-10 shows a 

random policy. Any row can be edited from the editing row at the top of the table. The cells 

of the editing row correspond with the table header. 

If the button “Modify” is pressed with the current input, the first record will be 

overwritten, whereby the action “2” will be deleted. The update from the editing row is as 

follows: 

Cell 1: Record of the table to be updated. 

Cell 2: Week of maintenance intervention. 

Cell 3: Maintenance action code. An explanation follows. 

Cell 4 to 11: Permutations. An explanation follows. 

The maintenance action code represents the following intervention types: 

1. CIP using method C1. 

2. CIP using method C2 
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3. Discontinued cleaning method C3 (see chapter 7.3) 

4. Permutations. 

The above selection of maintenance actions can be easily adapted if additional maintenance 

actions become available. 

When planning permutations at each socket Si, the number of the elements' previous 

location Sj is entered. So, for example, if an element is moved from socket S4 to socket S1, the 

cell corresponding to S1 gets the value 4. If a new element is placed in a socket, say, S4, the 

cell corresponding to S4 gets the value 0. 

The cost of the maintenance intervention, the overall policy cost and the ten-year 

membrane replacement rate are automatically recalculated. If for any reason, only the cost of 

the elements is required, then $0 can be entered for the cleaning and labour costs. It is not 

required to save the policy update for running the projection. However, if saving is preferred, 

this can be done by clicking “save policy” (see Figure 7-10). The updated policy will be 

exported to an excel file with the same name as the selected policy and stored in the working 

directory. If the loaded policy file was located in the working directory, then the previous 

excel file of the policy will be overwritten with the modified file. 

7.6.3 Projection  
Ensemble forecasting is a method to improve projections with uncertainties (Zhu, 2005; 

Hollyman et al., 2021). Ensemble forecasting is applied in various fields of research. Zhu 

(2005) presented ensemble techniques for weather forecasting. Shahriari et al. (2020) 

presented an ensemble forecast method for traffic flow prediction. Pan et al. (2022) presented 

an oceanic storm surge model utilizing ensemble forecast. The ensemble spread or envelope 

reflects the uncertainty and provides possible probability variation (Zhu, 2005; Pan et al., 

2022). 

This research applies ensemble forecasting to reflect the spread of probability of the 

projected NPD. Each discrete time interval, 100 random values from a distribution of κ are 

selected. The increase in degeneration from t to t+1 can vary due to variation of the extrinsic 

dependency from κmax to κmin probability. In successive n intervals, this is repeated. So the 

spread of probabilities from one day to another generates new probabilities, and the 

uncertainty is multiplied. The latter is expressed in the ensemble forecast envelope of Figure 

7-12. 

Equally, following an imperfect restoration, i.e., cleaning, the decrease in degeneration can 

vary from δmax to δmin probability. In the case of imperfect restoration, 100 random values 
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from a distribution of δ are selected. When applying permutations, those elements which are 

replaced, the state is fully restored, so there are no uncertainties. However, the other elements 

not replaced will transfer their previous variation of probabilities with them. So, if all 

elements were replaced during a maintenance intervention, there would be no uncertainties, 

Xi,t+ = 1. This spread in the uncertainty of the probability over time is the ensemble envelope. 

Following a “Run Projection” command (see Figure 7-11), the DT compute an ensemble 

forecast for the following years. The outcome of the projection depends on the train’s 

operational and maintenance history, the specific degeneration parameters of the train, i.e., α, 

γ and β and the selected maintenance policy.  

 
Figure 7-11. Projection control box 

Figure 7-12 shows the output of the DT as a plot of the modelled NPD (left part of the 

plot) and the projection (right part of the plot). A grey area plot can be seen at the right part 

of the plot. This grey area is the ensemble envelope. The red pen, which divides the ensemble 

envelope approximately halfway, is the projected mean NPD of the vessel. The left part of 

the plot shows the observed and modelled NPD of the vessel (see also section 7.4). The mean 

NPD of the individual sockets is plotted using other coloured pens. 

 
Figure 7-12: NPD projection output from the DT for one of the trains.  
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The mathematical procedure of the projection is described in section 7.5, involving 

bootstrap sampling and Weibull distribution for κt and δC1 and δC2. Here is a summary. In the 

case of projection by bootstrap sampling, κ  (feed quality) for each day of the projection is 

selected at random with replacement from its respective bootstrap sample. That is, κ  for Jan 

1st in year 1 of the projection is sampled from the Jan 1st bootstrap sample, and so on 

throughout year 1, repeating the same for year 2, and so on.  

Then, clean-in-place is scheduled, and the individual cleaning effects are bootstrapped 

from each cleaning method's estimated cleaning effects samples (see section 6.2.6). Further, 

element swaps and replacements are scheduled. Their effects are known and deterministic. 

Then the wear model is run to obtain the projected states of each element and the implied 

NPD for the train for each day of the projection, using the estimates of the other parameters 

for that train and the user-defined system recovery R, which in turn implies ωi. The projection 

is repeated 100 times to obtain the ensemble forecast (grey ribbon in figure 7-12) and the 

ensemble mean (red pen). 

 
Figure 7-13: Projection interface of the DT. 

In the case of projection by a Weibull distribution, κt (feed quality) for each day of the 

projection is selected at random based on the Weibull shape parameter k and scale parameter 

λ for both 1κ  and 2κ . From the shape parameter k and scale parameter λ  of the start day 

and the duration of the algae bloom, defined at the DSS (see figure 7-2), random start day and 

duration are calculated based on Weibull Distribution. This defines the period where 2tκ κ=  
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or 2 1( )t e βτκ κ κ −= −  is utilized. 

After this, the daily wear is modelled over the projected period applying the selected 

maintenance policy (see chapter 8). In the case of a CIP, a random Weibull distribution is 

applied of δ per intervention, with 1 1~ ( , )Nδ δ λ  for C1 and 2 2~ ( , )Nδ δ λ  for C2. Finally, 

the daily NPD per socket is calculated and the vessel NPD. The output is visualized in a plot, 

and a table is shown in the visualization (see Figure 7-13).   

The projection utilizing ensemble forecast executes nearly 200k calculation, which is 

understandable, time-consuming. Therefore, an execution progress bar is incorporated into 

the application to notify the user of the progress (see figure 7-14). 

   
Figure 7-14: Ensemble projection progress bar. 

7.7 Summary 
Industry 4.0 has once again emphasised maintenance as a pillar of business strategy. The 

recent global supply chain disruption emphasised how delays in one production segment can 

be fatal. A breakdown of a vital asset at one production segment would have equal 

consequences. Industry 4.0 is driven by the objective of increased efficiency, providing 

further inventory reduction, customisation, and production control against the emergence of 

new technology. One of these is the increased availability of information from big data and 

digital technological innovation. 

Maintenance through digitalisation has simultaneously developed towards Maintenance 

4.0. Maintenance modelling has evolved into new dimensions with the deployment of Digital 

Twins (DT). The more recent attention on the concept of DTs in academic society has opened 

the debate of when a virtual representation of a physical object can be called a DT. Some 

researchers insist that a DT can only be called so if the virtual version includes all aspects of 

the physical object. Both the virtual model and physical object continuously should interact 

automatically. 

Among the author of this thesis, other researchers maintain a more general definition. The 

concept of a DT should be kept to its core,  a digital entity that reflects the behaviour of the 

physical entity and keeps updating throughout the whole lifecycle (Liu et al., 2021). The 

characteristics of the physical counterpart can be limited to the specifics being investigated, 

using only relevant data and models  (Haag and Anderl, 2018). This concept applies to 

business modelling in general (Pidd, 2004). 
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The DT so far, among others, has been utilised in design verification, production and 

scheduling in general and in maintenance, specifically for anomaly detection. This research 

adds an additional dimension to the DT, the projection of the impact of maintenance on the 

long-term reliability of an engineered object (EO) against the prospects of stochastic 

degradation dependencies and imperfect repair. To the thesis author's knowledge, this has not 

yet been applied nor studied. The DT is embedded into a decision support system (DSS) and 

acts as its engine. The objective of the DSS is to support the maintenance practitioner in 

investigating the effect of alternative restoration policies upon performance criteria of 

interest. This research used a practical example of the degradation, restoration, and costs of 

reverse osmosis (RO) desalination trains in algae bloom amplified biofouling conditions to 

demonstrate the proposed concept of the DSS. 

There are various approaches to how the DT is driven. Recently a popular approach is 

towards Artificial Intelligence (AI), involving artificial neural networks (ANN). This research 

presents a DT based on mathematical modelling. As with AI, the presented DSS is data-

driven, and the data source can be updated in time to verify the previously tested policies or 

new alternatives. According to the selected sub-EO, the DSS sends the data to the DT and 

receives the modelled output back from the DT. Since the practitioner must consider 

uncertainties in the projection due to stochastic degradation dependencies and imperfect 

repair, the sensitivity of model parameters can be studied to develop robust policies. 

The DSS and its DT have been built in MATLAB, a popular programming language under 

researchers and practitioners in control engineering. A Graphical User Interface (GUI) of 

MATLAB has been utilised, so the practitioner does not need any programming skills, nor is 

deterred by a presented programming code. Data in the form of excel files are automatically 

imported. The DT output is visualised at the DSS GUI and can be exported to excel files by 

clicking on a button.  

The DSS has three modules: a data analysis module, a planning module, and the DT. The 

data analysis module lets the user select a train. Consequently, the corresponding historical 

state-space data from the OT, parameters and maintenance history are loaded into the DT. 

The parameters can be updated interactively at the data analysis module. Manual 

manipulation allows for exploring the effects of the parameters. A simulated trajectory can be 

compared with an actual trajectory at the visualisation.  

The planning module allows for different restoration policies to be studied. Maintenance 

parameters for imperfect restoration, δ, at clean-in-place (CIP) methods C1 and C2; the cost 

of CIP according to the method; the cost of a new membrane element and the labour cost for 
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membrane replacement/relocation can be adjusted at the planning module. Maintenance 

policies can be created directly by interacting with the planning module, or pre-defined 

policies can be loaded from the dropdown menu. These pre-defined policies are excel files 

located in the working folder of the application. These maintenance policies can be adjusted 

externally or in the planning module. The policy can be saved to the excel file in the latter 

case. The corresponding maintenance costs are calculated according to the policy, and the 

total sum is shown. Besides cost, the 10-year element replacement rate is calculated based on 

the policy and train history. 

The DSS runs the DT in the background. It uses the DT to simulate NPD and cost 

trajectories for a specific policy. The DT first models the NPD according to the model 

parameters and compares that against the observed NPD. The DT calculates the NPD per 

socket according to the modelled wear per element. Then, a five-year projection ahead is 

modelled based on two different sampling procedures, bootstrap sampling or Weibull 

distribution.  

Bootstrap sampling generates a 100x365 matrix for degeneration dependency κ by 

resampling with replacement from a set of calculated κ from the observed NPD of 14 trains 

over five years with an interval of one day (70x365). Further, it generates a vector of 100 

from a set of results from restoration parameter δ, following performed cleanings.  

The Weibull distribution uses the same source sets. However, it splits dependency κ into 

κlow for non-algae bloom and into κhigh for algae bloom conditions. Then additional 

distributions for the annual start and duration of algae blooms is generated based on records. 

The 100x365 matrix for degeneration dependency κ is then assembled from κhigh and κlow, 

where after the end of an algae bloom, the decay equation (eq 17) is utilised. 

The projection presents a hundred probabilities per daily interval. These probabilities vary 

according to the distribution of the stochastic severity of the source water quality parameter κ. 

Then, on a CIP occurrence, 100 probabilities of restoration parameter δ are applied according 

to its distribution to the 100 probabilities of the state Xi. The combination of degradation and 

restoration probabilities gives a spread of the reliability probability of the EO, the RO vessel. 

The spread that can be expressed as a cloud or area is the ensemble forecast envelope. 

Ensemble forecasting has been utilised in various research disciplines to improve the 

probability. The forecasting ensemble envelope expresses the probability variance in this 

research to provide a better risk assessment. The next chapter, 8, exploring restoration 

policies, will further emphasise the risk assessment. 
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8 Exploring restoration policies  
Having defined the mathematical model for RO degradation and restoration, following the 

presentation of the digital twin (DT) in the previous chapter, in this chapter, the decision 

support system (DSS) is tested practically. As stated in chapter 1, the DT-based DSS has not 

been developed to generate an optimum maintenance policy. However, a DT-based DSS 

where various policies drawn up by the practitioner can be tested on long-term wear 

management and cost. This chapter explores that functionality. The operation and 

maintenance (O&M) company's current policy is compared to alternative policies having 

lower costs. 

8.1 Current policies of the O&M company and alternatives 
The O&M company has an agreement with the membrane supplier for a fixed price of the 

elements for ten years. This period also covers the warranty agreement. The agreed total 

membrane replacement over this period is 115%. So, on average, the O&M company replaces 

11.5% of the element annually, whereby all elements are replaced over ten years. The 

membrane supplier guarantees a fixed price for the membranes over that period. Table 8-1 

shows the contractual agreement for replacement and the actual renewal for the first five 

years. In addition, the number of cleanings is provided. 

Table 8-1. Membrane maintenance history of the first five years of operation 

 Membrane replacement Cleaning 

Week 
Contractual 

(%) 
Cumulative 

(%) 
Actual 

renewal 
(%) 

Cumulative 
(%) C1 C2 C3 

1-60 (Years 
2015/16) - - - - - - - 

61-112 (Year 2017) 8 8 25 25 10 - 2 

113-164 (Year 2018) 13 21 - 25 23 - - 

165-216 (Year 2019) 13 34 18 43 - 18 - 

217-268 (Year 2020) 13 47 13 56 - 13 - 

Total 47 56 33 31 2 

Besides the standard clean-in-place (CIP), which involves a high pH followed by a low pH 

cleaning (C1), and the enhanced cleaning (C2) whereby the membranes first are soaked with 

SBS and afterwards, a high and low pH CIP is performed, the table shows a third cleaning 

method, C3. The C3 is not considered a CIP but an externally experimental cleaning of the 

most fouled membrane by a third-party membrane cleaning company combined with 

cascading membranes. C3 involves the removal of the lead element and shipment to the 
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cleaning service. The remaining elements all shift one position in the direction of the feed 

side of the vessel. After receiving the cleaned element back, the element is positioned at the 

tail socket of the vessel. This experimental cleaning was only performed at two trains and 

terminated due to the high costs and poor performance. C3 cleanings are not further 

considered. The effectiveness of C1 and C2 CIPs are given in chapter 6.2.6. 

Before turning to the coming years' policies, a brief history is provided of the replacement 

methodology of the previous years. Besides managing the restoration due to biofouling, we 

must further consider the warranted lifespan of the elements, which is approximately ten 

years. The DSS models age-related effects by membrane fouling over time. Future works can 

add identification for elements reaching warranted lifespan by time since installation. Thus, 

the practitioner should consider this when designing a policy. The permutations are presented 

as a block diagram of eight cascaded sockets. As shown at the left of  Figure 8-1, the vessel 

has eight new elements, notated as N. At each permutation, instead of N, the socket number 

of the previous position of the element is shown. Again, when renewed, this is shown as N. 

The colour code represents the element age (see Figure 8-1, right).  
New vessel   Age of the membrane element 

S1 S2 S3 S4 S5 S6 S7 S8  0 1 2 3 4 5 6 7 8 9 10 
N N N N N N N N                         

Figure 8-1. left: Notation of a vessel with all new elements, right: element age colour code. 

 
Figure 8-2. Membrane permutations 2017 to 2020 

Twelve restoration policies are compared over a planning horizon of five years, beginning 

in 2021 and ending in 2025, a point in time that will be ten years after the plant was 

commissioned. These policies use varying types and frequencies of cleaning and 

permutations and are summarised in Table 8-2.   

We start by describing the status quo (Policy 1). Element replacements to date were either 

one or two elements per vessel at each intervention. Permutations are replicated in all vessels 

of a train. Having experienced annual algal blooms for five years in a row, the O&M team 

assumed that 16% of the elements must be replaced over the five-year planning horizon 
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annually. This means (two elements per vessel for four trains and one element per vessel for 

the other trains (rotating annually for the five years). 

Further, due to the COVID related restrictions, permutations in 2020 diverged from the 

plan, and replacement was two elements/vessel for only one train and one element/vessel for 

the other trains. In 2021, therefore, the plan was to catch up from the previous year. 

Replacement for 2021 will be two elements/vessel for seven trains and one element/vessel for 

the other 7. The current cleaning policy is one C2 per train per year. This policy would bring 

the total element replacement rate to 139% over ten years.  

 

Figure 8-3. Current membrane replacement policies (1 & 10) of the O&M company 
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Table 8-2. Considered policies with element replacement rate per year, total cleaning frequency per 
year and cost ($000s) for each year over the five-year planning horizon.  

  Policy 1 Policy 2 Policy 3 

Week new (%) C1 C2 cost  new (%) C1 C2 cost  new (%) C1 C2 cost  

269-320 (Year 2021) 19 0 14 1,275 0 0 42 21 0 42 0 17 

321-372 (Year 2022) 16 0 14 1,094 25 0 28 1,705 25 42 0 1,708 

373-424 (Year 2023) 16 0 14 1,094 12.5 0 28 860 12.5 42 0 862 

425-476 (Year 2024) 16 0 14 1,094 12.5 0 28 860 12.5 42 0 862 

477-528 (Year 2025) 16 0 14 1,094 12.5 0 28 860 12.5 42 0 862 

Total  83 0 70 5,652 62.5 0 154 4,305 62.5 0 0 4,312 

Total over 10 years 139 33 101   118.75 33 185   118.75 243 31   

  Policy 4 Policy 5 Policy 6 

Week new (%) C1 C2 cost  new (%) C1 C2 cost  new (%) C1 C2 cost  

269-320 (Year 2021) 0 0 42 21 0 0 42 21 0 42 0 17 

321-372 (Year 2022) 12.5 0 14 981 12.5 0 28 988 12.5 42 0 991 

373-424 (Year 2023) 25 0 14 1,698 12.5 0 28 1,705 12.5 42 0 991 

425-476 (Year 2024) 12.5 0 14 981 12.5 0 28 988 12.5 42 0 991 

477-528 (Year 2025) 12.5 0 14 981 12.5 0 28 988 12.5 42 0 991 

Total  62.5 0 98 4,663 50 0 154 4,691 50 210 0 3,982 

Total over 10 years 118.75 33 129   106.25 33 185   106.25 243 31   

  Policy 7 Policy 8 Policy 9 

Week new (%) C1 C2 cost  new (%) C1 C2 cost  new (%) C1 C2 cost  

269-320 (Year 2021) 0 42 0 17 0 0 42 21 12.5 0 28 988 

321-372 (Year 2022) 37.5 42 0 2,425 0 0 42 21 12.5 0 28 988 

373-424 (Year 2023) 0 56 0 22 0 0 42 21 12.5 0 28 988 

425-476 (Year 2024) 0 56 0 22 0 0 42 21 12.5 0 28 988 

477-528 (Year 2025) 12.5 42 0 991 0 0 42 21 12.5 0 28 988 

Total  50 210 0 3,478 0 0 210 105 62.5 0 140 4,942 

Total over 10 years 106.25 243 31   56.25 33 241   118.75 33 171   

  Policy 10 Policy 11 Policy 12 

Week new (%) C1 C2 cost  new (%) C1 C2 cost  new (%) C1 C2 cost  

269-320 (Year 2021) 19 0 28 1,275 0 28 14 18 12.5 0 28 988 

321-372 (Year 2022) 16 0 28 1,094 12.5 0 42 995 12.5 0 42 995 

373-424 (Year 2023) 16 0 28 1,094 12.5 0 42 995 12.5 0 42 995 

425-476 (Year 2024) 16 0 28 1,094 12.5 0 42 995 12.5 0 42 995 

477-528 (Year 2025) 16 0 28 1,094 12.5 0 42 995 12.5 0 42 995 

Total  83 0 140 5,652 50 28 182 4,000 62.5 0 196 4,970 

Total over 10 years 139.25 33 101   106.25 61 213   118.75 33 227   

O&M intends to do two C2 per train annually. Two C2 per train is the maximum 

frequency of C2 that can be conducted with the current CIP system. Thus, Policy 10 is 

identical to Policy 1 regarding permutations, but with two instances of C2 per train per year 

instead of one. Since testing the policy on the physical system is impractical, the practitioner 

can test the effectiveness of increasing the CIP frequency using the DT. The results of wear 

management for O&M policies 1 and 10, which only differ in CIP frequency, shows the 

modelled effects and are given in section 8.2.1. 
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The current O&M procedure, when replacing one element per vessel at an intervention, 

discards the element in S1 and arranges the other elements in the eight sockets as 234N5678. 

Thus, the element in S2 is placed in S1, that in S3 in S2, that in S4 in S3, a new element (N) 

is placed in S4, and the tail of the vessel (S5-S8) is unchanged. As described in chapter 5.2.2, 

Economic dependencies, locating the new element in socket 4, rather than socket 8, has the 

advantage that only the vessel's feed (seawater) side needs to be opened and four elements 

removed. The latter is cheaper and quicker than opening the entire vessel and reduces the 

labour cost in half. When replacement is two elements per vessel, the elements in S1 and S2 

are discarded, and the new and remaining elements are arranged as 356784NN.  

The other ten policies are alternatives being investigated to reduce maintenance costs over 

the next five years. Many more policies could be investigated, and we intend to use the DSS 

for this as appropriate. For now, we demonstrate the DSS for a set of pre-agreed policies that 

interest the O&M company. Although the projections are run for each train, and choice can 

be a multi-criteria one (de Almeida et al., 2015); b), the intention is not to utilize different 

policies for different trains. As reviewed in chapter 5, both extrinsic and intrinsic 

degeneration are stochastic. This stochastic character is reflected in the variations of the 

projections per train to a certain degree. So, by analysing the projections of all the trains, 

better observation of the projection of the policies is achieved. 

All the trains were preserved for almost the whole period of the algae bloom in 2020. The 

latter was due to the commissioning of a new brine dilution pumping station. Therefore, 

Policies 2 to 7 and 11 have no replacement in 2021. Their cleaning methods and annual 

frequencies differ.  

In 2022, policies 2 and 3 will discharge the first two elements with a permutation of  

356784NN in every vessel. For trains 5 and 10, the permutations are 345678NN. In the 

following years, one element annually will be discharged with a permutation of 234N5678 in 

every vessel after that. The permutations are shown in Figure 8-4. Since no permutations 

occur in 2021, three CIPs, method C2, will be conducted per train. Policy 2 will conduct two 

CIPs, method C2, per train annually in the following years. Policy 3 will conduct three CIPs, 

method C1, per train annually in the following years. 

Every other policy, except policy 8, uses a permutation of 2356784N (discharging the lead 

element) at the first replacement and then either a permutation of 2345678N (discharging the 

lead element) or 345678NN (discharging the two lead elements) after that. A permutation of  

2345678N instead of 234N5678 increases the time and labour, but all elements are replaced 

over time.  
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Figure 8-4. Permutations of policies 2 and 3. 

 
Figure 8-5. Permutations policy 4. 

Policy 4 will start membrane replacements in 2022, replacing only one element with a 

permutation of 2356784N (discharging the lead element). For trains 5 and 10, the 

permutations are 2345678N. In 2023 two elements will be replaced with a permutation of 

345678NN (discharging the two lead elements). One element will be replaced in the 

following two years with a permutation of 2345778N (discharging the lead element). The 

permutations are shown in Figure 8-5. Like the O&M policy 1, only one CIP, method C2, 

will be conducted per train annually. An exception is the year 2021. Since no permutations 

occur that year, three CIPs, method C2, will be conducted per train. 

Similar to policies 2 and 3,  policies 5, 6 and 11 have the same permutations but different 

cleaning regimes. Membrane replacement starts in 2022, and only one element is replaced 

each year up to 2025. The permutations for 2022 are 2356784N (discharging the lead 

element) for all trains, except trains 5 and 10. For trains 5 and 10, the permutations are 

2345678N. Then, from 2023 to 2025, the permutations are 2345678N for all the trains. The 

permutations are shown in Figure 8-6. The cleaning program of policy 5 is identical to policy 
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2, and that of policy 6 is identical to policy 3. Policy 11 conducts three CIPs with method C2 

annually. 

 
Figure 8-6. Permutations policies 5, 6 and 11. 

Policy 7 uses a permutation of 56784NNN for the trains in 2022, discharging the three 

lead elements, excluding 5 and 10. The permutations for 5 and 10 are 45678NNN. In the 

following two years, no permutations will take place. Then, in the last year, one element per 

vessel is replaced with a permutation of 2345678N for all the trains. The permutations are 

shown in Figure 8-7. For 2021, 2022 and 2025, three CIPs per train, method C1, will be 

conducted annually. For 2023 and 2024, the frequency is 4 CIPs per train annually, method 

C1. 

 
Figure 8-7. Permutations policy 7. 

Policy 8 contains only CIP (3xC2 annually). This policy is only theoretically to investigate 

if only an increase in CIP frequency can control biofouling. As Figure 8-8 shows, the ageing 

of the membranes after five years is significant.  

 
Figure 8-8. Aging of membrane elements after five years (Policy 8). 

Finally, policies 9 and 12 will replace annually one element per vessel. The permutations 

for 2021 are 2356784N (discharging the lead element) for all trains, except trains 5 and 10. 
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For trains 5 and 10, the permutations are 2345678N. Then, from 2022 to 2025, the 

permutations are 2345678N for all the trains. The permutations are shown in Figure 8-9. 

 
Figure 8-9. Permutations policy 9 and 12 

Identical to O&M policy 10, policy 9 involves two instances of CIPs, method C2, per train 

per year. As with Policy 8 and 11, policy 12 conducts three CIPs with method C2 annually. 

Currently, the time duration of the discharge of used chemicals is a bottleneck that limits the 

C2 method of CIP frequency to two per train annually. Therefore, for policies having at least 

three CIPs method C2, a minor upgrade of the CIP system is required so that the 

neutralization tank can be used to discharge used cleaning chemicals.  Utilizing the 

neutralization tank will make the cleaning tank directly available after cleaning, reducing 

delays in preparing new cleaning batches. Policy 11 and 12 consider the first year required to 

upgrade the system. Therefore, policy 11 will conduct two CIPs, method C1 and one CIP 

method C2, in 2021. Policy 12 only conducts two CIPs method C2 in 2021. 

The annual, total and ten-year replacement rate, cleaning frequencies and associated cost 

of the policy are shown in table 8-1. Since membrane maintenance activities involving 

permutations are scheduled during winter when demand is usually lower, this maintenance 

can be undertaken without affecting the ability to deliver water according to the demand. 

Therefore, downtime is not included in the cost. 

Taking a train offline for a standard high and low pH cleaning (C1) takes only a few 

hours. In the case of CIP with SBS soaking (C2), an additional day has to be added. 

However, seasonally, most of the time, this should not affect the ability to produce water 

according to the demand. During the winter months, the output of a train is reduced due to 

colder seawater. However, as stated earlier, the demand in these months is mainly reduced. 
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Further, CIP is undertaken by the operators as part of their daily activities. Cost in the case 

of CIP is limited to chemicals consumed. If permutations are involved, both costs of elements 

and labour are considered.  

As observed (see chapter 6.2.6), on average, a CIP with method C1 reduced the NPD by 

14%. However, it was less than 10% in one-fifth of the cases. C2 gave, on average, a 

reduction of NPD of 26%. In only 4% of the cases, the reduction was less than the average 

reduction by C1. Still, policies 3, 6 and 7 utilize method C1 for CIP. These policies 

investigate if gains can be made utilizing a less effective CIP method but at a higher 

frequency. Double the CIP frequency can be reached using method C1 compared to C2. 

Policy 7 investigate if gains can be made by opportunistic block replacement as described 

in chapter 5.3.3. By replacing three elements in one go, we should expect that for the next 

two years, no permutations will be needed for this method to be effective.  

8.2 Analysis  
Projections have been run utilizing the 12 policies for each train. The number twelve is 

arbitrary and can be adjusted. For comparison,  both forecast methods, bootstrap sampling 

and Weibull distribution, for sampling the stochastic extrinsic dependence κ and restoration 

factor δ are utilized. First, the bootstrap sampling method, which has been repeated for the 

three different smoothing windows, one before, four after (-1,4), (-2,8), and (-4, 16), 

corresponding to windows of width 5, 10 and 20 days, respectively. After that, the projections 

are repeated, utilizing the 12 policies for each train for the Weibull distribution forecast 

method, based on the shape parameter k and scale parameter λ, resulting from the parameter 

estimation (see section 6.2). 

The output of the plots of the combined observed and modelled NPD followed by the 

projection utilizing the ensemble forecast is presented of each policy for train 11, utilizing the 

bootstrap method, followed by the Weibull distribution method. Figures 8-10 to 8-12 shows 

the results with the bootstrap method with four before and 16 after smoothing windows. 

Figures 8-13 to 8-15 show the Weibull distribution method results. Train 11, as observations 

of the historical state-space show, is an average-performing train. Additional plots of 

Bootstrap sampling with smoothening -1,+4, and smoothening -2,+8 are provided in 

Appendix C. The state-space plots of the projections provide a first impression of the 

reliability resulting from the various policies. The blue dashed lines indicate the risk 

thresholds at 3 and 3.5 bar. Section 8.3, Risk Assessment, provides the reasoning behind 

these risk thresholds and presents a detailed risk assessment. 
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8.2.1 Projections utilizing bootstrap sampling 

 

 

 

 
Figure 8-10: DT output of NPD projection based on bootstrap sampling for train 11, policy 1 (top) to 

policy 4 (bottom). 
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Figure 8-11: DT output of NPD projection based on bootstrap sampling for train 11, policy 5 (top) to 

policy 8 (bottom). 
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Figure 8-12: DT output of NPD projection based on bootstrap sampling for train 11, policy 9 (top) to 

policy 12 (bottom). 
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8.2.2 Projections utilizing Weibull distribution 

 

 

 

 
Figure 8-13: DT output of NPD projection based on Weibull distribution for train 11, policy 1 (top) to 

policy 4 (bottom). 
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Figure 8-14: DT output of NPD projection based on Weibull distribution for train 11, policy 5 (top) to 

policy 8 (bottom). 
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Figure 8-15: DT output of NPD projection based on Weibull distribution for train 11, policy 9 (top) to 

policy 12 (bottom). 
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8.3 Risk assessment 
A policy is admissible if the PD is always below the critical threshold of 3.5 bar. Above 

the 3.5 bar, elements can fail irrecoverably. Classicly, risk is defined as the probability of an 

unwanted event's occurrence multiplied by the event's consequence (loss). This research 

defines risk as the likelihood of the PD crossing this critical pressure threshold. Although this 

risk measure is essentially reliability, O&M company prefers to call this risk. Since there is a 

slight variance between the NPD and the underlying PD, two risk thresholds at 3 and 3.5 bar 

are simultaneously considered (Figure 8-16).  

 
Figure 8-16. DT output with risk thresholds 

Figure 8-17 shows a matrix of risk analyses conducted involving 12 policies whereby 

projections are run for all 14 RO trains per policy. For sensitivity analysis, the latter is 

conducted for Weibull distribution sampling and bootstrap sampling with three different 

smoothing regimes of dependencies κ and δ. Thus, 672 projections have been generated in 

total. 

The DSS output the maximum P of the ensemble envelope for a policy. A script at MATLAB 

Live Editor has been prepared. The script calculates the proportion of the maximum (over the 

ensemble) projected daily NPD values above each train's threshold. The latter is the risk 

measure in Figure 8-18. The left column shows boxplots of risk measure of 3 bar and the 

right column boxplots of risk measure of right, 3.5 bar, across 14 trains. From top to down, 

risk analysis of the policies with the Weibull distribution sampling method, followed by 

bootstrap sampling with a smoothing of -1,4; -2,8; and -4,16 smoothing at the bottom. 

Policies are ranked by the total cost ($000s) over five years and show downtime per train 

(%), number of stops per train per year, and boxplots of risk measure. 

A boxplot is a standardized way of displaying data distribution based on a five-number 

summary, minimum, first quartile or 25th percentile, median or 50th percentile, third quartile 
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or 75th percentile and maximum. It further informs about outliers and their values (see Figure 

8-17). 

 
Figure 8-17. Matrix of different risk analyses 
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Figure 8-18. Risk analysis of the Policies ranked by the total cost ($000s) over five years and showing 
downtime per train (%), number of stops per train per year, and boxplots of risk. 
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The policies are then ordered in rank based on the median risk measure. The latter is 

performed for all eight sampling methods and risk measures, then averaged in rank and 

weight. Figure 8-19 shows the ranking results of the policies as described before.  

 
Figure 8-19. Policy ranking based on risk assessment of all eight risk assessments 

From Figures 8-18 and 8-19, we can conclude that only Policies 10-12 and 2 have an 

acceptable risk with a median < 20% (see Figure 8-18) of the eight analyses on average of the 

eight sampling methods.  From this, Policy 12 stands out in terms of risk and cost. Although 

policy 2 gives an acceptable risk regarding biofouling control, the last four elements will age 

close and beyond the lifespan of a membrane since permutations have only been applied to 

the first four elements. Thus, only policies 10, 11 and 12 are sustainable. 

 
Figure 8-20. Ageing of membranes in 2030 following policies 2 and 3. 

The current O&M procedure, which applies only permutations at the first four elements 

when replacing one element per vessel at an intervention, reduces labour cost and downtime 

of the train. However, this implies that such policy requires complementary interventions 

involving at least two replacements. The latter is, in this case, not so much to improve 

biofouling control but to push older membranes to the vessel's front. The cost of additional 

elements outweighs savings in labour costs. 

We can observe that policies 3, 6 and 7, utilizing the less effective CIP method C1, 

perform inferior despite applying a higher frequency of cleanings. Policy 2 and 3 have similar 

permutations. However, Policy 3 performs one CIP (C1) per train more than policy 2, which 
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performs two C2 per train annually. Policy 3 ranks ninth place, while policy 2 ranks fourth 

place. The cost of both policies is just about the same. Policies 5 and 6 repeat the 

performance behaviour of policies 2 and 3, with policy 6 at the near bottom rank and policy 5 

at the sixth rank.  

The purpose of policy 7 was to examine if gains can be made with block replacement. The 

performance would have been better when utilized C2 instead of C1 in the policy. However, 

the thesis author believes that it makes no difference regarding the efficiency of block 

replacement in the case of this study. After replacing three elements, we observe that the 

vessel looks as good as new. However, the projections show degeneration to the same level 

as before the permutations in one year (see Figures 8-11 and 8-14).  

Figure 8-21 (left) shows the modelled wear of the elements for all 14 trains the day before 

permutations occur involving the replacement of three elements. A divider is added to the 

plot at the position of socket 3. The mean of the element wear per socket is presented at the 

figure's right. We observe an exponential decline of the wear at each succeeding socket. 

Therefore, the impact of replacing the third element is far lower. 

  
Figure 8-21. Modelled wear on τ-1, where τ is when permutations occur involving the replacement of 
three elements. Left: surface plot of all 14 trains, right: plot of the mean modelled wear distribution. 

Finally, analyses show that maintenance costs can be significantly lowered by lowering 

the membrane replacement rate, provided a higher frequency of CIP with the more effective 

method C2 is applied. We can see from the analyses that this does not compromise the 

reliability of the trains. Results see even better performance with policies 11 and 12 

outperforming the most expensive policy 10, reducing the membrane replacement rate back 

to the original projections of the plant. A higher frequency of CIP with the more effective 
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method C2 (policy 8) without membrane replacements is not efficient to control the 

degeneration. 

However, the CIP system must be upgraded to enable a frequency of more than two CIPs 

(C2) per train annually. This upgrade is a minor modification of the current CIP system, and 

therefore this upgrade is cost-effective. The concept of this research has been published in 

Desalination (van Rooij et al., 2021). Further, the findings have been communicated to the 

management of the O&M company. As a result, both the O&M company and the owners 

have agreed to upgrade the CIP system. 

Returning to the sampling methods for the DT, although the risk measure decreases with 

the strength of smoothing, we see no change in the risk ranking of the policies. The latter is 

also the case when we apply the Weibull distribution sampling method instead of bootstrap 

sampling. At the same time, a longer smoothing window for the estimated feed quality 

provides more evident differentiation between algae bloom and non-algae bloom periods 

when applying the bootstrap method. 

Results with Weibull distribution tend to differ when re-running the projection. This variation 

is significantly less when utilizing bootstrap sampling. The Weibull distribution projections 

also show the tendency to reach full restoration over time at the lower end of the ensemble 

forecast envelope (See grey beam at the bottom of Figures 8-13 to 8-15). The latter is 

unrealistic, except when algae booms disappear. Therefore, bootstrap sampling is preferable 

if a large dataset is available for sampling. Weibull distribution might be more practicable if 

limited data is available, as we saw with the start day and lengths of algae blooms. Although 

three smoothing ranges have been tested for bootstrap sampling in this research, this was only 

for test purposes. The thesis author recommends using a single smoothing range, in this case, 

-4, +12. 

8.4 Summary 
A Decision Support System (DSS) and its Digital Twin (DT), developed in this research 

by the thesis author, have been utilized to explore several maintenance policies for membrane 

restoration. The DSS supports two sampling methods for stochastic extrinsic dependencies, κ 

and cleaning efficiency δ, bootstrap sampling and Weibull distribution. Both methods were 

utilized. In the case of bootstrap sampling, the projections were repeated for three different 

smoothing regimes of the extrinsic dependency κ. Further, two risk thresholds were 

investigated: the projected ensemble forecast envelope exceeds the 3 bar and the 3.5 bar. 

Thus, the risk analyses of the policies were examined eight times. 
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Sensitivity analysis by different sampling methods, smoothing regimes, and risk 

thresholds resulted in similar risk analyses regarding ranking results. Bootstrap sampling 

gave overall better results than Weibull distribution, independent of the smoothing regimes. 

The thesis author is of the opinion that bootstrap sampling with a smoothing regime of 4 steps 

backwards and 16 steps forward is preferable. The reasoning is that a higher smoothing 

regime accentuates the periods of algae blooms stronger than a low smoothing regime.  

When projections utilizing Weibull distribution were repeated, the results were less 

consistent. The Weibull distribution also tends to project full restoration at the lower 

ensemble envelope. However, the latter is very unlikely for the system in this case study. 

Nevertheless, Weibull distribution is a perfect method when available data for sampling is 

scarce. 

The policies, twelve in total, consisted of different permutation regimes, cleaning 

frequencies and methods. Of these twelve policies, one policy is the current policy of the 

O&M company, and one is a policy with identical permutations but double the frequency of 

cleanings. The latter is the intention of the O&M company for the years ahead.  

The other policies are alternatives involving fewer replacements and different cleaning 

frequencies. Three policies that utilise a standard CIP method (C1) that is less effective were 

tested to evaluate if, by applying a higher frequency of intervention, this method can have 

better results than the current CIP method (C2) at a lower frequency. 

The analyses show that performing standard C1 cleanings is inefficient in controlling the 

degeneration, even with higher frequency. A standard High and Low pH CIP method will 

result in a membrane replacement rate excessive to that of the current policies of the O&M 

company. Neither gives an opportunistic block replacement of three elements simultaneously 

any improvements. 

Alternative policies 11 and 12, involving C2 cleaning frequency of three CIPs per train 

annually, outperform the current and planned policies of the O&M team regarding cost and 

risk performance. Policy 12 thereby outperformed all others. These policies return the 

membrane replacement rate to the original projections of the plant despite being exposed to 

severe biofouling conditions following seasonal algae blooms. However, policies 11 and 12 

require an upgrade of the CIP system to enable the required increase in C2 cleaning 

frequency to three per train annually. Both the O&M company and the owners have agreed 

on this upgrade following the outcome of this research. 
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9 Measuring the results compared to the baseline  
In this chapter, we return to the baseline of the research set out in chapter 2. This research 

started from the objectives expressed by the CEO of the O&M company to reduce shortfall 

and costs. The baseline consists of three performance indicators, of which membrane 

maintenance management was one of them. The other two performance indicators were to 

reduce the shortfall in water delivery and the ratio of reactive corrective maintenance to 

predictive planned maintenance. By comparing the current performance against the baseline, 

the impact of the research on the case study can be measured. 

The performance analysis described in chapter 2 concluded that system performance 

improvement should focus on joint production and maintenance planning. This improvement 

entails three approaches. First, the demand must be forecasted so planned maintenance is 

performed during pit stops that do not interfere with production demand. Secondly, 

degradation must be modelled and forecasted. Finally, reducing the time spent on failure-

based maintenance will reduce unpredictability so that planned maintenance can be carried 

out more effectively. The topic of this research, managing the restoration of membranes in 

reverse osmosis desalination using a digital twin, mainly involves the second approach. 

Nevertheless, planned membrane maintenance must also be performed during pit stops that 

do not interfere with production demand.  

The thesis presents principles for designing a digital twin (DT) based decision support 

system (DSS) for maintenance requirements. Next, a case study for the long-term 

maintenance planning of reverse osmosis (RO) membranes in seawater desalination, affected 

by biofouling, is used to demonstrate a DSS to solve an actual maintenance problem. The 

concept of a DT-based DSS is not limited to this practical example. The thesis author intends 

to demonstrate this with initial research on vibrations anomaly detection and performance 

analysis of the large centrifugal pumps at the plant. The objective is to identify if the source 

of degradation is limited to the bearings, which are relatively easy to replace or if the 

degradation involves components inside the pump casing. The latter requires opening the 

casing, which is an expensive, time-consuming fixed set-up activity. 

The chapter is organized as follows. First, in section 9.1, demand forecasting is addressed. 

Then in section 9.2, initial research on condition-based maintenance of large centrifugal 

pumps is set out. Finally, in section 9.3, the results of the current state of the performance 

indicators are compared against the baseline. 
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9.1 Forecasting demand 
The purpose of the demand forecast is to plan maintenance activities, which will 

temporally reduce the production capacity. Due to its unreliability, the forecast models give 

no added value to the decision process. During the period of December to March, the wet 

season, there is a change of 70% that the water authorities will request a reduced demand. 

The latter means a 30% chance of a minor shortfall. During the dry season,  the demand is 54 

MGD 95% of the days from April to November. We must consider that production capacity 

reduction will always result in a shortfall during these months. 

An investigation has been conducted for the possibility of establishing a short-term 

demand forecast model for the desalination plant in this case study. Short-term water demand 

predictions for every day of the next week or even just one day in advance will help plan 

maintenance. Management needs to make decisions such as scheduling of water treatment 

capacity for short-term maintenance planning. Reduction of capacity for maintenance can 

have an impact on fulfilling customer demand. Business, industry, and government utilities 

thus rely on forecasting tools for planning and scheduling tasks.  

Although forecasting is a well-established discipline, it has mixed results in the water 

sector. The reason behind this is the nature and quality of the available data and the numerous 

variables that affect water demand (Donkor et al., 2014). Forecasting of short-term electrical 

load by power generation utilities has been more successful. Under- or over-evaluating the 

required load capacity can result in heavy economic penalties in this sector. It was estimated 

that a one percent forecast error would result in an additional 10 million pounds per year for 

the British power system in 1985 (Papalexopoulos and Hesterberg, 1990).  Regression 

analyses, autoregressive moving average (ARMA) and autoregressive integrated moving 

average (ARIMA) are standard methods for forecasting short-term electrical load demand 

(Papalexopoulos and Hesterberg, 1990; Che and Wang, 2014). 

Various stakeholders, particularly the client, the San Diego County Water Authorities 

(SDCWA), the project development company representing the owners, further referred to as 

the asset owners, and the O&M company, have different interests. The first two stakeholders 

have a commercial agreement for the delivery of potable water. The client has contractually 

committed to a monthly, quarterly and annually minimum demand. So, if the client can fulfil 

their water needs from other financially cheaper resources, they are still obliged to request the 

minimum demand commitment. Therefore, if the delivery capacity is below the client's needs 

due to the equipment being out of service, the latter immediately requests a demand 
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corresponding to the designed maximum plant capacity to fulfil their minimum demand 

commitment even if they do not need that volume.  

The incentive of the asset owners for the return on investment is to sell as much water as 

possible. There is no such incentive for the O&M company. They are paid for their services, 

independent of the water sold. However, the O&M company has to deliver the water demand 

of the client. The O&M company is penalized if they deliver less than 95 percent of the water 

demand. The shortfall can be made up, but no more than five percent above the daily water 

demand. The above-described stakeholder interests complicate short-term demand 

forecasting since the latter might not be driven by the actual water demand of the region.  

The demand by the client can change up to three times a day with an interval of eight 

hours. The time slots are 8 am, 2 pm and 8 pm. However, for simplicity in this case study, 

only one flow change per day is considered.  Previous daily averages are used to fit various 

forecast models. Environmental variables, e.g., daily maximum temperature, probability of 

rainfall and the season of the year, have been identified to affect water use. However, demand 

is probably not limited to these variables. 

Multi-regression models were analyzed with different combinations of determining 

variables. The multi-regression analyses were first applied to an extended dataset from 

January 2016 to April 2019. 95% of the days between April and November, the entire plant 

design capacity of 54 Million Gallons a Day (MGD) is demanded. The regression analyses 

were repeated with a reduced dataset to investigate if a better fit could be reached for the 

winter months, excluding the days when the demand was above 50 MGD. For the period of 

December to March, there is strong randomness in demand. Additionally, time-series 

forecasts based on exponential smoothing and a moving average of the demand were tested 

involving data from January to March 2019. 

Water forecasts have been applied to both medium to long-term and short-term demand 

predictions (Jain and Ormsbee, 2002; Altunkaynak et al., 2005; Caiado, 2010; Donkor et al., 

2014). As stated earlier, a short-term demand forecast is helpful for plant operators. Although 

the medium-term and long-term forecast is expected to be stable for the CDP, this is not 

automatically the case for short-term forecasts.  

Donkor et al. (2014) overviewed selected journal papers on water demand forecasting 

methods between 2000 and 2010. Of the 33 papers, 15 dealt with short-term demand. Of 

these 15 papers, ten dealt with daily demand forecasting. Table 9-1 gives the forecasting 

methods and the determining variables used in these ten studies. 
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Several researchers concluded that neural networks performed better for short-term 

forecasts than conventional methods like time-series regression or variate time-series models. 

This conclusion was, however, not unanimous. According to Jain and Ormsbee (2002), the 

slight drop in model performance does not justify the time and investment to develop a more 

sophisticated expert system. Regression analysis is the most frequently used statistical 

technique for water demand forecasting (Altunkaynak et al., 2005). This research focuses on 

conventional forecasting methods. 

Table 9-1. Forecasting methods and determining variables of daily demand forecast models (source: 

Donkor et al., 2014) 

Authors Forecasting method  Period  Determining variables 

Jain and Ormsbee 
(2001) 

Regression, time series analysis or 
artificial neural networks (ANN) Daily demand 

Water demand of previous days, 
precipitation, max air temperature, sunshine 
hours 

Cutore et al. (2008) ANN, regression and adaptive 
neuro-fuzzy Daily demand Demand of previous day; working day 

dummy; day of week 

Jentgen et al. (2007) Heuristics, regression and ANN 
methods 

Hourly demand 
Daily demand 

Temperature, precipitation and Lag 1 of 
demand 

Jain and Ormsbee 
(2002) 

Regression, univariate time series 
and artificial intelligence (AI) 
models 

Daily demand Various lags of demand; max temperature; 
precipitation 

Alvisi et al. (2007) 
Fourier series for seasonal 
component and Auto-Regression 
(AR) for residuals 

Daily demand 
hourly demand Historical data 

Aly and Wanakule 
(2004) 

regression by adjusting monthly 
forecasts obtained from a Holt-
Winters multiplicative exponential 
smoothing model 

Daily and 
monthly 
demand 

Precipitation, temperature, humidity, 
lagged demand 

Caiado (2010) Holt-Winters, ARIMA, and 
GARCH models Daily demand Univariate daily consumption 

Gato et al. (2007a) 
Models daily use a function of base 
use and seasonal where base use is 
dependent on climatic factors 

Daily demand Thresholds of temperature and 
precipitation; day of the week 

Gato et al. (2007b) 

Models daily use a function of base 
use and seasonal where base use is 
dependent on climatic factors. Uses 
regression for base use and Fourier 
series for seasonal use 

Daily demand Thresholds of temperature and 
precipitation; day of the week 

Zhou et al. (2000) 

Models base and climate 
components with regression, 
seasonal with Fourier, and residual 
with AR (p), where p takes values of 
1, 2, and 7 

Daily per 
capita 
consumption 

Max temperature; occurrence of rainfall; 
precipitation; evaporation;  
days since last rainfall. 

Weather patterns typically influence short-term demand (Jain and Ormsbee, 2002; 

Altunkaynak et al., 2005; Caiado, 2010; Donkor et al., 2014). Determining variables used in 

previous research for short-term water demand forecast are environmental conditions such as 

temperature, precipitation, the occurrence of rainfall, days since last rainfall, humidity and 

evaporation. In addition to environmental conditions, time-series data is used, where seasonal 
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influence is based on time-series data. San Diego County has a Mediterranean climate.  More 

than 80% of the region’s rainfall occurs between December and March. Beginning 2015, 

SDCWA serviced 3.2 million residents. The population is expected to be 3.8 million by 2040, 

an average annual growth of 1%. In 2015 single-family homes accounted for 60% of 

residential dwellings in San Diego County. Up to 60% of domestic water use in single-family 

homes accounts for outdoor purposes, e.g., garden irrigation (sdcwa.org, 2016). Water 

demand is therefore expected to be heavily influenced by seasonal factors. Both 

environmental determinants and time-series variables have been included in the forecast 

models. 

There are complicating factors that can influence the accuracy of the forecasts negatively. 

First is the urban structure of San Diego County.  Research on water use in Texas showed 

that small towns have relatively greater randomness in water use than large cities (Zhou et al., 

2000). The water authority service area consists of 19 towns5 and further rural areas. The 

largest city is San Diego, with a population of 1.4 million. The smallest is Del Mar, with a 

population of four thousand. When excluding San Diego, the average population per town is 

78.6 thousand. College Station in Texas, where Zhou et al. (2000) refer, has a population of 

113.6 thousand. 

Table 9-2. Population, home value and household income per town in San Diego County 

  Population 

Carlsbad 113,147 
Chula Vista 264,101 
Coronado 24,053 
Del Mar 4,338 
El Cajon 103,314 
Encinitas 62,595 
Escondido 150,783 
Fallbrook6 30,534 
Imperial Beach 27,270 
La Mesa 59,479 
Lemon Grove 26,645 
National City 60,715 
Oceanside 174,811 
Poway 49,874 
San Diego 1,390,966 
San Marcos 93,493 
Santee 57,378 
Solana Beach 13,362 
Vista 99,496 

 
5 https://www.cleargov.com/california/san-diego 
6 http://www.city-data.com/city/Fallbrook-California.html 
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The second complicated factor is that the desalination plant is only one of the various 

sources of the water supply of the SDCWA. The CDP might not be proportional to the 

overall water demand of San Diego County. Demand for CDP could also depend on the 

temporally capacity reduction of the other suppliers the water treatment plants of the member 

agencies. These 12 plants, with a capacity of 752 million gallons a day (MGD), treat all the 

water (approx. 90% of the water supply) except the Desalination plant (sdcwa.org, 2016). 

The local water resources include surface water, water recycling, potable reuse, brackish 

groundwater recovery, and groundwater. The share of desalination is around 10% of the 

overall water supply. Table 9-3 below gives an overview of the various water supply sources 

of the region. 

Table 9-3. Water utilities supplying to SDCWA (source sdcwa.org (2016) 

  2020 2025 2030 2035 2040 

Total Projected Supplies (AF/Y) 587,581 648,124 676,721 694,431 718,773 

Imperial Irrigation District Transfer  32% 31% 30% 29% 28% 

Metropolitan Water District 23% 28% 31% 32% 35% 

Local water resources (Member Agencies) 21% 20% 20% 19% 19% 

All-American Canal and Coachella Canal 

Lining Projects 14% 12% 12% 12% 11% 

Carlsbad Desalination Plant 10% 9% 8% 8% 8% 

9.1.1 Regression models 
Several regressions analyses have been run to determine the best forecast model to predict 

water demand seven days ahead. For the determining variables, the following environmental 

variables were identified: 

• Temperature 

• Rainfall 

• Seasonal influence 

Rainfall is expected to lower the water demand since residents are not allowed to irrigate 

their garden for up to 48 hours after a rainfall (sdcwa.org, 2016). Rainfall means that the 

determining variable 'Ri' should be negative for the regression models. If this is not the case, 

then the model is doubtful. Seasonable influence is defined in two different quantitative 

expressions. The two options have not been combined in a single model. The environmental 

variables are expressed as follow: 

• Temperature. 
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o Ti-µT(∆Ti) daily maximum temperature in ºF – average maximum 

temperature over the years 2016 to 2018   

• Rainfall 

o Ri expressed as the occurrence of rainfall (0 or 1): Previous data based 

on precipitation > 0.5 inches. Future weather forecast predicting the 

chance of rain above 50%. 

• Seasonable influence     

o Si, -1 for Jan to Mar; 0 for April to Nov and 1 for Dec. 

o s1i, -1 for Jan to Mar; 2 for April to Nov and 0 for Dec. 

Si and s1i both identify Jan-Mar as the wet season, April-Nov as the dry 

season and December as the change between the wet and the dry season. 

However, by assigning different values to the latter two, the sensitivity of the 

forecast is tested.  

Data on daily maximum temperatures and precipitation were collected from the National 

Oceanic and Atmospheric Administration (NOAA). Also, a combination is applied of the 

environmental variables with a moving average of previous demand and the client's monthly 

minimum committed demand. The demand seven days previously is defined per equation one 

below. 

Previous weekly demand is further defined in two options. First, the previous weekly 

demand is defined in a moving average of the previous seven days. Further, the previous 

weekly demand is defined as the average demand of the previous calendar week. Both one or 

the other option and a combination of the two options were included in another model. The 

above variables are defined as follow: 

• Previous demand 

o Di-7, Demand 7 days previously (moving average of daily demand)   
7

1
7 7

ii
i

D
D

−

−
− = ∑  

o Wi, Moving average of the previous week's daily demand 
14

7

7
ii

D
Wi

−

−= ∑  

o W1i, a fixed average of the demand of the previous calendar week 
• Monthly minimum committed demand client 

o MinD, Minimum Daily demand commitment of the client for the calendar 

month 
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Data is used from 2016 until April 15th, 2019. February 29 in the leap year 2016 has been 

dropped to maintain 365 days in each year. The sampling rate was 1200. Initially, 75 

regression analyses were run utilizing Regresslt7, where Y is demand and X is the determining 

variables, e.g., Ti-µT, Ri, Si, s1i, Di-7, Wi, W1i, and MinD.  The regressions were based on a 

single variable to determine the variables’ impact and multi regressions of a combination of 

variables. First, eight simple regressions were run on the independent variables to evaluate 

their effect on the dependent variable. After that, 26 multiple regressions were run with 

combinations of two variables and 25 regressions of triple variables. Four regressions of four 

variables, six of five, four of six and one of seven. Figure 9-1 shows the output of the 

regression analyses, utilizing Regresslt with the best results. Table 9-4 shows the 

corresponding coefficients. 

 
Figure 9-1. Regressions models with an R-squared > 0.4. Data from January 2016 to April 2019 

Table 9-4. Coefficients regression models with an R-squared of above 0.4 
 Intercept ∆Ti Ri Si S1i D-7i Wi W1i MinDi 
  a b c d e g h n p 

Run 25 16.506   5.314     0.729 
Run 32 6.415     0.254   0.664 
Run 35 4.346       0.380 0.575 
Run 47 14.464   4.662   0.079  0.689 
Run 49 6.931     0.317 -0.090  0.681 
Run 56 18.126 0.129  5.110     0.691 
Run 60 6.207 0.118      0.370 0.543 
Run 68 11.044  -0.352 3.882   -0.286 0.547 0.563 
Run 73 12.713 0.108  3.783  0.086 -0.319 0.483 0.538 
Run 74 15.106 0.097  4.325  0.298 -0.171  0.620 
Run 75 7.396 0.110     0.287 -0.012   0.374 0.517 

 
7 Regresslt™ is a free Excel add-in for multivariate descriptive data analysis and regression analysis from 

regressit.com and was developed at the Duke University for teaching regression and time series analysis in MBA 
courses. https://regressit.com/ 

Linear Model For Di Run 25 Run 32 Run 35 Run 47 Run 49 Run 56 Run 60 Run 68 Run 73 Run 74 Run 75
# Fitted 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200

Mean 46.195 46.195 46.195 46.195 46.195 46.195 46.195 46.195 46.195 46.195 46.195
Standard Deviation 13.041 13.041 13.041 13.041 13.041 13.041 13.041 13.041 13.041 13.041 13.041

Number Of Variables 2 2 2 3 3 3 3 5 6 5 5
Standard Error of Regression 9.995 9.957 9.749 9.970 9.942 9.967 9.726 9.458 9.421 9.698 9.731

R-squared 0.414 0.418 0.442 0.417 0.420 0.417 0.445 0.476 0.481 0.449 0.445
Adjusted R-squared 0.413 0.417 0.441 0.416 0.419 0.416 0.444 0.474 0.478 0.447 0.443

Mean Absolute Error 5.843 5.878 5.665 5.776 5.891 5.786 5.627 5.409 5.355 5.598 5.592
Maximum VIF 1.161 1.345 1.512 1.653 3.305 1.350 1.671 4.038 5.882 3.520 4.900

Mean Absolute Scaled Error 2.960 (lag 1) 2.978 (lag 1) 2.870 (lag 1) 2.926 (lag 1) 2.984 (lag 1) 2.931 (lag 1) 2.850 (lag 1) 2.740 (lag 1) 2.713 (lag 1) 2.836 (lag 1) 2.833 (lag 1)
Residual Autocorrelation 0.82 (lag 1) 0.81 (lag 1) 0.80 (lag 1) 0.82 (lag 1) 0.80 (lag 1) 0.82 (lag 1) 0.80 (lag 1) 0.77 (lag 1) 0.78 (lag 1) 0.79 (lag 1) 0.80 (lag 1)

  Coefficients: Run 25 Run 32 Run 35 Run 47 Run 49 Run 56 Run 60 Run 68 Run 73 Run 74 Run 75
 Constant 16.506 6.415 4.346 14.464 6.931 18.126 6.207 11.044 12.713 15.106 7.396

Di_7 0.254 0.317 0.086 0.298 -0.012
MinD 0.729 0.664 0.575 0.689 0.681 0.691 0.543 0.563 0.538 0.620 0.517

Ri -0.352
Si 5.314 4.662 5.110 3.882 3.783 4.325

Si1_ 0.287
Ti_µT 0.129 0.118 0.108 0.097 0.110

Wi 0.079 -0.090 -0.286 -0.319 -0.171
Wi1_ 0.380 0.370 0.547 0.483 0.374
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From the simple regressions, the minimum daily demand commitment of the client for the 

calendar month (MinD) had the highest impact on the forecast with an R-Squared of 0.367. 

Rainfall had a neglectable impact with an R-squared of 0.004. Twelve results of the multiple 

regressions gave a positive coefficient for rainfall. This positive coefficient implies that 

rainfall would increase demand. The latter is contradictory to logic and therefore has been 

disregarded.  

 
Figure 9-2. Trend charts of regression models with an R-squared of above 0.4. The Y-axes 

show the daily water demand in MGD, and the X-axes show the days. 

From the remaining regressions, 11 models had an R-squared of above 0.4. These 

regression models include the moving average of the previous demand, i.e., Di-7, Wi and W1i 

and the minimum monthly committed demand by the client. The regression model with only 

environmental variables, i.e., ∆Ti, Ri, and Si or S1i, gave an R-squared of below 0.4 (0.239 

with the combination of Si and 0.323 with the combination of S1i).  
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The corresponding trend graphs of the regression models with an R-squared above 0.4 are 

shown in Figure 9-2 above. The 11 models were tested by running forecasts against the data 

from January to Match 2019. Data from January 6 to January 16 was removed since the plant 

was shut down for scheduled major maintenance during that period. Unfortunately, the 

forecast did not correlate with the actual demand when a lower demand than 51.8  MGD was 

predicted. The model with the best fit scored a poor R-squared of 0.01. The latter might be 

influenced by the client‘s commercial interest, i.e. the minimum demand commitment, as 

described earlier. Further, the initial regression analysis is affected by a demand of 51.8 

MGD or above for 71% of the time between January 2016 and April 2019.  

9.1.1.1 Concentrating forecasting during the ‘wet season.’ 

The concentration of rainfall between December and March is reflected in demand during 

the wet period (December to March) and the Dry season (April to November). On average, 

32% of the days during the wet season, the demand was above 51 MGD. During December 

2018 and March 2019, the days of demand over 51 MGD were just 9%. Throughout the dry 

season, 95% of the days, the demand is above 51 MGD (see table 9-5).  

Table 9-5. Demand for days above 51 MGD per dry and wet season 

  

Jan - 
Mar 
2016 

Dec 2016 
– Mar 
2017 

Dec 2017 
– Mar 
2018 

Dec 2018 
- Mar 
2019 Total 

Apr - 
Nov 
2016 

Apr - 
Nov 
2017 

Apr - 
Nov 
2018 Total 

Count > 51 MGD 22 50 60 11 143 226 230 243 699 

Total days period 90 121 121 121 453 244 244 244 732 

Percentage > 51 MGD 24% 41% 50% 9% 32% 95% 93% 94% 95% 

 

Figure 9-3 below shows the demand in the time series. From this data, we can conclude 

that demand between April and November is expected to be above 51 MGD with a forecast 

error of 5%. The demand between January and March seems to be somewhat random. 

Observing highly probable events provides very little information (Miller and Childers, 2012, 

p. 155). 

Following this observation, forecasting is limited for the period of December to March to 

investigate if a more precise prediction of demand can be made in this season. Regression 

models were rerun from December to March, from January 2016 until March 2019. The 

number of rows of the excel file was reduced from 1200 to 373. We can now neglect the 

seasonal influence. The number of regression models was reduced to 46. In four of the 46 

models, the rainfall had a positive coefficient which is at odds with the logic. Demand 7 days 
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previously (Di-7) and the average of the demand of the previous calendar week (W1i) had the 

most significant impact on the single regression analyses. 

 
Figure 9-3. Daily demand requests from 2016 to 2019. The Y-axes show the daily water demand in 

MGD, and the X-axes show the days arranged per month. 

All models had a poor fit, with only six models with an R-squared above 0.2. The model 

with the best fit had an R-squared of only 0.232. The six models were tested by running 

forecasts against the data from January to Match 2019. Again, data from January 6 to January 

16 was removed since the plant was shut down. The forecasts vary between 25 and 45 MGD, 

while the actual demand varies between 15 and 54 MGD (see figure 9-3). The forecasts are 

unable to predict the sudden increases to 50 MGD or above. The demand at points 16 to 20 

went to 54 MGD, while all forecasts predicted a drop-in demand. A value of just 0.11 was the 

highest R-squared reached.  

We can conclude from these demand forecasts that there is a high degree of randomness 

during the period of December to March. The forecast confirmed the high degree of 

randomness of the time-series trend graph shown in Figure 9-4. The literature review 

confirmed that forecasting the demand would be complicated due to the urban character of 

San Diego County. Further, as mentioned earlier, the division of the region’s daily demand 

between the 12 water treatment plants adds additional uncertainty to demand projections of 

CDP. Temporally supply limitations of any of those 12 water treatment plants can influence 

the water request to the desalination plant for that day. 
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Figure 9-4. Trend charts of regression models applied to the data from January to March 2019. The Y-

axes show the daily water demand in MGD, and the X-axes show the days. The blue pen is the actual, 

Red pen is the forecast. 

9.1.2 Exponential smoothing and moving average 
In addition to the regression models, forecasting models based on exponential smoothing 

( )( )1 1t t t tY Y coefficient X Y− −= + − and moving averages ( )( )1 / 2t t tY X X−= +  were 

investigated. Makridakis et al. (1982) stated that the more randomness of the data, the less 

important it is to use sophisticated statistical methods. Therefore, time-series forecasting 

based on exponential smoothing could perform better based on one or two periods ahead. 

This reasoning was also observed in this research. Forecasting the demand one day in 

advance gave an R-squared of 0.430 for the reduced dataset. A random exponential 

coefficient of 0.3 was used.  
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Figure 9-5. Left, a scatterplot of the predicted (Y-axes) vs the actual demand (X-axes) of exponential 

smoothing. Right, a trend chart of the time-series data. The blue pen is the actual, Red pen is the 

forecast. The Y-axes show the daily water demand in MGD, and the X-axes show the days. 

Figure 9-5 gives the scatterplot and trend chart of the predicted vs the actual demand for 

the reduced dataset. Applying the method of moving average gives a similar result. A period 

of two days in the past has been applied. Forecasting the demand one day in advance gave an 

R-squared of 0.404 on the reduced dataset.  

 
Figure 9-6. Left, a scatterplot of the predicted (Y-axes) vs the actual demand (X-axes) of by moving 

average. Right, a trend chart of the time-series data. The Y-axes show the daily water demand in 

MGD, and the X-axes show the days. The blue pen is the actual, Red pen is the forecast. 

The exponential smoothing and moving average models, forecasting only one day ahead, 

performed better than the regression analysis. However, both exponential smoothing and 

moving averages lag with one to a few days. This lagging means that when the maximum 

demand is requested, this only shows up a few days later. The purpose of the forecast is to 

estimate when maximum demand will be required and when there is reduced demand. The 

forecasts failed on this task. Figure 9-6 gives the scatterplot and trend chart of the predicted 

vs the actual demand forecasting applying the moving average. 
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9.1.3 Autoregressive moving average 
Several papers on short-term electrical load forecasting include AutoRegressive Moving 

Average (ARMA) (Papalexopoulos and Hesterberg, 1990) or AutoRegressive Integrated 

Moving Average (ARIMA) (Che and Wang, 2014; Dudek, 2016). The thesis author limited 

additional forecasting techniques only to ARMA forecasting. ARMA models use a 

polynomial for autoregression (p) and another for moving average (q). The equation for the 

ARMA(p,q) model is 1 11 1

p q
t t i ti i

Y c Yϕ θ ε− −− −
= + +∑ ∑            

(21)
 

where φ is the autoregressive model’s parameter;  

θ is the moving average model’s parameter;  

ε the white noise process (a random process of uncorrelated random variables, with mean 

zero and a finite variance);  

c is a constant. 

An ARMA model has been applied to the reduced dataset from 2016 to 2018 for the first 

week of 2019. Afterwards, a daily forecast for a new week ahead was conducted.  

 
Figure 9-7. Left a trend chart of the time-series data by moving average. The blue pen is the actual, Red 

pen is the forecast. The Y-axes show the daily water demand in MGD, and the X-axes show the days. 

Right, a scatterplot of the predicted (Y-axes) vs the actual demand (X-axes).  

The forecast based on ARMA gave a low fit like the multi-regression analyses when 

applied to the data of January to March 2019. The R-squared was 0.035. Figure 9-7 gives 

both the time-series comparison and the scatterplot of the ARMA applied to the data of 2019. 

Similar to the exponential smoothing and moving average models, the ARMA model failed to 

estimate if the demand will be reduced for the next day providing the opportunity to service 
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major equipment without affecting demand obligations. The model did not predict the 

demand of 50 MGD or higher during the seven days.  

9.1.4 Summary forecasting. 
This research could not establish a short-term demand forecast model for the case study. 

The pattern of the demand is too random. Forecasting models based on multi-regression gave 

no correlation.  Environmental factors such as temperature, rainfall, and seasonal influence 

were neglectable in the multi-regression analysis. The forecasts could predict the demand for 

54 MGD during the dry period between April and November. However, this gave a 

misleading fit for the remaining wet period of the year. When disregarding the data from 

April to November, there was no correlation anymore, and the requested demand seems to be 

highly random. 

Forecast models based on exponential smoothing and simple moving average gave a poor 

fit with an R-squared of 0.43 for exponential smoothing and an R-squared of 0.404 for 

moving average. An autoregressive moving average (ARMA), successfully to short-term 

electrical load forecasting, had poor results in the water demand forecasting in this case 

study. Like the regression models, the correlation (R-squared 0.04) was poor. More 

importantly, all three models could not predict the cases when the demand was raised to the 

entire design capacity. The latter was the main objective.  

There are two complicating factors in predicting the demand for the plant. First, the water 

authorities supply water to several small towns. Previous research has shown that demand is 

more random when dealing with small towns. Further, the plant supplies only approx. 10% of 

the overall water supply to the water authorities. Most of the supply comes from 12 other 

water treatment plants. Therefore, temporally supply limitations of those plants can influence 

the water request to the desalination plant for that day. In addition, commercial interests seem 

to motivate the client to request maximum demand when the plant capacity is reduced.  

9.2 Condition-based maintenance of centrifugal pumps 
The following section demonstrates a DT-based DSS concept for the plant's large 

centrifugal pumps based on initial research on vibrations anomaly detection and performance 

analysis. A virtual replica of the centrifugal pump can show the flow, power consumption, 

and vibrations according to feed and discharge pressure and pump speed. The virtual replica 

can then be compared to the physical pump to determine wear, and the wear source is 

bearings or the pump's internal components. The latter requires significantly higher fixed set-

up costs. 
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Besides the RO trains, the main focus of this research, all other primary equipment of the 

plant consists of or includes centrifugal pumps. The electrical motors of the majority of these 

pumps, e.g., Intake Pumps (IP), Low-pressure booster (LPB) pumps, High-pressure Booster 

(HPB) pumps, Energy Recovery System (ERS) booster pumps, and Brackish Water RO 

(BWRO) feed pumps, are driven by Variable Frequency Drives (VFD). Most pumps are 

relatively large, from 250 kW up to 1.6 MW. Further, pumps with the same purpose are 

connected parallel to common headers. 

9.2.1 Vibration monitoring and analysis of centrifugal pumps. 
Bearing vibration and temperature monitoring has been dominant in the predictive 

maintenance of centrifugal pumps. Wear of bearings often results in increased vibration and 

rising bearing temperature. Several Predictive maintenance studies have concentrated on 

vibrations (Parrondo et al., 1998; Orhan et al., 2006; Ugechi et al., 2009; Babu and Das, 

2013; Xue et al., 2014; Stan et al., 2018). Vibration monitoring is the most common method 

applied in predictive maintenance (Beebe, 2004) and a predictive maintenance system not 

including vibration monitoring would be significantly hampered. Vibration analysis is 

complex, especially for centrifugal pumps. Many practising engineers spend decades 

troubleshooting vibrations before developing a indebt understanding of the matter. 

The source of the vibrations can be due to mechanical, hydraulic and peripheral courses, 

e.g., misalignment between pump and motor, bearing fatigue, unbalance of the impeller or 

shaft, cavitation, or vortices. The primary purpose of vibration analysis is to detect a 

developing vibration tendency on time. After all, increasing vibration levels are an early sign 

of failure (Birajdar et al., 2009). Thus, a maintenance activity can be planned instead of the 

need for unplanned corrective maintenance firefighting due to a critically advanced failure.  

Vibrations are inherent to centrifugal pumps generated by both mechanical and 

hydrodynamic sources. Mechanical and fluid-dynamic borne vibrations can be further 

intensified in the bends, joints, pipe diameter changes, and pipe assembly's T-joints (Birajdar 

et al., 2009; Albraik et al., 2012; Barzdaitis et al., 2016). Additional vibration problems can 

occur when implementing VFDs. Harmonics from a VFD with six pulse output converters 

can cause torsional vibration. The primary VFDs in this case study have 18 pulse output 

converters. Besides harmonics, the motor can contribute vibrations due to electromagnetic 

and electromechanical forces. Electromagnetic forces are, e.g., the air gap dissymmetry 

between the motor rotor and stator and the magnetic pull force of the line frequency. 

Electromechanical forces are mechanical unbalances and motor slip (Costello, 1990). 
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Combined with the vibrations due to the mechanical and fluid dynamics of the pump, these 

sources of vibrations intensify the overall vibrations (Dickau and Perera, 2000).  

9.2.1.1 Fluid dynamics-borne vibrations. 

Fluid-dynamic-borne vibrations in centrifugal pumps are transferred to the outer casing 

due to the fluid's pressure fluctuations. These pressure fluctuations occur when the impeller 

vanes pass the diffuser vanes or cutwater in case of a volute. The speed of this occurrence is 

defined as the Blade Pass Frequency (Stickland et al., 2000; Guo and Maruta, 2005; Jiang et 

al., 2007; Gülich, 2010; Albraik et al., 2012; Zhao et al., 2013; Jun et al., 2014; Schofield et 

al., 2016; Zhang et al., 2018; Dhanasekaran and Kumaraswamy, 2019; Li et al., 2019). 

Having an equal number of impeller vanes and a double volute, as is the case with the HPB 

pumps of this case study, results in two pressure pulses coinciding when the vanes pass the 

cutwater (Dickau and Perera, 2000). Zhang et al. (2018) studied the amplification of pressure 

pulsation under cavitation conditions, which can result in a considerable increase in 

vibrations. In the short term, these elevated vibrations disappear when cavitation conditions 

cease to exist. 

Complications intend to increase when running pumps parallel with a common discharge 

header. Koegler et al. (2014) investigated the effects of a slight rotational speed difference 

due to the motor slip of two identical centrifugal pumps operating in parallel. The Pressure 

pulsations and pump performance were sensitive to the slightest deviations in speed between 

the pumps. The latter was reflected in the individual energy consumption of the pumps.  

According to Schofield et al. (2016), the noise and vibration levels tend to be higher due to 

increased power density at higher rotational speeds. A study by Dhanasekaran and 

Kumaraswamy (2019) did not find a correlation between the amplitude of pressure 

fluctuations and operating frequency. However, the study was based on a multi-stage high-

pressure pump, and the maximum pressure fluctuation amplitude per stage differed per 

operating frequency. On the other hand, studies by Stickland et al. (2000) and Albraik et al. 

(2012) have highlighted a correlation between the flow rate and vibration. An experimental 

study by Stickland et al. (2000), based on a single-stage pump, showed that the flow rate was 

the main reason for the amplitude of pressure fluctuations in the volute. A study by Albraik et 

al. (2012), also based on a single-stage pump, showed a positive correlation between pump 

flow and vibrations. 

Studies so far have concentrated on design improvement to reduce hydrodynamic 

vibrations (Guo and Maruta, 2005; Jiang et al., 2007; Zhao et al., 2013; Jun et al., 2014; 
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Wang et al., 2018; Li et al., 2019). Studies further concentrated on fault detection on bearings 

(Dwyer-Joyce, 1999; Orhan et al., 2006; Azeez and Alex, 2014; Golbaghi et al., 2017; 

Amarnath and Krishna, 2019) or fault detection on impellers (Tobi and AL-Mahdi, 2016; 

Jami and Heyns, 2018).  

9.2.1.2 A simplified method of filtering vibration data when pump flows are dynamic 

Several predictive maintenance programs involving vibration analysis are based on 

measurements of vibrations with a portable accelerometer, involving expertise knowledge to 

analyze the test results (Parrondo et al., 1998; Orhan et al., 2006; Babu and Das, 2013) or are 

based on complex algorithms (Xue et al., 2014). In this study, all pumps with 250 kW or 

above power include velocity transducers (VT).  VTs are used to monitor vibrations and are 

permanently installed on the bearing houses of the pumps and drives. Statistical methods 

were used on one of the pumps' data to investigate if a simple correlation could be established 

between pumps' speed and vibration levels. 

 

Figure 9-8: Scatterplot of vibrations vs frequency for DE and non-drive-end (NDE) of HPB pump 2 
(Data 2016). Y-axes vibrations, X-axes motor frequency.  

The data of HPB pump 2 over the first year of operation, 2016, is used as a baseline for 

this correlation. We can assume that at this time, the bearings were in normal/good/non-worn 

condition. In the case of the pump, we can observe a clear positive correlation of vibration vs 

frequency at the scatterplots. The vibrations of the pump drive-end (DE) are expected to 

impact that of the motor DE due to the transfer by the coupling. This impact can be observed 

in Figure 9-8. 
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Figure 9-9. Scatter plot of the maximum vibration data vs the Frequency of HPB pump 2. Y-

axes vibrations, X-axes motor frequency. 

Following the upper limit of fluid-dynamic borne vibrations can be established by 

discretizing frequency to intervals of one Hz and selecting the maximum vibration values 

from the data accordingly. Figure 9-9 shows the scatter diagrams of the maximum vibration 

values for the frequencies from 30 Hz to 59 Hz with intervals of one Hz. A Polynomial 

trendline is added in the order 2.  

The values analyzed per frequency interval were 0.5 Hz below up to 0.5 Hz above the 

frequency interval. Those values which were far out of the trend were omitted. The equation 

of the polygons (see Figure 9-9) is used as the baseline of the relation between vibrations and 

frequency of healthy bearing and no wear or damage on the impeller. Wear resulting in 

increased vibration can be revealed by subtracting the calculated maximum expected 

vibration according to the polygon equations from the observed vibrations. The thesis author 

defines the latter as Normalized Vibration. Figure 9-10 shows the applied vibration 

normalization for HPB pumps 2 and 3. 
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Figure 9-10: normalized vibration data HPB pump 2 (left) and for HPB pump 3 (right).       

Y-axes vibrations, X-axes date. 

HPB pump 3 showed the start of an increase in motor NDE vibrations at the end of April. 

The manufacturer recommends the replacement of the bearings after 25,000 hours of 

operation. The actual hours of operation were 23,961 hours for pump 1, 23,085 hours for 

pump 2. 19,068 hours for pump 3 and 13,506 hours for pump 4. Nevertheless, based on the 

normalized motor vibration data, the bearings of the motor of HPB pump 3 were removed 

and examined. Examination of the removed roller bearing showed grooving of the inner 

raceway surface and denting of the rollers (see Figure 9-11). 

This grooving and denting are likely to be caused by small debris. Lubricant grease can 

contain some quantities of solid debris particles. Much of this debris is larger than the 

lubricant film between the roller elements and the raceway, which is typically less than a 

micron in thickness. This debris results in grooves and denting damage (Dwyer-Joyce, 1999).  

 

Figure 9-11: Left, Grooves inner raceway ring NDE bearing; Middle: expanded detail Grooves; Right, 
Denting roller surface. 

Further, if the grease is not replaced correctly, it can accumulate debris particles. Grease 

further gradually loses its lubricant properties (SKF, 2010). What could be observed after the 

old bearings were removed was that the new grease stayed at the outside of the bearings, and 
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the old grease was not replenished between the rollers and the raceway. The replacement of 

the motor bearings resolved the vibrations. 

Besides bearings, the internal wear of the pump can cause increased vibration due to wear 

of the wear-rings of the impeller. The wear-rings limit the gap between the impeller and 

casing. The size of the gap between the rotating impeller and stationary casing defines the 

amount of leakage flow from the impeller outlet back to the inlet. An increased gap due to 

wear increases the leakage flow. Not only does this reduce efficiency (Shiels, 1997; Liu et al., 

2015; Mou et al., 2016), but an increased gap between the impeller wear-ring and casing 

wear-ring decreases the damping of unsteady hydraulic forces and further decreases shaft 

stiffness. Thus, wear-rings' wear increases vibration (Aronen, 2011).  

9.2.2 Pump performance monitoring 
However, developing wear of the inner pump components does not necessarily result in 

increased vibrations. Wear of the inner pump elements can result in a hidden performance 

deterioration affecting the pumping efficiency. A deterioration of efficiency can manifest 

itself in increased power consumption, loss of pump Total Dynamic Head (TDH) and flow or 

a combination of this (Ilott and Griffiths, 1997; Beebe, 2004; Stoffel, 2015).  

Azadeh et al. (2010) developed a rule-based fuzzy inference system for failure diagnosis 

of centrifugal pumps. Their system transferred human expertise logic in automated 

diagnostics, considering pump performance based on pump curves from the original 

equipment manufacturer (OEM), vibration and temperature. The rule-based fuzzy inference 

system identified the source of the problem after a fault had occurred. Therefore, this fuzzy 

inference system can be implemented as descriptive analytics to describe the problem. The 

method provides additional value on top of a condition-based maintenance system. Since it 

cannot detect early developing wear, the method alone cannot replace wear monitoring. 

Keyvan (2001) presented an improved method to identify anomalies in pump performance 

based on the statistical method ARMA. To detect the progress of a detected anomaly, he 

introduced a new parameter named Contribution Ratio (CR). The CR parameter represents 

the fractional contribution of the unexplained residuals. Keyvan applied this on time-series 

data of a 0.01-second interval of pump power consumption, whereby the peaks in power due 

to the pull of the motor poles can be detected. An increase in power peaks would define 

abnormal performance. This method has the drawback that the rate of efficiency deviation 

can not be directly determent from this method. The high time-series sampling interval makes 

implementation as a continuous monitoring system impractical.   
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Beebe (2004) presented textbook examples of performance testing where flow, pump 

TDH and efficiency were tested against the pump curves of the OEM. The method requires 

adjusted operating conditions according to the design points at the pump curves of the OEM 

during the measuring periods. Soldevila et al. (2018) presented a pump performance 

monitoring method based on pump efficiency and hydraulic balance based on the equations 

of Beebe (2004). However, their method was independent of the initial pump curves of the 

OEM. The detection of deterioration is achieved after future extraction and change detection. 

Like in the method of Beebe (2004), the method requires constant operating conditions 

during the measuring periods, e.g., the same operational speed of the pump as during the 

previous tests.  

This section presents a performance monitoring method like Beebe (2004) and Soldevila 

et al. (2018) based on pump efficiency and hydraulic balance. The method elaborates on the 

methodology presented by Stoffel (2015). The presented methodology compares the actual 

performance to the initial pump performance given by the pump curves of the OEM. The 

methodology further recalculates the hydraulic balance according to the variable speed of the 

pump drive based on the basic pump affinity laws (Walski et al., 2003; Simpson and Marchi, 

2013). In contrast to Beebe (2004) and Soldevila et al. (2018), the presented methodology 

allows continuous performance monitoring without adjusting the plant operation to specific 

test conditions.  

9.2.2.1 Experiment using textbook affinity laws for pump performance monitoring 

The primary pumps in this case study are custom designed, and detailed specifications are 

available. The OEM provided Pump curves of flow vs pump Total Dynamic Head (TDH), 

power and efficiency. Based on these pump curves, the pumps have undergone Factory 

Acceptance Tests (FAT), and the performance is usually further verified at the 

commissioning stage of the plant.  

The actual measured parameters against the expected parameters retrieved from the pump 

curves are compared to evaluate the performance. The first step is to digitalize the pump 

curves. A software application has been used to convert the curve from a bitmap picture to 

coordinates in a CSV file (see Figure 9-12). The pump flow vs the pump TDH and pump 

flow vs efficiency have been digitalized for both design points: 1 for a shaft speed of 859 rpm 

and 2 for a shaft speed of 1197 rpm. The power consumption will be retrieved from these two 

parameters. 
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Figure 9-12.  Digitalizing of pump curves. 

Figure 9-13 gives the x-y diagram of pump TDH against pump flow for both operating 

points. Pump shaft efficiency is defined as the ratio of useful hydraulic power delivered to the 

fluid to the power input at the drive shaft. Figure 9-14 gives the x-y diagram of pump shaft 

efficiency against pump flow for both operating points.  

 

Figure 9-13: Pump TDH against pump flow for both operating points. Left shaft speed of 859 rpm, 
right shaft speed of 1197 rpm. 

By fitting polynomial trendlines, pump curves can be translated to equations. An order of 

4 fits the flow curve the best against the TDH. An order of 3 was enough for the curve of 
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flow against efficiency. Based on the polynomials' coefficients, the curve was recalculated to 

verify the fit with the digitalized pump curve (see Figure 9-13 and 9-14). 

 

Figure 9-14: Pump shaft efficiency against pump flow for both operating points. Left shaft speed of 
859 rpm, right shaft speed of 1197 rpm. 

The pump TDH (H) is the pressure differential (∆P) between the suction and the discharge 

of the pump, divided by the fluid density (ρ) and gravity (g). The equation is given below, 

where H is in meters, ρ in kg/m3 and g in m/s2. The density, ρ for seawater, is 1,030 kg/m3. 

The gravity, g is 9.80665 m/s2. 
100,000H= P

gρ
×∆

×                
(22)

 
The polynomial of the fourth-order for flow against the TDH is given here:  

2 3 4
1 2 3 4o o o o oQ H H H Hα β β β β= + + + +       (23) 

where: 

Qo is the flow rate at the design point on the curve supplied by the OEM 

Ho is the corresponding TDH on the curve supplied by the OEM 

However, the pump speed varies. The calculation must be adjusted from the design point 

speed of the pump curve to the actual operating speed. The equation is derived from the 

pump affinity laws (Bachus & Custodio, 2003; Kayode Coker, 2007)): 

1 1

2 2

Q N
Q N


          
(25)

 
where: 

Q is the flow rate 

N is the rotating speed [rpm or Hz] 
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1 1

2 2

H N
H N

 
 
 


          (25) 
where H is the pump TDH [in meter] 

The provided pump curve is translated supplied by the Original Equipment Manufacturer 

(OEM) of Qo vs Ho into a polynomial of the fourth order, giving the best fit:  

From (Eq. 25) follows: 
2

o
o a

a

NH H
N

 
=  

 
             (26) 

where: 

Ha is the actual measured TDH 

No is the pump speed at the OEM pump curve 

Na is the actual pump speed 

a

o

Ny
N

=
           

(27)
 

From (Eq. 25) and (Eq. 27) follows: 2
a

o
HH
y

=            (28) 

Putting (Eq. 28) into (Eq. 22) gives: 
2 3 4

1 2 3 42 4 6 8
a a a a

o
H H H HQ
y y y y

α β β β β= + + + +        (29) 

From (Eq. 24) follows: 
1o

o a a
a

NQ Q Q
N y

= =             (30) 

Putting (Eq. 30) into (Eq. 28) gives: 
2 3 4

1 2 3 42 4 6 8
a a a a aQ H H H H

y y y y y
α β β β β= + + + +        (31) 

The expected flow is then:  
2 3 4

1 2 3 43 5 7
a a a a

a
H H H HQ y
y y y y

α β β β β= + + + +         (32) 

The polynomial of the pump curve from operation point 2 has been applied since two-thirds 

of the operating conditions fit in this range. Table 9-6 shows the coefficients of the 

polynomials of operating points 1 and 2 for the flow calculation. 

Table 9-6: Coefficients of the polynomials for flow calculation 

  Operation point 1 Operation point 2 

β4 -9.907E-02 -1.347E-02 

β3 2.813E+01 7.519E+00 

β2 -2.995E+03 -1.574E+03 

β1 1.417E+05 1.465E+05 

α -2.507E+06 -5.101E+06 
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The required hydraulic power (Ph) in kW is calculated as follows: 

 63.6 10h
Q gHP ρ

=
×           (33) 

where: 

Q is the pump flow 

ρ is the fluid density  

g is the gravity 

The pump shaft power (Ps) is the hydraulic power times the shaft efficiency (ηs): 

  h
s

s

PP
η

=           
(34)

 

The shaft efficiency (ηs) is calculated from the efficiency polynomial (Figure 9-14): 

 2 3
1 2 3s Q Q Qη γ δ δ δ= + + +         (35) 

Table 9-7 shows the coefficients of the polynomials for pump shaft efficiency calculation. 

Table 9-7: Coefficients of the polynomials for pump shaft efficiency calculation 

  Operation point 1 Operation point 2 

δ3 3.952E-09 1.435E-09 

δ2 -3.472E-05 -1.773E-05 

δ1 9.720E-02 6.935E-02 

γ 5.796E-01 9.322E-01 

Finally, we must divide the pump power with the efficiency of the pump drive (ηd). The 

efficiency curve is empirically established since we do not have datasheets on the drive's 

specific efficiency. The power readings from HPB pump 1 throughout 2017 were taken for 

reference. The efficiency for HPB pump 1 looked very stable over 2017, and we can assume 

that wear was minimal or non-existing after one year of operation. 

On the other hand, the power readings for the year 2016 were very erratic. Presumably, the 

pumps were not operated at the best efficiency point in the first year. After plotting the power 

data vs the frequency in a scatter diagram, we can superimpose correlation points over the 

scatter diagram.  A third-order polynomial trend line was then added for the correlation 

points. Figure 9-15 shows the scatter diagram. The equation of the trendline gives the 

coefficients of the polynomial. 

  2 3
1 2 3d N N Nη ι κ δκ κ= + + +        (36) 

where N is the Drive Frequency in Hz. 
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Table 9-8: Coefficients of the polynomials for the efficiency calculation of the drive 

  Operation point 1&2 

𝜅𝜅3 2.776E-06 

𝜅𝜅2 -5.150E-04 

𝜅𝜅1 3.131E-02 

𝜄𝜄 3.185E-01 

 

 

Figure 9-15: Scatterplot of empirically estimated drive efficiency and polynomial trendline 

The total expected input power (Pt) is thereafter: 

 

s
t

d

PP
η

=
          

(37)
 

The overall expected efficiency (ηt) is: 

 t s dη η η= ×           (38) 
Since efficiency, power consumption and efficiency fluctuate at a time series trend due to 

fluctuations in speed, the deviations (σ) is calculated of expected values against the measured 

values at that moment in time.  

 

The deviation of efficiency (ση) is 

  

h
t

m

t

P
P

η

η

−

          

(39)

 
where: 
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Ph is the hydraulic power 

Pm is the measured power 

The deviation in power (σp) is 

 

m t
p

t

P P
P

σ −
=

          
(40)

 
The deviation in Flow (σQ) is 

 

m
Q

Q Q
Q

σ
−

=
          

(41)
 

where: 

Q is the expected flow according to the calculations 

Qm is the measured flow by the flow meter 

We can assume that if wear sets in, this will affect the pump's efficiency, whereby the flow 

will decrease or the energy consumption will increase. However, this might not always be 

obvious since the pumps operate parallel at a common discharge header, whereby the speed is 

controlled common for all operating pumps. 

For example, if the impeller shrinks due to wear, both the flow and the power consumption 

will reduce. The flow loss will be compensated by increasing the speed of the pump. 

However, this is applied to all operating pumps in parallel. Therefore, a healthy pump will 

take a more significant share of the load, resulting in this pump requiring a higher power 

consumption. Therefore, we must look at each pump's deviation from the calculated 

efficiency and power consumption.  

9.2.2.2 Testing calculated with measured power consumption 

 
Figure 9-16: Scatterplots of measured power vs expected calculated power for HPB pumps 1 and 2 

(Data 2019). 
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The scatterplots of measured power vs expected calculated power for HPB pumps 1 and 2 

from the trend-series data of 2019 (see figure 9-15) shows that the fit between the calculated 

expected power consumption and the measured power consumption is high. The R-Squared 

for HPB pump 1 was 0.974, and HPB pump 2 was 0.956. The fit verifies that the method 

presented to calculate the expected performance is accurate. The close fit at the scatterplots 

also underlines that there is no neglectable wear after four years of operation.    

9.2.3 Implementation. 
The demonstrated initial research on vibrations anomaly detection and performance 

analysis for the plant's large centrifugal pumps can be applied to DT-based DSS. The virtual 

performance of the DT can then be compared to the physical pump, and decision support can 

determine wear, and the wear source is bearings or the pump's internal components. The 

latter is vital since there is a significant difference in fixed set-up costs between bearing 

replacement and the need to open the pump case. The concept of such a DT-based DSS for 

large centrifugal pumps is based on the same principles as the presented DT-based DSS for 

membrane maintenance. 

The presented approach differs from commercial anomaly detection applications since the 

latter only provides early warning for an anomaly, not the cause. The thesis author has been 

approached by suppliers of commercial ANN-based predictive analytics programs for a pilot 

test. Unfortunately, this has not materialized. The investment, including licenses to run the 

pilot test, was considered excessive. The suppliers of the Management Information System 

(MIS) used for data storage, reporting and analysis of Operational data, marketed under the 

name iGreen, recently offered an alternative opportunity for implementing anomaly 

detection. Their anomaly detection module can be added as an additional module to the 

existing MIS, which will significantly reduce implementation time and resources. The 

anomalies detection module is marketed under the name iDetect. 

The anomaly detection method is a rule-based engine utilizing the Hartley transform, 

closely related to the Fourier Transform, but the former works with real instead of complex 

numbers in the case of the Fourier Transform. The Fourier Transform is a statistical function 

that allows a signal to be treated in the complex frequency domain (Le-Ngoc and Vo, 1989; 

Bracewell, 1995). Fourier transform and Hartley transform are compatible, i.e., Hartley 

transform does the same as Fourier transform (Bracewell, 1995). 
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Figure 9-17. Incorporation of an anomalies detection module into the OT MIS. 

An optimized algorithm of discrete Fourier transformation, called Fast Fourier 

Transformation (FFT), is often applied in signal processing. FFT converts a signal into the 

individual components of the frequency spectrum (Rapuano and Harris, 2007). Xue et al. 

(2014) and Lin and Ye (2019) presented a vibration anomalies detection of pumps and 

bearings utilizing FFT and enhanced FFT algorithms. Assaf et al. (2018) pointed out that 

since FFT is limited to the frequency domain, this method fails to show a progression of the 

fault over time. Assaf et al. (2018) proposed a short-time Fourier transform (STFT) that 

allows the analyses to be performed in both the frequency and time domain. A 3D surface 

plot can then visualize both the time domain (X-axis) and frequency domain (Y-Axis). The 

STFT was demonstrated with a gearbox-accelerated life testing platform. 

Fourier transform vibration analyses utilize accelerometers, which provide a frequency 

signal similar to an acoustic sound. At CDP, mainly viscosity transducers are used, where the 

signal is random without a frequency component and the data logging frequency is low (60 

seconds interval). So, the anomaly detection of this vendor does not apply a Fourier transform 

directly to the vibration signal but the frequency of statistical indicators based on engineering 

rules, as the frequency of anomalies, which then is fed to a Fourier Transform to flag for 

anomalies.  

The precise method and benefits of the offered iDetect anomaly detection application are 

currently not fully understood. The O&M company is still evaluating if it is beneficial for the 

plant. Of interest is that the iDetect application offers the option to program custom-defined 
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equations. The latter would allow the implementation of the presented vibration 

normalization and theoretical pump performance analysis presented above. 

9.3 Summary results compared to baseline 
In this section, we look back at the improvements since the baseline set at the onset of this 

research. The data of baseline was taken from the year 2018. The plant was in commercial 

operation for three years and a year preceding this research. The early results of the impact of 

the research follow three years afterwards, by the end of 2021. The baseline is based on three 

performance indicators (PI). In short, these are, P1: The ratio of shortfall (volume of potable 

water) to designed capacity (volume of potable water per day); P2: Ratio of failure-based to 

all maintenance activity; P3: Annual percentage of membrane replacement. All three PIs are 

expressed in days of lost production to have a common measurement of the effect of the PI 

on the plant performance. For a detailed definition of the PIs and how they are calculated, see 

chapter 2. 

Maintenance performance analysis based on multi-dimensional Pareto diagrams (see 

chapter 2.5) identified the shortcomings over the first three years of operation, especially in 

the second year, due to skill level upgrade (SLU) and design out maintenance (DOM). SLU 

and DOM indicate that the first three years of operation can be characterized as a ‘break-in’ 

or start-up period. This phenomenon is referred to as the initial stage of the bathtub curve. 

The bathtub curve is a characterization of the lifespan of an engineered object (EO) often 

referred to in reliability studies (see chapter 5.2).  

The improvement of the first two PIs is, to an extent, due to the plant's lifespan having 

passed the ‘break-in’ period. The O&M team is now more experienced (SLU), and design 

changes have been implemented (DOM). Further, the computerized maintenance 

management system (CMMS) configuration and implementation continued during the first 

years of operation. The CMMS manages the time-based preventative maintenance and 

condition-based inspections. 

We will now review the PIs three years after the baseline was set. The continued 

availability, demand and delivery have been analysed for approximately three years, i.e., 

January 2019 to November 2021. Over the period 2016 to 2018, the total shortfall was 4,235 

MG. Since 2019, this shortfall has been reduced to zero liability. Figure 9-18 shows the daily 

trend-series chart of availability, demand and delivery since January 2019.  
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Figure 9-18. Availability, demand, and delivery from Jan 2019 to November 2021 

The hours spent on failure-based maintenance for the year 2021 is 20%. The target is 25% 

or less. Previously in the performance analysis, the performance indicators were expressed in 

days of lost production. Figure 9-19 shows the current performance indicators P1, for 

shortfall and P2, ratio failure-based to all maintenance activities, against the baseline. 

 
P1: The ratio of shortfall (volume of 
potable water) to designed capacity 
(volume of potable water per day) 

P2: Ratio of failure-based to all 
maintenance activity, expressed in days 

of lost production. 

P3: Annual percentage of membrane 
replacement, expressed in days of lost 

production 

Figure 9-19. Performance indicators for water shortfall, ratio failure-based to all maintenance 
activities, and annual percentage of membrane changes. All expressed in days of lost production. Grey 
needle is the performance at the baseline of the year 2018, black needle is the performance in 2021.  

This research concentrates on the third performance indicator (P3), annual membrane 

replacement. In contrast to the other two performance indicators, the unforeseen rate of 

membrane degradation was not due to a break-in period, but biofouling accelerated through 

seasonal algae blooms. Although biofouling is difficult to combat, this research has shown 

that the consequences can be mitigated to an acceptable level. The annual average Reverse 

Osmosis (RO) membrane replacement target was 11.5%. Tested alternative policies 11 and 

12 showed that an annual average replacement rate of 10.6 to 11.8% is achievable. One 

percent of replacement is equal to the penalty cost of 5.4 days of lost production (see chapter 

2.2). Converted to days of lost production, policy 11 results in zero and policy 12 to one day 

of lost production. 
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Following a better understanding of the effects of biofouling, the O&M company came up 

in 2019 with a long-term membrane maintenance plan that will result in an average annual 

membrane replacement rate of 16% for the following six years. The current membrane 

replacement rate would bring the total replacement rate over ten years to 139.25%. The O&M 

company policies 1 and 10 reflect these replacement rates. Thus, P3 would have deteriorated 

from 5 to 9 days of lost production. Continuing this maintenance strategy, the following long-

term plan beyond the current 10-year plan will result in a total replacement rate of 160% over 

the next ten years. P3 will then further deteriorate to 24 days of lost production. 

This research shows that the maintenance policy can be improved by modelling the 

deterioration and restoration of the membrane elements in a vessel. A membrane replacement 

rate equal to the estimated level at the beginning of the O&M plan is viable. For the coming 

five years, a cost-saving can be reached from a conservative number of $0.7 million to a more 

defiant number of $1.7 million. The current inflation rate of the membrane element cost 

ranges between $0.9 million and $2.1 million. 

Projections show that the improved CIP method that first soaks the RO membranes in 

sodium-bisulphate before performing a high and low pH cleaning, referred to as the C2 

method, significantly reduces risk compared to the standard high and low pH cleaning.  

Nonetheless, policies 11 and 12 require an increase in clean-in-place (CIP). The CIP 

frequency utilizing the C2 method must increase beyond the current capacity of the CIP 

system to enable a significant reduction in membrane replacement rate. However, the 

bottleneck of the current system is the discharge of the used solution. An upgrade of the CIP 

system would modify the neutralization system so that the latter can be used to discharge the 

cleaning solution. This modification can be performed in-house. Following this research, the 

O&M company and the asset owners have agreed to upgrade the CIP system.  
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10 Discussion  
This research is about maintenance planning for the long-term reliability of an engineered 

object (EO) subject to stochastic wear conditions and imperfect repair. A Decision Support 

System (DSS) is developed for maintenance planning. A general framework for the design of 

a DSS for maintenance planning is proposed. This framework of maintenance principles is 

demonstrated using a real-life industry example.  

The DSS is designed using the principles in the proposed framework. The purpose of the 

DSS is to support the management of restoration of reverse osmosis (RO)  membrane 

elements. These elements degrade due to biofouling caused by seasonal algae blooms, a 

global problem in the desalination industry. A digital twin (DT) is the engine of the DSS. The 

DT virtualises the degradation and restoration of reverse osmosis (RO) membrane elements 

(components) in an  RO pressure vessel. This virtualisation is novel because individual 

membrane elements are modelled. This allows the effect of membrane swapping and 

replacement to be quantified. In this way, the RO vessel and its membranes are considered a  

novel multi-component system. A further novelty in the thesis is the framework of the 

maintenance principle.  

The DT itself is a simulator. The DT estimates the hidden states of the individual 

components over time, and allows the operator to evaluate the effectiveness of different 

restoration policies. The wear of the individual elements (components) is quantified using a 

mathematical model that describes extrinsic and intrinsic degradation, with dependencies 

between individual elements (components). Statistical methods are used to estimate the 

parameters of the model. 

The principles in the proposed framework provide a basis for further developing the 

general understanding of maintenance planning. So far, the discussion in the literature on the 

design of DTs for maintenance planning has been application-oriented. General principles 

have not been articulated so far. The principles proposed in this thesis can be considered a 

work in progress, and discussion by others about limitations and adaptations will be most 

welcome. At a higher level, the principles are relevant to broader maintenance management 

issues, and the thesis author hopes it will spark discussion in the broader engineering services 

community. The principles of the lower layers of the framework guide the development of 

custom DTs for high-performance EOs. The DSS and the DT for managing the restoration of 

RO membranes not only give a practical example of the application of the principles but have 
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also shown that significant cost savings can be made using a DSS that enables the exploration 

of alternative maintenance policies. The DSS provides well-informed decision support on 

membrane maintenance planning instead of the ad-hoc approach currently used in the 

industry. 

More details follow in Section 10.1, which describes how the principles for the design of a 

DSS for maintenance planning were implemented for the specific EO. Section 10.2 

concentrates on the research contributions. Section 10.3 concludes the research, with Section 

10.4 reflecting on the limitations and Section 10.5 outlining further research plans and 

proposals. 

10.1  A DT-driven DSS for maintenance planning 
This research aims to establish a maintenance planning methodology for an EO with 

stochastic wear and imperfect repairs. The practitioner will not be able to determine the long-

term reliability of the EO due to uncertainties about future wear and the effects of repair 

without examining various maintenance scenarios. The practitioner can physically 

experiment on the EO, but this is time-consuming and potentially undesirably sacrificing the 

EO. A DT is the only practical way to study the effectiveness of various competing policies 

without undergoing physical tests. 

This research proposes a DSS for maintenance planning that allows policy testing with 

predictions showing effectiveness before implementation. Such a DSS must be thoughtfully 

designed and must contain an in-depth understanding of the process of degradation and 

restoration. The presented framework of maintenance principles supports the practitioner in 

designing such a DT-driven DSS for maintenance planning. The DSS is thereby dedicated to 

a specific EO. The framework consists of different layers of maintenance principles and sub-

principles (chapter 1.2). The framework first defines the principles of maintenance and 

maintenance planning, as these are the foundations from which the principles for managing 

planned maintenance are derived. After this, the principles of a DT-driven DSS can be 

derived. The latter, level four, is the last group of sub-principles. Level four of the framework 

of maintenance principles addresses the first research question. It specifies the general 

requirements of a DSS for restoration so that the DSS is fit for purpose.  

• A DSS should monitor degradation or the indicators of degradation.  

• Competing maintenance policies should be testable in the DSS.  

• Known unknowns should be represented in the DSS.  

• The costs of developing a DSS is bearable for only some units of the EO. 
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The research then demonstrates the design and implementation of a DSS for maintenance 

planning with a practical example, a DSS for planning the restoration of RO membranes. The 

second research question raises how the restoration of membrane components in RO 

desalination in the presence of seasonal algal blooms should be managed.  

The specific DT-based DSS for planning follows the framework of maintenance 

principles. All four principles of level four apply. The research first identified the unique 

drivers of the degradation and restoration of this particular EO. The latter meets level two of 

the framework: maintenance should use knowledge of both degradation and the effect of the 

restoration. 

The following sub-section describes how process engineering knowledge is used to 

identify the root cause of the degeneration of the specific EO, in this case, process 

engineering in RO desalination. 

10.1.1  Understanding the drivers of degradation of the specific EO  
Degradation or degradation indicators were studied from the perspective of process 

engineering in desalination (chapter 4). The latter provides an understanding of the physical-

biochemical processes of membrane component degradation due to biofouling, i.e., biofilm-

producing microorganisms' obstruction of the saline water feed-concentrate channels. This 

obstruction results in a pressure loss or pressure differential (PD) over the feed-concentrate 

channels of the components. Note that operational and seasonal effects can change the PD of 

a new element having no wear. Therefore this research filters out these effects and the term 

normalised pressure differential (NPD) is used. 

The rate of biofilm growth, i.e., the rate of blocking, is positively related to the amount of 

nutrients. Algae, when it dies and decomposes, becomes a nutrient. Thus, an algae bloom 

provides excessive nutrients, resulting in a sharp increase in component degradation. 

The physical-biochemical processes explain why fouling first starts at the lead component 

and unequally spreads to the tail over time. The latter is a process of attachment of 

microorganisms at the beginning of the surface, growth of the colony, maturing of the 

biofilm, and then dispersion of a group of microbes to colonise the next component area. 

Further, process engineering also identifies faster fouling when a new component is placed 

before fouled components due to excessive permeation flux. Higher flux results in a higher 

fouling rate. 

Restoration involves two types of interventions. The first is a clean-in-place (CIP), a 

combined chemical and mechanical cleaning without opening the vessels and removing the 



@00419918  Fredericus I. M. (Frits) van Rooij 

215 

components. Cleaning solutions are pumped through the vessels, whereby the biofilm is 

partially removed. Thus, the degradation is reduced but not entirely undone. The effect of 

restoration differs stochastically. The other type of restoration is to open the vessels, identify 

the most severe fouled components and replace them with new ones. As described 

previously, new components are preferably positioned at the tail by pushing the older retained 

components forward to the lead side of the vessel. 

10.1.2  The EO, from a maintenance engineering perspective 
After gaining insight into the degradation and restoration processes of the specific EO, the 

research approaches the EO from a maintenance engineering perspective (chapter 5). From 

the perspective of maintenance theory, the RO pressure vessel is classified as a unique multi-

component system. This specific multi-component system is then evaluated against the 

characteristics of other multi-component systems in the literature. Approaching the RO vessel 

in this way distinguishes this research from other RO degradation studies in the literature.  

Degradation or the degradation indicators described earlier from an RO process 

engineering perspective are now classified as extrinsic or intrinsic dependencies, where the 

supply of nutrients is extrinsic, and biomass distribution over the elements is intrinsic. 

Furthermore, placing less degraded components in front of more highly degraded components 

is intrinsic rate-state wear dependence. These classifications matter for the modelling of 

degradation. In short, the specific EO engineering know-how identifies the root cause of 

degradation. Maintenance engineering know-how, then translate these dependencies in a 

manner so they can be expressed in mathematical equations for modelling. 

Multi-component systems have structural and economic dependencies that affect how 

restoration is executed. Structural dependence influences decision-making on maintenance 

interventions. Since the components are in series, other components need to be removed 

before reaching the component to be swapped or relocated. The need to remove other 

components is in the maintenance literature defined as structural dependence from a technical 

point. Based on hydraulic laws, a fouled membrane component has a higher NPD when 

positioned at the lead than at the tail. In the maintenance literature, this change in 

performance is defined as structural dependence from a performance point.  

A typical economic dependence is the fixed set-up cost before the actual intervention 

occurs. Typical fixed set-up costs are spare part procurement, hiring a temporal workforce, 

training the workforce and vessel opening. When undertaking RO permutations, all trains are 

scheduled to undergo this intervention in a continuous sequence, train after train. The latter 
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reduces the fixed set-up costs. This research considers economic dependence mostly fixed 

and adds the spare part procurement costs to the component. Hiring the temporal workforce, 

training the workforce, and vessel opening are added to the labour costs. However,  labour 

costs are half when permutations only involve the first four components. This difference in 

labour costs is captured in the DT. 

The thesis further adds the classification of economic dependence from a performance 

point when wear affects energy consumption. The latter was reported in the literature in the 

case of brackish water RO systems. The feed pressure in brackish water RO systems is 

significantly lower than in seawater RO systems. Therefore increase in feed pressure to 

compensate for the NPD losses is proportionally much higher in brackish water than in 

seawater RO systems. For seawater RO, the proportional increase is insignificant. 

10.1.3  Degradation model 
This research chose a degradation model based on mathematical equations derived from a 

physics-based model and statistical methods. A physics-based model requires expert 

engineering knowledge to identify the EO's specific process of degradation and restoration. 

The thesis author acquired this knowledge through a long professional career in RO 

desalination.  

Furthermore, statistical methods require numerical data. The plant in this case study is 

relatively new. It contains a considerable amount of in-field sensors continuously read by the 

plant's Industrial Control System (ICS). The data is stored in time-series databases in cycles 

of a minute. The availability of operational data allows the model to be data-driven. The 

number of nutrients in the RO feed water, the extrinsic degradation dependency (κ)  that is 

stochastic and the primary driver of wear, can be derived from the time-series dataset. This 

data provides a distribution where the value of κ for future projected degradation can be 

sampled. 

Not only are the degradation or the degradation indicators monitored (the first principle of 

level four of the framework of maintenance principles), but the maintenance effects can also 

be measured. The component’s modelled NPD is computed according to the wear and socket 

position. When swapping components to a different location, the wear follows the component 

to the new socket. Similarly, replacing a component with a new one, the latter has no wear. 

Previous interventions have been recorded in the computerised maintenance management 

system (CMMS), and the model computes the restoration effects.  
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The CMMS also record when a CIP takes place. Since  CIP is an imperfect restoration 

with stochastic results, the latter can be computed from the time-series dataset, which 

provides a distribution where the amount of restoration can be sampled in projections. 

10.1.4  Evaluating the performance of different policies 
Testing of competing maintenance policies is the second principle of level 4 of the 

framework of maintenance principles. This research opted for a DT-driven DSS where 

practitioners can test maintenance policies they designed before physically implementing 

them. This method contrasts with a DT that would generate an optimum maintenance policy. 

The thesis author believes that a DSS where practitioners can test their maintenance policies 

would be less likely to be met with scepticism. Besides that, a practitioner probably wants to 

compare their policies against the 'machine'. Therefore the DSS for maintenance planning 

must, in any case, have the capability to test various policies on their long-term restoration 

effectiveness, independent of who generates them. Nevertheless, the latter does not exclude 

an additional function of the DT that can generate an optimum maintenance policy. However, 

this would complicate the scope of the current research and can be addressed in future 

research. 

The stochastic degradation and imperfect restoration imply a spread of probability, i.e., the 

uncertainties. This spread of probability is the known unknowns that, according to level four 

of the framework of maintenance principles, should be presented in the DSS. This research 

resolved this by sampling the model’s stochastic parameters from a data distribution derived 

from the time-series dataset. Projections generate a hundred probabilities per day from 

random samples of the κ distribution, the extrinsic wear dependency. When an imperfect 

restoration is conducted, a hundred probabilities for that day are taken from the distribution 

of δ, the restoration rate. These hundred projections provide a spread of probability as the 

ensembled forecast envelope. The number of hundred samples compromises the probability 

accuracy against the computational costs.  

10.1.5  Sensitivity analysis 
Initial sensitivity analysis concentrates on the modelled NPD fit, comparing the modelled 

against the observed NPD over the time-series dataset. Sensitivity analysis is further 

conducted on other fronts. The sensitivity analysis utilises a data analysis module, part of the 

DSS. The fit of observed biomass distribution over the vessel’s components is compared to 

the modelled wear distribution for each train. The same data analysis module was utilised to 
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test the sensitivity of the intrinsic rate-state effect parameter γ compared to α, the wear 

distribution parameter.  

Further, the robustness of the projections is tested by applying different sampling methods 

and smoothing regimes and comparing the results. Two different sampling methods were 

utilised to determine the stochastic extrinsic dependence parameter and the restoration effect 

of imperfect restoration by CIP. These parameters were sampled from a Weibull distribution 

or by bootstrap sampling. Further, the projections using bootstrap sampling were repeated 

three times. Each time different smoothing strengths were applied to the data set of κ, the 

extrinsic wear dependency. Projections of the tested policies were therefore repeated four 

times for all the trains. 

Different strengths of smoothing do not change the risk ranking of the tested policies, nor 

when Weibull distribution sampling is applied instead of bootstrap sampling. Bootstrap 

sampling with a longer smoothing window of the distribution of extrinsic parameter κ 

provides a more apparent differentiation between algae and non-algae bloom periods.  

Weibull distribution might be more practicable if limited data is available. However, 

results with Weibull distribution tend to differ when re-running the projection and are, 

therefore, less accurate. The Weibull distribution projections also result in complete 

restoration at the lower range of the ensemble forecast envelope over time, which is 

unrealistic. Therefore, bootstrap sampling is preferable if enough data is available.  

 Although this research tested three smoothing ranges for bootstrap sampling, the purpose 

of the different smoothing ranges was only for sensitivity analysis. The thesis author 

recommends using a single longer smoothing range since this accentuates better periods of 

algae and non-algae bloom periods. 

10.2  Research contributions 
This research contributes on two fronts, desalination engineering and, on the other hand, 

maintenance modelling and simulation literature. A scientific approach to membrane 

maintenance has been presented to the current ad-hoc approach in the industry. The presented 

novel model of degradation of a multi-component system and its DT provides a unique 

simulation application that further contributes to multivariate degradation processes and 

imperfect repair models within the body of maintenance theory, modelling and simulation 

literature. 
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10.2.1  The novelty of this research 
This research presents a DT based on a mathematical model that describes an RO vessel as 

a novel multi-component system in which the wear-states of individual components are 

quantified, and components can be swapped or replaced. The demonstrated approach 

contrasts with the contemporary presentation of a RO membrane system as a single system in 

the literature. The work has been appreciated as an interesting and novel approach to RO 

maintenance. The presented DT of a seawater RO train in terms of simulation of their fouling 

process is significant, interesting and innovative. These appraisals are from the editor of the 

journal Desalination and its peer reviewers (van Rooij et al., 2021). 

The presented framework of maintenance principles and sub-principles further fills a gap 

in the maintenance theory literature. Currently, a general framework for designing 

maintenance decision support driven by a DT does not exist in the literature. In presenting the 

framework  (chapter 1.2), the thesis author intends to encourage a debate on the principles of 

where a good DSS for maintenance planning should be founded.  

Such an opportunity has recently been opened. The representatives of Rockwell 

Automation have approached the thesis author to participate as a panel member in a forum on 

digital transformation in the water and wastewater sector at their annual fair in Chicago. 

The publication in the journal Desalination has further resulted in an invitation to 

contribute to a handbook on DTs. Collaborating with Philip Scarf, Professor of Management 

Mathematics at Cardiff Business School, a chapter on the design of a digital twin for 

maintenance planning has been submitted. 

10.2.2  Research contribution to the current discussion on Industry 4.0 
The first level of the framework of maintenance principles states that maintenance is 

necessary. Otherwise, an engineered (EO) object will fail. The recognition of maintenance 

being part of business strategy is relatively recent. The scientific approach toward 

maintenance management started in the 1950s and 1960s, with time-based preventative 

maintenance to reduce failures and unplanned downtime. The next level of maintenance 

optimisation was the introduction of condition-based maintenance, developed in the 1970s as 

a cost-effective alternative to the expanding large time-based preventative maintenance 

programs, followed by predictive maintenance involving degradation simulation and 

prediction of remaining-useful-life (RUL). The latter was possible due to the introduction of 

the PC in the 1980s. The PC also led to the CMMS as a popular application for maintenance 

administration and analysis.  
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Maintenance planning is one of the components that underpins the smooth operation of an 

ever more global interconnected manufacturing environment, together with the growing 

complexity of the supply chain, i.e., the interactions between different manufacturing 

segments. The recent semiconductor shortage (Voas et al., 2021) shows how devastating a 

bottleneck of one production segment can have on the extended manufacturing environment. 

The increasing interdependence and competitive market drive the recent orientation towards 

the digital transformation of the industry also referred to as Industry 4.0.  

The philosophy behind Industry 4.0 is that predictive decisions can be made from 

information involving big data. The wide availability of data is made possible due to 

technological innovation, e.g., computing power, network communication and intelligent 

field sensors that can autonomously communicate over high-speed data networks. The recent 

development of such intelligent field sensors is the internet of things (IoT) and its industrial 

variant, the industrial internet of things (IIoT). 

Digitalisation from both a technological and a management perspective is also evolving 

towards Maintenance 4.0 or Smart Maintenance. Computerised maintenance analysis and the 

CMMS go back to the 1980s. Thus, the digitalisation of maintenance is not an entirely new 

concept but is now elevated to new dimensions. The virtualisation of physical objects, also 

known as Digital Twins (DT) or Cyber-Physical Systems (CPS), has recently gained 

immense attention, including regarding maintenance.  

Less attention is given to the recent discussions on DT for maintenance about what action 

should be undertaken. Currently, the implementation of DTs in maintenance is predominantly 

based on anomaly detection and, therefore, predicting short-term when to undertake 

maintenance. This research contributes to long-term maintenance planning by providing a 

DT-based DSS where practitioners can evaluate competing policies. 

A vital contribution of this thesis to the discussion on DT is regarding the concept of a DT. 

Starting with Kritzinger et al. (2018), a narrowed concept of DT dominated the discussions. 

According to these authors, a DT could only be called so if the physical unit and virtual 

model were fully interconnected. The physical unit would continuously update the virtual 

model, and the latter would directly control the physical unit. This concept unnecessary limits 

the deployment of a DT as a practical tool. Looking back to the first practical implementation 

of a DT in the aerospace industry and NASA, those DTs were used to study different 

phenomena and test solutions before applying them to the physical unit. The latter is what 

this research intends to achieve in maintenance planning. Thus, a DT should be kept to its 

core, a digital entity that reflects the behaviour of the physical entity and keeps updating 
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through the whole lifecycle limited to the specifics being investigated, using only relevant 

data and models. The concept of a DT presented in this thesis is that of a virtual replica that 

can be studied and tested, involving various projections, without interfering with the physical 

object. 

10.2.3  Achievement of this research 
Coming back to the practical implementation of this research, the implementation of a DT-

driven DSS for RO membrane maintenance planning has resulted in concrete achievements. 

The DT's exploration of alternative maintenance policies has shown that significant cost 

savings can be achieved over the next five years. At the same time, these alternative policies 

improve recovery performance compared to the O&M company's current policies. 

Adjustments must be made to the current CIP system to make this possible. The benefits far 

outweigh the required investments. Both the O&M company and the owners have agreed on 

this upgrade following the outcome of this research. 

Furthermore, the O&M company has embraced the DSS for future membrane maintenance 

planning. The DSS is now being used for a possible extension of the RO trains with an 

additional 16 vessels. The DT evaluates different options for membrane component 

permutations to balance the wear between the existing and new vessels. 

Finally, contributing to the community of researchers and practitioners in the industry, 

little attention has been given so far to the literature on RO maintenance planning. A 

scientific approach is currently absent. Even with available human expertise, decision-making 

is currently, to a degree, ad hoc. This research fulfilled the gap in the literature on RO 

maintenance planning and set a new gold standard for membrane maintenance management. 

This research aims to establish a maintenance planning methodology for an EO. The 

objective is for a DSS to forecast the effectiveness before implementing the policies. The aim 

and objectives have been achieved. The research has demonstrated the design and 

implementation of a particular EO using a real-life industry example. The research shows 

how significant cost savings can be made, while the same projections show that the risk 

involving the long-term reliability of the EO is reduced. The O&M company and the owners 

have recognised the research contribution. The Desalination journal editor and reviewers 

recognised the unique contributions of this research to the research community. 

Two research questions (RQ) were put forward. RQ1: What are the general requirements 

of a DSS for restoration so that the DSS is fit for purpose? The research answered RQI by 

proposing a  framework of maintenance principles and sub-principles. Rather than an answer, 
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the framework of maintenance principles and sub-principles is more of an opening of a 

discussion in the broader engineering services community on the principles of maintenance 

planning. The lower-level principles were used to guide the design of the practical DSS 

implemented. Therefore, although in development, the framework of maintenance principles 

and sub-principles has already shown its usefulness. RQ2 stated: How should the restoration 

of membrane elements in RO desalination in the presence of seasonal algal blooms be 

managed? RQ2 has been answered in-depth in this research. In parallel to this thesis, the 

research has been published in a high-impact academic journal and conference papers. The 

positive results of the exploration of policies using the DSS confirm this.  

10.3  Conclusions 
This research emphasises the need for a DSS to assist in the long-term maintenance 

planning of an EO. A DSS should be driven by a DT that can model degradation and 

restoration for the time-series data and forecast long-term projections. A mathematical model 

and its implementation as a DT have been presented as an example. However, alternatives, 

like Artificial Intelligence (AI) based models, should not be excluded. Nevertheless, a 

mathematical model based on engineering know-how can significantly shorten the 

development time compared to AI training, requiring extensive training data. The drawbacks 

of AI may change in the near future when AI's technical and cognitive capabilities improve. 

Nonetheless, even when applying an AI-driven DT, a successful DSS for maintenance 

requirements should still be based on the principles in the presented framework of 

maintenance principles and sub-principles. The latter could also become the domain of AI in 

the future. 

Although most facilities now have some kind of maintenance management system, often 

involving a CMMS, DSS are mostly absent. Therefore a DSS has to be added on. 

Incorporating a DSS inside a commercial CMMS platform is impractical and results in high 

integration costs. Further, EOs can be so diverse that a one-fits-for-all approach probably will 

not work. This research, therefore, proposes that the DSS should be located beside the 

CMMS but data-driven from both the CMMS and the plant's Operational Technology (OT) 

time-series database. A preliminary analysis of maintenance performed at the plant (see 

chapter 2)  justified the investment necessary to develop the DT (Principle four, level four of 

the framework of maintenance principles). 

This research has provided a practical example of the maintenance management of RO 

membrane elements. The DT-driven DSS used in this research is not limited to RO 
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membrane maintenance planning and can be implemented for other EOs. In chapter 9.2, the 

thesis author presented initial research on vibrations anomaly detection and performance 

analysis for the High-Pressure Booster pumps, one group of the plant's large centrifugal 

pumps. The latter can be used as a model for developing a DT-based DSS for this specific 

EO. A virtual replica of the centrifugal pump can show the flow, power consumption, and 

vibrations according to feed, discharge pressure and pump speed. The virtual replica can then 

be compared to the physical pump to determine whether the wear involves bearings or the 

pump's internal components. The latter requires significantly higher fixed set-up costs. 

Each EO category has to be approached individually. However, the presented principles 

set out in the framework of maintenance principles apply in general, thus also in the case of 

centrifugal pumps. The framework can be considered a guide for the design of a DSS for a 

specific unit. 

This research emphasises modelling degradation and restoration. Availability of 

operational and maintenance data is thereby essential. Engineering know-how of the EO is 

required to develop a mathematical model of degradation and restoration. Finally, the author 

recommends establishing a baseline so tangible metrics can measure the impact of the 

planned improvements, as has been done in this study. 

10.4 Limitations 
Essential factors of the success of a digital twin for managing the restoration of 

membranes in reverse osmosis desalination are the ability to identify the degradation 

dependencies and the effects of partial restoration, the ability to trend this and the available 

supporting data. These factors are not always available. In some cases, wear and repair clues 

are limited to failure data. Such cases support the principle that failure data are useful for 

identifying critical systems and where to deploy a DSS. However, restriction to failure data 

can have the additional limitation that the system might evolve or that there are too many 

random failure modes to draw patterns. The available data are then insufficient for designing 

a DT. 

This study concentrated on the degradation or, in other words, the wear aspect of increased 

differential pressure over seawater RO trains due to biofouling. RO membrane wear resulting 

in increased differential pressure was the primary concern in this case study. The model is 

therefore limited to one aspect of fouling. In the case of brackish water RO systems, a 

combination of biofouling and mineral scaling can occur. In this case, wear at the lead 

elements is combined with the tail elements' wear due to different circumstances. The latter 
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requires an extension of the current model. The model further does not consider other factors 

of long-term wear, e.g., a decrease in salt rejection due to the ageing of the elements. The DT 

uses a fixed recovery for the projection, whereas the actual recovery varies slightly seasonally 

and with demand. 

Specific to this case study, although five years of systematic data were available, data on 

annual occurrence and length of algae blooms was limited. This limited data is one of the 

reasons that a normal distribution of occurrences and duration of algae blooms gave 

inaccurate results.  

The study was applied to an existing installation that was put into operation several years 

earlier. As a result, some initial data was missing. In this case, specifically, the original 

weight of the membrane components when they were new. Since the weight of a new wet 

component varies significantly, this cannot be replaced by measuring the weight of a random 

new element. As a result, there is some tolerance in the accuracy of the biomass weight 

measurement used to define the biomass distribution parameter in the model. 

The research applied particle filtering for other model parameters, specifically the rate-

state severity constant γ and the extrinsic wear dependency κ. The estimation of multiple 

parameters simultaneously is more complex since the exact fit of the modelled NPD with the 

observed NPD can be achieved with different pairs of γ and κ. The difference of γ, in this 

case, was of minor influence. However, further research on parameter estimation, whether or 

not involving particle filtering, is of interest. Although the model's parameters have been 

tuned to fit the case study, further study is required to finetune the parameters beyond. 

Finally, despite introducing randomness for the stochastic extrinsic wear dependency and 

the imperfect restoration, the presented model is still highly deterministic. In practice, the 

degeneration of membrane components is probably more stochastic. 

10.5 Further research 
This research has concentrated on a decision support system (DSS) for maintenance 

planning for RO membranes that uses  a Digital Twin (DT). The presented DT-based DSS 

allows an operator to compare competing restoration (maintenance) policies. Future research 

could investigate an optimisation module that seeks an optimum maintenance policy. Of 

course, optimisation is a mathematical concept. Nonetheless, finding the best policy from 

among all possible policies would be expected to have a practical benefit. In the context of 

membrane restoration, the number of possible policies is very large, and it would be 

interesting to use automation to seek the best policy. As such, this conext would lend itself to 
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the investigation of the use of AI for decision support in maintenance planning. In this way, 

rather than a DSS with a human interface, as proposed in this thesis, an AI module might 

“front-end” the DT.   

The RO trains are only one section of the plant. The design of a DSS and its DT for other 

plant equipment will be of interest. Initial work has already been conducted regarding the 

plant's large high-pressure booster pumps (see chapter 9.2). The initial research on vibrations 

anomaly detection and performance analysis for the plant's large centrifugal pumps can be the 

basis of a DT that provide the parallel data of flow, power consumption, and vibrations of a 

healthy unit. The virtual replica can then be compared to the physical pump to determine the 

wear of the specific component or group of components. Specific DTs can be further 

developed for the intake pumps, dilution pumps, Low-pressure booster pumps, high-pressure 

pumps, and product pumps. Of interest is to compare the above outlined DT for the 

centrifugal pumps against an anomaly detection method, iDetect, based on the Fourier 

transform for vibration analyses recently offered by the management information systems 

(MIS) supplier.  

In addition, the Digital Twin for an RO train has been limited to a single case study, a 

seawater desalination plant in California. Testing the DT and DSS at other seawater RO 

plants worldwide will be valuable in extending the model and increasing its robustness. The 

O&M company operates several facilities worldwide. One of these facilities is nearby located 

in Santa Barbara, California, which is also affected by algae blooms.  

As a first step, the thesis author intends to develop a specific DT for the RO trains at Santa 

Barbara. The Carlsbad plant uses only one type of element for the SWRO vessels. In contrast, 

the Santa Barbara plant has a hybrid configuration, i.e., a combination of different element 

types in a vessel. Further, the Santa Barbara plant is based on a single RO pass, which means 

that the rear product of the vessel, having reduced quality, is not undergoing further treatment 

of an additional RO pass. Controlling the degradation of salt rejection is, in this case, crucial. 

Thus, besides biofouling, the DT of the RO vessel can also include the degradation of salt 

rejection. 

Finally, the literature review states that several desalination plants worldwide suffer from 

algae blooms. Although the specifics of algae blooms can differ per region, combining this 

data and its effects on other plants would be interesting. The thesis author encourages 

researchers to take on this vital research. 
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Appendix A Instructions for MATLAB application of the RO 

train digital twin 
The DT of an RO Train is available on request and includes all required data files. The DT 

is built as an app in MATLAB, and both the shared application running in MATLAB and a 

stand-alone application are available for researchers who do not have a MATLAB license. 

The application can be accessed at the link given earlier. Here again is the link: 

https://drive.google.com/drive/folders/1eUCKvJkl2rn7Qu_J6kfx-1ikpaWI9z-u?usp=sharing. 

As mentioned earlier in this thesis, there are two methods to install the RO train DT, 

running as an app in MATLAB or, if you do not have MATLAB version R2020b, as a stand-

alone application. 

1. If you have MATLAB R2020b installed on your computer, go to the ‘App in MATLAB 

installation’ folder and download the file ‘RO_DT_V3.0mlappinstall’ in your MATLAB 

Current Folder. After completing the download, double click on the file that will install 

the application and the supporting excel files. After installation, you will find the app in 

your MATLAB Toolstrip (see figure A-1). 

  

Figure A-1: MATLAB Toolstrip showing the installed RO train DT application 

2. If you do not have MATLAB R2020b installed on your computer, you can download the 

standalone version. Only a standalone version is available for Windows OS. In case you 

require MAC or Linux, please send an email at f.vanrooij@edu.salford.ac.uk. This 

standalone MATLAB application requires the runtime module to be downloaded during 

the installation. You do not need to have the full version of MATLAB. Open the folder 

‘StandAlone’ and copy the file ‘MyAppInstaller_web.exe’ to your computer. After 

completing the download, double click on the file ‘MyAppInstaller_web.exe’ and follow 

the installation instructions. 

The supporting files of the DT are stored at the directory C:\Users\[user 

name]\AppData\Roaming\MathWorks\MATLAB Add-Ons\Apps\RO_DT_V30. These files 

https://drive.google.com/drive/folders/1eUCKvJkl2rn7Qu_J6kfx-1ikpaWI9z-u?usp=sharing
mailto:f.vanrooij@edu.salford.ac.uk
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can be separately opened in excel but are required for running the DT application. 

After the opening of the application, the dashboard of the Decision Support System (DSS) is 

loaded. No trains are retrieved yet (see figure A-7). The DSS comprises of a ‘Data Analysis 

Module’ (see the top left section of the dashboard at figure A-7), the ‘Planning Module’ (see 

the bottom-left section of the dashboard in figure A-2) and the output of the DT module (see 

the right section of the dashboard at figure A-2. No trains are retrieved yet.). 

At the analysis module α, β and γ  are the parameters of the model. 1α <  quantifies the 

variation in biofouling along a vessel due to preferential attachment of biomass to leading 

elements. tκ  is the extrinsic (common cause) wear effect due to the feed water quality on day 

t. β is the factor determining the decay of the extrinsic wear component. γ adjusts the rate-

state of wear interaction due to wear of the trailing elements. Default values are loaded during 

the startup of the application. Further, tables are shown with records of maintenance history, 

preservation, and inspection record of the last inspection of biomass at the elements. 

 

Figure A-2: Decision Support System (DSS) dashboard after the start-up of the application.  

The user can select the preference of pressure units, see figure A-3. The default pressure 

unit is Bar. 

 
Figure A-3: Selection of preferable pressure units, Bar or PSI. 
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There are two ways to determine the extrinsic wear component κ over the historical period. 

Default is the daily calculation that the DT calculates based on the discrete difference of the 

observed NPD over time and the model parameters. The other method is based on the mean 𝜅𝜅 

between change point analysis. This changepoint analysis is performed separately in 

MATLAB Live Editor and retrieved by the DSS from an excel file. The mean values are 

given in the table ‘Extrinsic History.’ The daily method provides a better fit than the mean 

option. The latter's purpose is mainly to investigate the dependencies, so recommended is 

using daily κ (see figure A-4). 

 
Figure A-4: Method of determining historical 𝜅𝜅. 

By selecting a train from the drop-down menu (see figure A-5), the historical data of the train 

is pulled up from the incorporated excel sheet in discrete daily intervals.  

 
Figure A-5: the selection of train 

The provided data consists of five years of operation. This data includes the normalized 

DP defined as P observed, the train's operational state, and the recovery. After the data has 

been loaded, the dashboard should like figure A-6 below. 

  
Figure A-6: retrieval of historical data of train 1 over a period of five years. 
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After pressing the ‘Analyze History’ button, the modelled wear and pressures are computed 

and shown on the dashboard (see figure A-7). 

 

 
Figure A-7: DT of modelled wear (X), P and daily κ. 

The plot at the left shows the distribution of weighted biomass over the elements (red 

boxes) and the modelled wear distribution at the time of inspection (- - - line). The plot at the 

right gives the observed NPD and the modelled NPD over the historical period. Besides the 

overall modelled NPD, the modelled NPD of the individual elements is shown. The modelled 

data over the historical period can be exported by clicking the ‘Export modelled His data to 

Excel.’ The excel file will be located in the working folder of MATLAB. 

 

Figure A-8: Maintenance planning module 



@00419918  Fredericus I. M. (Frits) van Rooij 

e 

After the historical data has been analyzed, various maintenance policies can be simulated 

to determine the most desirable medium-term efficiency. At the planning module on the left 

side (see figure A-8), the different maintenance actions are listed, where the user can define 

the cost factor and, in the case of clean-in-place (CIP), the reduction of wear (δ). The 

restoration factor displayed and accessible for modification applies only for the Weibull 

distribution sampling. For a detailed explanation, see chapter 7 of the thesis. 

There are 12 predefined policies. The policies can be selected from the Policy dropdown 

menu. The DSS calculates the costs of each maintenance action. Further, the five-year 

maintenance cost is given below the table, followed by the ten-year element replacement rate. 

The table inputs can be modified from the row above the table. One row at a time, each 

row must be written down to the table by clicking on the ‘Modify’ button. In case of 

permutations, the previous position of the element must be entered. Whereby 1 is the front 

element, and 8 is the tail element. In case a new element is loaded into a slot (S), then a zero 

is entered. After modifying the table, the policy can be saved from the ‘Save policy’ button. 

Finally, the policy projection can be generated for the following five years. Factors that 

determine the projection are the current state of wear of the RO train, the model parameters, 

and the maintenance policy. The extrinsic (common cause) wear effect κ is unknown and 

must be forecasted by the DT. There are two methods available to generate the projection, 

bootstrap sampling or by a Weibull distribution (see figure A-9)  

  

Figure A-9: Projection setup 

In the case of projection by bootstrap sampling, κ (feed quality) for each day of the 

projection is selected at random with replacement from its respective bootstrap sample. That 
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is, κ for Jan 1st in year 1 of the projection is sampled from the Jan 1st bootstrap sample, and so 

on throughout year 1, repeating the same for year 2, and so on. Then, clean-in-place is 

scheduled, and the individual cleaning effects are bootstrapped from the estimated cleaning 

effects samples for each cleaning method (see section 7.2). Further, element swaps and 

replacements are scheduled. Their effects are known and deterministic. Finally, the model is 

executed, obtaining the projected states of each element.  The corresponding NPD for the 

train and at each socket is forecasted for each day of the projection. Besides the degradation 

parameters and the imperfect restoration parameter, the projection further requires system 

recovery R, which in turn implies the hydraulic effect of the socket position ωi to calculate the 

modelled P. For details on the socket pressure distribution parameter ωi, see chapter 6. 

Projections are repeated 100 times to obtain the ensemble forecast (grey ribbon in figure 

A-13) and the ensemble mean (red pen). 

In the case of projection involving a Weibull distribution, κ (feed quality) for each day of 

the projection is randomly selected by a Weibull distribution. From the Weibull distribution 

parameters defined at the DSS (see figure A-8), the start day of the year and the duration of 

days of the algae bloom are forecasted using a random Weibull distribution. This defines the 

period where 2tκ κ=  or 2 1( )t e βτκ κ κ −= − is utilized for κ. After this, A Weibull 

Distribution is applied to generate the daily random severity of the extrinsic wear dependency 

κt, based on the Weibull parameters for κ1  and κ2.  We model the daily wear over the 

projected period applying the selected maintenance policy (see chapter 8). In the case of a 

CIP, a random Weibull distribution is applied of δ per intervention, with 1 1~ ( , )Nδ δ λ  for C1 

and 2 2~ ( , )Nδ δ λ  for C2. Finally, the daily NPD per socket is calculated and the vessel NPD.  

The ensemble forecast method is wildly utilized in weather forecasting. To generate the 

projection, click on the ‘Projection’ button. Due to the number of computations, running the 

ensemble forecast has some delay depending on the power of the user PC. It takes about 1½ 

minutes on an i7-3770 CPU @ 3.40GHz (16 GB RAM) Desktop and nearly 3½ minutes on a 

Celeron N4100 CPU @ 1.10 GHz (8 GB RAM) PC. During the projection computation, a 

progress indicator is shown to inform the user of the status (see figure A-12). 

 

 

Figure A-10. Progress indicator during computation of the projection. 
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After finalizing the computation, the dashboard looks like that of figure A-13. 

 

Figure A-11. Decision Support System (DSS) dashboard after finalizing a projection. 
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Appendix B CMMS work order examples 

B.1 membrane replacement 
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B.1.1 Attachment 1: Standard Operating Procedure (SOP) 
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B.1.2 Attachment 2: Plan of elements permutations 
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B.1.3 Attachment 3: Serial numbers of elements 

 

TRAIN 14
144

14_1_1 14_1_2 14_1_3 14_1_4 14_1_5 14_1_6 14_1_7 14_1_8 14_1_9 14_1_10 14_1_11 14_1_12
ST8593186 ST8593162 ST8593149 ST8594186 ST8593042 ST8593053 ST8970071 ST8970077 ST8970055 ST8984373 ST8970046 ST8984417 8
ST8593147 ST8593557 ST8593135 ST8594191 ST8594192 ST8593049 ST8970079 ST8970042 ST8970073 ST8970051 ST8970044 ST8984672 7
ST7677661 ST7677635 ST7677552 ST7677637 ST7677647 ST7677652 ST7677660 ST7677651 ST7677646 ST7677656 ST7677649 ST7677664 6
ST4136668 ST4045686 ST4045687 ST4045821 ST4045706 ST4101940 ST4101942 ST4101860 ST4101946 ST4045707 ST4101220 ST4101629 5
ST4045807 ST1080188 ST1287389 ST1278663 ST1288090 ST1279133 ST1287488 ST1288141 SF9913072 SF9911234 ST1288730 ST1083291 4
ST4045813 ST1084091 ST1287513 ST1295854 ST1279085 ST1279128 ST1287559 ST1287466 ST1288341 SF9911239 ST1288728 ST1275014 3
ST4045816 ST1084090 ST1287681 ST1295749 ST1279077 ST1279155 ST1287465 ST1287461 ST1288293 SF9911197 ST1288725 ST1275027 2
ST6930379 ST6850014 ST6850012 ST6930380 ST6850019 ST6850017 ST6930383 ST6930386 ST6930020 ST6850009 ST6930128 ST6850051 1

14_2_1 14_2_2 14_2_3 14_2_4 14_2_5 14_2_6 14_2_7 14_2_8 14_2_9 14_2_10 14_2_11 14_2_12
ST8593142 ST8593185 ST8592872 ST8592866 ST8593163 ST8593561 ST8984369 ST8984655 ST8984565 ST8970075 ST8984577 ST8984370 8
ST8593153 ST8593151 ST8592870 ST8593583 ST8593146 ST8593554 ST8984584 ST8984367 ST8984377 ST8984374 ST8984454 ST8984571 7
ST7677623 ST7677555 ST7677548 ST7677576 ST7677551 ST7677571 ST7677553 ST7677628 ST7677554 ST7677626 ST7677522 ST7677559 6
ST4101218 ST4101859 ST4045815 ST4045696 ST4045695 ST4045701 ST4045713 ST4045700 ST4101864 ST4101980 ST4045817 ST4045688 5
ST1288561 ST1083966 ST1279648 ST1295853 ST1288429 ST1279100 ST1288620 ST1288518 ST1296024 ST1084076 ST1288790 ST1287555 4
ST1288052 ST1083998 ST1279620 ST1295819 ST1288374 ST1279105 ST1287434 ST1288536 ST1295884 ST1084112 ST1288826 ST1287568 3
ST1288424 ST1083950 ST1279614 ST1296142 ST1288437 ST1279107 ST1288625 ST1288512 ST1296021 ST1084134 ST1288882 ST1287564 2
ST6850028 ST6850045 ST6850021 ST6850057 ST6850047 ST6850035 ST6914998 ST6914990 ST6850268 ST6850081 ST6850006 ST6850060 1

14_3_1 14_3_2 14_3_3 14_3_4 14_3_5 14_3_6 14_3_7 14_3_8 14_3_9 14_3_10 14_3_11 14_3_12
ST9017321 ST8593211 ST9017368 ST8593559 ST9017250 ST9017377 ST8594180 ST8593907 ST8593947 ST8970037 ST8970049 ST8970089 8
ST9017296 ST8592885 ST9017293 ST8593157 ST9017373 ST9017462 ST8594176 ST8594049 ST8593960 ST8970035 ST8970038 ST8970040 7
ST7677672 ST7677653 ST7677663 ST7677655 ST7677643 ST8984859 ST7677556 ST7677558 ST7677622 ST7677566 ST7677524 ST7677636 6
ST4101977 ST4101841 ST4045694 SJ4101845 ST4140281 ST4140285 ST4045699 ST4102055 ST4045857 ST4101858 ST4140336 ST4045814 5
ST1288033 SF9913166 ST1279943 ST1288748 ST1279759 ST1279746 ST1275562 ST1275305 ST1275398 SF9910948 ST1288178 ST1288678 4
ST1288430 SF9913152 ST1279946 ST1279671 SF7886211 ST1297102 ST1275557 ST1275300 ST1275384 SF9910943 ST1288336 ST1295544 3
ST1288414 SF9913164 ST1279957 ST1288731 ST1279753 ST1296949 ST1275540 ST1288535 ST1275412 SF9910940 ST1288343 ST1288766 2
ST6850063 ST6914986 ST6850065 ST6850011 ST6850038 ST6850041 ST6850005 ST6850001 ST6914991 ST6914995 ST6850136 ST6850004 1

14_4_1 14_4_2 14_4_3 14_4_4 14_4_5 14_4_6 14_4_7 14_4_8 14_4_9 14_4_10 14_4_11 14_4_12
ST9017426 ST9017384 ST9017322 ST9017355 ST9017314 ST9017334 ST8970114 ST8594182 ST8594137 ST7721750 ST8970090 ST8594190 8
ST9017358 ST9017353 ST9017474 ST9017375 ST9017330 ST9017372 ST8970108 ST8970048 ST8593050 ST8594184 ST8594038 ST8594178 7
ST7677462 ST7677494 ST7677371 ST7677365 ST7677703 ST7677700 ST7677470 ST7677476 ST7677485 ST7677578 ST7677584 ST7677471 6
ST4045711 ST4101974 ST4140276 ST4045693 ST4101862 ST4101857 ST4140288 ST4045705 ST4102090 ST4101968 ST4101214 ST4140337 5
ST1286970 ST1288230 ST1279998 ST1296087 ST1279729 ST1297264 ST1288395 ST1288240 SF9911361 SF9912990 ST1288315 ST1084214 4
ST1286973 ST1288274 SF9831756 ST1296085 ST1279697 ST1297259 ST1275483 SF9913159 ST1275153 SF9912985 ST1288337 ST1084262 3
ST1286946 ST1288268 SF9831750 ST1296079 ST1279010 ST1279777 ST1275478 ST1288246 ST1275009 SF9912988 ST1288311 ST1084264 2
ST6850008 ST6914994 ST6914997 ST6914988 ST6914984 ST6914993 ST6930490 ST6930586 ST6930544 ST6930256 ST6850002 ST6930526 1

14_5_1 14_5_2 14_5_3 14_5_4 14_5_5 14_5_6 14_5_7 14_5_8 14_5_9 14_5_10 14_5_11 14_5_12
ST8242690 ST8242681 ST8242685 ST8242884 ST8242625 ST8593209 ST8592893 ST8592895 ST8592892 ST8593215 ST9015014 8
ST8242683 ST8242684 ST8242216 ST8242628 ST8242969 ST8592896 ST8592902 ST8592891 ST8592903 ST8592894 ST9015015 7
ST7677630 ST7677631 ST7677632 ST7677642 ST7677627 ST7677633 ST7677452 ST7677473 ST7677519 ST7677654 ST7677692 6
ST4044821 ST4044810 ST4101848 ST4101350 ST4101233 ST4044824 ST4045861 ST4101967 ST4101208 ST4101996 ST4101356 5
ST1287805 ST1083566 ST1287351 ST1287973 ST1287500 ST1296638 ST1279359 ST1278677 SF9911073 SF9911774 SF9912147 4
ST1287823 ST1083579 ST1287338 ST1287978 ST1287668 ST1287686 ST1279362 ST1278672 SF9910972 ST1288811 SF9912161 3
ST1287823 ST1083563 ST1083546 ST1287984 ST1287676 ST1296616 ST1279354 ST1278690 ST1287606 ST1288784 ST1123608 2
ST6930590 ST6850307 ST6930572 ST6930564 ST6914999 ST6850302 ST6930252 ST6930560 ST6930258 ST6930016 ST6850168 1

14_6_1 14_6_2 14_6_3 14_6_4 14_6_5 14_6_6 14_6_7 14_6_8 14_6_9 14_6_10 14_6_11 14_6_12
ST8242252 ST8242256 ST8242306 ST8242319 ST8242311 ST8592890 ST8593203 ST8593205 ST8242673 ST8593201 ST9015018 8
ST8242923 ST8242251 ST8242305 ST8242307 ST8242318 ST8592899 ST8592897 ST8592904 ST8242668 ST8592889 ST9015039 7
ST7677641 ST7677580 ST7677588 ST7677648 ST7677585 ST7677468 ST7677530 ST7677499 ST7677525 ST7677549 ST7677695 6
ST4044816 ST4044828 ST4044825 ST4140354 ST4140340 ST4101849 ST4044819 ST4140338 ST4044709 ST4101839 ST4044826 5
ST1286987 ST1296931 ST1083539 ST1287177 ST1288200 ST1296213 ST1296068 ST1296820 ST1275291 ST1083890 SF9943183 4
ST1287285 ST1296937 ST1275157 ST1288386 ST1288197 ST1296241 ST1296071 ST1296810 ST1275465 ST1083781 SF9943174 3
ST1287298 ST1288568 ST1275217 ST1287170 ST1287487 ST1296647 ST1288313 ST1296832 ST1275482 ST1000003 SF9943159 2
ST6930443 ST6850276 ST6930433 ST6930420 ST6930567 ST6930437 ST6850131 ST6930344 ST6851358 ST6930147 ST6850137 1

14_7_1 14_7_2 14_7_3 14_7_4 14_7_5 14_7_6 14_7_7 14_7_8 14_7_9 14_7_10 14_7_11 14_7_12
ST8242303 ST8242316 ST8242402 ST8242431 ST8242421 ST8242689 ST8242692 ST8788658 ST8242675 ST8242670 ST8984456 8
ST8242427 ST8242398 ST8242438 ST8242312 ST8242349 ST8242672 ST8242677 ST8242676 ST8242671 ST8788430 ST8789038 7
ST7677520 ST7677644 ST7677595 ST7677604 ST7677601 ST7677455 ST7677495 ST7676163 ST7677466 ST7677479 ST7677501 6
ST4045708 ST4044822 ST4045703 ST4045860 ST4101975 ST4044794 ST4044694 ST4101237 ST4044692 ST4044703 ST4045702 5
ST1288069 ST1287033 ST1275198 ST1288049 ST1288350 ST1279267 ST1288333 ST1295681 SF9910551 ST1288854 ST1123588 4
ST1288044 ST1288442 ST1275185 ST1288014 ST1288294 ST1279263 ST1288375 ST1279899 ST1279304 ST1288765 ST1123610 3
ST1288071 ST1287051 ST1275111 ST1288000 ST1288355 ST1279258 ST1288401 ST1279907 ST1279236 ST1288787 ST1123611 2
ST6850191 ST6850135 ST6850124 ST6850098 ST6850145 ST6850128 ST6850153 ST6850129 ST6850143 ST6850148 ST6850283 1

14_8_1 14_8_2 14_8_3 14_8_4 14_8_5 14_8_6 14_8_7 14_8_8 14_8_9 14_8_10 14_8_11 14_8_12
ST8242309 ST8242314 ST8242242 ST8243005 ST8243058 ST8242682 ST8242663 ST8242680 ST8242260 ST8242961 ST8984981 8
ST8242404 ST8242301 ST8242241 ST8242964 ST8243003 ST8242667 ST8242686 ST8242253 ST8242254 ST8242818 ST8788980 7
ST7677575 ST7677537 ST7677517 ST7677518 ST7677590 ST7677469 ST7677493 ST7677574 ST7677467 ST7677481 ST7677523 6
ST4045709 ST4044820 ST4101238 ST4140341 ST4045854 ST4044815 ST4045810 ST4140351 ST4045804 ST4136683 ST4101991 5
ST1288056 ST1288492 ST1275675 ST1287788 ST1288028 ST1279257 ST1287921 ST1287467 SF9911766 ST1288867 ST1123756 4
ST1288065 ST1288413 ST1275677 ST1287790 ST1287652 ST1279254 ST1287928 ST1287505 SF9911703 ST1288834 ST1123744 3
ST1287848 ST1288477 ST1276230 ST1287784 ST1287680 ST1279259 ST1287931 ST1287512 SF9911768 ST1288828 ST1123730 2
ST6850134 ST6850182 ST6850141 ST6850271 ST6850097 ST6850197 ST6850180 ST6850280 ST6850139 ST6850147 ST6850112 1

14_9_1 14_9_2 14_9_3 14_9_4 14_9_5 14_9_6 14_9_7 14_9_8 14_9_9 14_9_10 14_9_11 14_9_12
ST9017077 ST9017091 ST8984856 ST9015057 ST8788681 ST9017043 ST8788659 ST8788602 ST8788587 ST9015012 8
ST9017119 ST9017083 ST8984852 ST8984851 ST9017079 ST8788781 ST8788764 ST8788709 ST8788779 ST8984457 7
ST7677572 ST7677581 ST7677533 ST7677782 ST7677569 ST7677701 ST7677568 ST7677802 ST7677787 ST7677793 6
ST4101198 ST4101979 ST4101992 ST4136656 ST4136689 ST4102061 ST4102058 ST4101362 ST4101346 ST4561001 5
ST1084265 ST1287607 SF9912126 ST1125159 SF9913209 ST1275123 SF9943112 SF9812311 SF9912345 SF9912456 4
ST1084237 ST1287618 ST1123600 ST1125178 SF9913192 ST1275102 SF9943090 SF9812487 SF9912514 SF9912459 3
ST1084233 ST1287624 SF9912127 ST1082752 SF9913207 ST1275141 SF9943083 SF9812489 SF9912351 SF9912439 2
ST6850029 ST6850116 ST6914981 ST6850108 ST6850120 ST6850172 ST6850105 ST6850158 ST6850149 ST6850110 1

14_10_1 14_10_2 14_10_3 14_10_4 14_10_5 14_10_6 14_10_7 14_10_8 14_10_9 14_10_10 14_10_11 14_10_12
ST9017168 ST9017076 ST8984949 ST9017179 ST9017085 ST9017101 ST9017114 ST8984477 ST8984669 8
ST9017113 ST9017172 ST8984951 ST9017086 ST9017093 ST9017087 ST9017081 ST9017045 ST8984678 7
ST7677714 ST7677697 ST7677693 ST7677699 ST7677696 ST7677691 ST7677688 ST7677710 ST7677702 6
ST4102056 ST4101973 ST4044836 ST4101200 ST4136680 ST4101971 ST4136670 ST4140277 ST4044832 5
SF9910913 ST1287251 ST1125075 SF9913248 SF9913282 SF9910104 SF9943163 SF9943084 SF9813438 4
ST1296926 ST1287219 ST1125076 ST1083913 ST1083680 SF9910107 SF9943166 SF9943060 SF9812981 3
ST1296918 ST1287264 ST1082885 SF9913234 ST1083676 SF9910113 SF9812361 SF9943063 SF9813036 2
ST6850115 ST6850123 ST6850125 ST6850122 ST6850163 ST6850164 ST6850161 ST6850154 ST6850126 1

14_11_1 14_11_2 14_11_3 14_11_4 14_11_5 14_11_6 14_11_7 14_11_8 14_11_9 14_11_10 14_11_11 14_11_12
ST8788834 ST8788829 ST8984861 ST8788826 ST8788682 ST8788817 ST8788737 ST8788759 ST8984759 8
ST8788684 ST8788783 ST8984946 ST8788775 ST8788738 ST8788814 ST8788680 ST8788715 ST8984758 7
ST7677682 ST7677689 ST7677503 ST7677687 ST7677706 ST7677507 ST7677496 ST7677521 ST7677526 6
ST4102088 ST4101982 ST4140280 ST4101364 ST4140278 ST4101367 ST4101994 ST4101970 ST4044792 5
ST1084254 SF9910244 ST1082821 SF9911191 SF9913250 SF9813142 SF9912401 SF9698849 ST1080121 4
ST1287094 SF9910212 ST1082798 SF9911178 SF9913263 SF9813135 SF9912371 SF9698841 ST1080151 3
ST1287134 SF9910242 ST1082807 SF9911180 SF9913264 SF9813163 SF9912469 SF9698867 ST1080150 2
ST6850114 ST6850010 ST6850111 ST6850121 ST6850127 ST6850152 ST6850160 ST6850099 ST6850107 1

14_12_1 14_12_2 14_12_3 14_12_4 14_12_5 14_12_6 14_12_7 14_12_8 14_12_9 14_12_10 14_12_11 14_12_12
ST8788556 ST8788558 ST8788562 ST8788064 ST8788675 ST8788671 ST8788109 ST8984744 8
ST8788708 ST8788717 ST8788716 ST8788712 ST8788674 ST8788673 ST8788549 ST8984371 7
ST7677528 ST7677529 ST7677532 ST7677534 ST7677538 ST7677531 ST7677527 ST7677516 6
ST4102065 ST4140279 ST4101976 ST4101972 ST4101366 ST4136679 ST4101354 ST4101235 5
ST1288232 ST1287062 ST1083722 ST1083827 ST1125001 SF9913344 SF9913514 SF9910409 4
ST1288237 ST1287073 ST1083720 ST1083825 ST1080098 SF9913355 SF9913489 SF9910394 3
ST1288243 ST1287056 ST1083696 ST1083844 SF9813182 SF9913357 SF9913471 SF9910400 2
ST6850113 ST6850130 ST6850103 ST6850156 ST6914784 ST6850272 ST6850109 ST6850133 1

New MembranesDisconnected Vessels Rotated Membranes
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B.2 CMMS work order example CIP SBS socking 
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B.3 CMMS work order example High and Low CIP 
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Appendix C Additional projections with Bootstrapping  
Additional Digital Twin (DT) output projections are given for train 11, covering the 12 

policies with first Bootstrap sampling with smoothening -1,+4, followed by smoothening -

2,+8. Due to the amount of data, the trends of the projections of only train 11 are given. 

However, the rends of the other trains are available on request.   

C.1 Projection with bootstrap sampling with smoothening -1,+4 

 

 

 
Figure C-1: Bootstrap with smoothening -1,+4, Train 11 for policy 1, (top) to policy 3 (bottom). 
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Figure C-2: Bootstrap with smoothening -1,+4, Train 11 for policy 4, (top) to policy 7 (bottom). 

. 
 



@00419918  Fredericus I. M. (Frits) van Rooij 

y 

 

 

 

 
Figure C-3: Bootstrap with smoothening -1,+4, Train 11 for policy 8, (top) to policy 11 (bottom). 

. 
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Figure C-4: Bootstrap with smoothening -1,+4, Train 11 for policy 12. 

C.2 Projection with bootstrap sampling with smoothening -2,+8 

 

 

 
Figure C-5: Bootstrap with smoothening -2,+8, Train 11 for policy 1, (top) to policy 3 (bottom). 
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Figure C-6: Bootstrap with smoothening -2,+8, Train 11 for policy 4, (top) to policy 7 (bottom). 
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Figure C-7: Bootstrap with smoothening -2,+8, Train 11 for policy 8, (top) to policy 11 (bottom). 
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Figure C-8: Bootstrap with smoothening -2,+8, Train 11 for policy 12. 
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Appendix D MATLAB source code for Functions Model 
historical state-space and Projections  

D.1 Function: Model historical state-space 
001     % Button pushed function: RunHis 
002     function RunHisButtonPushed(app, event) 
003             if app.Daily.Value == true 
004             app.cntr = 0; 
005             %Ratestate 
006             app.Pmodelled(1) = app.Pobs(1); 
007             for j=1:app.Elements.Value 
008                 app.Psocket(1,j) = app.Omega(1,j) * app.Pobs(1); 
009             end 
010             for i=2:app.Hisdata 
011                 x = sum(app.Xhis(i-1,:)); 
012                 for j=1:app.Elements.Value - 1 
013                     x = x - app.Xhis(i-1,j); 
014                     app.RShis(i,j) = (x / (app.Elements.Value - ... 

j))^(app.Rec(i)/100*app.Gamma.Value); 
015                 end 
016                 %Kappa 
017                 if app.State(i) == 5 
018                     if app.State(i-1) == 5 
019                         x = 0.0; 
020                         for j=1:app.Elements.Value 
021                             x = x + app.Alpha.Value^(j-1) * app.RShis(i,j) * ... 

app.Omega(i,j); 
022                         end 
023                         y=app.Pobs(1) * x; 
024                         %Perfect fit is to use app.Pmodelled(i-1) instead of 
025                         %app.Pobs(i-1 
026                         if app.cntr > 0 
027                             app.kHis(i) = (app.Pobs(i)-app.Pmodelled(i-1)) / y; 
028                             app.cntr = app.cntr - 1; 
029                         else 
030                             app.kHis(i) = (app.Pobs(i)-app.Pobs(i-1)) / y; 
031                         end 
032                     else 
033                         app.kHis(i) = 0.0; 
034                     end 
035                 else 
036                     app.kHis(i) = 0.0; 
037                 end 
038                 %DX 
039                 for j=1:app.Elements.Value 
040                     app.DXhis(i,j) = app.Alpha.Value^(j-1) * app.kHis(i) * app.RShis(i,j); 
041                 end 
042                 %check for maintenance actions 
043                 app.Maint = zeros(1,app.nMaintHis.Value); 
044                 for j=1:app.nMaintHis.Value 
045                     if app.MaintHis.Day(j) == i 
046                        app.Maint = table2array(app.MaintHis(j,:)); 
047                     end 
048                 end 
049                 %Calculate Wear X 
050                 if app.Maint(3) > 0 
051                    app.cntr = 7; 
052                 end 
053                 switch app.Maint(3) 
054                     case 0 
055                         for j=1:app.Elements.Value 
056                             app.Xhis(i,j) = app.Xhis(i-1,j) + app.DXhis(i,j); 
057                             if app.Xhis(i,j) < 1 
058                                 app.Xhis(i,j) = 1; 
059                             end 
060                         end 
061                     case 1 
062                         for j=1:app.Elements.Value 
063                             app.Xhis(i,j) = (1 - app.Maint(1,4)) * app.Xhis(i-1,j) + ... 

app.Maint(4); 
064                             if app.Xhis(i,j) < 1 
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065                                 app.Xhis(i,j) = 1; 
066                             end 
067                         end 
068                     case 2 
069                         for j=1:app.Elements.Value 
070                             app.Xhis(i,j) = (1 - app.Maint(1,4)) * app.Xhis(i-1,j) + ... 

app.Maint(4); 
071                             if app.Xhis(i,j) < 1 
072                                app.Xhis(i,j) = 1; 
073                             end 
074                         end 
075                     case 3 
076                         app.Xhis(i,1) = app.Xhis(i-1,8); 
077                         app.Xhis(i,8) = 1.1; 
078                         for j=2:app.Elements.Value-1 
079                             app.Xhis(i,j) = app.Xhis(i-1,j); 
080                         end 
081                     case 4 
082                         for j=1:app.Elements.Value 
083                             m = app.Maint(j+4); 
084                             if m == 0 
085                                app.Xhis(i,j) = 1; 
086                             else 
087                                app.Xhis(i,j) = app.Xhis(i-1,m); 
088                             end 
089                         end 
090                 end 
091                 %Calculating P modelled 
092                 if app.State(i) == 5 
093                     app.Pmodelled(i) = 0; 
094                     for j=1:app.Elements.Value 
095                         app.Psocket(i,j) = app.Xhis(i,j) * app.Omega(i,j) * app.Pobs(1); 
096                         app.Pmodelled(i) =  app.Pmodelled(i) + app.Psocket(i,j); 
097                     end 
098                 else 
099                     app.Pmodelled(i) = 0; 
100                     for j=1:app.Elements.Value 
101                         app.Psocket(i,j) = 0; 
102                     end 
103                 end 
104             end 
105         else 
106             %Ratestate 
107             app.Pmodelled(1) = app.Pobs(1); 
108             for j=1:app.Elements.Value 
109                 app.Psocket(1,j) = app.Omega(1,j) * app.Pobs(1); 
110             end 
111             app.kHis(1) = app.Kfltr.Kappa(1); 
112             app.KappaHigh = 0.0; 
113             for i=2:app.Hisdata 
114                 x = sum(app.Xhis(i-1,:)); 
115                 for j=1:app.Elements.Value - 1 
116                     x = x - app.Xhis(i-1,j); 
117                     app.RShis(i,j) = (x / (app.Elements.Value - ... 

j))^(app.Rec(i)/100*app.Gamma.Value); 
118                 end 
119                 %Kappa 
120                 if app.cntr > 0 
121                     if app.State(i) == 5 
122                         if app.State(i-1) == 5 
123                             x = 0.0; 
124                             for j=1:app.Elements.Value 
125                                 x = x + app.Alpha.Value^(j-1) * app.RShis(i,j) * ... 

app.Omega(i,j); 
126                             end 
127                             y=app.Pobs(1) * x; 
128                             app.kHis(i) = (app.Pobs(i)-app.Pmodelled(i-1)) / y; 
129                             app.cntr = app.cntr - 1; 
130                         else 
131                             app.kHis(i) = 0.0; 
132                         end 
133                     else 
134                         app.kHis(i) = 0.0; 
135                     end 
136                 else 
137                     if app.Kfltr.Kappa(i) > app.Kfltr.Kappa(i-1) 
138                        app.tau = 0; 
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139                         app.KappaHigh = app.Kfltr.Kappa(i); 
140                     elseif app.Kfltr.Kappa(i) < app.Kfltr.Kappa(i-1) 
141                         app.tau = 1; 
142                     else 
143                         if app.tau > 0 
144                            app.tau = app.tau + 1; 
145                         end 
146                     end 
147                     if app.KappaHigh == 0 
148                        app.kHis(i) = app.Kfltr.Kappa(i); 
149                     else 
150                         x = (app.KappaHigh - app.Kfltr.Kappa(i)) * ...  

exp(-app.Beta.Value*app.tau) + app.Kfltr.Kappa(i); 
151                         if x < app.Kfltr.Kappa(i) 
152                            app.kHis(i) = app.Kfltr.Kappa(i); 
153                         else 
154                             app.kHis(i) = x; 
155                         end 
156                     end 
157                 end 
158                 %DX 
159                 for j=1:app.Elements.Value 
160                     app.DXhis(i,j) = app.Alpha.Value^(j-1) * app.kHis(i) * app.RShis(i,j); 
161                 end 
162                 %check for maintenance actions 
163                 app.Maint = zeros(1,12); 
164                 for j=1:25 
165                     if app.MaintHis.Day(j) == i 
166                        app.Maint = table2array(app.MaintHis(j,:)); 
167                     end 
168                 end 
169                 %Calculate Wear X 
170                 if app.Maint(3) > 0 
171                    app.cntr = 7; 
172                 end 
173                 switch app.Maint(3) 
174                     case 0 
175                         for j=1:app.Elements.Value 
176                             app.Xhis(i,j) = app.Xhis(i-1,j) + app.DXhis(i,j); 
177                             if app.Xhis(i,j) < 1 
178                                app.Xhis(i,j) = 1; 
179                             end 
180                         end 
181                     case 1 
182                         for j=1:app.Elements.Value 
183                             app.Xhis(i,j) = (1 - app.Maint(1,4)) * app.Xhis(i-1,j) + ... 

app.Maint(4); 
184                             if app.Xhis(i,j) < 1 
185                                app.Xhis(i,j) = 1; 
186                             end 
187                         end 
188                     case 2 
189                         for j=1:app.Elements.Value 
190                             app.Xhis(i,j) = (1 - app.Maint(1,4)) * app.Xhis(i-1,j) + ... 

app.Maint(4); 
191                             if app.Xhis(i,j) < 1 
192                                app.Xhis(i,j) = 1; 
193                             end 
194                         end 
195                     case 3 
196                         app.Xhis(i,1) = app.Xhis(i-1,8); 
197                         app.Xhis(i,8) = 1.1; 
198                         for j=2:app.Elements.Value-1 
199                             app.Xhis(i,j) = app.Xhis(i-1,j); 
200                         end 
201                     case 4 
202                         for j=1:app.Elements.Value 
203                             m = app.Maint(j+4); 
204                             if m == 0 
205                                app.Xhis(i,j) = 1; 
206                             else 
207                                app.Xhis(i,j) = app.Xhis(i-1,m); 
208                             end 
209                         end 
210                 end 
211                 %Calculating P modelled 
212                 if app.State(i) == 5 
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213                     app.Pmodelled(i) = 0; 
214                     for j=1:app.Elements.Value 
215                         app.Psocket(i,j) = app.Xhis(i,j) * app.Omega(i,j) * app.Pobs(1); 
216                         app.Pmodelled(i) =  app.Pmodelled(i) + app.Psocket(i,j); 
217                     end 
218                 else 
219                     app.Pmodelled(i) = 0; 
220                     for j=1:app.Elements.Value 
221                         app.Psocket(i,j) = 0; 
222                     end 
223                 end 
224             end 
225         end 
226         app.train.P(:) = app.Pmodelled(:); 
227         app.train.P1(:) = app.Psocket(:,1); 
228         app.train.P2(:) = app.Psocket(:,2); 
229         app.train.P3(:) = app.Psocket(:,3); 
230         app.train.P4(:) = app.Psocket(:,4); 
231         app.train.P5(:) = app.Psocket(:,5); 
232         app.train.P6(:) = app.Psocket(:,6); 
233         app.train.P7(:) = app.Psocket(:,7); 
234         app.train.P8(:) = app.Psocket(:,8); 
235         app.train.kCalc(:) = app.kHis(:); 
236         app.train.X1(:) = app.Xhis(:,1); 
237         app.train.X2(:) = app.Xhis(:,2); 
238         app.train.X3(:) = app.Xhis(:,3); 
239         app.train.X4(:) = app.Xhis(:,4); 
240         app.train.X5(:) = app.Xhis(:,5); 
241         app.train.X6(:) = app.Xhis(:,6); 
242         app.train.X7(:) = app.Xhis(:,7); 
243         app.train.X8(:) = app.Xhis(:,8); 
244         app.LargeChart=false; 
245         updatePlot(app); 
246     end 

D.2 Function: Projections 
001     % Button pushed function: RunProjection 
002     function RunProjectionButtonPushed(app, event) 
003         if app.Forecastvector.Value == false % Bootstrap method 
004             % retrieving data-sets 
005             CIPHIS=readtable("CIPHIS.xlsx"); 
006             nc1=sum(  ~isnan(CIPHIS.C1)); 
007             nc2=sum(  ~isnan(CIPHIS.C2)); 
008             C1His=table2array(CIPHIS(1:nc1,1)); 
009             C2His=table2array(CIPHIS(1:nc2,2)); 
010             Turned=table2array(readtable("KappaMatris.xlsx")); 
011             kDataSet=Turned'; 
012             %Calculating projected wear 
013             %Calculating socket recovery and socket ratio 
014             % Set up the progress bar axis 
015             fh = clf(); 
016             ax = axes(fh,'Position',[.1 .4 .8 .05],'box','on','xtick',[],'ytick',[],... 
                'Color',[0.9375 0.9375 0.9375],'xlim',[0,1],'ylim',[0,1]); %gray94 
017             title(ax,'Computing extrinsic projection ') 
018             % Create empty patch that will be updated 
019             ph = patch(ax,[0 0 0 0],[0 0 1 1],[0.67578 1 0.18359]); %greenyellow 
020             % Create the percent-complete text that will be updated 
021             th = text(ax,1,1,'0%','VerticalAlignment','bottom',... 

'HorizontalAlignment','right'); 
022             %End initiating progress bar 
023        app.Rsocket(1) = 0.006098 .* app.Rprojected.Value.^2 - 0.216765 .* ... 

app.Rprojected.Value + 6.663636; 
024             k = 0; 
025             for j=2:app.Elements.Value 
026                 k = k + 1; 
027                 app.Rsocket(j) = app.Rsocket(1) / (1+k*0.99 * app.Rsocket(1)/100); 
028             end 
029             x = sum(app.Rsocket(:)); 
030             for j=1:8 
031                 app.Osocket(j) = app.Rsocket(j) / x; 
032             end 
033             %We transfer last day His to first day projected 
034             app.Pprj(1,1)=0; 
035             for j=1:8 
036                 app.Xprj(1,j) = app.Xhis(app.Hisdata,j); 
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037                 app.Pprj(1,j+1)=app.Psocket(app.Hisdata,j); 
038                 app.Pprj(1,1)=app.Pprj(1,1)+app.Pprj(1,j+1); 
030             end 
040             %Ensemble fore cast of Kappa 
041             kEnsemble =zeros(1920,100); 
042             kData=zeros(365,100); 
043             for l=1:365 
044                 kData(l,:)=datasample(kDataSet(l,:),100); 
045             end 
046             Day = 0; 
047             CaldDay=365-app.StartYear(1); 
048             for j=1:app.StartYear(1)-1 % j is the day of projection 
049                 % update patch size and percentage text 
050                 ph.XData = [0 j/2281 j/2281 0]; 
051                 th.String = sprintf('%.0f%%',round(j/2281*100)); 
052                 drawnow %update graphics 
053                 Day = Day + 1; 
054                 CaldDay = CaldDay + 1; 
055                 for i=1:100 % i is the envelop 
056                     kEnsemble(j,i)=kData(CaldDay,1); 
057                 end 
058             end 
059             CaldDay = 0; 
060             for l=1:365 
061                 kData(l,:)=datasample(kDataSet(l,:),100); 
062             end 
063             for j=app.StartYear(1):app.StartYear(2)-1 % j is the day of projection 
064                 % update patch size and percentage text 
065                 ph.XData = [0 j/2281 j/2281 0]; 
066                 th.String = sprintf('%.0f%%',round(j/2281*100)); 
067                 drawnow %update graphics 
068                 CaldDay = CaldDay + 1; 
069                 Day = Day + 1; 
070                 if Day <= 1920 % This is the max span of the application 
071                     for i=1:100 % i is the envelop 
072                         kEnsemble(j,i)=kData(CaldDay,i); 
073                     end 
074                 end 
075             end 
076             for m=2:6 
077                 CaldDay = 0; 
078                 for l=1:365 
079                     kData(l,:)=datasample(kDataSet(l,:),100); 
080                 end 
081                 for j=app.StartYear(m):app.StartYear(m+1)-1 %app.StartYear(6) % j is ...  

the day of projection [(m+1)-1] 
082                     % update patch size and percentage text 
083                     ph.XData = [0 j/2281 j/2281 0]; 
084                     th.String = sprintf('%.0f%%',round(j/2281*100)); 
085                     drawnow %update graphics 
086                     CaldDay = CaldDay + 1; 
087                     if CaldDay > 365 
088                         for l=1:365 
089                             kData(l,:)=datasample(kDataSet(l,:),100); 
090                         end 
091                         CaldDay = 1; 
092                     end 
093                     Day = Day + 1; 
094                     if Day <= 1920 % This is the max span of the application 
095                         for i=1:100 % i is the envelop 
096                             kEnsemble(j,i)=kData(CaldDay,i); 
097                         end 
098                     end 
099                 end 
100             end 
101             app.kMatrix = kEnsemble; 
102             for l =1:1920 
103                 app.kF(l)=mean(kEnsemble(l,:)); 
104             end 
105             close(fh); 
106             % Set up the progress bar axis 
107             fh = clf(); 
108             ax = axes(fh,'Position',[.1 .4 .8 .05],'box','on','xtick',[],'ytick',[],... 
                'Color',[0.9375 0.9375 0.9375],'xlim',[0,1],'ylim',[0,1]); %gray94 
109             title(ax,'Computing wear projection') 
110             % Create empty patch that will be updated 
111             ph = patch(ax,[0 0 0 0],[0 0 1 1],[0.67578 1 0.18359]); %greenyellow 
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112             % Create the percent-complete text that will be updated 
113             th = text(ax,1,1,'0%','VerticalAlignment','bottom','HorizontalAlignment',... 

 'right'); 
114             %End initiating progress bar 
115             C1=datasample(C1His,100); 
116             C2=datasample(C2His,100); 
117             for m =1:100 
118                 % update patch size and percentage text 
119                 th.String = sprintf('%.0f%%',round(m/100*100)); 
120                 ph.XData = [0 m/100 m/100 0]; 
121                 drawnow %update graphics 
122                 %Projection time series 
123                 for i=2:1920 
124                     %Ratestate 
125                     x = sum(app.Xprj(i-1,:)); 
126                     for j=1:app.Elements.Value - 1 
127                         x = x - app.Xprj(i-1,j); 
128                         app.RSprj(i,j) = (x / (app.Elements.Value - j))^ ... 

(app.Rprojected.Value/100*app.Gamma.Value); 
129                     end 
130                     %DX 
131                     for j=1:app.Elements.Value 
132                         app.DXprj(i,j) = app.Alpha.Value^(j-1) * app.kMatrix(i,m) * ... 

app.RSprj(i,j); 
133                     end 
134                     %check for maintenance actions 
135                     app.Maint = zeros(1,app.nWO.Value); 
136                     action=table2array(app.MA); 
137                     for j=1:app.nWO.Value 
138                         if action(j,2)*7 == app.Hisdata + i 
139                            app.Maint = action(j,:); 
140                         end 
141                     end 
142                     %Calculate Wear X 
143                     switch app.Maint(3) 
144                         case 0 
145                             for j=1:app.Elements.Value 
146                                 app.Xprj(i,j) = app.Xprj(i-1,j) + app.DXprj(i,j); 
147                                 if app.Xprj(i,j) < 1 
148                                    app.Xprj(i,j) = 1; 
149                                 end 
150                             end 
151                         case 1 
152                             for j=1:app.Elements.Value 
153                                 app.Xprj(i,j) = (1 - C1(m)) * app.Xprj(i-1,j) + C1(m); 
154                                 if app.Xprj(i,j) < 1 
155                                    app.Xprj(i,j) = 1; 
156                                 end 
157                             end 
158                         case 2 
159                             for j=1:app.Elements.Value 
160                                 app.Xprj(i,j) = (1 - C2(m)) * app.Xprj(i-1,j) + C2(m); 
161                                 if app.Xprj(i,j) < 1 
162                                    app.Xprj(i,j) = 1; 
163                                 end 
164                             end 
165                         case 3 
166                             app.Xprj(i,1) = app.Xprj(i-1,8); 
167                             app.Xprj(i,8) = 1.1; 
168                             for j=2:app.Elements.Value-1 
169                                 app.Xprj(i,j) = app.Xprj(i-1,j); 
170                             end 
171                         case 4 
172                             for j=1:app.Elements.Value 
173                                 l = app.Maint(j+3); 
174                                 if l == 0 
175                                    app.Xprj(i,j) = 1; 
176                                 else 
177                                    app.Xprj(i,j) = app.Xprj(i-1,l); 
178                                 end 
179                             end 
180                     end 
181                     %Calculating P modelled 
182                     app.Pmatrix(i+app.Hisdata,m) = 0; 
183                     for j=1:app.Elements.Value 
184                         app.Pprj(i,j+1) = app.Xprj(i,j) * app.Osocket(j) * app.Pobs(1); 
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185                          app.Pmatrix(i+app.Hisdata,m) =  app.Pmatrix(i+app.Hisdata,m) ... 
+  app.Pprj(i,j+1); 

186                     end 
187                 end 
188             end 
189             for l =1:1920 
190                 app.Pmax(l) = max(app.Pmatrix(l+app.Hisdata,:)); 
191             end 
192             %repeat wear calculation for kEnsemble 
193             %Projection time series 
194             for i=2:1920 
195                 %Ratestate 
196                 x = sum(app.Xprj(i-1,:)); 
197                 for j=1:app.Elements.Value - 1 
198                     x = x - app.Xprj(i-1,j); 
199                     app.RSprj(i,j) = (x / (app.Elements.Value - ... 

j))^(app.Rprojected.Value/100*app.Gamma.Value); 
200                 end 
201                 %DX 
202                 for j=1:app.Elements.Value 
203                     app.DXprj(i,j) = app.Alpha.Value^(j-1) * app.kF(i) * app.RSprj(i,j); 
204                 end 
205                 %check for maintenance actions 
206                 app.Maint = zeros(1,app.nWO.Value); 
207                 action=table2array(app.MA); 
208                 for j=1:app.nWO.Value 
209                     if action(j,2)*7 == app.Hisdata + i 
210                        app.Maint = action(j,:); 
211                     end 
212                 end 
213                 %Calculate Wear X 
214                 switch app.Maint(3) 
215                     case 0 
216                         for j=1:app.Elements.Value 
217                             app.Xprj(i,j) = app.Xprj(i-1,j) + app.DXprj(i,j); 
218                             if app.Xprj(i,j) < 1 
219                                app.Xprj(i,j) = 1; 
220                             end 
221                         end 
222                     case 1 
223                         for j=1:app.Elements.Value 
224                             app.Xprj(i,j) = (1 - app.deltaC1.Value) * app.Xprj(i-1,j) ... 

+ app.deltaC1.Value; 
225                             if app.Xprj(i,j) < 1 
226                                app.Xprj(i,j) = 1; 
227                             end 
228                         end 
229                     case 2 
230                         for j=1:app.Elements.Value 
231                             app.Xprj(i,j) = (1 - app.deltaC2.Value) * app.Xprj(i-1,j) ... 

+ app.deltaC2.Value; 
232                             if app.Xprj(i,j) < 1 
233                                app.Xprj(i,j) = 1; 
234                             end 
235                         end 
236                     case 3 
237                         app.Xprj(i,1) = app.Xprj(i-1,8); 
238                         app.Xprj(i,8) = 1.1; 
239                         for j=2:app.Elements.Value-1 
240                             app.Xprj(i,j) = app.Xprj(i-1,j); 
241                         end 
242                     case 4 
243                         for j=1:app.Elements.Value 
244                             m = app.Maint(j+3); 
245                             if m == 0 
246                                app.Xprj(i,j) = 1; 
247                             else 
248                                 app.Xprj(i,j) = app.Xprj(i-1,m); 
249                             end 
250                         end 
251                 end 
252                 %Calculating P modelled 
253                 app.Pprj(i,1) = 0; 
254                 for j=1:app.Elements.Value 
255                     app.Pprj(i,j+1) = app.Xprj(i,j) * app.Osocket(j) * app.Pobs(1); 
256                     app.Pprj(i,1) =  app.Pprj(i,1) + app.Pprj(i,j+1); 
257                 end 
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258             end 
259         else % Weibull Distribution method  
260             %Calculating projected wear 
261             %Calculating socket recovery and socket ratio 
262             % Set up the progress bar axis 
263             fh = clf(); 
264             ax = axes(fh,'Position',[.1 .4 .8 .05],'box','on','xtick',[],'ytick',[],... 
                'Color',[0.9375 0.9375 0.9375],'xlim',[0,1],'ylim',[0,1]); %gray94 
265             title(ax,'Computing extrinsic projection ') 
266             % Create empty patch that will be updated 
267             ph = patch(ax,[0 0 0 0],[0 0 1 1],[0.67578 1 0.18359]); %greenyellow 
268             % Create the percent-complete text that will be updated 
269             th = text(ax,1,1,'0%','VerticalAlignment','bottom','HorizontalAlignment', ... 

'right'); 
270             %End initiating progress bar 
271             app.Rsocket(1) = 0.006098 .* app.Rprojected.Value.^2 - 0.216765 .* ... 

app.Rprojected.Value + 6.663636; 
272             k = 0; 
273             for j=2:app.Elements.Value 
274                 k = k + 1; 
275                 app.Rsocket(j) = app.Rsocket(1) / (1+k*0.99 * app.Rsocket(1)/100); 
276             end 
277             x = sum(app.Rsocket(:)); 
278             for j=1:8 
279                 app.Osocket(j) = app.Rsocket(j) / x; 
280             end 
281             %We transfer last day His to first day projected 
282             app.Pprj(1,1)=0; 
283             for j=1:8 
284                 app.Xprj(1,j) = app.Xhis(app.Hisdata,j); 
285                 app.Pprj(1,j+1)=app.Psocket(app.Hisdata,j); 
286                 app.Pprj(1,1)=app.Pprj(1,1)+app.Pprj(1,j+1); 
287             end 
288             %Ensemble forecast of Kappa 
289             kEnsemble =zeros(1920,100); 
290             k2Last = zeros(100,1); 
291             Bloom=random('Weibull',app.WeekStartAlgae.Value, ... 

app.StartAlgae_std.Value,100,1); 
292             Duration=random('Weibull',app.WeeksAlgae.Value,app.Duration_std.Value,100,1); 
293             klow=random('Weibull',app.Kmin.Value,app.kLow_std.Value,100,1); 
294             kHigh=random('Weibull',app.Kmax.Value,app.kHigh_std.Value,100,1); 
295             Day = 0; 
296             for j=1:app.StartYear(1)-1 % j is the day of projection 
297                 % update patch size and percentage text 
298                 ph.XData = [0 j/2281 j/2281 0]; 
299                 th.String = sprintf('%.0f%%',round(j/2281*100)); 
300                 drawnow %update graphics 
301                 Day = Day + 1; 
302                 for i=1:100 % i is the envelop 
303                     k1=klow(i); 
304                     kEnsemble(j,i)=k1; 
305                 end 
306             end 
307             CaldDay = 0; 
308             for j=app.StartYear(1):app.StartYear(2)-1 % j is the day of projection 
309                 % update patch size and percentage text 
310                 ph.XData = [0 j/2281 j/2281 0]; 
311                 th.String = sprintf('%.0f%%',round(j/2281*100)); 
312                 drawnow %update graphics 
313                 CaldDay = CaldDay + 1; 
314                 Day = Day + 1; 
315                 if Day <= 1920 % This is the max span of the application 
316                     for i=1:100 % i is the envelop 
317                         k1=klow(i); 
318                         k2=kHigh(i); 
319                         if CaldDay <  round(Bloom(i)) 
320                             kEnsemble(j,i)=k1; 
321                         end 
322                         if CaldDay >=  round(Bloom(i)) 
323                             if CaldDay < round(Bloom(i)) + round(Duration(i)) 
324                                 kEnsemble(j,i)=k2; 
325                                 app.tau = 0; 
326                                 k2Last(i)=kEnsemble(j,i); 
327                             else 
328                                 app.tau = app.tau + 1; 
329                                 x = (k2Last(i) - k1) * exp(-app.Beta.Value*app.tau) + k1; 
330                                 kEnsemble(j,i)=x; 
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331                             end 
332                         end 
333                     end 
334                 end 
335             end 
336             for m=2:6 
337                 CaldDay = 0; 
338                 for j=app.StartYear(m):app.StartYear(m+1)-1 %app.StartYear(6) % j is ... 

the day of projection [(m+1)-1] 
339                     % update patch size and percentage text 
340                     ph.XData = [0 j/2281 j/2281 0]; 
341                     th.String = sprintf('%.0f%%',round(j/2281*100)); 
342                     drawnow %update graphics 
343                     CaldDay = CaldDay + 1; 
344                     Day = Day + 1; 
345                     if Day <= 1920 % This is the max span of the application 
346                         for i=1:100 % i is the envelop 
347                             k1=klow(i); 
348                             k2=kHigh(i); 
349                             if CaldDay <  round(Bloom(i)) 
350                                 app.tau = app.tau + 1; 
351                                 kEnsemble(j,i)=(k2Last(i) - k1) * ...  

exp(-app.Beta.Value*app.tau) + k1; 
352                             end 
253                             if CaldDay >=  round(Bloom(i)) 
354                                 if CaldDay < round(Bloom(i)) + round(Duration(i)) 
355                                     kEnsemble(j,i)=k2; 
356                                     app.tau = 0; 
357                                     k2Last(i)=kEnsemble(j,i); 
358                                 else 
359                                     app.tau = app.tau + 1; 
360                                     kEnsemble(j,i)=(k2Last(i) - k1) * ...  

   exp(-app.Beta.Value*app.tau) + k1; 
361                                 end 
362                             end 
363                         end 
364                     end 
365                 end 
366             end 
367             app.kMatrix = kEnsemble; 
368             for l =1:1920 
369                 app.kF(l)=mean(kEnsemble(l,:)); 
370             end 
371             close(fh); 
372             % Set up the progress bar axis 
373             fh = clf(); 
374             ax = axes(fh,'Position',[.1 .4 .8 .05],'box','on','xtick',[],'ytick',[],... 
                'Color',[0.9375 0.9375 0.9375],'xlim',[0,1],'ylim',[0,1]); %gray94 
375             title(ax,'Computing wear projection') 
376             % Create empty patch that will be updated 
377             ph = patch(ax,[0 0 0 0],[0 0 1 1],[0.67578 1 0.18359]); %greenyellow 
378             % Create the percent-complete text that will be updated 
379             th = text(ax,1,1,'0%','VerticalAlignment','bottom', ... 

'HorizontalAlignment','right'); 
380             %End initiating progress bar 
381             C1=random('Weibull',app.deltaC1.Value,app.dC1_std.Value,100,1); 
382             C2=random('Weibull',app.deltaC2.Value,app.dC2_std.Value,100,1); 
383             for m =1:100 
384                 % update patch size and percentage text 
385                 ph.XData = [0 m/100 m/100 0]; 
386                 th.String = sprintf('%.0f%%',round(m/100*100)); 
387                 drawnow %update graphics 
388                 %Projection time series 
389                 for i=2:1920 
390                     %Ratestate 
391                     x = sum(app.Xprj(i-1,:)); 
392                     for j=1:app.Elements.Value - 1 
393                         x = x - app.Xprj(i-1,j); 
394                         app.RSprj(i,j) = (x / (app.Elements.Value - ... 

j))^(app.Rprojected.Value/100*app.Gamma.Value); 
395                     end 
396                     %DX 
397                     for j=1:app.Elements.Value 
398                         app.DXprj(i,j) = app.Alpha.Value^(j-1) * app.kMatrix(i,m) * ... 

app.RSprj(i,j); 
399                     end 
400                     %check for maintenance actions 
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401                     app.Maint = zeros(1,app.nWO.Value); 
402                     action=table2array(app.MA); 
403                     for j=1:app.nWO.Value 
404                         if action(j,2)*7 == app.Hisdata + i 
405                             app.Maint = action(j,:); 
406                         end 
407                     end 
408                     %Calculate Wear X 
409                     switch app.Maint(3) 
410                         case 0 
411                             for j=1:app.Elements.Value 
412                                 app.Xprj(i,j) = app.Xprj(i-1,j) + app.DXprj(i,j); 
413                                 if app.Xprj(i,j) < 1 
414                                     app.Xprj(i,j) = 1; 
415                                 end 
416                             end 
417                         case 1 
418                             for j=1:app.Elements.Value 
419                                 app.Xprj(i,j) = (1 - C1(m)) * app.Xprj(i-1,j) + C1(m); 
420                                 if app.Xprj(i,j) < 1 
421                                     app.Xprj(i,j) = 1; 
422                                 end 
423                             end 
424                         case 2 
425                             for j=1:app.Elements.Value 
426                                 app.Xprj(i,j) = (1 - C2(m)) * app.Xprj(i-1,j) + C2(m); 
427                                 if app.Xprj(i,j) < 1 
428                                     app.Xprj(i,j) = 1; 
429                                 end 
430                             end 
431                         case 3 
432                             app.Xprj(i,1) = app.Xprj(i-1,8); 
433                             app.Xprj(i,8) = 1.1; 
434                             for j=2:app.Elements.Value-1 
435                                 app.Xprj(i,j) = app.Xprj(i-1,j); 
436                             end 
437                         case 4 
438                             for j=1:app.Elements.Value 
439                                 l = app.Maint(j+3); 
440                                 if l == 0 
441                                     app.Xprj(i,j) = 1; 
442                                 else 
443                                     app.Xprj(i,j) = app.Xprj(i-1,l); 
444                                 end 
445                             end 
446                     end 
447                     %Calculating P modelled 
448                     app.Pmatrix(i+app.Hisdata,m) = 0; 
449                     for j=1:app.Elements.Value 
450                         app.Pprj(i,j+1) = app.Xprj(i,j) * app.Osocket(j) * app.Pobs(1); 
451                         app.Pmatrix(i+app.Hisdata,m) =  app.Pmatrix(i+app.Hisdata,m) + ... 

app.Pprj(i,j+1); 
452                     end 
453                 end 
454             end 
456             for l =1:1920 
457                 app.Pmax(l) = max(app.Pmatrix(l+app.Hisdata,:)); 
458             end 
459             %repeat wear calculation for kEnsemble 
460             %Projection time series 
461             for i=2:1920 
462                 %Ratestate 
463                 x = sum(app.Xprj(i-1,:)); 
464                 for j=1:app.Elements.Value - 1 
465                     x = x - app.Xprj(i-1,j); 
466                     app.RSprj(i,j) = (x / (app.Elements.Value - ... 

j))^(app.Rprojected.Value/100*app.Gamma.Value); 
467                 end 
468                 %DX 
469                 for j=1:app.Elements.Value 
470                     app.DXprj(i,j) = app.Alpha.Value^(j-1) * app.kF(i) * app.RSprj(i,j); 
471                 end 
472                 %check for maintenance actions 
473                 app.Maint = zeros(1,app.nWO.Value); 
474                 action=table2array(app.MA); 
475                 for j=1:app.nWO.Value 
476                     if action(j,2)*7 == app.Hisdata + i 
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477                         app.Maint = action(j,:); 
478                     end 
479                 end 
480                 %Calculate Wear X 
481                 switch app.Maint(3) 
482                     case 0 
483                         for j=1:app.Elements.Value 
484                             app.Xprj(i,j) = app.Xprj(i-1,j) + app.DXprj(i,j); 
485                             if app.Xprj(i,j) < 1 
486                                 app.Xprj(i,j) = 1; 
487                             end 
489                         end 
490                     case 1 
491                         for j=1:app.Elements.Value 
492                             app.Xprj(i,j) = (1 - app.deltaC1.Value) * app.Xprj(i-1,j) ... 

+ app.deltaC1.Value; 
493                             if app.Xprj(i,j) < 1 
494                                 app.Xprj(i,j) = 1; 
495                             end 
496                         end 
497                     case 2 
498                         for j=1:app.Elements.Value 
499                             app.Xprj(i,j) = (1 - app.deltaC2.Value) * app.Xprj(i-1,j) ... 

+ app.deltaC2.Value; 
500                             if app.Xprj(i,j) < 1 
501                                 app.Xprj(i,j) = 1; 
502                             end 
503                         end 
504                     case 3 
505                         app.Xprj(i,1) = app.Xprj(i-1,8); 
506                         app.Xprj(i,8) = 1.1; 
507                         for j=2:app.Elements.Value-1 
508                             app.Xprj(i,j) = app.Xprj(i-1,j); 
509                         end 
510                     case 4 
511                         for j=1:app.Elements.Value 
512                             m = app.Maint(j+3); 
513                             if m == 0 
514                                 app.Xprj(i,j) = 1; 
515                             else 
516                                 app.Xprj(i,j) = app.Xprj(i-1,m); 
517                             end 
518                         end 
519                 end 
520                 %Calculating P modelled 
521                 app.Pprj(i,1) = 0; 
522                 for j=1:app.Elements.Value 
523                     app.Pprj(i,j+1) = app.Xprj(i,j) * app.Osocket(j) * app.Pobs(1); 
524                     app.Pprj(i,1) =  app.Pprj(i,1) + app.Pprj(i,j+1); 
525                 end 
526             end 
527         end 
528         app.Pmax(1) = app.Pmax(2); 
529         for i=app.Hisdata+1:app.ProjectionSize 
530             for j=1:9 
531                 app.Pchart(i,j)=app.Pprj(i-app.Hisdata,j); 
532             end 
533         end 
534         app.Projection(:,2) = app.Pprj(:,1); 
535         app.Projection(:,3) = app.Pprj(:,2); 
536         app.Projection(:,4) = app.Pprj(:,3); 
537         app.Projection(:,5) = app.Pprj(:,4); 
538         app.Projection(:,6) = app.Pprj(:,5); 
539         app.Projection(:,7) = app.Pprj(:,6); 
540         app.Projection(:,8) = app.Pprj(:,7); 
541         app.Projection(:,9) = app.Pprj(:,8); 
542         app.Projection(:,10) = app.Pprj(:,9); 
543         app.Projection(:,11) = app.Pmax(:); 
544         app.Projection(:,12) = app.Xprj(:,1); 
545         app.Projection(:,13) = app.Xprj(:,2); 
546         app.Projection(:,14) = app.Xprj(:,3); 
547         app.Projection(:,15) = app.Xprj(:,4); 
548         app.Projection(:,16) = app.Xprj(:,5); 
549         app.Projection(:,17) = app.Xprj(:,6); 
550         app.Projection(:,18) = app.Xprj(:,7); 
551         app.Projection(:,19) = app.Xprj(:,8); 
552         app.UITableProjected.Data=app.Projection; 
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553         app.LargeChart=true; 
554         close(fh); 
555         updatePlot(app); 
556     end 
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