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Change in the frequency of contact between pigs within a group may be indicative of a

change in the physiological or health status of one or more pigs within a group, or indic-

ative of the occurrence of abnormal behaviour, e.g. tail-biting. Here, we developed a novel

framework that detects and quantifies the frequency of interaction, i.e., a pig head to

another pig rear, between pigs in groups. The method does not require individual pig

tracking/identification and uses only inexpensive camera-based data capturing infra-

structure. We modified the architecture of well-established deep learning models and

further developed a lightweight processing stage that scans over pigs to score said in-

teractions. This included the addition of a detection subnetwork to a selected layer of the

base residual network. We first validated the automated system to score the interactions

between individual pigs within a group, and determined an average accuracy of

92.65% ± 3.74%, under a variety of settings, e.g., management set-ups and data capturing.

We then applied the method to a significant welfare challenge in pigs, that of the detection

of tail-biting outbreaks in pigs and quantified the changes that happen in contact behav-

iour during such an outbreak. Our study shows that the system is able to accurately

monitor pig interactions under challenging farming conditions, without the need for

additional sensors or a pig tracking stage. The method has a number of potential appli-

cations to the field of precision livestock farming of pigs that may transform the industry.

© 2022 The Author(s). Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
ngineering and Environment, University of Salford, Manchester M5 4WT, UK.
.uk, A.Alameer@qub.ac.uk (A. Alameer).
.10.002
y Elsevier Ltd on behalf of IAgrE. This is an open access article under the CC BY license
).

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by/4.0/
mailto:A.Alameer1@salford.ac.uk
mailto:A.Alameer@qub.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biosystemseng.2022.10.002&domain=pdf
www.elsevier.com/locate/issn/15375110
www.elsevier.com/locate/issn/15375110
https://doi.org/10.1016/j.biosystemseng.2022.10.002
https://doi.org/10.1016/j.biosystemseng.2022.10.002
https://doi.org/10.1016/j.biosystemseng.2022.10.002
http://creativecommons.org/licenses/by/4.0/


Nomenclature

II Interaction index

IoU Intersection over union

LR Learning rate

mAP Mean average precision

N Total number of frames

NIFk Number of interactions of any two pigs at the

kth frame

p Precision

r Recall

AFBI Agri-Food and Biosciences Institute

AUF Aarhus University Foulum

CIEL Centre for Innovation Excellence in Livestock

CNN Convolutional neural network

FPS Frames per second

GPU Graphical processing unit

HSV Hue, saturation and value

ITC Interaction threshold calibration

RAM Random access memory

ResNet-50 Residual neural network

RFID Radio frequency identification

RGB Red, green and blue

YOLO You only look once
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1. Introduction

Pigs, as social animals engage in frequent contact with their

conspecifics within a group, to express a number of behav-

iours, such as grooming, play or sexual interaction (Patbandha

et al., 2013). The frequency of such contact may be affected by

several factors, such as the age of the pig, its husbandry

conditions (e.g., how feed is offered) and husbandry practices

(e.g., age at weaning or mixing of groups) (Millman, 2007;

Kyriazakis and Tolkamp, 2010). Change in the frequency and/

or duration of contact between pigs may be indicative of a

change in the physiological or health status of one or more

pigs within a group, or indicative of the occurrence of

abnormal behaviour, such as belly nosing or tail biting

(Millman, 2007; Kyriazakis and Tolkamp, 2010). For example,

both the frequency and duration of contact behaviour be-

tween pigs are expected to increase when pigs reach sexual

maturity (Patbandha et al., 2013), and to decrease during

health disturbances (Millman, 2007; Kyriazakis and Tolkamp,

2010). Almost all interactions between pigs are either pre-

ceded or followed by significant associations with nosing a

certain body region; in particular, nosing the tail can proceed

harmful behaviour, e.g., tail biting (Camerlink and Turner,

2013). As such, changes in these characteristics of contact

behaviour may have predictive value to detect when, e.g., an

infection spreads within a pen or when a behaviour, such as

‘tail in mouth’ (indicative of the more serious version of tail

biting) takes place (Miller et al., 2019).

Currently, there is limited quantification of how contact

behaviour changes during health and welfare disturbances,

mainly because it is laborious to quantify such behaviour

within a pen of pigs for long periods of time. Almost all our

current knowledge on the changes in contact behaviour
between ‘sick’ animals comes from laboratory rodent models

(Millman, 2007) and therefore may not be applicable to the

detection of health and welfare disturbances of livestock.

Therefore, there would be benefits from automating the

quantification of the behaviour, especially in commercial

settings (Matthews et al., 2016).

Over the past few years, several vision-based methods

have been developed to track and detect pig behaviours, e.g.,

mounting, lying, feeding and drinking, at an individual level

(Nasirahmadi et al., 2019; Chen et al., 2020a,b,c; Yang et al.,

2021); this has not been the case for contact or social behav-

iour in pigs (Arulmozhi et al., 2021). One of the main chal-

lenges associated with quantifying pig interaction-related

behaviours, i.e., pig-to-pig, using 2D image data is the diffi-

culty to maintain pig parts identification in cluttered farm

conditions (Chen et al., 2019, 2021; Jorquera-Chavez et al.,

2021). As a result, fewer studies have attempted to quantify

interactions between pigs in groups to identify social behav-

iour, e.g., aggressive behaviour (Chen et al., 2018). For

instance, researchers (Chen et al., 2020d; Gan et al., 2021; Liu

et al., 2020) developed a hierarchy of processing stages that

quantifies pig interaction, e.g., parallel pressing. Their

approach involved cascading multiple processing stages to

extract the temporalespatial features and classify pig behav-

iour. A limitation associated with this approach is the de-

pendency on predefined sets of consecutive frame sequences

to score behaviours. This may be challenging to achieve in

commercial farm settings whereby data capturing systems

often drop incoming video frames (due to overheating related

issues or when various system tasks compete for resources)

(Matthews et al., 2017). The other limitation associated with

extracting temporal-based features is the increased compu-

tational requirements that it imposes to score interactions,

e.g., generating sub-videos of pairwise interaction following

detection and tracking stages, to then feed a trained recurrent

neural network (Liu et al., 2020).

Here, we developed an automated method that enabled us

to quantify the frequency of the contact of one pig's head

(including snout) with another pig's rear (including tail). There

are several reasons why we concentrate on the automated

detection and quantification of this behaviour, the main one

being that such an interaction is expected to vary during tail

biting outbreaks (D'eath et al., 2016) and therefore, it may have

a predictive value. Another important reason is that the

method can be extended to quantify the contact between a

pig's head and another pig's body parts, such as the flank; the

contact between snout and flank can also be indicative of

abnormal behaviour (Camerlink and Turner, 2013). We pro-

pose a two-staged system that detects and identifies complex

pig parts, i.e., head and rear, and quantifies these interactions

using inexpensive 2D cameras. The proposed system does not

rely on pig marking or additional invasive sensors. It only

detects the relevant pig parts and scores interactions

accordingly. It was trained to handle different camera

recording outputs, RGB (red, green and blue) and infrared,

constantly changing farm conditions (e.g., lighting condi-

tions), problems of occlusion caused by other pigs and insects

occluding the image from the camera. We use the automated

method to quantify the head to rear contact during pre-

defined outbreaks of tail-biting within a pen of pigs.

https://doi.org/10.1016/j.biosystemseng.2022.10.002
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2. Materials and methods

2.1. Datasets

The dataset was collated from experimental trials at two sites:

Agri-Food and Biosciences Institute (AFBI) in Northern Ireland

and the pig research facilities at Aarhus University Foulum

(AUF) in Denmark, as we aimed to construct a more holistic

and representative dataset for training, validation and testing

the proposed method.

2.1.1. AFBI dataset
Video recordings were collected during an experiment

conducted at the Agri-Food and Biosciences Institute,

Northern Ireland. The work was conducted following a

protocol approved under Project Licence Number PPL2851 in

accordance with the Animals (Scientific Procedures) Act

1986 (The Parliament of the United Kingdom, 1986). The

videos were recorded between November 2019 and January

2020. The animals included in the experiment were finish-

ing pigs (Duroc � (Landrace � Large White)), assigned to this

study from 30 kg (±0.3 SEM) until slaughter. The pigs were

born on-site, weaned at 4 weeks of age, and moved into the

pens at 10 weeks of age. All pens were in the same room

with a ceiling height of approximately 2 m. All pens were

1.71 � 4.00 m2 and had plastic slatted floors. Each pen

housed 10 pigs (at 1.08 m2 per pig) and these groups were

balanced for gender and body weight. The wall of the

building constituted the back wall of each pen, with the

other three walls being approximately 1.10 m high. Each pen

was fitted with two nipple drinkers and dry feed was pro-

vided ad libitum through a single-space electronic feeding

station (Schauer Compident MLP pro feeder). Pigs were

provided with environmental enrichment in the form of a

wooden block and flavoured plastic biting toy (Porcichew,

Nutrapet Ltd., U.K.) suspended from the ceiling on a chain.

Artificial lighting was provided between 08:00 and 16:00 and

pigs also had access to natural light through windows. A

trained stockman performed the general management of

pigs, including a general daily health check. Temperature

was set at 20 �C (19e21 �C), and housing was ventilated

through fan-assisted natural ventilation. The experiment

was part of a study on the effects of dietary protein level on

performance, health and harmful social behaviour in pigs.

Half of the pens were allocated to a diet with reduced di-

etary protein whereas the other half received a commercial

diet (control). The pigs involved in this study were tail

docked, with 50% of the tail removed within 24 h of birth.

2.1.1.1. AFBI Video Image Selection. GoPro cameras (HERO 5

Session) were installed onto the ceiling above the pen on the

day that videos were recorded, resulting in a variable but

mostly vertical recording angle, see pen layout in Fig. S1 of the

Supplementary Materials. Videos were recorded from

10:30e15:30 on 7 different days throughout the duration of the

finishing period. After recording the images were compressed

in Adobe Premiere Pro., the stored dataset had an RGB stan-

dard format with a fixed frame rate of 15 frames per second

(FPS) and an image resolution of 765 � 432 pixels. We used 4
pens across 4 days for the method development and

validation.

2.1.2. AUF dataset
We utilised video recordings collected during a large scale

experiment conducted at the Department of Animal Science,

Aarhus University, Denmark. The experiment was conducted

following a protocol approved by the Danish Animal Experi-

ments Inspectorate (Journal no. 2015-15-0201-00593). The

videos were recorded in June and July 2015. The animals

included in the experiment were finisher pigs from 30 kg body

weight until slaughter, bred from dams of Danbred

Yorkshire � Danbred Landrace, all inseminated with Danbred

Duroc semen. The pigs were born at a Danish commercial farm

and arrived at the experimental unit asweaners. The penswere

all in the samebuilding,whichwas approximately 5mhigh and

divided into two sectionswith two concretewalls anda hallway

between them. All pens were identical with dimensions of

5.45 � 2.48 m and with the flooring equally divided between

solid, drained and slatted areas. The wall of the building

constituted the backwall of eachpen,with the other threewalls

being approximately 1 m high. The pigs were fed ad libitum

with a commercial dry feed and the feeders were filled three

times a day at 03:00, 10:00 and 18:30 h. Lights were switched on

between 05:30 and 18:30. The general management was per-

formed by trained stock people, which included a general daily

health check. The experiment was part of a larger study on risk

factors for tail biting, involvingmultiple batches of finisher pigs.

The larger study was a 2 � 2 � 2 factorial experiment, meaning

that each pen was assigned to one level of three treatments: (1)

pigs with docked tails v. pigs with undocked tails, (2) provision

of 150 g of straw per pig and day v. no provision of straw and (3)

stocking density of 1.21 m2/pig (11 pigs, 2 feeding spaces) v.

0.73 m2/pig (18 pigs, 3 feeding spaces). More details about pen

layout is provided in (Larsen et al., 2018). The tail-docked pigs

had their tails shortened to half their original length, following

Danish legislation (Larsen et al., 2018, 2020).

2.1.2.1. AUF video image selection. The AUF dataset was

recorded using surveillance infrared cameras (Monacor, Type-

TVCCD-1705, Bremen Germany). The cameras were posi-

tioned at a height of about 3 m on the wall of the building at

the back of each pen, giving a horizontal (rather than vertical)

view of the entire pen. The orientation/set-up of the cameras

resulted in covering/recording parts of adjacent pens on the

farm. To block the view from adjacent pens, we manually

configured coordinations of polygon-shaped binary masks

and composited these across pens, see (Supplementary Ma-

terials, Fig. S2).

We used recordings that took place from 8 am to 4 pm

across all days of the trails. The data capturing system

generated a non-standard format video switch (.vdm) format

of variable frame rate. Before we applied our detection

method, the dataset had to be reconstructed and converted,

with Microsoft video codec, into a standard format with a

resolution of (689 � 474) pixels.

We selected 4 pens without straw, each with 11 undocked

pigs and the same stocking density (1.21 m2/pig). In two of the

pens a tail biting outbreakwas recorded and on the two others

there was no evidence of this (Tables S1 and S2 in the

https://doi.org/10.1016/j.biosystemseng.2022.10.002
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Supplementary Materials). A pen was classified as having an

outbreak when at least one pig in the pen was observed to

have a bleeding tail, according to a predefined protocol (Larsen

et al., 2018). Trained observers scored the tails in detail from

within the pen every Monday, Wednesday and Friday.

Furthermore, stock people scored tail injuries daily from

outside the pen. Tail biting was not observed in all pens and at

the same time point. For this reason, we chose to match pens

where an outbreak was recorded, with pens where no

outbreak was recorded over the same period of time. We

focused on the video recordings that took place 3 days before

the tail biting outbreak was identified in two pairs (each with

an outbreak/control pens) with one month between them.

2.1.2.2. Dataset annotation detection of pig parts. The

collected image dataset was annotated by two trained in-

dividuals with an animal behaviour background. It encom-

passed a variety of scenarios, for example, pigs in close

contact with one another and under various lighting condi-

tions (Alameer et al., 2015, 2016, 2020a; Ameri et al., 2022). We

configured a set of pre-processing stages to augment the

dataset, applying arbitrary scaling and horizontal flipping. We

also manipulated the colour of the pixels and randomly

altered the brightness and contrast using the hue, saturation,

value (HSV) colour space (Kekre et al., 2010).

The detection dataset comprised a total of 51,193 instances

(26,533 AFBI þ 24,660 AUF) across 2781 images (1556

AFBI þ 1225 AUF); each pig within an image was manually

annotated into two parts: head and rear. A bounding box1 was

appliedmanually on the head and rear of all pigs in a pen. The

bounding box denotes the location and size of each pig part.

2.1.2.3. Contact between pigs. An additional dataset was an-

notated to validate the interaction method, i.e., the processing

stage that feeds from the detection method. This dataset con-

sisted of images from both farms used in this framework. The

total number of images of this dataset was 670 images; with

sets of 376 and 294 images to represent AFBI and AUF datasets,

respectively. A similar procedurewas followed for selecting the

image samples to diversify the dataset. This new dataset was

annotated by an animal behaviour scientist who scanned all

images to score interactions using a predefined ethogram,

Table S3 (Supporting Materials). Any contact between one pig

head and another pig rear was scored in a spreadsheet format.

The entirety of the dataset comprised four classes (per image)

as the following: no contact, 1 contact; 2 contacts; 3 or more

contacts. Very few images (of the AUF dataset) included more

than three contacts; therefore, these were combined in one

class to achieve a more balanced class distribution.

2.2. Proposed methodology

The annotated dataset, provided by the trained data annota-

tors, was fed to the developed deep learning-based pig parts

detector for training and validation. We developed a new
1 A bounding box is represented by a vector in the format [x y
width height], where x and y correspond to the upper left corner
of the bounding box while the width and height defined the width
and height of the rectangular-shaped box around each pig part.
configuration from theYOLO (you-only-look-once) detector due

to its high detection precision and speed (Redmon and Farhadi,

2018; Bochkovskiy et al., 2020). This model has achieved high

mean average precision (mAP) and speed on standard detection

tasks, such as PASCAL VOC (Everingham et al., 2010) and

Microsoft Common Objects in Context (MS COCO) Lin et al.

(2014). We also adopted relevant techniques for selecting an-

chor boxes i.e., sets of bounding boxes coordinates fine-tuned

for the task (e.g., aspect ratio of pig parts). Finally, we devel-

oped a processing module that feeds from the detection

network and accordingly scores interactions.

2.2.1. Detection method
The YOLO detector is amulti-scale network that uses a feature

extraction network combined with a detection network to

generate predictions. It applies a convolutional neural

network (CNN) on an input image to produce network pre-

dictions from multiple feature maps. The object detector de-

codes generated predictions to produce bounding boxes with

labels that identify objects of interest.

The hyper parameters (e.g., batch size, solver, learning rate

schedule settings, and the maximum number of epochs) used

to train themodel were selected using nested cross-validation

Alameer et al. (2019, 2020c). Furthermore, we utilised a

transfer learning strategy by pre-training our feature extrac-

tion network on the ImageNet dataset (Deng et al., 2009).

In thiswork,we configured the architecture of both versions

of YOLO (Redmon and Farhadi, 2018; Bochkovskiy et al., 2020) to

tailor them to the task, i.e., detecting smaller pig parts. We

developed and embedded additional detection heads (consist-

ing of convolution, batch normalisation, and relu layers) within

the structure of their baseline model, e.g., (the 10th addition

layer) of the ResNet-50model (He et al., 2016) in YOLO (Redmon

and Farhadi, 2018), see (Fig. 1). In the latter scenario, this layer

downsampled the input image (by a factor of 16) such that it

achieved a suitable trade-off between feature depth and spatial

resolution. Deeper layers encode higher-level image details at

the cost of spatial resolution, an essential trade-off for detect-

ing small objects such as pig heads. The additional detection

sub-network is twice the size of the original detection network,

therefore it is more suited to detecting smaller pig parts. Data

processing and models were implemented in Matlab R2021a

and tensorflow object detection API (v.1.13.1) within Ubuntu

20.04.2 LTS on core i9 processor (4.3 GHz) PC using (8 � 16) G

RAM and NVIDIA GeForce RTX 2080 Ti GPU.

2.2.1.1. Anchor boxes
Selection of anchor boxes has a significant impact on the

performance of detectors (Redmon and Farhadi, 2018). Here,

we used the K-means clustering algorithm with the intersec-

tion over union (IoU) as a distance metric, to select anchor

boxes. The IoU between any given two bounding boxes (BBox1

and Bbox2) is obtained using (Eq. (1)):

IoU ¼ jBbox1∩Bbox2j
jBbox1∪Bbox2j (1)

2.2.1,2. Training and evaluation procedure. In order to develop

a system that can handle the diverse farm conditions (e.g.,

https://doi.org/10.1016/j.biosystemseng.2022.10.002
https://doi.org/10.1016/j.biosystemseng.2022.10.002


Fig. 1 e The configuration of the proposed detection method. (a) The architecture of the base network (ResNet-50). (b) The

configuration of the first and second sub-detection networks. The first detection subnetwork (output 1) is more compatible

with detecting larger objects, e.g., when pigs are closer to the camera. The second detection subnetwork (output 2) was

developed to detect smaller objects, e.g., pig heads or when objects are further away from the camera. Further details

regarding the configuration of the detection method architecture is provided in Fig. S5 and Table S4 of the Supplementary

Materials.
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pigs with different markings and size) and on pens with

different settings, e.g., camera orientation and types of

recording, we trained the network with many samples of the

dataset using pigs exhibiting a diverse range of postures. The

training dataset was constructed using thousands of sample

frames at different days/time of the day during trial periods.

To evaluate system performance, we used 2502 images

(including 46,026 instances) for training and the rest for

testing (279 images; 5167 instances). Table 1 shows the ob-

tained parameters used to train and evaluate the detection

method.

Further to the training dataset, we configured a set of

augmentation routines and applied it to each image batch

during the training phase. This process was repeated at each

epoch to continually feed the network with various sets of

images. This routine enabled the network to reduce the effect

of over-fitting by learning similar features at each iteration/

epoch. The variety in the validation dataset, which was

collected from two different farms andmany pens, enabled us

to thoroughly examine the generalisation capacity of the
proposed detector. For evaluation, we utilised the mAP (or

AP50) metric. The average precision for a particular class in-

cludes both the precision (p) and the recall (r); it denotes the

area under the precisionerecall curve (Eq. (2)) across all test

image dataset.

Average Precision ðAPÞ ¼
Z1

0

pðrÞdr (2)

2.2.2. Interaction method
To quantify interaction across all pigs in a pen, we developed a

method that scans over all detected pig parts, searching for

any possible contact. We computed the IoU between each

detected pig head and pig rear as shown in (Eq. (1)). For

instance, for pens with 12 pigs, i.e., 12 heads and 12 rears, we

computed the overlap ratio 144 � per each frame. For each

frame in a video sequence, we generated an interaction array

ðRHeads�RearsÞ; each element of the array denoted the IoU be-

tween any two pigs (head-to-rear). An interaction is scored

between any two pigs only when the corresponding IoU

https://doi.org/10.1016/j.biosystemseng.2022.10.002
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Table 1e Parameter selection used to train and evaluate the detectionmethod; this includes anchor boxes. The selection of
parameters (including the learning rate schedule, base network and the additional detection head) was performed using a
nested-cross validation using an independent dataset. Mean average precision (mAP) is calculatedwith an IoU threshold of
0.5 (or AP50) across all experiments.

Parameter Value/Strategy

Solver Stochastic gradient descent with momentum optimiser

Momentum 0.9

Learning rate (LR) 1 � 10�3; with a warm-up period of 1 � 103 iteration. This denotes

the number of iterations that regulated the learning rate based on

the following: LR ¼ LR� ð itiration
warm� up period

Þ4
Max number of epoch 100

Size of mini-batch 8

Network input size [600, 600, 3] ResNet-50

Number of anchor boxes 2; boxes values calculated with K-means clustering algorithm

Feature extraction network ResNet-50

Additional Detection Head 10th addition layer

[2 regularization factor 0.5 � 10�3

Confidence threshold 0.5; keep only detections with confidence scores above this value

Overlap threshold (IoU) 0.5; remove overlapping detections
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exceeds a pre-calibrated interaction threshold, see Figs. S3

and S4 of the Supplementary Materials. This mechanism

enabled quantifying all interactions that may occur at any

given frame, including interactions that involve more than

two pigs, e.g., two pigs interacting with another. The method

is also dynamic and it covers the entire pen area and it is not

restricted to a certain part of the pen with a limited number of

pigs. For calibrating an interaction threshold, we deployed an

interaction threshold calibration (ITC) dataset (See Supple-

mentary Materials; Contact Threshold Calibration) for each

pen separately.

For method validation, we deployed the manually anno-

tated head-to-rear contact dataset (see Dataset section). For

each image of the dataset, we used the automated method to

score interactions between pigs. We then obtained the

confusion matrix to compare and report the method perfor-

mance against that of the annotator.

2.2.3. Testing for tail-biting outbreaks
The interaction method was tested to detect tail biting out-

breaks on the AUF dataset. The testing stage involved

extracting the overall interactions across the selected 16-day

tests. This included the two pairs of control/tail-biting

outbreak pens (See Dataset section). In this part of the

experiment, we fed the trained system with the video data (8

ame4 pm) across pens/dates to generate interaction indices.

Each day of the test data consisted of around 26, 000 frames;

with a total of 414,670 processed frames.

We compared the number of interactions in the control

and ‘outbreak’ pens over 4 consecutive days. Days included in

the statistical analysis were day �3, day �2, day �1 and day

0 relative to the outbreaks of tail biting, where day 0 was the

day of the outbreak, with the samedates for thematched pairs

of outbreak and control pens. The produced interaction met-

rics across pens/days with control/outbreak were then

matched and analysed as a randomised block design.

To overcome issues related to variable frame rate, we

constructed an index as a function of the corresponding cu-

mulative interactions and the total number of frames, see (Eq.
(3)). This approach enabled obtaining consistent measures

across various data frames, e.g., recording drops frames due to

pre-removed idle frames and hardware overheating issues.

IIi ¼
PN

k¼1NIFk

N
(3)

In (Eq. (3)), II refers to the interaction index in a given pen,N

is the total number of frames in a video segment, NIFk the

number of interactions of any two pigs at the kth frame. The

interaction index captures a whole-encompassing set of

intentional/non-intentional interactions of head-to-rear be-

tween any two pigs, e.g., snout-to-tail and ear-to-tail. To

mitigate the impact of large-scale variations of data frames

between days of the trial, we adopted a customised sample

rate of 0.25 FPS, i.e., the rate at which we scored interactions

between animals. Furthermore, the II can be obtained over

any given number of frames as shown in (Eq. (3)). In practice,

we simply define the number of frames (N) to which we

compute the II for any given period of time, e.g., hourly.
3. Results

3.1. Detection of Pig Parts

To assess the configured YOLO structures for detecting pig

head and rear, we compared their performance with recent

and well known deep learning-based object detectors, see

Table 2. The comparison was based on model precision and

speed to process an image. Both configurations of YOLO

(Redmon and Farhadi, 2018; Bochkovskiy et al., 2020) showed

high performance in terms of precision and speed. The

configured YOLO (Bochkovskiy et al., 2020) achieved the

highest average precision across all model configurations in

Table 2. Generally, both YOLO model configurations have

shown to be more compatible to pig parts detection and have

outperformed other well-established models provided in

Table 2. Therefore, the configuration of YOLO (Bochkovskiy

et al., 2020) has been utilised for all subsequent experiments.

https://doi.org/10.1016/j.biosystemseng.2022.10.002
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Table 2 e Detection results of the deployed detectors. All models were tested with identical parameters, including the
training/validation image set. The table shows results in terms of the man average precision (AP50) and inference speed
(CPU-wise processing). The configured YOLO detectors achieved the highest performance and therefore have been
deployed for the testing stage.

Detection Method Base Network Speed (second) AP50

EfficientDet (Tan et al., 2020) EfficientNet (Tan and Le, 2019) 0.45 0.6134

SSD (Liu et al., 2016) ResNet-50 (He et al., 2016) 0.09 0.5582

F-RCNN (Ren et al., 2017) ResNet-50 (He et al., 2016) 0.60 0.6013

YOLO (Redmon and Farhadi, 2018) DarkNet53 (Redmon, 2018) 0.32 0.8399

YOLO (Bochkovskiy et al., 2020) Cross-Stage-Partial Darknet53 (Bochkovskiy et al., 2020) 0.91 0.8497

Configured YOLO (Redmon and Farhadi, 2018) ResNet-50 (He et al., 2016) 0.35 0.8634

Configured YOLO (Bochkovskiy et al., 2020) Cross-Stage-Partial Darknet53 (Bochkovskiy et al., 2020) 0.74 0.8735
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Within the training phase of the configured model (Table

1), a learning schedule was set in order to improve the

model learning in accordance with each phase of the process

(Fig. 2a,b) (Zhang et al., 2019). The selected model achieved a

high AP50 of (0.863 ± 0.013). The method has been shown to

perform slightly better in detecting pig rears (0.872) than pig

heads (0.853). The precision/recall (PR) curve showed that this

model achieved high precision at varying levels of recall, see

(Fig. 3). The PR curve also indicated that for both pig parts, i.e.,

head and rear, the model did not compromise the false posi-

tive rate, i.e., increasing the number of detected pig parts, to

maintain a high recall. At high thresholds, we have few false/

true positive samples therefore the difference of 1 positive

classification could dramatically change precision. As a result,

there were slight volatility (�0.05) at those regions (with high

thresholds) as shown at the start of the curve in (Fig. 3b).
Fig. 2 e Learning stages of the detectionmodel. (a) The dynamic

learning rate was repeatedly computed based on the iteration n

predefined value constant provided that the remaining number

learning rate by a factor of 0.1. Finally, if the remaining epochs w

(b) Model learning, i.e., total loss, against iteration on the x-axi
Figure 4 illustrates an example of detecting pig heads and

rears for both the AFBI (Fig. 4a) and AUF (Fig. 4b) datasets. The

method is capable of detecting and identifying pig parts under

various challenging conditions, e.g., camera orientations and

absence of colours with a high confidence score.

3.2. Contact between pigs

Using the annotated ITC dataset, we calibrated thresholds for

each pen/camera; an interaction is scored only when the IoU

value between pigs exceeds the given threshold. Expectedly,

cameras positioned with a vertical angle facing down the pen,

i.e., AFBI dataset, have shown to require lower values of the

interaction threshold. Conversely, higher threshold values

were computed to score contacts between pigs for pens with

cameras positioned with a more horizontal angle.
selection and schedule of the learning rate. The value of the

umber. After a warm-up period, we kept the learning rate

of epochs was less than 60%. Otherwise, we multiplied the

ere more than 90%, we multiplied the learning rate by 0.01.

s.
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Fig. 3 e Precision-recall curve for detecting pig (a) head and (b) rear. The curve is calculated from the model's detection

output for each class; this is by varying the model score threshold that determines the model-predicted positive detection of

a given class.

Fig. 4 e Example of detecting pig heads and rears across the experimental datasets using our validated model. Numbers on

top of the bounding boxes represent the detection confidence score. A higher score denotes higher confidence in the

detection. The method also generates an array of labels for each detected pig part. The generated labels were deployed in

the next processing stage to score interactions.
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Contact method produced high average classification ac-

curacies of 92.65% ± 3.74%, as shown in Fig. 5, across both

datasets, i.e., 95.4%± 0.5% for AFBI and 90.0%± 2.3% for AUF. A

higher classification accuracy was achieved at AFBI due to,

e.g., data capturing settings (see method). The method also

achieved higher classification accuracies (95.8% for AFBI;

91.7% for AUF) in detecting the “No contact” class. Accuracy

gradually reduces as the number of contacts per image in-

creases, especially for the AUF, where it reduces to 86.7% for

detecting 3 or more contacts.
3.3. Interaction index

Following the validation stages, we deployed the system to

extract interaction indices across the AUF experimental

dataset. Figure 6 shows the obtained interaction indices

across pens designated ‘control’ and ‘outbreak’. Day 0 rep-

resents the day in which the actual outbreak occurred, i.e.,

tail bleeding was detected. On the days the episodes were

scored by pig staff, the method produced an interaction

index averaged at 0.25 (±0.009), whereas 0.68 (±0.11) was

https://doi.org/10.1016/j.biosystemseng.2022.10.002
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Fig. 5 e Confusion matrices for (a) AFBI and (b) AUF. The metric compares the method performance against that of the data

annotator (animal behaviour scientist). For the AFBI dataset, few images (less than 5) have scored more than 2 contacts,

therefore, we merged all images with contact into the “contact” class. Similarly, for the AUF dataset, a small number of

images (less than 5) have scored more than 3 contacts, therefore, we merged all images with three or more contacts in the

“þ2 contacts” class. Darker blue colour denotes higher number of images in that class. (For interpretation of the references

to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6 e The scored interaction indices per day (08:00e16:00) across the study period. The indices represent the day-wise

cumulative number of interactions (head and rear including intentional and unintentional) and were calculated to provide

consistent measures across various data frames. Control and outbreak bars represent indices averaged across the two study

pairs of the AUF dataset. These metrics were obtained using the configured and validated YOLO (Bochkovskiy et al., 2020)

model.
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scored in equivalent days of control pens. The results also

show a significant change in the interaction between treat-

ments (control vs outbreak; p ¼ 0.017), which was due to the

difference between the two treatments at day 0 (actual
outbreak day). Despite the limited number of studied pens,

this may suggest that this method is able to detect an

outbreak at the same time/level as when a farmer detects a

tail bleeding incident.

https://doi.org/10.1016/j.biosystemseng.2022.10.002
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4. Discussion

We developed a method capable of automatically quantifying

contact interactions between pigs in two different environ-

ments; each environment presented us with its own chal-

lenges. Changes in said interactions may be subtle indicators

of reduced health and welfare in pigs that can be challenging

to observe, in large commercial settings, at pen side by a stock

person (Kyriazakis and Tolkamp, 2010; Matthews et al., 2016).

The system operates with high accuracy and speed. If the

interactions quantified automatically are capable of relating

to change in the pig state, this would confer sustainability

benefits to the pig farming industry through enhanced animal

welfare, improved performance and timely intervention, e.g.,

medication and removal of affected pigs. Overall, our work

offers a number of contributions to the automated detection

of behaviours of indoor housed pigs:

1. We developed a system that detects high-level pig be-

haviours, i.e., interaction between any two pigs within a

group, using only RGB and Infrared cameras.

2. We investigated the characteristics of existing detectors

(Bochkovskiy et al., 2020; Liu et al., 2016; Redmon and

Farhadi, 2018; Ren et al., 2017; Tan et al., 2020), in

terms of speed and detection precision, showing that

the configuration of the YOLO network is more suitable

for our task.

3. We modified the YOLO network (Redmon and Farhadi,

2018; Bochkovskiy et al., 2020) architecture by adding an

additional detection subnetwork to its baseline network,

enabling the method to better detect smaller objects, in

this case pig heads. We implemented a data-driven pro-

cess to obtain the optimal layer of the baseline network

for feature extraction.We then calculated relevant sets of

anchor boxes using the K-means clustering algorithm.

4. We developed an additional processing module that

feeds from the detection network and automatically

scores interactions between pigs.

5. We applied the proposed system to a significant welfare

challenge in the management of pigs, that of the

detection of tail-biting outbreaks in pigs.

6. We produced and made publicly available a large an-

notated dataset for pig parts identification and pig

interactions.

The configurations made on the model architecture (e.g.,

selection of: anchor boxes, detection heads and backbone

network, as shown in Fig. 1) enabled better detection of

smaller objects (e.g., pig heads as shown in Fig. 4b). The added

sub-detection network receives features generated from

earlier layers (10th addition layer; Fig. 1) of the feature

extraction model, as a result providing a suitable trade-off

between spatial resolution and feature depth. Furthermore,

applying an unsupervised machine learning technique (k-

means clustering algorithm) to generate anchor boxes (from

the training dataset) has significantly enhanced method per-

formance. The method gained prior knowledge of sizes/

shapes of the detection targets (pig parts) providing enhanced

representation to the dataset.
Following a manual inspection of the generated false

negative detections, we found that a considerable proportion of

these was caused by occlusions, e.g., the head being occluded

by the feeding trough (Fig. 4a). These types of missed detection

instances (to pig parts) have a reduced impact on the subse-

quent processing stage that quantifies interactions between

pigs as it is highly unlikely for a pig to interact with other pigs

(rear) whilst its head is inside the feeding trough. The latter

processing stage has lightweight CPU-based computational

requirements; it only involves calibrating a threshold for each

pen/camera settings to score interactions between pigs. This

contrasts with other methods that require extra processing

stages with high computational requirements for tracking and

extracting spatial and temporal features. The method scanned

over all detected pig parts (frame-by-frame) and scored in-

teractions using the IoU metric, without the need of computa-

tionally expensive processing units, e.g., recurrent neural

networks (Chen et al., 2020d; Liu et al., 2020). Therefore, the

method is not restricted by the data capturing infrastructure

and does not require sets of consecutive frame sequences to

quantify interactions (Gan et al., 2021).

In the developed framework, we directly detected pig parts,

i.e., pig heads and rear, rather than the traditional detection of

the entire pig body (large object), therefore, the target objects

were in general of small/medium size. Specifically, the camera

orientation for the AUF dataset (e.g., pig heads at the far end of

the camera angle of view) and the occurrence of occlusions (to

pig parts) have contributed to reducing target size, as shown

in Fig. 4(b); to an average area of 30� 32. The configuredmodel

architecture which adds a detection subnetwork to an earlier

layer (the 10th addition layer) of the baseline (ResNet-50)

model enabled better detection to these scenarios. The

method has been shown to produce a slightly higher rate of

incorrect classification for pens with a higher interaction rate

(3 interactions ormore per image; Fig. 5b), this ismainly due to

the increased pig-to-pig occlusion rate caused by camera

orientation. However, the method was shown to be robust in

various farm settings, including lighting conditions, pig sizes,

type of camera, e.g., infrared and pen design. This showed

that the method has the potential of wider applicability

beyond the presented framework.

Theprogressmade in theautomateddetectionofbehaviours

in pigs has been reviewed (Matthews et al., 2016). They

concluded that little progress had beenmade in the automated

quantification of social behaviour of pigs, and it has been sug-

gested that this was due to the difficulties associated with the

technical challenges for some sensors, such as cameras, to

capture such behaviours. Some of the examples they provided

to justify this statement, included the lack of consensus ofwhat

constitutes social behaviour, and in cases where this has been

defined the challenges to detect interactions due, for example,

to occlusions (Alameer et al., 2017; Alameer, 2018). Over the last

5 years, advanceshavebeenmade in thequantification of social

behaviour of pigs and other species (Munsterhjelm et al., 2019).

Someof these approaches have value in the context of scientific

research, but they are unlikely to be of relevance to pig farming.

For example, Ohayon et al. (2013) have used artificial markings

to automatically detect the social interactions between pairs of

mice in laboratory settings. Hong et al. (2015) have used depth

sensing and machine learning to detect mouse social

https://doi.org/10.1016/j.biosystemseng.2022.10.002
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behaviours. Suchmethods are unlikely to be of relevance to pig

farming, where large numbers of animals are involved and the

application of individual markings is impractical Alameer et al.

(2020b, 2020c). The widespread use of radio-frequency identifi-

cation (RFID) amongst livestock offers opportunities for auto-

matic quantification of social interactions, such as social

relationships between pigs (Kapun et al., 2020). However, their

currentuse isassociatedwith certaindisadvantages, e.g., labour

requirements to attach/detach the sensors (Arulmozhi et al.,

2021) and the damage this may cause to economically valu-

able pig parts. The proposedmethod does not require pigs to be

individually marked or fitted with sensors.

Recent research has been directed towards the automated

quantification of behaviours of individual pigs (Riekert et al.,

2020, 2021; Jensen and Pedersen, 2021), especially in the

context of the injurious outcomes these behaviours may

produce, e.g., tail biting (D'Eath et al., 2018). Quantification of

social behaviour has been identified by several authors as a

desirable metric for the assessment of health and welfare of

animals (Ohayon et al., 2013; Matthews et al., 2016; Blut et al.,

2017). This is because changes in social behaviour can be a

useful indicator for the assessment of animal health and

welfare, whether its expression increases or decreases. It has

been suggested (Kyriazakis and Tolkamp, 2010) that during

infection social interaction between farmed animals, such as

pigs, is expected to decrease, mainly because there would be a

decrease in animal activity, due to the animal feeling ‘sick’

(Hart and Hart, 2010). This hypothesis has yet to be quantified,

in pigs at least. On the other hand, pigs may be expected to

come to closer proximity with their pen-mates or even huddle

during infectious disease, perhaps due to fever and the need

for thermoregulation (Kyriazakis and Tolkamp, 2010). Several

authors (examples given by (Larsen et al., 2020)) have sug-

gested that there is an increase in activity and object manip-

ulation prior to outbreaks of tail-biting in pigs, perhaps due to

arousal or frustration.

Given the consensus that change in social behaviour may

be a useful indicator of the changes in the animal health and

welfare status, the question is which metric can be used to

assess them. For instance, an attemptwasmade to investigate

the group level movement of pigs (optical flow (Larsen et al.,

2020), to predict tail-biting in pigs; hence a more targeted

approach for assessing social behaviour in pigs may be

desirable, especially to detect tail-biting in pigs and thus

provide an additional precision farming tool for farmers. In

this work we have used a similarly simple metric as an indi-

cator of social interaction between pigs, the contact between

the head of one pig with the rear (including tail) of another. It

has been suggested (Camerlink and Turner, 2013) that almost

all interactions between pigs are either preceded or followed

by significant associations with nosing a certain body region.

Here, we found that the frequency of head to rear contact had

significantly changed on the day of the defined outbreak, i.e.,

the day in which the first tail bleeding incident was manually

detected by stock people. The number of such interactions

was decreased in pens where the outbreak was detected,

compared with similar (control) pens where such an event did

not take place. This is contrary to the expectation that an in-

crease in activity would be expected to proceed tail biting

outbreaks (Larsen et al., 2020). We suggest that such a
decrease may be the outcome of contact-avoidance behaviour

by a pig which already carries an injury as a result of a pre-

vious social interaction that has resulted in tail biting. At this

stage, we do not claim that our method has predictive value

for the occurrence of tail biting in pigs (due to the reduced size

of the tail biting dataset), but it may be a promising method to

detect behavioural changes in a pen of pigs. The next stage for

this research will incorporate testing a larger dataset of tail

biting to get more conclusive evidence regarding the value of

the quantified interactions. Additionally, we will develop an

additional processing stage in which we categorise and filter

finer types of contacts (within head-and-rear) of pigs, e.g.,

snout-to-tail and non-intentional contacts.

The proposed system provides a novel tool that quantifies

the frequency of contact between any pig head and another

pig rear (including tails), using non-invasive 2D cameras and

based on a bespoke deep learning framework. This novel

metric has the potential to quantify the social interaction

(contact) between pigs, whether this increases or decreases.

The former case may arise in situations of redirected behav-

iour that may lead to compromises in animal health and

welfare. Herewe used the case of tail-biting, as a case in point,

where we showed that the method detected changes in this

metric on the days a tail biting outbreak was detected by

manual observation. Decreases in the contact between pigs

may occur during outbreaks of disease that lead to pig inac-

tivity, which is one of the early signs of infection in livestock

(Kyriazakis and Tolkamp, 2010). Therefore, the method has a

number of potential applications to the field of precision

livestock farming of pigs. The head-to-rear contact detection

method can bemodified to automatically quantify the contact

between other pig parts, such as head-to-head and head-to-

flank contact. Such behavioural metrics may be of relevance

to the prediction of injurious behaviours, such as flank

chewing (Kyriazakis and Tolkamp, 2010). Only the second

processing stage would need to be slightly adjusted to

compute IoU between pig heads (without any changes to the

rest of the workflow). The proposed automated method has

the following potential applications:

1. To be used as the basis of extending it to other in-

teractions between different body parts of pigs within

the pen.

2. To be applied to detect changes in contact behaviour

when pig health and welfare are challenged, such as in

the case of infection.
5. Conclusions

Automation in the pig farming industry has the potential to

allow detection of early changes in behaviours that occur due

to health and welfare compromises. Such changes are

impossible to quantify manually and early detection, through

automation, should enable timely intervention to reduce

compromises in animal welfare and associated economic

losses. This paper proposed a novel solution that enables

quantifying interactions (head-to-rear contact) between

group-housed pigs. The method was based on machine

learning and image processing whereby highly established
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deep learning networks were developed to detect and asso-

ciate pig parts.We developed a lightweight processingmodule

that rapidly scores intersections between pigs. The paper

introduced a practical implementation for detecting in-

teractions betweenmultiple pigs using only video surveillance

(infrared and RGB) and suitable to be used in commercial

settings, as it was applied in diverse conditions.
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