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Abstract: The Ocean and Land Colour Instrument (OLCI) on-board Sentinel-3 (2016–present) was
designed with similar mechanical and optical characteristics to the Envisat Medium Resolution
Imaging Spectrometer (MERIS) (2002–2012) to ensure continuity with a number of land and marine
biophysical products. The Sentinel-3 OLCI Terrestrial Chlorophyll Index (OTCI) is an indicator of
canopy chlorophyll content and is intended to continue the legacy of the Envisat MERIS Terrestrial
Chlorophyll Index (MTCI). Despite spectral similarities, validation and verification of consistency
is essential to inform the user community about the product’s accuracy, uncertainty, and fitness for
purpose. This paper aims to: (i) describe the theoretical basis of the Sentinel-3 OTCI and (ii) evaluate
the spatiotemporal consistency between the Sentinel-3 OTCI and the Envisat MTCI. Two approaches
were used to conduct the evaluation. Firstly, agreement between the Sentinel-3 OTCI and the Envisat
MTCI archive was assessed over the Committee for Earth Observation Satellites (CEOS) Land Product
Validation (LPV) core validation sites, enabling the temporal consistency of the two products to
be investigated. Secondly, intercomparison of monthly Level-3 Sentinel-3 OTCI and Envisat MTCI
composites was carried out to evaluate the spatial distribution of differences across the globe. In both
cases, the agreement was quantified with statistical metrics (R2, NRMSD, bias) using an Envisat MTCI
climatology based on the MERIS archive as the reference. Our results demonstrate strong agreement
between the products. Specifically, high 1:1 correspondence (R2 >0.88), low global mean percentage
difference (−1.86 to 0.61), low absolute bias (<0.1), and minimal error (NRMSD ~0.1) are observed.
The temporal profiles reveal consistency in the expected range of values, amplitudes, and seasonal
trajectories. Biases and discrepancies may be attributed to changes in land management practices,
land cover change, and extreme climatic events occurred during the time gap between the missions;
however, this requires further investigation. This research confirms that Sentinel-3 OTCI dataset can
be used along with the Envisat MTCI to provide a data coverage over the last 20 years.
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1. Introduction

Chlorophyll plays a key role in the chain of reactions that convert solar radiation, carbon dioxide,
and water molecules into chemical energy and plant biomass [1]. Leaf chlorophyll concentration (LCC)
is used as an indicator of photosynthetic capacity and productivity, plant phenology, and nutrition
status [2–4]. The amount of chlorophyll in leaves is regulated by nutrient availability, disease, and
environmental stress [5–7]. Natural vegetation exposed to pronounced seasonal variation in climatic
conditions (e.g., temperate deciduous forests) experiences increases in chlorophyll as leaves unfold and
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reach maturity, and decreasing levels during autumn senescence due to breakdown and reabsorption
of pigments. Additionally, because of the close relationship between chlorophyll and nitrogen status,
agronomists are inclined to use chlorophyll measurements to advise crop fertilisation or irrigation [8,9].
Therefore, information on the spatial and temporal distribution of chlorophyll can help to improve our
understanding of vegetation response to climate and support carbon modelling and food security.

Traditional methods to estimate LCC and canopy chlorophyll content (CCC) rely on invasive
techniques [10,11], hand-held devices [12,13], or leaf/canopy spectroscopy [14,15]. However, these
approaches are time and resource consuming and the information obtained is spatially and temporally
discontinuous. For environmental monitoring, agricultural applications and to understand the carbon
cycle at continental to global scales, there is a need for accurate estimations of LCC and CCC from Earth
Observation (EO) platforms. In the optical domain, vegetation reflectance spectra are characterised
by low reflectance in the visible region of the electromagnetic spectrum (400 nm to 700 nm) and high
reflectance in the near-infrared (NIR) region (700 nm to 1300 nm). The low reflectance in the visible
region corresponds to absorbance by light-harvesting photosynthetic pigments (i.e. chlorophyll).
In contrast, the high reflectance in the NIR is due to the interaction of incident photons with the
internal structure of the leaf. As a result of these processes, a narrow spectral region of high contrast
in reflectance forms between 650 nm and 750 nm, known as the red edge. The red edge position
(REP), which is defined as the point of the maximum rate of change between the visible and the NIR
reflectance, shifts towards longer wavelengths with increase in LCC. This response makes the REP a
key metric to infer LCC and CCC.

Several multispectral satellites have the potential to estimate LCC and CCC as they are equipped
with bands in the red-edge region. Examples include RapidEye (710 nm) [16], WorldView-2 (725 nm) [17],
and Sentinel-2 (704, 740, 782 nm) [18–20]. However, these platforms lack long-term historical archives
and do not produce operational biophysical variable products. The satellite mission Envisat was
launched in March 2002 with the primary purpose of monitoring the oceans and atmosphere. One
of Envisat’s payloads was the Medium Resolution Imaging Spectrometer (MERIS), a passive sensor
that sampled the electromagnetic spectrum in 15 spectral bands within the 390–1040 nm range [21].
Originally, the aim of MERIS was to estimate biophysical parameters related to oceans and inland
waters. However, due to the potential of its band setting and programmability, minor adjustments
before launch enabled MERIS to be exploited for monitoring terrestrial vegetation [22]. Significantly,
MERIS was the first space-borne sensor that incorporated the red edge in its standard band setting.

Taking advantage of its spectral sampling of the red edge, the MERIS Terrestrial Chlorophyll
Index (MTCI) [23] was developed to estimate canopy chlorophyll content. The MTCI is computed
as the ratio of the reflectance difference in the bands centred at 753.75 nm, 708.75 nm, and 681.25 nm.
The MTCI is sensitive to a wide range of CCC, and is designed to make use of the discrete spectral bands
provided by EO instruments as opposed to the continuous spectral sampling required by traditional
REP estimation methods [24–27]. As a result of its potential, the MTCI was adopted by the European
Space Agency (ESA) as an official land product in 2004, becoming the first operational product to
estimate CCC from space.

With an increasing number of EO land products and a growing community of users, there is a need
to provide quantitative assessments of product accuracy and uncertainty. To ensure the quality and
consistency of land products, the CEOS Working Group on Calibration and Validation (WGCV) Land
Product Validation (LPV) sub-group developed a hierarchy of four validation stages [28]. To move a
product to the next level in the validation hierarchy, it is necessary to meet requirements of spatial
and temporal representativeness as well as comparisons to similar products. For stage 1, products are
required to be contrasted against in-situ measurements over a reduced set of locations (<30). Stage
2 requires to expand the number of locations (>30) ensuring global representativeness, as well as
comparisons to similar products. Prerequisites for stage three include the use of community-agreed
best practices for the direct validation and that these are conducted at multiple times. Finally, stage 4
requires that direct validations are updated systematically.
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A series of validation efforts using modelled and in situ data have tested the reliability of the
MTCI algorithm and the operational land product. Using data from the Accelerated Canopy Chemistry
Program [29], Dash & Curran [23] found moderate linear fit (R2 = 0.62 to 0.72) between the MTCI
and CCC for both needleleaf and broadleaf species. Further validation of the MTCI using in situ
measurements over five agricultural crops in Southern England was carried out by Dash et al. [30],
who reported a strong correlation between the MTCI and CCC (R2 = 0.8). Finally, Vuolo et al. [16]
upscaled in situ CCC measurements using RapidEye data, and found a moderate linear relationship
between the MTCI and upscaled CCC over an agricultural area in Southern Italy (R2 = 0.74).

Since release, the Envisat MTCI has been used in a wide variety of scientific applications,
including characterisation of land surface phenology [31–35], land cover mapping [36,37], canopy
nitrogen assessment [38,39], crop yield prediction [40,41] and terrestrial productivity modelling [42–44].
Unfortunately, contact with Envisat was lost in 2012, meaning the end of MTCI data acquisition.

Owing to the success of Envisat, the follow-up mission Sentinel-3 was launched in 2016 within
the Copernicus programme (4 years gap between Envistat and Sentinel-3 missions). The Sentinel-3
Ocean and Land Colour Instrument (OLCI) is based on the heritage of MERIS, it maintains many
similarities but it has improved capabilities [45]. OLCI has 21 spectral bands, as opposed to the 15
of MERIS. Additionally, OLCI minimises sun glint, as its swath—120 km wider than MERIS—is not
centred at the nadir. The two units of Sentinel-3 (A and B) positioned in the same orbit 140◦ apart
provide increased temporal resolution with <2 days global coverage. Two more units are planned for
launch after 2021, which will ensure data for at least the next two decades. Using Sentinel-3 OLCI data,
continuity to the Envisat MTCI is provided by a new product: the OLCI Terrestrial Chlorophyll Index
(OTCI). To guarantee its utility and fitness-for-purpose, there is a need to ensure its quality, consistency,
and compatibility with the established archive of Envisat MTCI data.

Currently, the Sentinel-3 OTCI occupies Stage 1 of the CEOS WGCV LPV hierarchy, meaning that
its accuracy has been assessed over a small number of locations and time periods. Whilst these efforts
have demonstrated a strong correlation with in situ CCC [46], further assessment is needed to reach
Stage 2; which requires spatial and temporal evaluation against similar products.

In order to ensure a potential continuity of the Envisat MTCI, it is necessary to assess the Sentinel-3
OTCI spatial and temporal consistency. Ideally, consistency is evaluated through intercomparison
against similar EO products acquired as the same time (e.g. [47–51]. However, as the Envisat mission
ended in 2012, contemporaneous Sentinel-3 OTCI and Envisat MTCI data are not available, whilst to
the best of our knowledge, there is no other operational satellite product providing estimates of CCC.
In light of this challenge, we adopt an alternative approach, making use of a climatology derived from
the 10-year MERIS archive. The paper has two key objectives:

• To introduce the Sentinel-3 OTCI and describe updates and algorithm improvements with respect
to the Envisat MTCI algorithm

• To assess the spatiotemporal consistency between the Sentinel-3 OTCI and Envisat MTCI using a
comparison with the MERIS climatology

2. Description of the OTCI Product

The Level-2 (L2) OLCI land product Terrestrial Chlorophyll Index (OTCI) that provides continuity
to the Envisat MTCI is freely available to the public through the Copernicus Open Access Hub
(https://scihub.copernicus.eu/). The Sentinel-3 OTCI is produced at full resolution (300 m) and reduced
resolution (1200 m), and is computed from OLCI red, red-edge and NIR bands (Bands 10, 11, and 12)
using Equation (1).

OTCI =
Band 12− Band 11
Band 11− Band 10

=
ρ753.75 − ρ708.75

ρ708.75 − ρ681.25
(1)

where Band 10, Band 11, Band 12 are the OLCI sensor reflectance bands centred at 681.25, 708.75, 753.75
nm. Similarly, the MTCI is computed using Equation (2).

https://scihub.copernicus.eu/
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MTCI =
Band 10− Band 9
Band 9− Band 8

=
ρ753.75 − ρ708.75

ρ708.75 − ρ681.25
(2)

where Band 8, Band 9, Band 10 are the MERIS sensor reflectance bands centred at 681.25, 708.75, 753.75
nm. The signal-to-noise ratio (SNR) in OLCI bands is improved by a factor of 2 compared to MERIS
bands [52,53] (Table 1).

Table 1. Sentinel-3 OLCI and Envisat MERIS spectral band signal-to-noise ratio (SNR)

Band Centre OLCI SNR MERIS SNR

681.25 1048 485
708.75 1148 531
753.75 861 373

The outilne of the Sentinel-3 OTCI algorithm is shown in Figure 1, while the Sentinel-3 OLCI
spectral bands and the comparison to Envisat MERIS spectral bands are shown in Figure 2. At
present, surface reflectance products are not available directly from OLCI, although it is worth
noting third-party atmospheric correction algorithms suitable for OLCI data are now available
(e.g., De Keukelaere et al. [54]). Consistent with MERIS, in the operational processing chain, partial
atmospheric correction is carried out prior to calculation of the OTCI. First, top of atmosphere (TOA)
reflectance is computed from L1B TOA radiance using the solar spectral irradiance and the sun zenith
angle [55]. In the next step, gaseous correction is performed to remove the effect of O3, O2, and H2O
absorption [56]. Using a separate subroutine, Rayleigh correction is applied to TOA reflectance to
account for the effect of molecular scattering [57]. Then, the across track field of view gradient caused
by the variation in central wavelength (‘smile effect’) is corrected. An initial spectral test is carried out
on land pixels using the NIR band to identify non-vegetated pixels. OTCI is then computed only on the
pixels that passed the spectral test. Finally, the quality flags described in the next section are developed.

Uncertainties in land products affect their reliability and fitness for purpose. A key improvement
over the Envisat MTCI is the per-pixel uncertainties estimate that is provided with the Sentinel-3 OTCI
which are in turn computed from the TOA radiance uncertainties. This is, within the Sentinel-3 OTCI
product, uncertainties of the input data are propagated through the algorithm according to the law
of propagation of uncertainties as described by Miura [58]. This way, the product has a measure of
uncertainty associated to each pixel.

Quality Flags

Documentation of traceable pixel-level quality information is a fundamental principle of the
Quality Assurance Framework for Earth Observation [59]. The Sentinel-3 OTCI is accompanied by a
data layer with 8-bit encoded information related to individual aspects of data quality: (i) bad data, (ii)
view angle, (iii) aerosols, and (iv) soil. The sensitivity analyses and error assessments described below
were carried out in the algorithm development and are addressed in more detail in the Sentinel-3 OTCI
Algorithm Theoretical Basis Document (ATBD) [60].

The Sentinel-3 OTCI bad data flag consists of spectral tests conducted on pixels classified as land,
followed by a range check. The spectral tests, performed on normalised surface reflectance OLCI bands
are: (1) band 10 (red) < 0.2, (2) band 12 (NIR) > 0.1, and (3) the difference between band 12 and 10
must be greater than 0.1. Once the three conditions are met, pixel values are verified to fall within the
Sentinel-3OTCI expected range (≥0.0 and ≤6.5). Passing the spectral tests and the verification indicates
no presence of highly reflective pixels (possibly due to cloud and snow and good data quality). On
the contrary, failing the tests indicates presence of clouds or poor data quality. A difference between
Envisat MTCI and Sentinel-3 OTCI is the range of acceptable pixel values; empirical evidence suggested
that Envisat MTCI maximum value could be increased from 5.5 to 6.5 without risk of saturation.
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A viewing and illumination quality flag was developed as follows. First, geometry effects on the
L2 product were modelled over a variety of Sun and viewing geometries. Per pixel total uncertainty
was modelled for the full OLCI view angle for combinations of solar zenith angle (SZA), solar azimuth
angle (SAA), and Sentinel-3 OTCI values. The experiment revealed that the combination of SZA and
SAA that resulted in maximum and minimum variation were SZA = 38; SAA = 158 and SZA = 23; SAA
= 100, respectively. For a given configuration of SZA and SAA, total variation increases with increase
in Sentinel-3 OTCI value. Then, to derive angular ranges for the acquisition and illumination geometry
flag, pre-computed uncertainty values for each pixel were stored in a look-up-table (LUT). The LUT
contained maximum uncertainty estimations for discrete classes of SZA and view zenith angle (VZA)
as a function of predefined Sentinel-3 OTCI ranges. For a given pixel, the following auxiliary data is
needed to query the pixel’s uncertainty from the LUT: OTCI, SZA, SAA, and VZA. Example values of
the view angle flag are presented in Table 2. This was the workflow to establish the angular ranges for
the quality flag but this is not implemented in the processor itself.

Table 2. Sentinel-3 OTCI quality flags description for bad data, view angle, aerosol, and soil

Bit Indicator Value Quality Description

8–7 Bad data
1 1 Very good ρred < 0.2; ρNIR > 0.1; (ρNIR-ρred) > 0.1
0 0 Poor ρred > 0.2; ρNIR < 0.1; (ρNIR-ρred) < 0.1

6–5 View angle

1 1 Very good VZA < 30◦; SZA > 40◦

1 0 Good VZA 30◦< 40◦; SZA > 30◦ ≤ 40◦

0 1 Fair VZA ≥ 40◦ < 50◦; SZA > 20◦ ≤ 30◦

0 0 Poor VZA ≥ 50◦; SZA ≤ 200

4–3 Aerosol

1 1 Very good AOT440 < 0.3
1 0 Good AOT440 0.3–0.7
0 1 Fair AOT440 0.7–1.4
0 0 Poor AOT440 > 1.4

2–1 Soil

1 1 Very good ≥0.9 Land cover non-soil
1 0 Good ≥0.9 Land cover non-soil
0 1 Fair <0.9 Land cover soil
0 0 Poor <0.9 Land cover soil

The scattering in the red region of the spectrum caused by aerosols translates into an increase in
the OLCI red band reflectance. Due to its proximity, aerosols have similar effect on the red edge. On the
contrary, a decrease in the NIR band is observed due to aerosols absorption in the NIR region. These
responses cause a variation of Sentinel-3 OTCI of ~3% at AOT440 < 0.3, and up to 21.6% at AOT440

> 1.4 [60]. To date, there are no operational AOT estimates available from OLCI (though there is an
OLCI and Sea and Land Surface Temperature Radiometer (SLSTR) Synergy AOT product). When AOT
information becomes available from OLCI, the flags presented in Table 2 will be implemented. At the
time of this paper, these are set as very good condition.

Pixels with bare soil can have Sentinel-3 OTCI values between 1.5 and 1.9 that realistically do
not correspond to any CCC. Soil contribution is evaluated using the soil discrimination index (SDI)
algorithm (Equation (3)). The SDI, which uses the spectral features of the green, red, and NIR bands, is a
combination of the simple ratio index (SR) [61] and the green difference index (GD). The SR is positively
correlated to vegetation density whereas the GD is negatively correlated to chlorophyll content with
values >3 corresponding to bright bare soils. Establishing an SDI threshold that distinguishes between
Sentinel-3 OTCI values <2 due to soil and Sentinel-3 OTCI <2 due to sparse vegetation is necessary.
Tests revealed that SDI threshold of 0.9 effectively identifies soil pixels while maintaining vegetated
pixels [60].

SDI =
ρNIRρRed

ρRedρGreen
(3)
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3. Methods

The consistency of the Sentinel-3 OTCI and Envisat MTCI was evaluated at two distinct scales.
Firstly, agreement between the Sentinel-3 OTCI and the Envisat MTCI archive was assessed over specific
validation sites, enabling the temporal consistency of the two products to be investigated. Secondly,
monthly Sentinel-3 OTCI composites were compared with a monthly Envisat MTCI climatology for the
entire globe, enabling the consistency of spatial patterns to be assessed, and facilitating examination by
latitude and land cover. In all cases, the comparisons were conducted against the full-mission Envisat
MTCI climatology (2002–2012).

3.1. Evaluating Temporal Consistency at Specific Validation Sites

To assess the temporal consistency of Sentinel-3 OTCI and Envisat MTCI values over specific
validation sites, pixel extractions were obtained from Level-2 Sentinel-3 OTCI and third reprocessing
(3RP) Envisat MTCI data over 37 validation sites, representing a variety of land cover types, regions,
and species (Table S1). The selection of sites included the CEOS WGCV LPV sub-group supersites,
which were adopted on the basis of a series of requirements for the validation of land products, and was
supplemented by several ‘core’ sites identified by the Sentinel-3 Validation Team (S3VT). The sites are
well characterised in terms of canopy structure and biophysical variables, and have long-term monitoring
operations with established protocols. The extractions covered a footprint of 3 × 3 full resolution (300 m)
pixels to compensate for geometric inaccuracy and the point spread function of the sensors.

3.2. Evaluating Spatial Consistency at the Global Scale

To assess the spatial consistency of Sentinel-3 OTCI and Envisat MTCI values over the entire globe,
monthly Level-3 Sentinel-3 OTCI composites were generated using the Sentinel Application Platform
(SNAP) binning tool at a 4.6 km spatial resolution. All available Level-2 reduced resolution (RR) products
were used as an input. Pixels were filtered according to a Land Quality Science Flag (LQSF) expression
that removes clouds, snow, ice, and pixels with out of range Sentinel-3 OTCI inputs/outputs, allowing
only the highest quality pixels. The specific LQSF values considered invalid were: LQSF.CLOUD,
LQSF.CLOUD_AMBIGUOUS, LQSF.CLOUD_MARGIN, LQSF.SNOW_ICE, and LQSF.OTCI_FAIL. Valid
pixels were aggregated using mean value downsampling and mapped to a fixed grid.

For comparison with the monthly Level-3 Sentinel-3 OTCI composites, monthly Level-3 4.6
km Envisat MTCI composites were obtained from the UK Centre for Environmental Data Analysis
(CEDA) [62,63]. In this case, the flags used to screen poor quality Envisat MTCI values were:
L2_FLAGS.CLOUD, L2_FLAGS.WATER, and LS_FLAGS.PCD_17. Note L2_FLAGS.PCD_17 is a
product confidence flag raised if the algorithm input or output falls beyond a valid range (Table 3).
Once obtained, the mean Envisat MTCI value for each month over all years (2002 to 2012) was computed.

Table 3. Quality flags applied to exclude unreliable pixels used in the generation of the Envisat MTCI
and Sentinel-3 OTCI monthly composites

Product Quality Flag Description

LQSF.CLOUD Indicates cloudy pixel.
LQSF.CLOUD_AMBIGUOUS Possibility of cloudy pixel.

OTCI LQSF.CLOUD_MARGIN A margin of 2 pixels around pixels identified as CLOUD &
CLOUD_AMBIGUOUS.

LQSF.SNOW_ICE Potential presence of ice or snow.

LQSF.OTCI_FAIL Denotes that OTCI inputs or outputs are out of range or that
Rayleigh correction failed.

L2_FLAGS.CLOUD Pixel classification algorithm retrieved a cloudy pixel.
MTCI L2_FLAGS.WATER Raised when inland water is detected.

LS_FLAGS.PCD_17 Atmospheric correction failed or that MTCI inputs or outputs
are outside the expected range.
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Version 2.0 of the Copernicus Global Land Service Land Cover (CGLS_LC_100) product [64] was
used to evaluate global consistency per land cover type. The CGLS_LC_100 is based on PROBA-V
time-series (2015 as reference year), a database of land cover training sites, and other ancillary data.
The land cover product is mapped to the Sentinel-2 tiling grid and consists of 23 discrete classes at
100 m spatial resolution. The Level-1 map, which is formed by broad cover classes (i.e., bare/sparse
vegetation, snow/ice, and permanent water) has an overall accuracy is 80.2 +/−0.7%. The map where
closed and open forests are separated (Level-2), has an overall accuracy of 75.1 +/−0.7% [60]. The
CGLS_LC_100 product was resampled to match the 4.6 km spatial resolution of the monthly Level-3
OTCI/MTCI composites, using majority (modal) aggregation.

3.3. Statistical Analysis

To quantify agreement between the both products, descriptive statistics, the bias, the coefficient of
determination, and the normalised root mean square difference (NRMSD) were used. Comparisons
were conducted taking the Envisat MTCI archive as the reference. The bias represents the average
difference between the Sentinel-3 OTCI and Envisat MTCI. The sign of the bias is interpreted as over
(positive sign) or under (negative sign) estimation. Ideally, the bias should be close to zero. The
coefficient of determination (R2) is a measure of the linear relationship between the compared products.
The root mean square error (RMSE) is a common statistical indicator of accuracy. However, RMSE
is scale dependent and thus specific to a particular variable. The normalisation of the RMSE by the
mean (i.e., NRMSD) allows the accuracy of Sentinel-3 OTCI to be compared between other datasets
and land products.

4. Results

4.1. Temporal Consistency at Specific Validation Sites

Figure 3 shows seasonal trends and scatterplots of the monthly mean for the period 2008 to 2012
(MTCI) and 2016 to 2019 (OTCI) at five sites: US-Talledaga (ENF), AU-Robson-Creek (EBF), FR-Montiers
(DBF), BR-Mataseca (non-forest), and IT-Lison (cultivated). Despite the difference in the time period,
both Sentinel-3 OTCI and Envisat MTCI temporal profiles exhibit good agreement in the observed
seasonal trajectories. Across sites, the profiles are consistent in amplitude and temporal fluctuation,
with periods of maximum and minimum activity occurring around the same time every year. At
the deciduous forest of FR-Montiers for instance, Envisat MTCI and Sentinel-3 OTCI consistently
have maximum values between 3.5 and 4.5 between day of the year (DOY) 150 to 180 (June–July).
Similarly, the cultivated site IT-Lison has maximum Envisat MTCI and Sentinel-3 OTCI values of
2.5 to 3.5 between DOY 200 to 230 (mid-July to mid-August). When individual observations were
inspected, Sentinel-3 OTCI acquisitions depict a small amount of dispersion, but realistically capture
the annual trend of the Envisat MTCI climatology in both hemispheres (middle panel in Figure 3). The
comparison of monthly mean values shows moderate to strong agreement (R2 = 0.55 to 0.99), low bias
(−0.36 to 0.40), and low NRMSD (0.02 to 0.12) (Figure 3 and Table 4).
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Figure 3. Temporal profiles of MTCI (2008 to 2012) and OTCI (2016 to 2019) acquisitions (left),
Sentinel-3 OTCI acquisitions and monthly mean Envisat MTCI values derived from the MERIS
climatology by day of year (middle) and scatterplot of monthly means (right) for (a) US-Talledaga
(ENF), (b) AU-Robson-Creek (EBF), (c) FR-Montiers (DBF), (d) BR-Mataseca (non-forest), and (e)
IT-Lison (cultivated).

Figure 4 presents the monthly mean of all 37 sites for the entire archive of both products (12 years
for Envisat MTCI and 4 years of Sentinel-3 OTCI). There is very strong agreement between both
products (R2 = 0.9; NRMSD < 0.10). There is more dispersion towards higher values; the Sentinel-3
OTCI shows minimal underestimation for DBF in values >3, whereas EBF depicts slight overestimation.
In general, however, the observed bias is marginal (0.006).
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Table 4. Statistics of the comparison between monthly mean Sentinel-3 OTCI (2016 to 2019) and Envisat
MTCI (2002 to 2012) values over the considered validation sites. Sites are sorted by the NRMSD.

No Site Acronym Land Cover Lat Lon
MTCI vs. OTCI

n R2 NRMSD Bias

1 AU-Cumberland EBF −33.62 150.72 12 0.91 0.02 0
2 AU-Great-Western DBF −30.19 120.65 12 0.96 0.02 0.12
3 AU-Litchfield EBF −13.18 130.79 12 0.92 0.02 −0.01
4 AU-Robson-Creek EBF −17.12 145.63 12 0.96 0.02 −0.04
5 IT-Tra Cultivated 37.65 12.87 12 0.74 0.02 −0.07
6 SP-Ali Cultivated 38.45 −1.07 12 0.94 0.02 0.06
7 US-Moab-Site Non-forest 38.25 −109.39 12 0.56 0.02 0.05
8 US-Talladega ENF 32.95 −87.39 12 0.98 0.02 −0.14
9 AU-Wombat EBF −37.42 144.09 12 0.91 0.03 0.2

10 FR-Guayaflux EBF 5.28 −52.93 12 0.73 0.03 −0.18
11 FR-Hesse DBF 48.67 7.07 12 0.99 0.03 0.01
12 US-Harvard DBF 42.54 −72.17 12 0.99 0.03 −0.12
13 US-Mountain-Lake DBF 37.38 −80.53 12 0.99 0.03 −0.22
14 AU-Calperum Non-forest −34.00 140.59 12 0.46 0.04 0.1
15 AU-Cape-Tribulation EBF −16.11 145.38 12 0.86 0.04 −0.06
16 AU-Rushworth DBF −36.75 144.97 12 0.84 0.04 0.22
17 AU-Tumbarumba EBF −35.66 148.15 12 0.91 0.04 0.4
18 FR-Puechabon ENF 43.74 3.60 12 0.76 0.04 −0.07
19 IT-Cat Cultivated 37.28 14.88 12 0.61 0.04 −0.36
20 IT-Lison Cultivated 45.74 12.75 12 0.97 0.04 −0.04
21 US-Central-Plains Non-forest 40.82 −104.75 12 0.69 0.04 −0.07
22 US-Oak-Rige DBF 35.96 −84.28 12 0.99 0.04 −0.04
23 AU-Watts-Creek EBF −37.69 145.69 12 0.7 0.05 0.12
24 CR-Santa-Rosa EBF 10.84 −85.62 12 0.97 0.05 0.16
25 FR-Montiers DBF 48.54 5.31 12 0.99 0.05 −0.09
26 UK-Wytham-Woods DBF 51.77 −1.34 12 0.97 0.05 0.08
27 US-Bartlett DBF 44.06 −71.29 12 0.94 0.05 −0.03
28 AU-Warra-Tall EBF −43.10 146.65 12 0.7 0.06 −0.03
29 BR-Mata-Seca Non-forest −14.88 −43.97 12 0.96 0.06 −0.09
30 IT-Collelongo DBF 41.85 13.59 12 0.98 0.06 −0.01
31 SE-Dahra Cultivated 15.40 −15.43 12 0.6 0.06 −0.04
32 AU-Zigzag-Creek EBF −37.47 148.34 12 0.63 0.07 0.3
33 FR-Estrees-Mons Cultivated 49.87 3.02 12 0.94 0.08 0.06
34 DE-Selhausen Cultivated 50.87 6.45 12 0.87 0.09 −0.01
35 NE-Loobos ENF 52.17 5.74 12 0.55 0.09 0.07
36 DE-Geb Cultivated 51.10 10.91 12 0.89 0.1 −0.1
37 FR-Aurade Cultivated 43.55 1.11 12 0.78 0.12 0.09

4.2. Spatial Consistency at the Global Scale

This section compares Envisat MTCI and Sentinel-3 OTCI global composites. Northern hemisphere
winter (summer in the southern hemisphere) and summer (winter in the southern hemisphere), periods
were investigated as they correspond to times of contrasting vegetation photosynthetic activity. Overall,
both products realistically capture the spatial patterns of CCC. Key findings are described below.
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Figure 4. Comparison of monthly mean Sentinel-3 OTCI (2016 to 2019) and Envisat MTCI (2002 to 
2012) values over the 37 validation sites (Table 4). Red and grey lines represent the modelled and 1:1 
lines, respectively. OLCI data acquisition is up to 15 January 2020 (S3A orbital cycle 53). 

Figure 4. Comparison of monthly mean Sentinel-3 OTCI (2016 to 2019) and Envisat MTCI (2002 to
2012) values over the 37 validation sites (Table 4). Red and grey lines represent the modelled and 1:1
lines, respectively. OLCI data acquisition is up to 15 January 2020 (S3A orbital cycle 53).

4.2.1. Northern Hemisphere Winter (Dec, Jan, Feb)

Figure 5a,b show the spatial distribution of Envisat MTCI and Sentinel-3 OTCI values for
the northern hemisphere winter season (Dec, Jan, Feb). Both products depict a similar spatial
pattern characterised by comparatively higher values in the Amazon and Congo basins, north Indian
subcontinent, and South East Asia. Lower vegetation activity is observed in Northern and Central
America, Northern and Horn of Africa, Europe, Russia, and central and west of Australia. Data gaps
are evident in the Sahara desert, Arabian Peninsula, and Gobi desert. Due to cloudiness, snow cover,
and low sun angle, data gaps occur at higher latitudes above 65◦.

In both products, the frequency distribution of pixel values is skewed to the left (i.e., indicating
a higher concentration of lower values) and bimodal, dominated by a high peak around 1.5 and a
small peak around 3. The mean of the Sentinel-3 OTCI (1.82) is slightly larger than the Envisat MTCI
(1.80), whilst the dispersion is greater in MTCI (standard deviation = 0.61; range = 2.46) compared to
Sentinel-3 OTCI (standard deviation = 0.56; range = 2.26).

The scatterplot indicates good agreement between the products in winter, showing a linear fit
close to the 1:1 line (R2 = 0.89). The statistical metrics depicts low error (NRMSD = 0.11) but slight
overestimation when compared to the Envisat MTCI (bias = 0.02). The percentage difference histogram
is unimodal it has a flattened nearly symmetrical shape. The mean percentage difference is −1.86
(10.05% standard deviation) and the range between 5th and 95th percentile is 55.78%. In addition, 67%
of land mass has a difference less than 10%.
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in Figure 6a,b. The products reflect higher vegetation activity in the northern hemisphere and depict 
strong spatial agreement. Maximum values are observed in east of the United States, the Amazon 
and Congo rainforests, Europe and European Russia, the north of India, the east of China, and South 
East Asia. Areas of lower vegetation activity are the world’s tundra (the north of Canada and Russia) 
and the herbaceous landscapes of Kazakhstan, South America, the south and horn of Africa, and 
central and west of Australia. Summer maps have substantially less missing data when compared to 
winter. 

With respect to the frequency distribution of values, like the winter, Figure 6d shows the 
histograms are skewed to the left and bimodal. A dominant peak of values is located between 1.5 and 
2.0, and a second smaller peak is located between 2.0 and 3.0. Overall, the mean and spread is 
marginally greater for Envisat MTCI (mean = 1.94; standard deviation = 0.63; range = 2.58) than for 
Sentinel-3 OTCI (mean = 1.93; standard deviation = 0.77; range = 2.56). 

Figure 5. Global composites of the Sentinel-3 OTCI (mean of 2016 to 2019) and Envisat MTCI (mean
of 2002 to 2012) for winter—i.e., Dec, Jan, Feb (a,b)—and spatial distribution of differences (c). Index
value frequency distribution (d), density scatterplot of the agreement between the two products (e),
and frequency distribution of differences (f). For (c) and (f), difference is expressed in percentage
computed as the ratio of per pixel absolute difference to the mean of the two pixels. Blue indicates areas
where the Sentinel-3 OTCI is greater than the Envisat MTCI, conversely, red indicates areas where the
Envisat MTCI is greater than the Sentinel-3 OTCI. Grey pixels are areas where the difference between
the Envisat MTCI and Sentinel-3 OTCI is within ±5%.

Figure 5c shows the gridded spatial variability of MTCI-OTCI difference for winter. Major negative
differences (in blue), where the Sentinel-3 OTCI is greater than the Envisat MTCI, occur in East and
South Central China, the Indo-Gangetic Plain, the southern portion of European Russia, Europe, and
the east of South America (predominately agricultural region). Most of the positive differences (in red,
where the Envisat MTCI is greater than the Sentinel-3 OTCI, occur in the Amazon and Congo basins,
the north of Eastern Europe, the north of Australia, and South East Asia.

4.2.2. Northern Hemisphere Summer (Jun, Jul, Aug)

The spatial pattern of the Envisat MTCI and Sentinel-3 OTCI for summer (Jun, Jul, Aug) is shown
in Figure 6a,b. The products reflect higher vegetation activity in the northern hemisphere and depict
strong spatial agreement. Maximum values are observed in east of the United States, the Amazon and
Congo rainforests, Europe and European Russia, the north of India, the east of China, and South East
Asia. Areas of lower vegetation activity are the world’s tundra (the north of Canada and Russia) and
the herbaceous landscapes of Kazakhstan, South America, the south and horn of Africa, and central
and west of Australia. Summer maps have substantially less missing data when compared to winter.
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higher than the Sentinel-3 OTCI (red a), are found in the west United States and Mexico, the Amazon 
rainforest, west Africa, and southern Asia. The frequency distribution of percentage differences is 
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Figure 6. Global composites of Sentinel-3 OTCI (mean of 2016 to 2019) and Envisat MTCI (mean of 2002
to 2012) values for summer—i.e. Jun, Jul, Aug (a,b)—and spatial distribution of differences (c). Index
value frequency distribution (d), density scatterplot of agreement between the two products (e), and
frequency distribution of differences (f). For (c) and (f), difference is expressed in percentage computed
as the ratio of per pixel absolute difference to the mean. Blue indicates areas where the Sentinel-3 OTCI
is greater than the Envisat MTCI, conversely, red indicates areas where the Envisat MTCI is greater
than the Sentinel-3 OTCI. Grey pixels are areas where the difference between the Envisat MTCI and
Sentinel-3 OTCI is within ±5%.

With respect to the frequency distribution of values, like the winter, Figure 6d shows the histograms
are skewed to the left and bimodal. A dominant peak of values is located between 1.5 and 2.0, and a
second smaller peak is located between 2.0 and 3.0. Overall, the mean and spread is marginally greater
for Envisat MTCI (mean = 1.94; standard deviation = 0.63; range = 2.58) than for Sentinel-3 OTCI
(mean = 1.93; standard deviation = 0.77; range = 2.56).

The scatterplot further reflects the strong agreement. Quantitatively, the 1:1 comparison showed
R2 = 0.92, NRMSD = 0.09, and absolute bias = 0.01. Geographically, discrepancies where the Sentinel-3
OTCI is higher than the Envisat MTCI (blue) are located in the Midwest United States, Ukraine, and
Northeast China (dominated agricultural land). On the contrary, areas where the Envisat MTCI is
higher than the Sentinel-3 OTCI (red a), are found in the west United States and Mexico, the Amazon
rainforest, west Africa, and southern Asia. The frequency distribution of percentage differences is
symmetrical and unimodal with a mean and median of 0.61% (7.51 standard deviation), the range
between the 5th and 95th percentile is 46.36%. Finally, the percentage of land mass with less than 10%
is 81%.
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4.2.3. Latitudinal Variation

Latitudinal variation data comparison has been presented in Figure 7.
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of 2016 to 2019) seasonal values. The seasons correspond to the northern hemisphere, for reference
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lines represents ±1 standard deviation.

Figure 7 compares the mean (±1 standard deviation) latitudinal gradient of the products over
four seasons. Maximum values (>2.5) are found at the tropics (±10◦), whereas minimum values at
higher latitudes (>50◦ north and >30◦ south). In the region of maximum vegetation activity (±10◦), the
Envisat MTCI remains marginally higher than the Sentinel-3 OTCI. However, overall the products
exhibit high correlation (R2 > 0.96), with no apparent bias. The products exhibit latitudinal seasonal
variations. For instance, in summer a peak emerges at 20◦ latitude that persists until autumn, and
dispersion increases between 30◦ and 45◦.

4.2.4. Consistency by Land Cover

Statistical results of product comparisons for six land cover classes (ENF, EBF, DNF, DBF, non-forest,
and cultivated) across four seasons is presented in Table 5. In general, in the northern hemisphere,
the strongest agreement occurred in spring and autumn (R2 > 0.87), particularly for ENF and DBF. In
the southern hemisphere, the strongest agreement was for winter and autumn in particular for DBF
and non-forest (R2 > 0.87). In the north, the poorest agreement was for DNF whereas in the south it
was for cultivated land. In both hemispheres, the largest NRMSD was observed in the cultivated land.
On average, NRMSD remained ≤0.11 across seasons and land cover types. Similarly, bias remained
≤0.10 across seasons except for EBF and DBF in winter in the south. The monthly evolution of the
products further depicts their seasonal consistency in Figure 8. Notably, for EBF, DNF, non-forest,
and cultivated, the winter and autumn months show a greater discrepancy, where the Envisat MTCI
interquartile range is greater and the Sentinel-3 OTCI median is higher, reflecting an overestimation.
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Table 5. Summary statistics per land cover: evergreen needleleaf (ENF), evergreen broadleaf (EBF), deciduous needleleaf (DNF), deciduous broadleaf (DBF), non-forest,
and cultivated

Hemisphere Cover
Winter

Dec, Jan, Feb
Spring

Mar, Apr, May
Summer

Jun, Jul, Aug
Autumn

Sep, Oct, Nov

N R2 NRMSD Bias N R2 NRMSD Bias N R2 NRMSD Bias N R2 NRMSD Bias

ENF 188,711 0.66 0.10 0.10 280,023 0.89 0.09 −0.03 281,429 0.91 0.07 −0.06 281,443 0.91 0.08 0.01
EBF 159,333 0.78 0.08 0.05 159,295 0.81 0.07 −0.03 159,242 0.72 0.06 −0.10 159,357 0.72 0.07 −0.05

Northern
DNF 60,637 0.69 0.13 0.10 152,654 0.69 0.08 0.00 152,682 0.76 0.07 0.00 152,681 0.71 0.08 0.01
DBF 310,958 0.75 0.11 0.09 378,122 0.85 0.07 0.01 379,087 0.71 0.07 −0.01 379,095 0.89 0.07 0.02

Non-forest 799,813 0.71 0.09 0.08 1,124,841 0.81 0.08 0.01 1,155,969 0.85 0.08 −0.05 1,156,648 0.87 0.06 0.02
Cultivated 797,428 0.74 0.12 0.12 919,764 0.83 0.10 0.04 920,133 0.83 0.10 0.00 920,388 0.82 0.09 0.05

EBF 243,118 0.81 0.06 −0.18 243,146 0.71 0.07 −0.08 242,667 0.77 0.08 −0.03 243,159 0.84 0.06 −0.11

Southern
DBF 169,079 0.94 0.05 −0.14 169,079 0.88 0.06 −0.02 168,556 0.83 0.07 0.02 169,078 0.88 0.07 −0.06

Non-forest 708,946 0.90 0.08 −0.09 709,024 0.88 0.09 −0.02 704,668 0.84 0.09 0.01 708,718 0.90 0.07 −0.03
Cultivated 131,860 0.84 0.11 0.00 131,866 0.74 0.14 0.09 131,862 0.73 0.11 0.05 131,869 0.78 0.08 −0.01
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5. Discussion

5.1. Product Performance

The results of the temporal and spatial comparison between the Envisat MTCI and Sentinel-3
OTCI revealed strong agreement despite the time gap between the two missions. Globally, both
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products are strongly correlated (R2
≥ 0.89) with low absolute difference (NRMSD ≤ 0.11) and absolute

bias (≤0.02). This agreement is not surprising as OLCI has a similar mechanical and optical design to
MERIS (Figure 2), albeit with improvements including higher signal-to-noise ratio (Table 1), increased
radiometric stability, shorter revisit times (~2 days). This agreement provides a solid case to use
Sentinel-3 OTCI as a continuity of the Envisat MTCI time-series. Thus, potentially building a unique
data set of canopy chlorophyll content going back to 2002 (with data gap 2012–2014). Further research
on spectral similarity between the MERIS and OLCI sensor and their continuity would strengthen
the case.

Notably, the global maps show differences up to 16–20% in some regions such as the Amazon basin,
sub-Saharan Africa, and north of Australia. The spatial distribution and the magnitude of discrepancies
varied between seasons. For instance, higher agreement is observed in summer (Jun, Jul, Aug) where
81% of the land mass had a difference of less than 10% (Figures 5f and 6f). Discrepancies between
the products occurred in agricultural and densely forested areas. Whilst some discrepancies might
theoretically be explained by differences in sensor viewing geometry and geolocation, experimental
data demo3nstrated the impact of viewing geometry on the computed index values is marginal [60].
Furthermore, in this study, geolocation inaccuracies were minimized by using reduced resolution
products. Overpass time could be discarded as a contributing factor as both, Envisat and Sentinel-3
were configured to fly in a sun-synchronous orbit at a local equatorial crossing time of 10:00 a.m. [53].
Differences in land management practices, land conversion and extreme climatic events resulting in
productivity fluctuations during the gap between missions could be contributing factors. However,
further investigation is necessary to improve our understanding. In the first instance, a detailed
analysis of these factors over the validation sites used in this research could be a starting point.

Limitations with this study should be noted. Firstly, the compared datasets are not
contemporaneous but there is a gap of four years between them. MERIS ceased operations in 2012
and OLCI was launched in 2016. Generally, intercomparisons are conducted with time-overlapping
products. This introduces uncertainties due to interannual variations and extreme events. Furthermore,
data available for Envisat MTCI span 10 years (2002–2012) whereas the OTCI archive is 3 years
(2016–2019), which makes the Sentinel-3 OTCI more sensitive to outliers. This can be seen in Figure 1
(middle column) where Sentinel-3 OTCI presents abrupt transitions. Nevertheless, in the absence of
other operational CCC products, the approach offers useful insights into product performance.

5.2. OTCI Applications and Future Work

The results of this study give confidence to users that the Sentinel-3 OTCI can provide continuity
to the established MERIS archive. By taking advantage of guaranteed data availability through
the Copernicus programme and leveraging several algorithm improvements, the Sentinel-3 OTCI
has the potential for applications in risk management such as livestock and crop insurance, gross
primary productivity (GPP) modelling, the investigation of vegetation responses to climate change,
and food security.

To ensure continued utility of the Sentinel-3 OTCI, future work should focus on direct validation
using traceable in situ measurements of CCC (as is being considered in the Fiducial Reference
Measurements for Vegetation (FRM4VEG) project). Another opportunity is the indirect verification of
OLCI A/B. Although at the moment Sentinel-3 B mission duration is too short (May 2018–present) to
allow robust intercomparisons, eventually, comparisons between S3 units will help establish relative
uncertainty characterisations. Initial results suggest there is no difference between A and B units [65],
this should continue into the future to investigate any potential impact of sensor degradation on the
Sentinel-3 OTCI.

The CEOS LPV and ESA Core validation sites selected in this research include a wide range
of latitudes (52N to 43S) and vegetation types. However, these sites are concentrated in the United
States, Europe, and Australia. This highlights the need to expand the geographical representativeness.
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Future work may consider including tropical and higher latitude sites (e.g., tundra) in addition to
underrepresented regions such as Central and South America, Africa, and Asia.

Quantitative analysis of between-sensor difference is crucial for long-term climate change studies.
Although Sentinel-3 OLCI has similar design as Envisat MERIS with nearly identical spectral bands
(Figure 2), contribution of differences in solar-viewing geometry, spectral bandwidth, and spectral
response function cannot be entirely ruled out. BRDF corrections and spectral adjustment are ways to
remove these effects and harmonise the two products, which could be considered in future work (e.g.,
Claverie, et al. [66]). Performing these corrections was beyond the scope of this research, because the
aim is to assess the consistency between Envisat MTCI and Sentinel-3 OTCI that are currently available
to the end user.

An additional area of opportunity to maximise the utility of the Sentinel-3 OTCI is the production
and dissemination of Level-3 composites, since spatiotemporal syntheses rather than Level-2 products
are required by many downstream applications. Within the Sentinel-3 Mission Performance Centre
(S3MPC), production of Level-3 products mapped on a common grid, projection, and spatial extent are
planned in the near future.

6. Conclusions

Sentinel-3 has been in operation since April 2016 delivering the OTCI. This product provides
continuity to the related land products derived from Envisat MTCI. The Sentinel-3 OTCI has been
released to the public, therefore, there is a need to evaluate the product’s spatial and temporal
consistency with the Envisat MTCI archive. This paper presents a description of the Sentinel-3 OTCI
algorithm and the intercomparison of 3 years (2016–2019) of Sentinel-3 OTCI data against 10 years
(2002–2012) of Envisat MTCI data, making use of a MERIS climatology. The strong spatial and temporal
consistency between the Sentinel-3 OTCI and Envisat MTCI demonstrated in this study provides
confidence to users of the product. Future work will involve direct validation using in situ reference
measurements following best practices and protocols, Sentinel-3 A and B unit intercomparisons, and
L3 product development.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/16/2652/s1,
Table S1. CEOS WGCV LPV supersites and S3VT ‘core’ validation sites. The land cover assigned to each site is
based on Global Land Cover 2000 (GLC2000) product.
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