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Deriving Leaf Area Index Reference Maps Using
Temporally Continuous In Situ Data: A Comparison

of Upscaling Approaches
Luke A. Brown , Member, IEEE, Booker O. Ogutu , Fernando Camacho, Beatriz Fuster, and Jadunandan Dash

Abstract—To further progress the validation of global leaf area
index (LAI) products, temporally continuous reference data are
a key requirement, as periodic field campaigns fail to adequately
characterize temporal dynamics. Progress in cost-effective auto-
mated measurement techniques has been made in recent years,
but appropriate upscaling methodologies are less mature. Recently,
the use of multitemporal transfer functions has been proposed as a
potential solution. Using data collected during an independent field
campaign, we evaluated the performance of both vegetation index-
based multitemporal transfer functions and a radiative transfer
model (RTM)-based upscaling approach. Whether assessed using
cross validation or data from the independent field campaign, the
RTM-based approach provided the best performance (r2 ≥ 0.88,
RMSE ≤ 0.41, NRMSE < 13%). For upscaling temporally contin-
uous in situ data, the ability of RTM-based approaches to account
for seasonal changes in sun-sensor geometry is a key advantage
over vegetation index-based multitemporal transfer functions.

Index Terms—Digital hemispherical photography (DHP),
INFORM, LAI, Sentinel-2, validation, vegetation indices.

I. INTRODUCTION

L EAF area index (LAI), defined as half the total leaf area
per unit horizontal ground area [1], is a key parameter

describing the structure of vegetation canopies and controlling
processes including photosynthesis and respiration. Estimates of
LAI are required in agricultural and forest monitoring, climate
modeling, and numerical weather prediction, and are critical to
understanding biosphere–atmosphere interactions [2]. To ensure
satellite-derived LAI products are fit for purpose, validation
using in situ measurements is required. Because field campaigns
are time consuming and labour intensive, they are relatively
infrequent, and for logistical reasons, are typically conducted
during the peak of the growing season [3]. Their periodic nature
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is a key factor limiting progress toward the third stage of the
hierarchy proposed by the Land Product Validation (LPV) sub-
group of the Committee on Earth Observation Satellites Working
Group on Calibration and Validation. As such, the validation
community has highlighted the need for temporally continuous
LAI reference data [3], [4]. In response, a variety of automated
in situ measurement techniques have been developed in recent
years. These include systems based on digital hemispherical
photography (DHP), digital cover photography, radiometric sen-
sors, and terrestrial laser scanning [5]–[9].

Due to landscape heterogeneity, direct comparison of mod-
erate spatial resolution (i.e., ≥ 300 m) LAI products and in
situ measurements is impractical, necessitating upscaling ap-
proaches. Existing methods involve the use of an intermediate
high spatial resolution image, which provides increased con-
sistency with the spatial support of the in situ measurements
[4], [10]. The radiometric information is related to the in situ
measurements, enabling a high spatial resolution reference map
covering multiple product pixels to be produced. The most
widely applied upscaling protocols involve empirical transfer
functions relating in situ measurements to, for example, vege-
tation indices, although radiative transfer model (RTM)-based
retrievals can also be utilized [4], [10].

Although well-established, existing upscaling methods are
designed for traditional field campaigns, in which replicate
sampling of multiple (i.e., 20–100) elementary sampling units
(ESUs) occurs. In this way, a robust transfer function can be
derived using a single near-contemporaneous high spatial reso-
lution image, describing the variation of LAI with spectral char-
acteristics at the time of the campaign [4], [10]. In contrast, while
automated in situ measurement techniques offer dense (i.e., ≤
daily) temporal characterization of canopy dynamics, they are
typically only available for a small number of locations (i.e.,
1–5) within a site, preventing the derivation of a robust transfer
function on any single date [5]–[9]. This is a key impediment
to the use of temporally continuous in situ data for validating
moderate spatial resolution LAI products, and there is a need to
advance existing upscaling methodologies in this respect.

Recently, the use of multitemporal transfer functions has been
proposed as a potential solution, in which in situ measurements
and high spatial resolution images from multiple dates are used
to derive a single relationship, which is then applied to all images
[11], [12]. However, the method has not been explicitly evaluated
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Fig. 1. Map indicating the position of the automated DHP system and inde-
pendent in situ measurements from the FRM4VEG campaign. The background
image is a multispectral instrument (MSI) true colour composite from July 6,
2018.

against independent reference data while direct comparison
of multitemporal transfer functions to RTM-based approaches,
which have the potential to provide more robust results by ac-
counting for variations in sun-sensor geometry [13]–[15], have
not been made in the case of upscaling temporally continuous
in situ data. Using temporally continuous in situ data collected
at a deciduous broadleaf forest site in Southern England, we
compare both vegetation index-based multitemporal transfer
functions and RTM-based methods for the generation of high
spatial resolution LAI reference maps. We then evaluate the
performance of each approach using data collected during an
independent field campaign.

II. MATERIALS AND METHODS

A. Study Site and In Situ Data

The study was undertaken at Wytham Woods (51.7734°N,
1.3384°W), a deciduous broadleaf forest site in Oxfordshire,
U.K. (see Fig. 1), featuring an automated DHP system that
provides daily estimates of LAI [5]. As an example of ancient
seminatural woodland, the main species are sycamore (Acer
pseudoplatanus), ash (Fraxinus excelsior), and hazel (Corylus
avellana) while the site is dominated by clay soils. Further
details on the site, automated DHP system, and processing of
automated DHP data are provided by Brown et al. [5], who
demonstrate that the LAI estimates derived from the automated
DHP system are in agreement with manual observations made
under optimal illumination conditions over a surrounding 40 ×
40 m forest plot. Automated DHP data were available on a daily
basis from April 2018 to May 2019 (n = 394).

B. MSI Data Processing and Quality Control

In total, 28 Sentinel-2 MSI L2A bottom-of-atmosphere re-
flectance scenes were obtained over the study site during 2018.
Data were obtained from the Copernicus Open Access Hub,1

which, since March 2018, has systematically provided L2A

1Online. [Available]: https://scihub.copernicus.eu/

TABLE I
VEGETATION INDICES ADOPTED TO UPSCALE IN SITU ESTIMATES OF LAI,

WHERE B8A, B7, B6, B5, B4, AND B3 ARE MSI BANDS CENTERED AT 865,
783, 740, 705, 665, AND 550 NM, RESPECTIVELY

products generated from L1C MSI data over Europe using the
Sen2Cor atmospheric correction algorithm [16]. Before further
processing, each scene was resampled to a common spatial
resolution of 20 m, using mean value downsampling for the 10 m
bands. Pixels flagged as saturated/defective, dark, cloud/cloud
shadow, water, thin cirrus, or snow were discarded from further
analysis, as were unclassified pixels.

C. Upscaling In Situ LAI

To upscale in situ estimates of LAI using multitemporal
transfer functions, relationships with 11 vegetation indices were
established, using the daily maximum in situ LAI estimates
corresponding to the acquisition dates of each available MSI
scene. Two categories of vegetation indices were investigated:
the first consisted of traditional broadband indices used to esti-
mate LAI while the remaining indices were selected to investi-
gate whether the incorporation of MSI’s red-edge bands could
provide additional information on LAI (see Table I). Data from
all cloud-free acquisition dates (n = 28) were used to derive
the transfer functions through ordinary least squares regression
(see Table II). Once established, transfer functions were applied
to each MSI scene to obtain a series of high spatial resolution
reference maps.

To upscale in situ estimates of LAI using an RTM-based
approach, a hybrid retrieval algorithm making use of leaf/canopy
RTMs and machine learning techniques was applied. We
adopted the Invertible Forest Reflectance Model (INFORM)-
based retrieval algorithm presented by Brown et al. [26], as it
was shown to provide improved retrieval accuracy over forest
environments when compared to methods involving 1-D RTMs.
The algorithm consists of an artificial neural network (ANN)
trained with INFORM simulations designed to reflect the decid-
uous broadleaf forest site it was developed for. 50 000 simula-
tions were carried out to establish the ANN training database

https:&sol;&sol;scihub.copernicus.eu&sol;
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TABLE II
CALIBRATION AND MULTITEMPORAL TRANSFER FUNCTIONS USED TO DERIVE

HIGH SPATIAL RESOLUTION LAI REFERENCE MAPS

by randomly drawing from predefined distributions of model
parameters (see Appendix). The inputs of the trained ANN
were the bottom-of-atmosphere reflectance in eight MSI bands
(B3, B4, B5, B6, B7, B8A, B11, and B12), in addition to the
cosine of the associated viewing and illumination geometries.
In addition to the standard algorithm, we also trained a further
ANN using a subset of bands (B3, B4, B8A, B11, and B12)
to assess whether a reduction in performance would occur if
MSI’s red-edge bands were not used as inputs (hereafter referred
to as INFORMbroadband). For further information on the ANN
training database and procedure, we refer the reader to [26].
Because the ANN training data were optimized for a different
study site, some degree of bias in the INFORM-based LAI re-
trievals was expected. To address this issue, calibration functions
were derived through ordinary least squares regression using
the daily maximum LAI estimates from the automated DHP
system. The calibration functions were subsequently applied to
the INFORM- and INFORMbroadband-based LAI retrievals. As
with the multitemporal transfer functions based on vegetation
indices, the calibration functions (see Table II) were based on
data from all cloud-free acquisition dates (n = 28).

D. Evaluation Using Cross Validation and Independent Data

To provide a first assessment of how the different upscaling
methods might generalize to new observations, leave-one-out
cross validation was carried out. Agreement was assessed in
terms of the coefficient of determination (r2), root-mean-square
error (RMSE), normalized RMSE (NRMSE), bias, and preci-
sion. The NRMSE was calculated by dividing the RMSE by the
mean of the reference values, whereas bias and precision were
calculated as the mean and standard deviation of differences.

To evaluate the upscaling methods with independent data,
we compared our results with those of an independent field
campaign. For this purpose, we used in situ data collected at
Wytham Woods between July 3rd and 6th, 2018 under the
fiducial reference measurements for vegetation (FRM4VEG)
project. Although the FRM4VEG field campaign also made
use of DHP to estimate LAI, the dataset was not used in the
derivation of calibration or multitemporal transfer functions. The
campaign involved the characterization of 47 ESUs (see Fig. 1),
42 of which were sampled using DHP. Each ESU contained

13–15 sampling points, and was approximately 20 × 20 m in
extent. DHP data were processed to estimate LAI in the same
way as the automated DHP system [5]. LAI was derived from
the estimates of plant area index (PAI) obtained using DHP by
subtracting wood area index (WAI). Because a canopy walkway
structure is present in the area surrounding the automated DHP
system, the WAI value derived from leaf-off measurements at
this location was not applicable to other areas of the study site,
as the walkway structure itself could not be distinguished from
woody material by the classification, leading to a higher WAI
than would be experienced in areas without the walkway present.
Instead, a previously published WAI value representative of
similar deciduous broadleaf forest was adopted [35]. Five ESUs
were not sampled using DHP, but were assigned an LAI of zero
as they represented bare unvegetated soil. To assess the upscaling
methods, the high spatial resolution reference maps derived from
the MSI scene acquired during the FRM4VEG field campaign
(July 6, 2018) were directly compared with the in situ estimates
of LAI obtained during the campaign itself.

III. RESULTS

When evaluated through cross validation, the INFORM- and
INFORMbroadband-based upscaling approaches provided the
best performance, demonstrating the highest r2 (0.91) and lowest
RMSE/NRMSE values (0.34 and 12%), with points lying close
to the 1:1 line [see Fig. 2(l) and (m)]. In comparison, the multi-
temporal transfer functions based on vegetation indices yielded
reduced accuracy. The worst performance was observed for the
MCARI-based transfer function, which demonstrated the lowest
r2 (0.18) and highest RMSE/NRMSE values (1.04 and 36%),
with considerable scatter [see Fig. 2(k)]. Of the multitemporal
transfer functions, the SAVI-based transfer function provided the
best performance (r2 = 0.83, RMSE = 0.47, NRMSE = 16%)
[see Fig. 2(c)]. While all upscaling approaches demonstrated
low overall bias (–0.01 to 0.02), the majority of vegetation
index-based multitemporal transfer functions is subject to over-
estimation of lower LAI values [see Fig. 2(a)–(k)].

When evaluated against independent in situ measurements
from the FRM4VEG field campaign, a similar pattern was
observed, albeit with slightly reduced performance in all cases
(see Fig. 3). Again, the best performance was achieved by the
INFORM-based upscaling approach (r2 = 0.88, RMSE = 0.41,
NRMSE = 13%), whereas the multitemporal transfer functions
based on vegetation indices were characterized by reduced accu-
racy. Of these, the NDVI-based transfer function demonstrated
the best performance (r2 = 0.88, RMSE = 0.48, NRMSE =
15%), whereas the REP-based transfer function provided the
worst performance (r2 = 0.06, RMSE = 2.59, NRMSE = 83%).
All upscaling approaches overestimated LAI, though consider-
ably reduced biases were observed in the case of the INFORM-
and INFORMbroadband-based upscaling approaches and S2TCI-
based transfer function (bias = 0.06 to 0.07) when compared to
the other considered vegetation indices (bias ≥ 0.20). As in the
results of cross validation, several of the vegetation index-based
multitemporal transfer functions were subject to overestimation
of lower LAI values (i.e., over bare soil), while this was not the
case for the INFORM- or INFORMbroadband-based upscaling
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Fig. 2. (a)–(k) Comparison of multitemporal transfer function-based and
(l)–(m) INFORM-based high spatial resolution reference maps of LAI with
in situ measurements from the automated DHP system throughout 2018. The
dashed line represents a 1:1 relationship.

approaches [see Fig. 3(l) and (m)]. Despite this, some vege-
tation index-based multitemporal transfer functions appeared
to better capture variability at higher LAI values (though this
could equally reflect uncertainty in the in situ measurements as
opposed to increased capability of the indices).

In terms of their spatial characteristics, all upscaling ap-
proaches demonstrated reasonable consistency, resolving the
major spatial structures over the 1.5 × 1.5 km area surrounding
the automated DHP system during the FRM4VEG field cam-
paign (see Fig. 4). The multitemporal transfer functions based
on indices incorporating red-edge bands tended to demonstrate
a greater degree of high frequency variation [see Fig. 4(f)–(k)],
whereas these variations were less well resolved by most of the
transfer functions based on broadband indices [see Fig. 4(a)–
(e)]. The transfer functions based on the CIgreen, IRECI,
CIred-edge, and MCARI substantially overestimated areas of
low LAI, which were better captured by the other upscaling
approaches (see Fig. 4).

Fig. 3. (a)–(k) Comparison of multitemporal transfer function-based and
(l)–(m) INFORM-based high-spatial resolution reference maps of LAI on July
6, 2018 with independent in situ measurements from the FRM4VEG field
campaign (July 3–6, 2018). The dashed line represents a 1:1 relationship.

IV. DISCUSSION

When compared to the multitemporal transfer functions based
on vegetation indices, the superior performance of the INFORM-
and INFORMbroadband-based upscaling approaches (both under
cross validation and when evaluated against independent field
data) reveals the advantages of RTM-based methods. Because
viewing/illumination angles are an explicit input, the approach
is better able to account for seasonal changes in sun-sensor
geometry over the course of the year. In contrast, the vegetation
index-based multitemporal transfer functions rely solely on the
ability of the selected index to supress bidirectional reflectance
effects, despite the fact that no index is sensitive only to the
desired biophysical variable [27]. This is one factor that can con-
tribute to seasonal variations in the vegetation index–biophysical
variable relationship, as observed in several previous studies
[28]–[31], reducing its robustness.

While the RTM-based methods did demonstrate the best
performance in our study, it is worth noting that reasonable
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Fig. 4. (a) NDVI, (b) GNDVI, (c) SAVI, (d) OSAVI, (e) CIgreen, (f) S2TCI,
(g) IRECI, (h) SeLI, (i) CIred-edge, (j) REP, (k) MCARI, and (l)–(m) INFORM-
based high spatial resolution reference maps of LAI over a 1.5 × 1.5 km area
surrounding the automated DHP system on July 6, 2018.

performance was also demonstrated by some of the vegetation
index-based multitemporal transfer functions. Provided that a
suitable range of vegetation indices is evaluated, and that careful
calibration, assessment, and scrutiny of vegetation index-based
multitemporal transfer functions is carried out (i.e., to verify
that detrimental seasonal variations in the vegetation index–LAI
relationship are not present), either approach could feasibly be
used to derive time series of high spatial resolution LAI reference
maps.

Amongst the investigated vegetation index-based multitem-
poral transfer functions, those that provided the best perfor-
mance were based on traditional broadband indices (i.e., the
NDVI and SAVI), reflecting their known association with LAI
[32]. While comparable performance was demonstrated by some
transfer functions based on red-edge indices (e.g., the SeLI),
the incorporation of MSI’s red-edge bands did not univer-
sally improve performance. Similarly, the inclusion of MSI’s
red-edge bands in the INFORM-based upscaling approach
did not offer major gains in performance when compared to
the INFORMbroadband-based approach that excluded red-edge
bands. Such results are not unexpected, since the red-edge region
is most sensitive to biochemistry as opposed to canopy structure.
Indeed, previous work has demonstrated that the incorporation

of information in the red-edge can increase sensitivity to vari-
ables related to pigmentation, including green LAI, leaf chloro-
phyll concentration (LCC), and canopy chlorophyll content
(CCC) [22], [33]–[38]. In contrast, the automated DHP system
adopted in our study does not discriminate between green and
senescent leaves, making its measurements a purely structural
quantity.

The fact that the majority of vegetation index-based multi-
temporal transfer functions overestimated lower LAI values is
indicative of their sensitivity to the underlying soil background,
which is another noncanopy factor known to perturb the veg-
etation index–biophysical variable relationship, particularly at
low canopy densities [39], [40]. Indeed, those indices explicitly
designed to minimize the influence of the soil background (i.e.,
the SAVI and OSAVI) were not subject to such overestimation.
It is worth noting that other soil-resistant vegetation indices,
such as the Enhanced Vegetation Index (EVI), were not ana-
lyzed in this study (the EVI was developed for the Moderate
Resolution Imaging Spectroradiometer (MODIS) instrument,
and its coefficients are not necessarily compatible with MSI
data due to differences in band position and spectral response).
Nevertheless, as an extension of the SAVI with additional terms
to supress atmospheric effects, the EVI is highly correlated to
the SAVI [39], and would be expected to be similarly insensitive
to the soil background. In the case of the RTM-based approach,
reduced sensitivity to the soil background (and thus reduced
bias at lower LAI values) is to be expected, since a variety of
soil background reflectance spectra were explicitly incorporated
in the INFORM simulations used to train the ANNs [26].

Despite the value of having independent in situ measurements
with which to evaluate the considered upscaling approaches, it
is important to recognize that the FRM4VEG dataset covered
only the peak of the growing season, so performance could not
be independently evaluated over the full range of LAI values
experienced throughout the year (indeed, this a major drawback
of one-off field campaigns). Additionally, the lack of leaf-off
measurements meant a single WAI value had to be used to
derive LAI over the FRM4VEG ESUs. Although this assumption
may introduce some uncertainty into the absolute values of the
performance statistics, its impact is the same for all investigated
upscaling approaches, meaning their relative performances can
still be reliably compared.

V. CONCLUSION

Whether assessed using cross validation or data from the
independent field campaign, our results indicate that the RTM-
based approach is most appropriate for upscaling temporally
continuous in situ data. When compared to vegetation index-
based multitemporal transfer functions, the ability of the RTM-
based approach to account for seasonal changes in sun-sensor
geometry is a key advantage. Future work should focus on
more comprehensive evaluation of the RTM-based upscaling
approach over a greater range of vegetation types and conditions.
In this respect, independent field campaign datasets covering
longer time periods (and ideally using alternative LAI mea-
surement techniques over multiple growing seasons) will be
required. Once suitably evaluated, the approaches demonstrated



BROWN et al.: DERIVING LEAF AREA INDEX REFERENCE MAPS USING TEMPORALLY CONTINUOUS In Situ DATA 629

in this study should prove useful for deriving time series of high
spatial resolution LAI reference maps, enabling the validation of
moderate spatial resolution (i.e., ≥ 300 m) LAI products using
the emerging supply of temporally continuous in situ reference
data.

APPENDIX

TABLE III
DISTRIBUTIONS FROM WHICH INFORM PARAMETERS USED TO ESTABLISH

THE ANN TRAINING DATABASE WERE RANDOMLY DRAWN AFTER [26]
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