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A B S T R A C T   

The Sentinel-2 Level 2 Prototype Processor (SL2P) is made available to users for the retrieval of vegetation 
biophysical variables including leaf area index (LAI) from Multispectral Instrument (MSI) data within the 
Sentinel Application Platform (SNAP). A limited number of validation exercises have indicated SL2P LAI re-
trievals frequently meet user requirements over agricultural environments, but perform comparatively poorly 
over heterogeneous canopies such as forests. Recently, a modified version of SL2P was developed, using the 
directional area scattering factor (DASF) to constrain retrievals as an alternative to regularisation (SL2P-D). 
Whilst SL2P makes use of prior information on expected canopy conditions, SL2P-D is trained using uniform 
distributions of input parameters to define radiative transfer model (RTM) simulations. Using in situ measure-
ments available through the Copernicus Ground Based Observations for Validation (GBOV) service, we per-
formed an extensive validation of SL2P and SL2P-D LAI retrievals over 19 sites throughout the United States. For 
effective LAI (LAIe), SL2P demonstrated good overall performance (RMSD = 0.50, NRMSD = 31%, bias =
− 0.10), with all LAI retrievals meeting the Sentinels for Science (SEN4SCI) uncertainty requirements over ho-
mogeneous canopies (cultivated crops, grasslands, pasture/hay and shrub/scrub), whilst underestimation 
occurred over heterogeneous canopies (deciduous forest, evergreen forest, mixed forest, and woody wetlands). 
SL2P-D retrievals demonstrated reduced bias, slightly improving overall performance when compared with SL2P 
(RMSD = 0.48, NRMSD = 30%, bias = − 0.05), indicating its retrieval approach appears to offer some advantages 
over regularisation using prior information, especially at LAIe > 3. Additionally, SL2P-D resulted in 32% more 
valid retrievals than SL2P, with the largest differences observed at LAIe < 1. Validation against in situ mea-
surements of LAI as opposed to LAIe yielded similar patterns but poorer performance (RMSD = 1.08 to 1.13, 
NRMSD = 49% to 52%, bias = − 0.64 to − 0.68) because the RTM used by SL2P and SL2P-D does not account for 
foliage clumping. In addition to the retrievals themselves, we examined the relationship between predicted 
uncertainties and observed differences in retrieved and in situ LAI. With respect to LAIe, SL2P’s predicted un-
certainties were conservative, underestimating observed differences in only 35% of cases, whilst those for LAI 
were unbiased.   

1. Introduction 

Timely information on the status of vegetation is a crucial require-
ment in agriculture, forestry and environmental and biodiversity 
assessment, enabling resources to be monitored and managed effectively 

in the face of environmental change and an increasing global population 
(GCOS, 2019). Offering repeat observations and global coverage, satel-
lite remote sensing represents a valuable source of such information. 
Over the last two decades, several operational products have been 
developed, making use of radiative transfer model (RTM) inversion, 
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statistical approaches, and hybrid techniques to retrieve vegetation 
biophysical variables from remotely sensed optical images (Baret and 
Buis, 2008; Verrelst et al., 2015). Using data from moderate to coarse 
spatial resolution instruments such as the Advanced Very High Resolu-
tion Radiometer (AVHRR) (García-Haro et al., 2018), Moderate Reso-
lution Imaging Spectrometer (MODIS) (Disney et al., 2016; Knyazikhin 
et al., 1998; Pinty et al., 2011a; 2011b; Yan et al., 2016a), Ocean and 
Land Colour Instrument (OLCI) (Gobron, 2010), Visible Infrared Radi-
ometer Suite (VIIRS) (Yan et al., 2018) and PROBA-V (Lacaze et al., 
2015), current examples of vegetation biophysical products provide 
estimates at 300 m to 4.8 km, with a frequency of between four days and 
one month. 

Whilst the spatial resolution of existing operational products is 
adequate for regional and global scale monitoring, increased spatial 
resolution is required in precision agriculture, forest management, and 
adaptation studies, where within-field and stand-scale information is 
necessary (Clevers and Gitelson, 2013; GCOS, 2019; Majasalmi and 
Rautiainen, 2016). The Sentinel-2 missions, which form part of the 
European Union’s Copernicus programme, provide a unique opportu-
nity in this respect. Comprised of a constellation of two platforms 

orbiting 180◦ apart, the near-identical Multispectral Instrument (MSI) 
sensors carried on-board benefit from both high spatial (10–60 m) and 
temporal (≤5 days) resolutions (Drusch et al., 2012). The spectral 
characteristics of the instrument, which incorporates thirteen visible 
near-infrared and shortwave-infrared bands (including three red-edge 
bands), are also well-suited to vegetation monitoring (Delegido et al., 
2011; Frampton et al., 2013; Xie et al., 2019). 

Currently, estimates of vegetation biophysical variables are not 
produced operationally by the Sentinel-2 ground segment. Instead, a 
retrieval algorithm has been implemented in the freely available 
Sentinel Application Platform (SNAP). Developed by Weiss and Baret 
(2016) and known as the Sentinel-2 Level 2 Prototype Processor (SL2P), 
the algorithm enables users to generate so-called ‘L2B’ products from 
atmospherically corrected L2A MSI data (Müller-Wilm, 2018). SL2P 
adopts artificial neural networks (ANNs) that are trained with RTM 
simulations from the coupled Leaf Optical Properties Spectra (PROS-
PECT) (Feret et al., 2008; Jacquemoud and Baret, 1990) and Scattering 
by Arbitrarily Inclined Leaves (4SAIL) (Verhoef et al., 2007) models. The 
algorithm provides retrievals and predicted uncertainties of leaf area 
index (LAI), the fraction of absorbed photosynthetically active radiation 

Fig. 1. Schematic diagram illustrating the cascaded retrieval approach adopted by SL2P-D.  

Table 1 
Comparison of the major similarities and differences between SL2P and SL2P-D.  

Algorithm Retrieval approach Training data Distribution of simulation input parameters References 

SL2P Single ANN per biophysical variable PROSPECT and 4SAIL 
simulations 

Truncated Gaussian distributions designed to 
reflect global conditions 

Weiss and Baret 
(2016) 

SL2P-D Cascaded retrieval using multiple ANNs per biophysical 
variable, selected according to DASF 

PROSPECT and 4SAIL 
simulations 

Uniform distributions Fernandes and Djamai 
(2019)  
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(FAPAR), the fraction of vegetation cover (FCOVER), canopy chloro-
phyll content (CCC), and canopy water content (CWC). 

Recently, a modified version of SL2P, known as SL2P-D, was devel-
oped by Fernandes and Djamai (2019), in which the directional area 
scattering factor (DASF) is used to constrain retrievals. DASF is a spectral 
index representing an estimate of the fraction of leaf area inside the 
canopy visible from a given direction outside the canopy (Knyazikhin 
et al., 2013). It is a dimensionless quantity typically ranging from zero to 
one, and is monotonically related to LAI and foliage clumping (Adams 
et al., 2018; Stenberg and Manninen, 2015). It is equivalent to the 
canopy bidirectional reflectance assuming a foliage single scattering 
albedo of one (i.e. non-absorbing leaves) and zero boundary reflectance 
(i.e. due to dark soils or a sufficiently dense canopy). Provided the 
background reflectance is negligible, DASF can, therefore, be deter-
mined directly from measured or simulated reflectance at wavelengths 
where foliage is weakly absorbing (i.e. ~800 nm to 850 nm), without 
prior knowledge of the foliage single scattering albedo (Knyazikhin 
et al., 2013). Unlike other spectral indices, DASF is by definition 
invariant to foliage biochemistry but sensitive to canopy structure. 

Whilst detailed descriptions of SL2P and SL2P-D are provided in their 
respective algorithm theoretical basis documents (Fernandes and Dja-
mai, 2019; Weiss and Baret, 2016), it is instructive to describe their 
major similarities and differences (Table 1). Both adopt ANNs trained 
with RTM simulations based on joint distributions of leaf, canopy, soil 
and acquisition geometry parameters. To regularise retrievals, SL2P uses 
prior information in the form of truncated Gaussian distributions of 
input parameters, which were designed to reflect global conditions. 
However, previous work suggests that such a strategy may lead to 
locally-biased retrievals (Combal et al., 2003). In an attempt to address 
this issue, SL2P-D uses uniform distributions of input parameters, and 
applies partitioning as an alternative to regularisation. This strategy 
involves a cascaded retrieval approach. First, a dedicated ANN estimates 
DASF. Then, one of 18 ANNs trained using only simulations matching 
the retrieved DASF value (± the expected precision of DASF retrievals) is 
selected for retrieving the corresponding biophysical variables (Fig. 1). 
Testing against independent simulations indicates that DASF retrievals 
are unbiased, and have good precision (Appendix A). DASF is used for 
partitioning for two reasons: i) it is sensitive to canopy structure but 
invariant to foliage biochemistry (Adams et al., 2018; Stenberg and 
Manninen, 2015), and therefore removes the confounding effects of 
biochemistry on retrievals of structural variables when partitioning the 
simulation database, and ii) it can be estimated without prior knowledge 
of the foliage single scattering albedo (Knyazikhin et al., 2013). Further 
details on SL2P-D are provided in Appendix A. 

The Land Product Validation (LPV) sub-group of the Committee on 
Earth Observation Satellites (CEOS) Working Group on Calibration and 
Validation (WGCV) defines a four-stage hierarchy for product validation 
(Fernandes et al., 2014). Several moderate spatial resolution products 
have reached the second stage of this hierarchy, in which accuracy is 
assessed over a significant set of locations and time periods (Brown 
et al., 2020; Camacho et al., 2013; Fang et al., 2019; Yan et al., 2016b). 
For SL2P, however, validation exercises have been comparatively 
limited, reaching only the first stage of the hierarchy, in which accuracy 
is assessed over a small (typically < 30) set of locations and time periods. 
These exercises have indicated that SL2P LAI retrievals frequently meet 
user requirements over agricultural environments, but appear to 
demonstrate comparatively poor performance over heterogenous can-
opies such as forests and at higher values (i.e. LAI > 3) (Brown et al., 
2019; Djamai et al., 2019; Hu et al., 2020; Pasqualotto et al., 2019b, 
2019a; Upreti et al., 2019; Vanino et al., 2018; Vuolo et al., 2016; Xie 
et al., 2019). 

Recently, environmental monitoring networks, such as the National 
Ecology Observatory Network (NEON) (Kao et al., 2012), Terrestrial 
Ecosystem Research Network (TERN) (Karan et al., 2016), and Inte-
grated Carbon Observation System (ICOS) (Gielen et al., 2018) have 
been established to collect long-term environmental data over perma-
nent measurement sites, and are planning or performing in situ mea-
surements of vegetation biophysical variables on a routine basis. The 
Copernicus Ground Based Observation for Validation (GBOV) service 
was initiated to exploit these data for satellite product validation: now in 
its third year, 4,178 in situ reference measurements are available 
through the GBOV service over 20 NEON sites (https://land.copernicus. 
eu/global/gbov/). The GBOV dataset was recently used to evaluate 
several moderate (≥300 m) spatial resolution LAI products (Brown 
et al., 2020). However, the high spatial resolution LAI retrievals pro-
vided by SL2P and SL2P-D were not explicitly addressed. As such, the 
objective of the present study is to use the GBOV dataset to perform an 
extensive validation of SL2P and SL2P-D LAI retrievals over the United 
States of America. Unlike previous local-scale validation efforts, the 
multiple sites and time periods incorporated within the dataset provide 
substantial progress towards the second stage of the CEOS WGCV LPV 
hierarchy. Four specific research questions are addressed:  

1. What accuracy can be expected from SL2P and SL2P-D LAI retrievals 
over different vegetation types characteristic of biomes found in the 
United States?  

2. Does SL2P-D result in similar or reduced bias in LAI retrievals, 
particularly at higher values (i.e. LAI > 3)? 

Table 2 
Study sites throughout the United States used for validating the SL2P and SL2P-D LAI retrievals. Sites characterised by heterogeneous canopies, defined based on 
Widlowski et al. (2013), are shown in bold.  

Site Modal NLCD land cover of sampled plots Latitude (◦) Longitude (◦) In situ data availability Valid samples 

Bartlett Experimental Forest Deciduous forest 44.0639 ¡71.2873 2014 to 2018 8 
Blandy Experimental Farm Deciduous forest 39.0603 ¡78.0716 2016 to 2018 29 
Central Plains Experimental Range Grassland/herbaceous 40.8155 − 104.7460 2014 to 2018 17 
Disney Wilderness Preserve Pasture/hay 28.1250 − 81.4362 2014 to 2018 22 
Harvard Forest Mixed forest 42.5369 ¡72.1727 2014 to 2018 13 
Jones Ecological Research Center Evergreen forest 31.1948 ¡84.4686 2014 to 2018 53 
Jornada Shrub/scrub 32.5907 − 106.8430 2015 to 2018 29 
Moab Shrub/scrub 38.2483 − 109.3880 2015 to 2018 1 
Niwot Ridge Mountain Research Station Grassland/herbaceous 40.0543 − 105.5820 2015 to 2018 11 
Onaqui Shrub/scrub 40.1776 − 112.4520 2014 to 2018 26 
Oak Ridge Deciduous forest 35.9641 ¡84.2826 2015 to 2018 49 
Ordway-Swisher Biological Station Evergreen forest 29.6893 ¡81.9934 2013 to 2018 24 
Smithsonian Conservation Biology Institute Deciduous forest 38.8929 ¡78.1395 2015 to 2018 27 
Smithsonian Environmental Research Center Deciduous forest 38.8901 ¡76.5600 2015 to 2018 12 
Steigerwaldt Land Services Deciduous forest 45.5089 ¡89.5864 2016 to 2018 19 
North Sterling Cultivated crops 40.4619 − 103.0290 2014 to 2018 14 
Talladega National Forest Evergreen forest 32.9505 ¡87.3933 2015 to 2018 14 
UNDERC Woody wetlands 46.2339 ¡89.5373 2015 to 2018 35 
Woodworth Grassland/herbaceous 47.1282 − 99.2414 2014 to 2018 27  
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3. Do both algorithms perform best over homogeneous as opposed to 
heterogenous canopies, as indicated by previous studies?  

4. How well do the predicted uncertainties provided by SL2P reflect 
observed differences between retrieved and in situ values? 

2. Materials and methods 

2.1. In situ data collection and processing 

In situ measurements provided by the GBOV service at 19 NEON sites 
throughout the United States were used to estimate reference LAI and 
effective LAI (LAIe), in which a random distribution of leaves is assumed, 
for validating SL2P and SL2P-D retrievals (Table 2). Sites included a 
wide range of vegetation types as defined by the National Land Cover 
Database classification (i.e. cultivated crops, deciduous forest, ever-
green forest, grasslands, mixed forest, pasture/hay, shrub/scrub and 
woody wetlands) (Homer et al., 2020). At each site, in situ measure-
ments covered a period ranging between three and six years. All in situ 
measurements were derived from estimates of gap fraction obtained 
using digital hemispherical photography (DHP) (NEON, 2019). At each 
site, a minimum of three plots (nominally 20 m × 20 m) were sampled 
every two weeks from leaf emergence until the end of senescence. Each 
plot contained 12 samples (Fig. 2), and both upwards- and downwards- 
facing images were acquired if understory and overstory vegetation was 
present. Meier et al. (2018) provide further information on the NEON 
DHP acquisition protocol, whilst Brown et al. (2020) describe the 
approach used by the GBOV service to process NEON DHP images, 
which includes quality control to reject images meeting any of the 
following conditions: plots with less than 12 images, no downward- 
facing images at forest sites, images acquired in lossy formats, and im-
ages demonstrating fixed pattern noise, overexposure, colour balance 
issues, variable illumination, or foreign objects within the field-of-view. 

Because neither SL2P nor SL2P-D account for foliage clumping 
(Fernandes and Djamai, 2019; Weiss and Baret, 2016), their LAI re-
trievals correspond to LAIe. Thus, retrievals were primarily validated 
against in situ estimates of LAIe. However, since LAI rather than LAIe is 
the physical quantity desired by many users, we also validated SL2P and 
SL2P-D against estimates of LAI itself (i.e. accounting for the effects of 

foliage clumping). The data provided by the GBOV service represent 
plant area index (PAI) and effective PAI (PAIe) as opposed to LAI and 
LAIe, as the upwards-facing image classification cannot distinguish be-
tween foliage and woody material (Brown et al., 2020). PAIe is deter-
mined according to Warren-Wilson (1963), whilst the derivation of PAI 
relies on the clumping correction approach of Lang and Yueqin (1986), 
such that 

PAIe =
− lnP(θ57.5◦ )

0.93
(1)  

PAI =
− lnP(θ57.5◦ )

0.93
(2)  

where lnP(θ57.5◦ ) is the natural logarithm of mean gap fraction values 
and lnP(θ57.5◦ ) is the mean of the natural logarithm of gap fraction values 
at 57.5◦ (±5◦). Following the CEOS WGCV LPV good practices for LAI 
validation (Fernandes et al., 2014), in the absence of site- or plot-specific 
information on woody area, in this study we applied a first-order 
correction for woody material, deriving LAI and LAIe from PAI and 
PAIe (assuming no woody area in downward-facing images) as 

LAI = PAIup(1 − ∝)+PAIdown (3)  

where PAIup and PAIdown are PAI or PAIe values derived from upwards- 
and downwards-facing DHP images, respectively, and ∝ is the woody-to- 
total area ratio (Baret et al., 2005; Brown et al., 2020; Chen, 1996; Fang 
et al., 2019; Woodgate et al., 2016; Yan et al., 2019). The value of ∝ was 

Fig. 2. A standard NEON base plot that contains 12 DHP sampling locations. 
Figure reproduced with permission from Meier et al. (2018). 

Table 3 
Mean and standard deviation of woody-to-total area ratio (∝) values for each 
forest type derived from previously published values (Bréda, 2003; Gower et al., 
1999).   

Woody-to-total area ratio (∝)  

Forest type Mean Standard deviation 

Deciduous forest 0.24 0.10 
Evergreen forest 0.16 0.11 
All 0.18 0.11  
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determined for each forest type based on previously published values for 
a range of deciduous and evergreen species (Table 3) (Bréda, 2003; 
Gower et al., 1999). 

Using uncertainty propagation (Working Group 1 of the Joint Com-
mittee for Guides in Metrology, 2008), we quantified the combined 
standard uncertainty in our LAIe and LAI estimates as a result of a) the 
uncertainty in DHP-derived PAIe and PAI values, and b) the correction 
for woody area, such that 

u(LAI) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⎛

⎝PAIup(1 − ∝)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[

u
(
PAIup

)

PAIup

]2

+

[
u(∝)
1 − ∝

]2
√ ⎞

⎠

2

+ u(PAIdown)
2

√
√
√
√
√

(4)  

where u(PAIup) and u(PAIdown) are the standard uncertainties in DHP- 
derived PAIe or PAI values provided by the GBOV service, which 
incorporate the effects of variability in gap fraction and instrument 
levelling (Brown et al., 2018; Origo et al., 2017), whilst u(∝) is the 
standard deviation of the mean ∝ value for the forest type in question 
(Table 3). 

2.2. MSI data pre-processing and execution of SL2P and SL2P-D 

All MSI L1C top-of-atmosphere reflectance scenes acquired over the 
19 sites during the study period were ingested from the Copernicus Open 
Access Hub (https://scihub.copernicus.eu/) and processed to L2A 
bottom-of-atmosphere reflectance using Sen2Cor 2.5.5 (Müller-Wilm, 
2018). Once processed, the quality scene classification map obtained 
using Sen2Cor was used to exclude pixels contaminated by cloud, cloud 
shadow, thin cirrus, water, or snow, in addition to dark, saturated, or 
defective pixels. Standalone versions of SL2P (https://github.com/d 
jamainajib/sl2p_v1/) and SL2P-D (https://github.com/djamainajib/s 
l2p_dasf/) were used to retrieve LAI from 20 m L2A MSI data. Both 
SL2P and SL2P-D provide a quality flag layer (Fernandes and Djamai, 
2019; Weiss and Baret, 2016). Invalid retrievals (i.e. those flagged by the 
algorithm to indicate inputs/outputs were outside of the domain/range 
of the training database) were discarded from further analysis. 

The standalone version of SL2P, which is also now implemented in 
Google Earth Engine within the Landscape Evolution And Forecasting 
(LEAF) Toolbox (https://github.com/rfernand387/leaf-toolbox/), is 
equivalent to the version implemented in SNAP 7.0 (http://step.esa. 
int/main/toolboxes/sentinel-2-toolbox/sentinel-2-toolbox-features/), 
with the exception that it also provides predicted uncertainties as well as 
the retrievals themselves, following the approach proposed by Baret 
et al. (2010). Using the same inputs as the ANN adopted for LAI 
retrieval, a dedicated ANN is trained to estimate the root mean square 
difference (RMSD) that could be expected for a given MSI observation. 
This is expressed as the RMSD between the LAI value associated with 
each simulation and the LAI values associated with similar candidates 
within the training database (i.e. those lying within MSI’s uncertainty 
(assumed 0.02 additive, 4% multiplicative), within ±5◦ of the solar and 
viewing zenith angles, and within ±10◦ of the relative azimuth angle of 
the simulation in question). It is important to note that the predicted 
uncertainties correspond to the expected RMSD over all similar inputs, 
and not the actual RMSD (this would imply the ANN used for LAI 
retrieval was poorly trained, as in such a case, it would be possible to 
simply correct retrievals using the predicted uncertainties themselves). 

2.3. Statistical analysis 

First, an intercomparison of all valid SL2P and SL2P-D LAI retrievals 
over the considered measurement plots was carried out to assess their 
consistency. Then, SL2P and SL2P-D LAI retrievals were validated 
against in situ measurements made within one day of the associated MSI 
scene acquisition. The agreement between LAI retrievals and in situ 
measurements was assessed using the coefficient of determination (r2), 

RMSD, normalised RMSD (NRMSD), bias, uncertainty agreement ratio 
(UAR) (Djamai et al., 2019), and slope. The r2 and slope were deter-
mined using ordinary least squares regression, whilst the RMSD, 
NRMSD, and bias were calculated as 

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(pi − oi)

2

n

√
√
√
√
√

(5)  

NRMSD = RMSD/

∑n
i=1oi

n
(6)  

Bias =
1
n

∑n

i=1
(pi − oi) (7)  

where pi represents the value provided by SL2P or SL2P-D, oi represents 
the in situ measurement, and n representes the number of comparisons. 
A positive bias corresponded to overestimation of in situ measurements 
by SL2P or SL2P-D. Using uncertainty propagation, the standard un-
certainty in the RMSD, NRMSD and bias values resulting from the un-
certainties associated with each in situ measurement (Section 2.1) was 
determined. 

The UAR corresponds to the percentage of retrievals falling within 
the Sentinels for Science (SEN4SCI, 2011) uncertainty requirements (1 
unit or 20%; used for both LAIe and LAI, as specific requirements for LAIe 
were not available), such that 

UAR =
1
n

∑n

i=1
I[(|pi − oi| ≤ 1 ) ∨ (|pi − oi| ≤ 0.2oi) ] (8)  

where I[x] is the indicator function. These are less stringent than current 
GCOS uncertainty requirements (15%), and so may be considered 
‘threshold’ requirements (Djamai et al., 2019). It is worth noting that the 
GCOS requirements were originally developed for global moderate 
spatial resolution products and are currently under revision (GCOS, 
2019), whilst uncertainties reported for in situ LAI measurements often 
exceed 15% (Camacho et al., 2013; Fang et al., 2019; Garrigues et al., 
2008), meaning that conformity to the GCOS requirements is difficult to 
reliably test. Additionally, by evaluating retrievals against the SEN4SCI 
requirements, we could better compare our results to those of previous 
SL2P validation efforts (Djamai et al., 2019). 

SL2P provided 433 valid retrievals matching the in situ measure-
ments, whilst SL2P-D provided 572 (an increase of 139 or 32.10%), with 
the majority of additional valid retrievals occurring at LAIe values of less 
than 1 (i.e. 131 or 94.24% of additional valid retrievals), and over 
cultivated crops, grassland/herbaceous, pasture/hay or shrub/shrub 
canopies (i.e. 114 or 82.01% of additional valid retrievals). Our study 
concentrated on thematic uncertainty rather than temporal frequency 
requirements. However, users require products at a frequency of be-
tween one and 10 days; making it critical to increase the frequency of 
valid retrievals (Djamai and Fernandes, 2021). A more comprehensive 
assessment of the frequency of valid retrievals of SL2P and SL2P-D will 
require global, seasonally representative sampling that is beyond the 
scope of our study. 

To determine the significance of observed biases, one sample t-tests 
were performed, whilst paired t-tests were carried out to identify cases 
where SL2P and SL2P-D biases were significantly different from each 
other. To ensure they were comparable, only retrievals valid for both 
SL2P and SL2P-D were used in the calculation of statistics (n = 430). In 
addition to overall values, all statistics were calculated for land cover 
type, meteorological season, and LAIe and LAI magnitude subsets. Note 
that at deciduous sites, seasonal differences in performance are partly 
accounted for by LAIe and LAI magnitude, but this is not the case at 
evergreen and cropland sites, where seasonal variations in performance 
may occur independent of LAIe and LAI magnitude due to factors such as 
snow cover and residual cloud contamination. 
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3. Results 

3.1. Intercomparison of SL2P and SL2P-D LAI retrievals 

Intercomparison of SL2P and SL2P-D LAI retrievals revealed good 
agreement, with a strong linear relationship (r2 = 0.97) and low RMSD 
and NRMSD values (0.13 and 10.23%) overall (Fig. 3). A bias of − 0.08 
and slope of 0.91 was observed, indicating that, on average, SL2P LAI 
retrievals were lower than those of SL2P-D. Note, however, that the 
observed bias was not significantly different from zero (p > 0.05). When 
analysed by land cover type (Table 4), the greatest differences in LAI 
retrievals were observed for deciduous forest (RMSD = 0.17, NRMSD =
8.11%, bias = − 0.11) and evergreen forest (RMSD = 0.14, NRMSD =
7.81%, bias = − 0.13). Having said this, biases were significantly 
different from zero for mixed forest and woody wetlands, but not for 
deciduous forest or evergreen forest. As expected, when analysed by 

magnitude (Table 5), RMSD values and biases increased as LAI increased 
from LAI = 0 to 1 (RMSD = 0.08, bias = 0.01) to LAI = 5 to 6 (RMSD =
0.69, bias = − 0.66). In terms of seasonal variations, RMSD values were 
lowest in the spring, autumn and winter (RMSD = 0.12 to 0.13, bias =
− 0.09 to − 0.05), and highest in the summer (RMSD = 0.15, bias =
− 0.09) (Table 6). 

When time series of LAI retrievals were analysed, both SL2P and 
SL2P-D were able to realistically resolve seasonal variations in vegeta-
tion status over all of the considered land cover types (Fig. 4). As also 
demonstrated by the intercomparison statistics (Tables 4 and 5), SL2P-D 
provided notably higher retrievals than SL2P over deciduous forest and 
at higher LAI (i.e. > 3). This was reflected in the spatial distribution of 
differences between SL2P and SL2P-D LAI retrievals. At lower LAI 
values, SL2P-D tended to provide similar or slightly lower retrievals than 
SL2P. As discussed in Section 2.3, at those sites with lower LAI values 
(such as those characterised by cultivated crops and shrub/scrub vege-
tation), SL2P-D provided fewer invalid retrievals than SL2P; many re-
trievals for the latter were flagged due to inputs/outputs being outside of 
the domain/range of the training database, resulting in substantial areas 
of no data (Fig. 4). 

3.2. Validation of SL2P and SL2P-D LAI retrievals against in situ data 

Both SL2P and SL2P-D LAI retrievals were in better agreement with 
in situ estimates of LAIe than LAI (Fig. 5). Retrievals appeared linearly 
biased with respect to LAI. Regardless of whether they were validated 
against in situ estimates of LAIe or LAI, SL2P-D LAI retrievals were 
subject to reduced bias when compared with SL2P LAI retrievals (-0.05 
as opposed to − 0.10 for LAIe and − 0.64 as opposed to − 0.68 for LAI), 
demonstrating slopes closer to one (0.82 as opposed to 0.77 for LAIe and 
0.58 as opposed to 0.54 for LAI). Additionally, the paired t-tests indi-
cated that SL2P and SL2P-D biases were significantly different from each 
other in both cases. This led to slightly reduced RMSD values (0.48 as 
opposed to 0.50 for LAIe and 1.08 as opposed to 1.13 for LAI) and a 
slightly greater proportion of LAI retrievals compliant with the SEN4SCI 
uncertainty requirements (UAR = 95.35% as opposed to 94.42% for LAIe 
and 66.51% as opposed to 61.63% for LAI). 

In terms of performance by land cover type, the best agreement was 
achieved for cultivated crops, grassland/herbaceous, pasture/hay and 
shrub/scrub canopies, for which all SL2P and SL2P-D LAI retrievals were 
compliant with the SEN4SCI uncertainty requirements when validated 
against in situ estimates of LAIe (Table 7). It is worth noting that culti-
vated crops and grassland/herbaceous cover types had substantially 
fewer samples than the other considered land cover types, and lower LAI 
values might be expected over these sites when compared to forests. LAI 
retrievals not meeting the SEN4SCI uncertainty requirements were 
restricted to deciduous forest, evergreen forest, mixed forest and woody 
wetlands. An increased proportion of SEN4SCI compliant LAI retrievals 
was observed in the case of SL2P-D when compared with SL2P, with the 
exception of deciduous forest. 

For both algorithms, biases were significantly different from zero 
over all land cover types except cultivated crops. A reduction in bias was 
evident for SL2P-D LAI retrievals when compared with SL2P LAI re-
trievals in most cases, although the paired t-tests indicated that SL2P and 
SL2P-D biases were significantly different from each other only over 

Fig. 3. Intercomparison between valid SL2P and SL2P-D retrievals over the 
measurement plots considered within the study. Biases and slopes significantly 
different from zero and one, respectively (p < 0.05), are indicated with * 

Table 4 
Intercomparison statistics for SL2P and SL2P-D LAI retrievals by land cover type. 
Biases and slopes significantly different from zero and one, respectively (p <
0.05), are indicated with *.  

Land cover n r2 RMSD NRMSD 
(%) 

Bias Slope 

Cultivated crops 451 0.97 0.08 20.07 0.02 0.89* 
Deciduous forest 3590 0.96 0.17 8.11 − 0.11 0.93* 
Evergreen forest 3020 0.96 0.14 7.81 − 0.13 0.87* 
Grassland/ 

herbaceous 
1396 0.98 0.08 9.75 − 0.04 0.89* 

Mixed forest 119 0.95 0.16 7.96 − 0.14* 1.00 
Pasture/hay 358 0.94 0.09 8.86 − 0.06 0.90* 
Shrub/scrub 819 0.51 0.11 91.94 0.10 0.74* 
Woody wetlands 660 0.97 0.11 5.21 − 0.03* 0.96*  

Table 5 
Intercomparison statistics for SL2P and SL2P-D LAI retrievals by LAI magnitude. 
Biases and slopes significantly different from zero and one, respectively (p <
0.05), are indicated with *.  

LAI range n r2 RMSD NRMSD (%) Bias Slope 

0 to 1 3594 0.92 0.08 22.58 0.01 0.82* 
1 to 2 3178 0.87 0.10 6.52 − 0.07 0.96* 
2 to 3 2631 0.62 0.18 7.26 − 0.13 0.93* 
3 to 4 862 0.35 0.30 9.00 − 0.24 0.85* 
4 to 5 132 0.18 0.44 10.09 − 0.41 0.62* 
5 to 6 13 0.63 0.69 12.78 − 0.66 2.01*  

Table 6 
Intercomparison statistics for SL2P and SL2P-D LAI retrievals by meteorological 
season. Biases and slopes significantly different from zero and one, respectively 
(p < 0.05), are indicated with *.  

Season n r2 RMSD NRMSD (%) Bias Slope 

Spring 1929 0.98 0.12 8.55 − 0.05 0.89* 
Summer 4013 0.97 0.15 7.76 − 0.09 0.93* 
Autumn 3288 0.97 0.13 9.36 − 0.08 0.88* 
Winter 1183 0.98 0.12 10.11 − 0.09 0.90*  
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Fig. 4. Time series of SL2P and SL2P-D LAI retrievals and in situ LAIe measurements at sites representative of each land cover type (left), in addition to maps of SL2P 
and SL2P-D LAI retrievals and their differences (right). Error bars represent the combined standard uncertainty associated with each in situ measurement. Maps are 
from cloud-free MSI scenes acquired between 29th June and 16th July 2018, and cover 5 km × 5 km. 
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Fig. 5. Validation of SL2P and SL2P-D LAI retrievals against in situ estimates of LAIe (a-b) and LAI (c-d). The dashed line represents a 1:1 relationship, whilst the 
shaded grey area represents the SEN4SCI uncertainty requirements. Error bars represent the combined standard uncertainty associated with each in situ mea-
surement. Biases and slopes significantly different from zero and one, respectively (p < 0.05), are indicated with *, whilst SL2P and SL2P-D biases significantly 
different from each other (p < 0.05) according to a paired t-test are shown in bold. 

Table 7 
Validation statistics for SL2P and SL2P-D LAI retrievals when compared against in situ estimates of LAIe, by land cover type. Biases and slopes significantly different 
from zero and one, respectively (p < 0.05), are indicated with *, whilst SL2P and SL2P-D biases significantly different from each other (p < 0.05) according to a paired t- 
test are shown in bold.    

SL2P SL2P-D 

Land cover n r2 RMSD NRMSD (%) Bias UAR 
(%) 

Slope r2 RMSD NRMSD (%) Bias UAR 
(%) 

Slope 

Cultivated crops 26 0.78 0.32 ±
0.02 

42.21 ± 2.46 0.04 ± 0.02 100.00 0.71* 0.80 0.31 ±
0.02 

40.96 ± 2.46 0.07 ± 0.02 100.00 0.75* 

Deciduous forest 143 0.64 0.61 ±
0.03 

21.94 ± 0.88 ¡0.33* ±
0.03 

90.21 0.93 0.61 0.60 ±
0.03 

21.62 ± 0.94 ¡0.23* ±
0.03 

89.51 0.96 

Evergreen forest 95 0.73 0.40 ±
0.02 

25.68 ± 1.35 − 0.08* ±
0.02 

96.84 0.68* 0.77 0.36 ±
0.02 

23.32 ± 1.26 0.00* ±
0.02 

97.89 0.75* 

Grassland/ 
herbaceous 

55 0.65 0.36 ±
0.01 

83.69 ± 1.51 0.19* ±
0.01 

100.00 0.58* 0.62 0.37 ±
0.01 

86.52 ± 1.50 0.20* ±
0.01 

100.00 0.65* 

Mixed forest 20 0.77 0.61 ±
0.08 

22.31 ± 2.64 − 0.48* ±
0.08 

90.00 0.81 0.82 0.55 ±
0.08 

20.39 ± 2.64 − 0.44* ±
0.08 

95.00 0.87 

Pasture/hay 21 0.52 0.49 ±
0.01 

110.76 ±
3.33 

0.35* ±
0.01 

100.00 0.42* 0.39 0.54 ±
0.01 

122.61 ±
3.60 

0.39* ±
0.01 

100.00 0.39* 

Shrub/scrub 56 0.10 0.24 ±
0.00 

873.83 ±
36.73 

0.23* ±
0.00 

100.00 0.70 0.15 0.16 ±
0.00 

595.98 ±
26.15 

0.13* ±
0.00 

100.00 1.54 

Woody wetlands 14 0.60 0.95 ±
0.09 

33.32 ± 2.27 − 0.80* ±
0.08 

64.29 0.79 0.65 0.88 ±
0.09 

30.82 ± 2.31 − 0.73* ±
0.08 

85.71 0.87  
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deciduous forest and shrub/scrub canopies. Woody wetlands were 
characterised by the greatest biases (-0.80 for SL2P and − 0.73 for SL2P- 
D), followed by mixed forest (-0.48 for SL2P and − 0.44 for SL2P-D), 
pasture/hay (0.35 for SL2P and 0.39 for SL2P-D) and deciduous forest 
(-0.33 for SL2P and − 0.23 for SL2P-D). When compared to SL2P, SL2P-D 
yielded slopes closer to one for all land cover types except pasture/hay 
and shrub/scrub (Table 7). Results for in situ estimates of LAI as opposed 

to LAIe revealed similar patterns but poorer performance statistics 
overall (Table 8). 

When analysed by magnitude, the best agreement was observed for 
LAIe values of less than 2, at which between 98.68% and 100% of SL2P 
and SL2P-D retrievals were within the SEN4SCI uncertainty re-
quirements, and RMSD values were between 0.31 and 0.39 (Table 9), 
though relative performance was poor for LAIe values of less than 1 

Table 8 
Validation statistics for SL2P and SL2P-D LAI retrievals when compared against in situ estimates of LAI, by land cover type. Biases and slopes significantly different 
from zero and one, respectively (p < 0.05), are indicated with *, whilst SL2P and SL2P-D biases significantly different from each other (p < 0.05) according to a paired t- 
test are shown in bold.    

SL2P SL2P-D 

Land cover n r2 RMSD NRMSD (%) Bias UAR 
(%) 

Slope r2 RMSD NRMSD (%) Bias UAR 
(%) 

Slope 

Cultivated crops 26 0.77 0.54 ±
0.04 

55.85 ± 2.78 − 0.17 ±
0.03 

92.31 0.51* 0.77 0.52 ±
0.04 

53.82 ± 2.77 − 0.14 ±
0.03 

92.31 0.54* 

Deciduous forest 143 0.58 1.48 ±
0.04 

39.08 ± 0.68 ¡1.33* ±
0.04 

26.57 0.67* 0.55 1.40 ±
0.04 

37.20 ± 0.72 ¡1.23* ±
0.04 

36.36 0.68* 

Evergreen forest 95 0.74 0.88 ±
0.04 

41.40 ± 1.36 ¡0.65* ±
0.03 

71.58 0.50* 0.77 0.79 ±
0.04 

37.21 ± 1.39 ¡0.57* ±
0.03 

78.95 0.56* 

Grassland/ 
herbaceous 

55 0.63 0.38 ±
0.01 

83.40 ± 1.87 0.16* ±
0.01 

98.18 0.52* 0.60 0.39 ±
0.01 

84.85 ± 1.80 0.16* ±
0.01 

98.18 0.58* 

Mixed forest 20 0.79 1.83 ±
0.12 

46.30 ± 1.83 − 1.71* ±
0.11 

25.00 0.54* 0.83 1.78 ±
0.12 

45.16 ± 1.86 − 1.68* ±
0.11 

20.00 0.57* 

Pasture/hay 21 0.52 0.50 ±
0.02 

102.87 ±
3.57 

0.31* ±
0.01 

95.24 0.37* 0.38 0.55 ±
0.02 

113.33 ±
3.80 

0.34* ±
0.01 

95.24 0.34* 

Shrub/scrub 56 0.10 0.24 ±
0.00 

833.61 ±
39.86 

0.23* ±
0.00 

100.00 0.67 0.15 0.16 ±
0.00 

567.15 ±
28.20 

0.13* ±
0.00 

100.00 1.45 

Woody wetlands 14 0.64 2.30 ±
0.14 

54.11 ± 1.67 − 2.19* ±
0.13 

0.00 0.54* 0.67 2.21 ±
0.14 

52.20 ± 1.71 − 2.12* ±
0.13 

7.14 0.59*  

Table 10 
Validation statistics for SL2P and SL2P-D LAI retrievals when compared against in situ estimates of LAI, by magnitude. Biases and slopes significantly different from 
zero and one, respectively (p < 0.05), are indicated with *, whilst SL2P and SL2P-D biases significantly different from each other (p < 0.05) according to a paired t-test 
are shown in bold.    

SL2P SL2P-D 

LAI 
range 

n r2 RMSD NRMSD (%) Bias UAR 
(%) 

Slope r2 RMSD NRMSD (%) Bias UAR 
(%) 

Slope 

0 to 1 155 0.53 0.31 ±
0.01 

124.14 ±
2.66 

0.22* ± 0.00 100.00 0.73* 0.52 0.31 ±
0.01 

125.16 ±
2.79 

0.19* ± 0.00 100.00 0.87 

1 to 2 57 0.07 0.58 ±
0.03 

39.04 ± 1.49 ¡0.41* ±
0.02 

89.47 0.36* 0.08 0.58 ±
0.03 

38.75 ± 1.56 ¡0.38* ±
0.02 

89.47 0.40* 

2 to 3 47 0.19 0.95 ±
0.04 

38.01 ± 1.14 ¡0.89* ±
0.04 

59.57 0.47* 0.25 0.89 ±
0.04 

35.67 ± 1.16 ¡0.83* ±
0.04 

72.34 0.62* 

3 to 4 79 0.11 1.37 ±
0.05 

38.46 ± 0.90 ¡1.29* ±
0.05 

26.58 0.67 0.13 1.24 ±
0.05 

34.77 ± 0.96 ¡1.13* ±
0.05 

37.97 0.78 

4 to 5 84 0.00 1.81 ±
0.05 

40.40 ± 0.79 ¡1.68* ±
0.05 

11.90 − 0.08* 0.01 1.76 ±
0.05 

39.14 ± 0.81 ¡1.61* ±
0.05 

19.05 − 0.16* 

5 to 6 8 0.06 2.47 ±
0.18 

45.52 ± 1.86 − 2.40* ±
0.19 

0.00 − 0.51 0.07 2.38 ±
0.18 

43.90 ± 1.91 − 2.32* ±
0.19 

0.00 − 0.52  

Table 9 
Validation statistics for SL2P and SL2P-D LAI retrievals when compared against in situ estimates of LAIe, by magnitude. Biases and slopes significantly different from 
zero and one, respectively (p < 0.05), are indicated with *, whilst SL2P and SL2P-D biases significantly different from each other (p < 0.05) according to a paired t-test 
are shown in bold.    

SL2P SL2P-D 

LAIe 

range 
n r2 RMSD NRMSD (%) Bias UAR 

(%) 
Slope r2 RMSD NRMSD (%) Bias UAR 

(%) 
Slope 

0 to 1 172 0.62 0.31 ±
0.00 

114.03 ±
2.33 

0.24* ± 0.00 100.00 0.86* 0.60 0.31 ±
0.00 

116.07 ±
2.42 

0.21* ± 0.00 100.00 1.00 

1 to 2 76 0.31 0.37 ±
0.02 

25.29 ± 0.98 ¡0.14* ±
0.02 

100.00 0.72* 0.29 0.39 ±
0.02 

26.35 ± 1.06 ¡0.09* ±
0.02 

98.68 0.75 

2 to 3 96 0.25 0.57 ±
0.03 

22.28 ± 1.08 ¡0.34* ±
0.03 

88.54 0.95 0.28 0.50 ±
0.03 

19.53 ± 1.16 ¡0.20* ±
0.03 

92.71 1.03 

3 to 4 85 0.11 0.73 ±
0.04 

22.14 ± 0.98 ¡0.46* ±
0.04 

85.88 0.89 0.10 0.72 ±
0.04 

21.66 ± 1.03 ¡0.38* ±
0.04 

87.06 0.91  
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(NRMSD = 114.03% to 116.07%). As expected, RMSD values increased 
with magnitude in the case of both algorithms, as did biases between 
LAIe values of 1 and 4. Notably, the paired t-tests indicated that SL2P and 
SL2P-D biases were significantly different from each other over all 
magnitude ranges, with SL2P-D providing less biased retrievals (and 
slopes closer to one) in all cases. The reduction in bias with respect to 
SL2P was greatest at LAIe values of greater than 2, where biases were 
reduced by between 0.08 and 0.14. Nevertheless, for both algorithms, 
biases were significantly different from zero over all magnitude ranges 
(Table 9). Results for in situ estimates of LAI as opposed to LAIe are 
provided in Table 10, which revealed similar patterns but poorer 

performance statistics. 
With respect to seasonal variations, the best compliance occurred 

during the winter and spring, when between 97.75% and 100% of SL2P 
and SL2P-D retrievals met the SEN4SCI uncertainty requirements and 
RMSD values were between 0.35 and 0.39, though because of the lower 
magnitude of values experienced during the winter, relative perfor-
mance was in fact poorer (NRMSD = 59.92% to 62.67%). Additionally, 
due to their small sample size, the winter statistics should be treated 
with caution (Table 11). Increased RMSD values (0.46 to 0.53) were 
experienced during the summer and autumn, as were a reduced pro-
portion of SEN4SCI compliant retrievals (92.89% to 95.00%). Biases 

Fig. 6. Comparison of SL2P predicted uncertainties against the observed absolute difference in LAI retrievals when compared against in situ estimates of LAIe (a) and 
LAI (b). The dashed line represents a 1:1 relationship, whilst error bars represent the combined standard uncertainty associated with each in situ measurement. Biases 
significantly different from zero (p < 0.05) are indicated with *. ‘Underestimated’ refers to the proportion of predicted uncertainties that underestimated the observed 
absolute difference. 

Table 12 
Validation statistics for SL2P and SL2P-D LAI retrievals when compared against in situ estimates of LAI, by meteorological season. Biases and slopes significantly 
different from zero and one, respectively (p < 0.05), are indicated with *, whilst SL2P and SL2P-D biases significantly different from each other (p < 0.05) according to 
a paired t-test are shown in bold.    

SL2P SL2P-D 

Season n r2 RMSD NRMSD (%) Bias UAR 
(%) 

Slope r2 RMSD NRMSD (%) Bias UAR (%) Slope 

Spring 89 0.88 0.95 ±
0.04 

49.45 ± 1.58 − 0.61* ± 0.03 71.91 0.58* 0.88 0.96 ±
0.04 

49.57 ± 1.62 − 0.63* ± 0.03 69.66 0.59* 

Summer 211 0.84 1.24 ±
0.03 

49.32 ± 0.92 ¡0.76* ±
0.02 

58.77 0.55* 0.83 1.18 ±
0.03 

46.95 ± 0.96 ¡0.70* ±
0.02 

63.98 0.58* 

Autumn 120 0.83 1.08 ±
0.04 

56.08 ± 1.31 ¡0.65* ±
0.03 

56.67 0.46* 0.83 0.99 ±
0.04 

51.44 ± 1.38 ¡0.58* ±
0.03 

65.83 0.52* 

Winter 10 0.35 0.53 ±
0.07 

66.69 ± 5.67 − 0.11 ± 0.05 90.00 0.25* 0.41 0.51 ±
0.07 

64.29 ± 5.66 − 0.12 ± 0.05 100.00 0.29*  

Table 11 
Validation statistics for SL2P and SL2P-D LAI retrievals when compared against in situ estimates of LAIe, by meteorological season. Biases and slopes significantly 
different from zero and one, respectively (p < 0.05), are indicated with *, whilst SL2P and SL2P-D biases significantly different from each other (p < 0.05) according to 
a paired t-test are shown in bold.    

SL2P SL2P-D 

Season n r2 RMSD NRMSD (%) Bias UAR (%) Slope r2 RMSD NRMSD (%) Bias UAR (%) Slope 

Spring 89 0.89 0.39 ±
0.03 

27.70 ± 1.61 − 0.10* ± 0.02 98.88 0.81* 0.89 0.39 ±
0.03 

27.86 ± 1.65 − 0.11* ± 0.02 97.75 0.84* 

Summer 211 0.86 0.53 ±
0.02 

28.58 ± 1.01 ¡0.10* ±
0.02 

92.89 0.78* 0.86 0.52 ±
0.02 

28.09 ± 1.08 ¡0.05* ±
0.02 

94.31 0.83* 

Autumn 120 0.83 0.51 ±
0.03 

36.43 ± 1.50 ¡0.12* ±
0.02 

93.33 0.65* 0.83 0.46 ±
0.02 

33.02 ± 1.47 ¡0.04* ±
0.02 

95.00 0.72* 

Winter 10 0.37 0.36 ±
0.03 

62.67 ± 4.97 0.10 ± 0.03 100.00 0.37 0.43 0.35 ±
0.03 

59.92 ± 4.92 0.10 ± 0.03 100.00 0.42*  
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were significantly different from zero for both algorithms over all sea-
sons except winter, whilst the paired t-tests indicated that SL2P and 
SL2P-D biases were significantly different from each other only during 
the summer and autumn, when SL2P-D reduced biases by between 0.05 
and 0.08. Nevertheless, over all seasons, SL2P-D provided slopes closer 
to one (Table 11). Once again, results for in situ estimates of LAI as 
opposed to LAIe revealed similar patterns but poorer performance sta-
tistics (Table 12). 

3.3. Relationship between predicted uncertainties and observed 
differences in retrieved and in situ LAI 

In terms of the relationship between the predicted uncertainties 
provided by SL2P and observed differences between SL2P retrievals and 
in situ data, little association was observed in the case of LAIe (r2 = 0.01) 
(Fig. 6a). The RMSD between the predicted uncertainty and the absolute 
difference in LAI with respect to in situ LAIe was 0.70, whilst on average 
predicted uncertainties overestimated the observed absolute difference 
(bias = 0.40). This was reflected by relatively few points lying below the 
1:1 line (35.12%), indicating predicted uncertainties are typically con-
servative. An increased association was observed in the case of LAI (r2 =

0.33), whilst a reduced RMSD of 0.61 was demonstrated. In this case, a 
greater proportion of predicted uncertainties underestimated the 
observed absolute difference (59.53%), although the bias was low 
(− 0.10) (Fig. 6b). 

4. Discussion 

4.1. Differences in retrieval accuracy between SL2P and SL2P-D 

Previous validation exercises have demonstrated that SL2P retrievals 
frequently meet user requirements over agricultural environments, but 
underestimate higher LAI values such as those observed over forests 
(Brown et al., 2019; Djamai et al., 2019; Hu et al., 2020; Pasqualotto 
et al., 2019b, 2019a; Upreti et al., 2019; Vanino et al., 2018; Vuolo et al., 
2016; Xie et al., 2019). When validated against in situ measurements of 
LAIe, the fact that 100% of SL2P retrievals over cultivated crops, 
grassland/herbaceous, pasture/hay and shrub/scrub canopies met the 
SEN4SCI uncertainty requirements in our study is consistent with these 
previous findings, as is the fact that negative biases were observed over 
deciduous forest, evergreen forest, mixed forest and woody wetlands. 
Our results reveal that SL2P-D tends to provide higher retrievals over 
forest environments and at LAI > 3, indicating that it is somewhat 
effective in counteracting SL2P’s issue of underestimation. When vali-
dated against in situ data, the increased retrieval accuracies, reduced 
biases, and greater proportion of retrievals compliant with the SEN4SCI 
uncertainty requirements lend further support to this conclusion. 

In addition to reducing biases over forest environments and at higher 
LAI values, SL2P-D resulted in lower biases during the autumn season. 
Whilst the prior distributions of leaf chlorophyll and brown pigment 
concentrations used to train SL2P were optimised for sensitivity to green 
leaves (leading to underestimation of total LAI during senescence), such 
constraints are not imposed by the uniform distributions adopted by 
SL2P-D. An additional advantage of SL2P-D was that, for several sites 
characterised by lower LAI values, it produced substantially fewer 
invalid retrievals than SL2P. The uniform distributions of RTM input 
parameters adopted by SL2P-D mean a greater diversity of reflectance 
spectra are incorporated in its training database, and so fewer observed 
reflectance values are likely to be flagged as having an out of range 
input. This is an important consideration, since Xie et al. (2019) found 
that SL2P produced flagged retrievals over 37% of their winter wheat 
measurement plots, substantially reducing the utility of the algorithm 
when compared to other investigated retrieval approaches. 

It should be noted that when validated against in situ measurements 
of LAI rather than LAIe, reduced retrieval accuracies and increased 
biases were observed in the case of both SL2P and SL2P-D. These 

findings are consistent with the results of Hu et al. (2020), who report an 
RMSD of 1.14 and 1.06 when validating SL2P retrievals against in situ 
measurements LAI and LAIe, respectively. We hypothesise this is caused 
by both algorithms being trained using the 4SAIL RTM, which represents 
the canopy as a horizontally homogeneous turbid medium, and thus 
does not incorporate foliage clumping. For more homogeneous canopies 
with relatively low foliage clumping such as cultivated crops, grassland/ 
herbaceous vegetation, and pasture/hay, SL2P and SL2P-D retrievals 
provide relatively accurate estimates of LAI, as the difference between 
LAI and LAIe over these canopies is relatively small (Richter et al., 2009; 
Verger et al., 2011). On the other hand, for heterogeneous and highly 
clumped canopies such as forests, both SL2P and SL2P-D underestimate 
LAI. Indeed, for forests, Brown et al. (2019) found that using a hetero-
geneous RTM improved retrieval accuracy. An important finding of this 
study is that SL2P retrievals appear linearly biased with respect to LAI. If 
LAI rather than LAIe is the desired quantity, it may, therefore, be 
possible to derive and apply a bias correction (Brown et al., 2020). 

4.2. In situ measurement uncertainties 

Whilst the in situ measurements used in this study provide a useful 
reference for evaluating SL2P and SL2P-D retrievals, it is worth noting 
that DHP provides an indirect estimate of LAI. Previous work has 
demonstrated that DHP can underestimate LAI in tall, complex canopies 
when compared to direct (i.e. destructive) measurements (Bréda, 2003; 
Chianucci and Cutini, 2012; Dufrêne and Bréda, 1995; Fassnacht et al., 
1994; Jonckheere et al., 2004; Liu et al., 2016). In our analysis, we 
mitigated such effects to some extent by accounting for foliage clumping 
in the derivation of LAI (Brown et al., 2020). However, uncertainties 
related to the choice of clumping correction method remain (Leblanc 
and Fournier, 2014; Macfarlane et al., 2007; Walter et al., 2003; 
Woodgate et al., 2017; Yan et al., 2019). These factors should be borne 
in mind when interpreting observed biases. 

A further source of uncertainty is related to the incorporation of 
senescent foliage within the DHP-derived estimates. For upwards-facing 
images, the classification approach used to provide the GBOV in situ 
reference measurements incorporates both green leaves and senescent 
foliage, whilst for downwards-facing images, the classification is most 
sensitive to green leaves only (Brown et al., 2020). When both upwards- 
and downwards-facing images are combined (i.e. at forest sites), these 
effects may be partly compensatory. Finally, although we applied a first- 
order correction for the effects of woody area, site- or plot-specific in-
formation on woody area is ideally required. In the case of deciduous 
species, ∝ may vary depending on the amount of foliage present at any 
given time, making measurements throughout the growing season 
highly desirable. These could be obtained in future work by, for 
example, capturing images at multiple exposures to better discriminate 
between foliage and woody material throughout the phenological cycle 
(Woodgate et al., 2016), or by making use of techniques such as near- 
infrared imaging (Baret et al., 1993; Milton, 2002; Osmond, 2009) 
and terrestrial laser scanning (Calders et al., 2018; Li et al., 2018). 

4.3. Utility of the cascaded retrieval approach adopted by SL2P-D 

The retrieval of vegetation biophysical variables such as LAI is 
considered ill-posed, as different combinations of biophysical and 
biochemical properties may lead to similar reflectance spectra, whilst 
confounding factors such as measurement and model uncertainties may 
introduce error in the retrieved value (Combal et al., 2003; Gobron et al., 
1997; Verger et al., 2011; Verrelst et al., 2015). To overcome ill- 
posedness and achieve robust retrievals, regularisation techniques 
have been proposed to constrain the potential solution space, the most 
popular of which is the use of prior information on expected canopy 
conditions (Bacour et al., 2006; Baret et al., 2007; Combal et al., 2003; 
Verger et al., 2011; Verrelst et al., 2015). Such information may be 
provided on the basis of land cover or local in situ measurements of leaf 
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and canopy biophysical/biochemical properties. In SL2P, prior infor-
mation is based on a compilation of previously published experimental 
data available at the time the algorithm was developed (Weiss and Baret, 
2016). 

The prior distributions of input parameters adopted in SL2P were 
designed to reflect global conditions insofar as possible, given the 
available experimental data (Weiss and Baret, 2016). Nevertheless, it is 
likely that these distributions do not perfectly reflect reality, and that 
they are even less representative of local canopy conditions over 
particular sites or vegetation types (Fernandes and Djamai, 2019). For 
example, in the case of LAI, SL2P uses a truncated Gaussian prior dis-
tribution with a mean = 2 and standard deviation = 3. As retrievals will 
tend towards the mean of the adopted prior distribution, this may lead to 
locally (and globally) biased outputs, as observed here and in previous 
studies (Brown et al., 2019; Djamai et al., 2019). Our results suggest that 
the alternative strategy adopted by SL2P-D, which is based on cascaded 
retrieval for different partitions of DASF, appears to offer some advan-
tages over regularisation using prior information (as demonstrated by 
slightly improved retrieval accuracies and reduced biases). These results 
rely on the fact that DASF is sensitive to canopy structure but invariant 
to foliage biochemistry (Adams et al., 2018; Stenberg and Manninen, 
2015), enabling the confounding effects of biochemistry on retrievals of 
structural variables such as LAI to be removed. However, to achieve 
further improvements in performance, it is likely that RTMs better able 
to represent heterogeneous canopies are required. 

4.4. Perspectives on product uncertainty estimates 

As users look to incorporate vegetation biophysical variables such as 
those provided by SL2P within data assimilation schemes (Chernetskiy 
et al., 2017; Lewis et al., 2012; Mathieu and O’Niell, 2008), there is an 
increasing need for accurate estimates of their associated uncertainty. 
Such information enables individual observations to be appropriately 
weighted based on our confidence in their quality (Demarty et al., 2007; 
Raupach et al., 2005; Richardson et al., 2011). Several operational LAI 
products are now providing some form of uncertainty estimate (García- 
Haro et al., 2019, 2018; Yan et al., 2016a), although few incorporate all 
relevant sources of uncertainty (such as those related to sensor radi-
ometry, atmospheric correction, RTM assumptions, and the retrieval 
scheme itself) (Chernetskiy et al., 2017; Lewis et al., 2012; Pinty et al., 
2011a; 2011b). It should be noted that SL2P-D also provides predicted 
uncertainties using the same approach as SL2P. However, because its 
training database is comprised of uniform distributions, it contains 
many cases that are unlikely to be encountered in reality, causing pre-
dicted uncertainties to be overly pessimistic. For SL2P-D to provide 
useful predicted uncertainties, they should instead be determined using 
a locally representative database. As such a strategy was beyond the 
scope of our study, only SL2P’s uncertainty estimates were considered. 

Despite the fact that predicted uncertainties are provided by SL2P, 
there has been little investigation into how well they reflect observed 
differences between retrieved and in situ LAIe. To our knowledge, our 
study is the first to investigate this relationship. As previously 
mentioned, we do not expect a strong linear correlation between pre-
dicted uncertainties and observed differences, as this would imply SL2P 
was poorly trained (in such a case it would be possible to simply correct 
retrievals using the predicted uncertainties themselves). Nevertheless, it 
is desirable that the predicted uncertainties are unbiased over a large 
range of samples. For LAI, the low bias is encouraging, as it suggests that 
SL2P’s predicted uncertainties can be used when mapping over large 
spatial and temporal domains with surface conditions similar to the 
investigated sites (when aggregating over time and space, random errors 
are supressed, making bias the most important factor). For LAIe, the 
observed bias is not ideal, but at least conservative, enabling outer 
bounds to be determined that will in most cases contain the observed 
difference between retrieved and in situ LAIe. Both results indicate that 
SL2P’s prediceted uncertainites may be applicable to data assimilation 

schemes (Demarty et al., 2007; Raupach et al., 2005; Richardson et al., 
2011). 

Though SL2P’s predicted uncertainties should prove useful, it is 
possible that advances in retrieval techniques will provide more realistic 
uncertainty estimates. For example, as opposed to training separate 
ANNs to derive predicted uncertainties, recent work has successfully 
applied probabilistic non-parametric machine learning approaches that 
intrinsically provide uncertainty estimates. Of particular promise is 
Gaussian process regression (GPR), which has been shown to provide 
similar or improved retrieval accuracy to ANNs, in addition to faster 
computation times (García-Haro et al., 2019, 2018; Upreti et al., 2019; 
Verrelst et al., 2015; 2013). By adopting a Bayesian approach to the 
regression problem, GPR delivers predictions in the form of a posterior 
probability distribution, such that the mean of the distribution repre-
sents the predicted value, and the standard deviation its uncertainty. 
Another promising technique, also based on Bayesian inference, is 
optimal estimation, as implemented in the Joint Research Centre Two- 
Stream Inversion Package (JRC-TIP) (Clerici et al., 2010; Disney et al., 
2016; Kaminski et al., 2017; Pinty et al., 2011a; 2011b; 2007), and the 
Earth Observation Land Data Assimilation Scheme (EO-LDAS) (Cher-
netskiy et al., 2017; Lewis et al., 2012). 

5. Conclusions 

Whilst previous validation efforts have provided useful information 
on the performance of SL2P, their spatial and temporal coverage have 
been limited. Using in situ reference measurements available through 
the GBOV service, we performed an extensive validation of SL2P LAI 
retrievals over 19 sites throughout the United States. We also investi-
gated the performance of a modified retrieval approach (SL2P-D). When 
validated against in situ measurements of LAIe, uncertainty re-
quirements were met by SL2P over homogeneous canopies (cultivated 
crops, grasslands, pasture/hay and shrub/scrub), consistent with the 
results of previous validation exercises. However, over heterogeneous 
canopies (deciduous forest, evergreen forest, mixed forest, and woody 
wetlands) SL2P retrievals were subject to underestimation. SL2P-D 
reduced biases over these canopies, slightly improving overall perfor-
mance. At lower LAI values, SL2P-D also resulted in substantially fewer 
invalid retrievals than SL2P. Based on our results, the retrieval approach 
adopted by SL2P-D appears to offer some advantages over regularisation 
using prior information, but RTMs better suited to heterogeneous en-
vironments are likely required to further improve performance. In 
addition to the retrievals themselves, we investigated the relationship 
between predicted uncertainties and observed differences in retrieved 
and in situ LAI and LAIe. For LAIe, our results revealed that SL2P’s 
predicted uncertainties were conservative, indicating they should prove 
useful in determining outer bounds of uncertainty that typically contain 
the reasonable worst-case error, though improved uncertainty estimates 
may be provided by adopting more advanced machine learning ap-
proaches in future work. 
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Appendix A 

SL2P-D is a modification of SL2P (Weiss and Baret, 2016) in an 
attempt to improve its retrieval accuracy for vegetation biophysical 
variables including LAI. This appendix provides a description of the 
training and application of SL2P-D to MSI data. Additional details, such 
as the theoretical basis for the retrieval algorithm and cross-validation 
results are found in Fernandes and Djamai (2019). 

Both SL2P and SL2P-D use a library of non-linear regression models 
based on a multi-layer ANN architecture to predict the variables defined 
in Table A1 and their associated prediction uncertainties, given the in-
puts defined in Table A2. The training data for each ANN corresponds to 
MSI surface reflectance and associated viewing and illumination ge-
ometry as simulated by the coupled PROSPECT and 4SAIL RTMs, 
hereafter referred to as PROSAIL (Jacquemoud et al., 2009), based on 
sampling a joint distribution of model parameters (Table A3), and one 
output corresponding to the target variable or the target prediction 
uncertainty. The target variable is determined from the PROSAIL 
simulation. The target prediction uncertainty is determined by first 
assessing predictions against a testing database of PROSAIL simulations 
and then computing the RMSD of all simulations whose reflectance 
differs from a given input by less than measurement uncertainty 
(‘binning’), whose solar and viewing zenith angles differ by less than 5◦, 

and whose relative azimuth angle differs by less than 10◦. Since per- 
pixel uncertainties are not provided in the L2A products derived using 
Sen2Cor, fixed additive and multiplicative uncertainties are assumed 
(Table A2). These values are considered representative of typical un-
certainties in L2A MSI data (Li et al., 2015; Upreti et al., 2019), as 
demonstrated by previous surface reflectance intercomparison exercises 
(Djamai and Fernandes, 2018; Doxani et al., 2018). 

Both SL2P and SL2P-D share the same ranges and copulas (covaria-
tion relations) for PROSAIL parameters using a single parameterisation 
for all land cover types, the same architecture for each ANN, and the 
same ANN training algorithm. The range of each parameter and copula 
between each parameter and LAI is specified based on the empirical 
range over a global data survey conducted by Weiss and Baret (2016). 
Further details on the survey are provided in Section 3.3.2 of their al-
gorithm theoretical basis document. Each ANN corresponds to a three 
layer network with 11 inputs for the first layer (Table A2), standardised 
to have zero mean and unit standard deviation, each with weighted 
connections to the same five nodes in a hidden layer corresponding to a 
tangent sigmoid function with associated bias, and a final linear output 
layer also with a bias term. Each ANN is initialised with random weights 
and biases drawn from a standardised normal distribution. Back- 
propagation using the Levenberg-Marquardt minimiser implemented 
in MATBLAB is used to minimise the mean square error (MSE) of pre-
dictions over the training data as a function of ANN weights and biases 
using parameters indicated in Table A4. Training is halted if the MSE 
over an independent cross-validation dataset falls below 1% relative 
error, or if six iterations of training over the training database do not 
reduce the MSE (‘early stopping’). In all cases, the ANNs were found by 
early stopping, which is encouraging, as this is an indication that they 
are not overfitting the training data. 

In contrast to SL2P, SL2P-D uses multiple ANNs to retrieve a target 
variable in a two-stage manner. The first network, shared with all 

Table A1 
SL2P-D output variables. Variables in bold are not standard outputs of SL2P.  

Variable Abbreviation Units Description Range 

Fraction of vegetation cover FCOVER 0 to 1 Fraction of horizontal ground area covered by vegetation 0 to 1 
Fraction of absorbed photosynthetically 

active radiation 
FAPAR 0 to 1 Fraction of photosynthetically active radiation absorbed by vegetation 0 to 1 

Leaf area index LAI Dimensionless Half the total live foliage area per unit horizontal ground area 0 to 15 
Canopy chlorophyll content CCC µg cm− 2 Mass of chlorophyll a + b per unit horizontal ground area 0 to 

100 
Canopy water content CWC g m− 2 Mass of water per unit horizontal ground area 0 to 

100 
Albedo (black-sky) A Dimensionless Ratio of top-of-canopy upper hemispherical upwelling radiance to top-of- 

canopy incident direct irradiance 
0 to 1 

Directional area scattering factor DASF Dimensionless Canopy scattering coefficient for a foliage single scattering albedo of one under 
direct irradiance 

0 to 1  

Table A2 
Inputs and associated assumed additive and multiplicative noise for SL2P-D. Note that noise consists of both 
wavelength dependent and independent components (Weiss and Baret, 2016).   

Noise model 

Input Additive noise Multiplicative noise (%) 

Band 2 0.02 4 
Band 3 0.02 4 
Band 4 0.02 4 
Band 5 0.02 4 
Band 6 0.02 4 
Band 7 0.02 4 
Band 8A 0.02 4 
Band 11 0.02 4 
Band 12 0.02 4 
Solar zenith angle (◦) – – 
Viewing zenith angle (◦) – – 
Relative azimuth angle (◦) – –  
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Table A3 
PROSAIL simulation parameter marginal distributions adopted by SL2P-D. For uniform distributions, P1 and P2 correspond to the minimum and maximum values. For 
normal distributions, P1 and P2 correspond to the mean and standard deviation.   

Variable Lower bound Upper bound P1 P2 Classes Distribution 

Canopy LAI 0.0 15 0.0 15.0 8 Uniform 
Average leaf angle (◦) 30 80 30 80 8 Uniform 
Crown cover 1.0 1.0 1.0 1.0 1 Uniform 
Hot spot parameter 0.1 0.5 0.1 0.5 1 Uniform 

Leaf Structural parameter (N) 1.20 2.20 1.20 2.20 8 Uniform 
Chlorophyll a + b (µg cm− 2) 20 90 20 90 8 Uniform 
Dry matter (g cm− 2) 0.0030 0.0110 0.0030 0.0110 8 Uniform 
Relative water content 0.60 0.85 0.60 0.85 4 Uniform 
Brown pigments 0.00 0.20 0.00 0.30 3 Normal 

Soil Soil brightness factor 0.50 3.50 1.20 2.00 4 Normal  

Table A4 
ANN parameters.  

Parameter Description Nominal value 

Number of networks Number of replicate networks 10 
Number of hidden layers Number of hidden layers per network 1 
Transfer function L1 Node transfer function for layer 1 Tangent sigmoid 
Number of neurons L1 Number of neurons for layer 1 5 
Transfer function L2 Node transfer function for layer 2 Linear 
Number of neurons L2 Number of neurons for layer 2 1 
Tolerance Limits for considering out of range retrievals still possible 0.2 
Time of instantaneous FAPAR (HH.MM) Used to document time of the FAPAR used during training 10:00 
Performance regularisation Additional error contribution from mean square magnitudes of weights 0.1 
Epochs Maximum number of sweeps through training database 250 
Performance function Objective function metric used Mean square error 
Goal Stopping error level 1e-3 
Update Algorithm used to update network Levenberg-Marquardt  

Fig. A1. Density plot of DASF retrievals (as used for partitioning) vs. reference DASF values from the 
testing database. 
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variables, corresponds to a prediction of DASF as the target variable. The 
retrieved DASF is then used to select from a library of ANNs, each 
trained using simulations falling within a range of DASF values. The 
ranges are based on the expected precision of DASF retrievals (i.e. 0.05, 
quantified as the standard deviation of differences with respect to the 
testing database), giving 18 networks with DASF ranges of (0.100, 
0.125], (0.125, 0.175], …, (0.875, 1.050], (1.050, 1.200]. 

SL2P-D also differs from SL2P in the simulation databases used. 
Firstly, each simulation also includes DASF as an output variable, cor-
responding to a PROSAIL simulation using the same input parameters 
except for a canopy single scattering albedo of one and soil reflectance of 
zero. DASF varies with the ratio of leaf reflectance to transmittance. As 
this ratio is wavelength dependent, we select the value at 800 nm, where 
it is relatively insensitive to biochemistry (Adams et al., 2018). SL2P-D 
uses uniform marginal distributions for input parameters (Table A3) 
when producing the training, cross-validation and testing databases, in 
contrast to empirical distributions used in SL2P. SL2P-D uses Sobol 
rather than orthogonal sampling, as the former allows for a linear rather 
than geometric increase in samples as the number of parameters and 
parameter levels sampled increases. SL2P-D uses 1,572,864 samples 
across all databases rather than the 42,472 used in SL2P, to allow for 
sufficient sample sizes (at least 10,000) for each second stage ANN used 
for prediction of target variables. 

Both training and testing databases demonstrate relatively high 
values of DASF with the majority exceeding 0.8 (Fig. A1). This is a 
consequence of the homogeneous canopy assumption of PROSAIL, 
resulting in no view of the underlying zero reflectance boundary. Whilst 
the in situ dispersion of DASF is likely broader, we note that here, DASF 
retrievals are used as a relative partitioning variable, and not an unbi-
ased estimator of DASF for heterogeneous canopies. As a consequence, 
DASF retrievals are required to have high precision and a bias that is 
either small or relatively monotonic with respect to reference DASF 
values. For the testing database, the precision of DASF retrievals 
(quantified as the standard deviation of differences) is better than 0.05, 
whilst the magnitude of the bias is less than 0.03 or 3% (Fig. A2). 
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Sánchez-Zapero, J., Camps-Valls, G., 2018. Derivation of global vegetation 
biophysical parameters from EUMETSAT Polar System. ISPRS J. Photogramm. 
Remote Sens. 139, 57–74. https://doi.org/10.1016/j.isprsjprs.2018.03.005. 

Garrigues, S., Shabanov, N.V., Swanson, K., Morisette, J.T., Baret, F., Myneni, R.B., 2008. 
Intercomparison and sensitivity analysis of leaf area index retrievals from LAI-2000, 
AccuPAR, and digital hemispherical photography over croplands. Agric. For. 
Meteorol. 148, 1193–1209. https://doi.org/10.1016/j.agrformet.2008.02.014. 

GCOS, 2019. Essential Climate Variables [WWW Document]. URL https://public.wmo. 
int/en/programmes/global-climate-observing-system/essential-climate-variables 
(accessed 5.2.19). 

Gielen, B., Acosta, M., Altimir, N., Buchmann, N., Cescatti, A., Ceschia, E., Fleck, S., 
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