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Abstract: With a wide range of satellite-derived vegetation bio-geophysical products now available
to users, validation efforts are required to assess their accuracy and fitness for purpose. Substantial
progress in the validation of such products has been made over the last two decades, but quantifica-
tion of the uncertainties associated with in situ reference measurements is rarely performed, and the
incorporation of uncertainties within upscaling procedures is cursory at best. Since current validation
practices assume that reference data represent the truth, our ability to reliably demonstrate com-
pliance with product uncertainty requirements through conformity testing is limited. The Fiducial
Reference Measurements for Vegetation (FRM4VEG) project, initiated by the European Space Agency,
is aiming to address this challenge by applying metrological principles to vegetation and surface
reflectance product validation. Following FRM principles, and in accordance with the International
Standards Organisation’s (ISO) Guide to the Expression of Uncertainty in Measurement (GUM),
for the first time, we describe an end-to-end uncertainty evaluation framework for reference data
of two key vegetation bio-geophysical variables: the fraction of absorbed photosynthetically active
radiation (FAPAR) and canopy chlorophyll content (CCC). The process involves quantifying the
uncertainties associated with individual in situ reference measurements and incorporating these
uncertainties within the upscaling procedure (as well as those associated with the high-spatial-
resolution imagery used for upscaling). The framework was demonstrated in two field campaigns
covering agricultural crops (Las Tiesas–Barrax, Spain) and deciduous broadleaf forest (Wytham
Woods, UK). Providing high-spatial-resolution reference maps with per-pixel uncertainty estimates,
the framework is applicable to a range of other bio-geophysical variables including leaf area index
(LAI), the fraction of vegetation cover (FCOVER), and canopy water content (CWC). The proposed
procedures will facilitate conformity testing of moderate spatial resolution vegetation bio-geophysical
products in future validation exercises.
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1. Introduction

Providing global coverage and routine revisit capabilities, satellite Earth observation
(EO) represents a convenient means of monitoring bio-geophysical variables that describe
the status of the vegetated environment. A wide range of satellite-derived vegetation
bio-geophysical products are now available to users [1–6]. However, if they are to be
quantifiably used in environmental and scientific applications, validation efforts are re-
quired to determine their accuracy and characterise their uncertainty (which defines the
range of possible values an estimate could reasonably represent). By validating products
against independent in situ reference measurements, users are better able to assess fitness
for purpose for their specific application. For example, for modelling and adaptation,
the Global Climate Observing System (GCOS) stipulates a maximum uncertainty of 10% or
0.05 in the case of the fraction of absorbed photosynthetially active radiation (FAPAR) [7].
Additionally, as EO products are further adopted in operational contexts, reliable informa-
tion on compliance with uncertainty requirements will be increasingly important in the
context of regulatory initiatives, auditing efforts, and liability debates [8]. Over the last
two decades, substantial progress in the validation of vegetation bio-geophysical products
has been made, including the development of standard in situ reference measurement
datasets [9–15] and community-agreed best practices [16,17].

Despite progress in the validation of vegetation bio-geophysical products, in current
validation efforts, comprehensive quantification of the uncertainties associated with in situ
reference measurements is rarely performed. Although some studies have investigated spe-
cific sources of uncertainty (e.g., sampling and measurement protocols), current validation
practices assume that in situ reference measurements represent the truth [18,19], limiting
our ability to reliably demonstrate compliance with product uncertainty requirements [8].
It is in this context that the European Space Agency (ESA) has established a series of
projects focused on fiducial reference measurements (FRM), recognising that traceable in
situ reference measurements with documented uncertainties are crucial in providing ‘the
maximum return on investment for a satellite mission by delivering, to users, the required
confidence in data products, in the form of independent validation results and satellite
measurement uncertainty estimation’ [20]. The FRM concept aims to provide a suite of in
situ reference measurements with associated uncertainties that can be used to conduct EO
product validation through conformity testing. The conformity testing process determines
if the estimated target quantity (i.e., the EO-derived estimate) falls within the range of
tolerable values (i.e., the reference estimate) (Figure 1) [8]. It is stated that fiducial reference
measurements should:

1. Have documented SI traceability (or conform to appropriate international community
standards), utilising instruments that have been characterised using metrological standards;

2. Be independent from the satellite bio-geophysical retrieval process;
3. Be accompanied by an uncertainty budget for all instruments, derived measurements

and validation methods;
4. Adhere to community-agreed, published and openly available measurement proto-

cols/procedures and management practices;
5. Be accessible to other researchers allowing independent verification of processing systems.

Managed by ESA and funded under the European Union’s Copernicus programme,
the Fiducial Reference Measurements for Vegetation (FRM4VEG) programme (http://
www.frmveg.org/, accessed on 9 August 2021) aims to develop and establish reliable
and transparent in situ measurement and validation method standards for vegetation
bio-geophysical products initially derived from Sentinel-2, -3, and PROBA-V. Although
the FRM principles are established in domains such as altimetry, sea surface temperature,
and ocean colour [21–25], FRM4VEG is, for the first time, exploring the application of
metrological principles to the validation of satellite-derived parameters over the vegetated
land surface. By demonstrating and contributing to internationally agreed validation
methods and standards, FRM4VEG will provide data users with greater confidence in

http://www.frmveg.org/
http://www.frmveg.org/
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their application of EO-derived vegetation products. Within phase one and two of the
programme, three vegetation bio-geophysical variables are considered: surface reflectance,
FAPAR, and canopy chlorophyll content (CCC). In this paper, we focus on FAPAR and
CCC, whilst activities related to surface reflectance are described in a dedicated paper by
Origo et al. [26].
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The International Standards Organisation (ISO) detail a ‘bottom-up’ approach for
quantifying measurement uncertainties in the Guide to the Expression of Uncertainty
in Measurement (GUM) [27]. The procedure involves the identification of the input
quantities associated with a measurement, and quantification of their associated uncer-
tainties. For field measurements, it should be considered that uncertainties may arise
from pre-field activities (calibration and characterisation), in-field activities (sampling),
and post-processing. Individual sources of uncertainty are termed ‘uncertainty compo-
nents’, and may be quantified using either ‘Type A’ evaluation (statistical treatment such
as calculating the standard error of the mean of a series of repeat measurements) or ‘Type
B’ evaluation (the use of other relevant information such as manufacturers specifications
and data provided in calibration reports). Having identified the measurement equation
(which describes the path from all inputs to the final output quantity) and all relevant
uncertainty components, the combined standard uncertainty of the measurement may then
be determined using the law of propagation of uncertainty.

The procedures described in the GUM provide a basis for quantifying the uncertainties
associated with in situ reference measurements of vegetation bio-geophysical variables
such as FAPAR and CCC. However, due to the heterogeneity of the terrestrial landscape,
direct comparison with in situ reference measurements is inappropriate for the validation
of moderate/coarse spatial resolution (i.e., >100 m) EO products. Instead, in situ reference
measurements must be upscaled to make them representative of one or more EO product
pixels (with selected study sites ideally being large enough to encompass multiple pixels).
Within the last twenty years, an upscaling methodology known as the ‘two-stage’ approach
has been established and gained acceptance within the community, including that of the
Committee on Earth Observations Satellites (CEOS) Working Group on Calibration and
Validation (WGCV) Land Product Validation (LPV) subgroup [16,17]. Fundamentally,
the approach involves establishing a relationship between in situ reference measurements
and the spectral information provided by high-spatial-resolution imagery. A high-spatial-
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resolution reference map of the bio-geophysical variable of interest can then be derived
over the study area. The final step involves the aggregation of the high-spatial-resolution
reference map to the spatial resolution of the EO product under investigation.

Whilst the methodology for upscaling in situ reference measurements of vegetation
bio-geophysical variables is well-established, the incorporation of uncertainties within
the upscaling procedure is not. Some current approaches make use of robust regression
procedures to minimise the influence of outliers in the derivation of transfer functions,
including iteratively reweighted least squares (IRLS) [28] or the Theil–Sen estimator [19].
Nevertheless, quantitative information on measurement uncertainties associated with the
response (i.e., in situ measurements) or explanatory variables (i.e., high-spatial-resolution
imagery) is not explicitly utilised to inform the model fit. Similarly, whilst quality indicators
are provided by some current approaches to identify areas where the transfer function is
extrapolating [28], high-spatial-resolution reference maps are rarely accompanied with
per-pixel uncertainty estimates. With these factors in mind, the objectives of this paper are
to describe an end-to-end framework for:

1. Quantifying the uncertainties associated with in situ reference measurements of
vegetation bio-geophysical variables (FAPAR and CCC), in accordance with the GUM;

2. Upscaling these in situ reference measurements, taking into account in situ mea-
surement uncertainties and uncertainties associated with the high-spatial-resolution
imagery in the derivation of transfer functions;

3. Propagating high-spatial-resolution imagery and transfer function uncertainties
through the upscaling procedure to provide high-spatial-resolution reference maps
with traceable per-pixel uncertainty estimates.

2. Materials and Methods
2.1. Study Sites and In Situ Data Collection

Two dedicated field campaigns were conducted in 2018 over study sites representing
distinct bio-geophysical characteristics, which were selected on the basis of their represen-
tativeness, accessibility, and maturity in terms of previous scientific activities. The first took
place between 2 and 8 June 2018 at the Las Tiesas–Barrax experimental farm (39.0549◦N,
2.1010◦W), which lies approximately 10 km west of Albacete, Castilla-La-Mancha, Spain.
Managed by the Instituto Técnico Agronómico Provincial (ITAP), the site is comprised of
irrigated crops including alfalfa (Medicago sativa), garlic (Allium sativum), rapeseed (Brassica
napus), onion (Allium cepa), sunflower (Helianthus annuus), poppy (Papaver somniferum),
and wheat (Triticum aestivum) (Figure 2). The second campaign was conducted between
3 and 12 July 2018 at Wytham Woods (51.7734◦N, 1.3384◦W), which is located approxi-
mately 5 km west of Oxford, Oxfordshire, United Kingdom. As a long-term research forest
managed by the University of Oxford, the site consists of ancient seminatural woodland,
with oak (Quercus robur), ash (Fraxinus excelsior), beech (Fagus sylvatica), hazel (Corylus
avellana), and sycamore (Acer pseudoplatanus) being the dominant species (Figure 2).

In each campaign, in situ reference measurements were conducted within elementary
sampling units (ESUs) of approximately 20 m × 20 m (Table 1). Each ESU contained 13 to
15 sampling locations (Figure 3). FAPAR was approximated as the instantaneous black-
sky fraction of intercepted photosynthetically active radiation (FIPAR) at 10:30 local solar
time, and was derived from estimates of gap fraction obtained using digital hemispherical
photography (DHP). Due to the strong absorption by photosynthetic pigments in the
PAR domain, previous work has shown the difference between FIPAR and FAPAR to be
minimal [10,29–31].
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Table 1. Number of ESUs characterised for each variable and campaign.

Number of ESUs

Campaign FIPAR CCC

Las Tiesas–Barrax 52 48
Wytham Woods 47 30
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arranged in a systematic pattern, and a further two randomly located sampling locations (not shown).

DHP images were obtained using a Canon EOS 6D digital single lens reflex (DSLR)
camera equipped with a Sigma 8mm F3.5 EX DG fisheye lens, and were processed using
CAN-EYE V6.49 [32]. At Las Tiesas–Barrax, downwards-facing images were acquired
over the crop canopy, whilst both upwards- and downwards-facing images were ac-
quired at Wytham Woods to characterise the understory and overstory layers. Follow-
ing Demarez et al. [33], automatic exposure was adopted. To determine gap fraction,
for downwards-facing images, the operator was masked from analysis before CAN-EYE’s
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interactive classification was used to distinguish between green vegetation and the un-
derlying soil background. For upwards-facing images, large tree trunks were masked to
minimise the influence of woody material, and the interactive classification was then used
to distinguish between the vegetation canopy and the sky.

CCC was determined as the product of leaf chlorophyll concentration (LCC) and leaf
area index (LAI). As with FIPAR, LAI was obtained using DHP; in this case, the mean of two
solutions provided by CAN-EYE (V5.1 and V6.1) was calculated, following Fuster et al. [15].
LCC was determined using a Konica Minolta SPAD-502 chlorophyll meter, which provides
relative values based on the ratio of incident and transmitted radiation at 650 nm and
940 nm. At each sampling location, three leaves were removed from the canopy. At Las
Tiesas–Barrax, where all layers were accessible, these leaves were sampled from the top,
middle, and bottom of the canopy, enabling vertical variations in LCC to be accounted
for. At Wytham Woods, where the top of the canopy was not accessible, leaves were
sampled from the middle and bottom of the tree crowns. Six replicate measurements were
carried out on each leaf, taking care to avoid major veins, which can lead to inaccurate
values [34,35]. ESUs characterised by bare soil were assigned FIPAR and CCC values
of zero.

The relative values provided by the SPAD-502 were converted to absolute units using
calibration functions specific to each vegetation type. For the Wytham Woods campaign,
dedicated calibration data were obtained. This involved the collection of 60 leaves for each
species, spanning a range of LCC (assessed visually in terms of leaf colour). Using a 6 mm
diameter cork borer, a disc was removed from each leaf, and the mean of three SPAD-502
measurements was calculated. The disc was then placed in 5 mL of dimethyl-sulphoxide
(DMSO), administered using a calibrated bottle-top dispenser with adjustable dosing,
before being placed in a drying oven at 65 ◦C overnight to facilitate extraction. Once all
chlorophyll was extracted (indicated by the discs being white in colour), a 3 mL aliquot was
transferred to a 10 mm path length polystyrene cuvette using a transfer pipette. The ab-
sorbance of the sample was then determined at 665 nm and 649 nm using a ThermoFisher
Genesys 50 UV-Vis spectrophotometer. From absorbance measured spectrophotometrically,
the concentrations of chlorophyll-a and -b were determined in µg mL−1 according to
Wellburn [36] as

Ca = 12.19 Abs665 − 3.45 Abs649 (1)

Cb = 21.99 Abs649 − 5.32 Abs665 (2)

where Abs665 and Abs649 are the absorbance values at 665 nm and 649 nm, respectively.
For the Las Tiesas–Barrax campaign, a comparable procedure was followed using cali-

bration data collected during a previous campaign over a similar site, in which 105 leaves
were collected from a range of different crops [37]. For each leaf, two discs were removed
using a copper cylinder, and the mean of six SPAD-502 measurements was determined. In
this case, the leaf discs were extracted in acetone, and the concentrations of chlorophyll-a
and -b in µg mL−1 were determined spectrophotometrically according to Lichtenthaler [38],
such that

Ca = 11.24 Abs661.6 − 2.04 Abs644.8 (3)

Cb = 20.13 Abs644.8 − 4.19 Abs661.6 (4)

where Abs661.6 and Abs644.8 are the absorbance values at 661.6 nm and 644.8 nm, respec-
tively. For both campaigns, once the concentrations of chlorophyll-a and -b were derived,
spectrophotometrically-determined LCC was calculated on a mass per unit area basis
(in g m−2) as

LCCspec =
(Ca + Cb) V

A
(5)

where V is the volume of solvent in which the leaf disc was extracted, and A is the area of
the leaf disc.



Remote Sens. 2021, 13, 3194 7 of 26

Calibration functions relating SPAD-502 values to spectrophotometrically-determined
LCC were derived using orthogonal distance regression (ODR). Unlike other regression
approaches, ODR makes use of uncertainties in predictor and response variables, minimis-
ing the sum of squared orthogonal distances between each data point and the model [39].
Thus, the measurement uncertainties associated with each data point are used to inform
the model fit. The calibration functions (which are reported in Table A1 of Appendix A)
took an exponential form:

LCCSPAD = a eb M (6)

where a and b are regression coefficients determined by ODR, and M is the SPAD-502 value.

2.2. Quantification of In Situ FIPAR Measurement Uncertainties

Three uncertainty components were considered to estimate the uncertainty associated
with in situ FIPAR measurements: levelling, image classification, and sampling (Figure 4).
The standard uncertainty due to levelling was assessed using ‘Type B’ evaluation:
Origo et al. [40] report a relative standard uncertainty in gap fraction of approximately
1% due to acquiring DHP images by hand as opposed to tripod levelling. The remaining
uncertainty components were assessed using ‘Type A’ evaluation. In the case of image
classification, a subset of 16 ESUs were classified by three different operators to assess
how the decisions made by the operator influenced estimated gap fraction, resulting in
a relative standard uncertainty of 4% for FIPAR. Finally, the standard uncertainty due to
sampling was assessed for each ESU on the basis of variability in gap fraction. Variability
was considered at two distinct scales:

• Within-image (i.e., the standard error of the mean gap fraction in each zenith ring,
over all azimuth cells within an image);

• Between-image (i.e., the standard error of the mean gap fraction in each zenith ring,
over all images).

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 27 
 

 

𝐹𝐼𝑃𝐴𝑅௧௧ = 𝐹𝐼𝑃𝐴𝑅௨ + ൫1 − 𝐹𝐼𝑃𝐴𝑅௨൯ 𝐹𝐼𝑃𝐴𝑅ௗ௪ (9)

𝑢(𝐹𝐼𝑃𝐴𝑅௧௧) = ඩൣ൫1 − 𝐹𝐼𝑃𝐴𝑅௨൯ 𝑢(𝐹𝐼𝑃𝐴𝑅ௗ௪)൧ଶ +ൣ(1 − 𝐹𝐼𝑃𝐴𝑅ௗ௪) 𝑢൫𝐹𝐼𝑃𝐴𝑅௨൯൧ଶ  (10)

where 𝐹𝐼𝑃𝐴𝑅௨  and 𝐹𝐼𝑃𝐴𝑅ௗ௪  are the FIPAR values derived using upwards- and 
downwards-facing DHP, whilst 𝑢൫𝐹𝐼𝑃𝐴𝑅௨൯  and 𝑢(𝐹𝐼𝑃𝐴𝑅ௗ௪)  are their respective 
standard uncertainties as determined according to Equation (8). 

2.3. Quantification of In Situ CCC Measurement Uncertainties 
As the product of LAI and LCC, the uncertainty associated with in situ measurements 

of CCC was determined as 𝑢(𝐶𝐶𝐶) = ඥ[𝐿𝐶𝐶 𝑢(𝐿𝐴𝐼)]ଶ + [𝐿𝐴𝐼 𝑢(𝐿𝐶𝐶)]ଶ (11)

where 𝑢(𝐿𝐴𝐼) and 𝑢(𝐿𝐶𝐶) are the standard uncertainties in LAI and LCC, respectively. 
The calculation of these two uncertainty components is described in Sections 2.3.1 and 
2.3.2. 

 
Figure 4. Uncertainty tree diagram illustrating the components contributing to uncertainty in 
DHP-derived FIPAR and LAI values. 

2.3.1. LAI Uncertainty Estimation 
To estimate the uncertainty associated with in situ LAI measurements, four uncer-

tainty components were considered: levelling, image classification, sampling, and differ-
ences between analysis methods (Figure 4). As for FIPAR, the standard uncertainty due 
to levelling was assessed using ‘Type B’ evaluation: in the case of LAI, Origo et al. [40] 
report a relative standard uncertainty of approximately 2%. Again, the remaining uncer-
tainty components were assessed using ‘Type A’ evaluation. For image classification, the 
operator-influence experiments described in Section 2.2 resulted in a relative standard un-
certainty in LAI of 12%. As for FIPAR, the standard uncertainty due to sampling was as-
sessed on the basis of variability in gap fraction (Section 2.2). Finally, the standard uncer-
tainty due to differences between analysis methods was determined as the standard error 
of the mean of the V5.1 and V6.1 solutions. 

Unfortunately, propagating the standard uncertainties in gap fraction due to sam-
pling through the look-up-table inversion approaches used by CAN-EYE to estimate LAI 

Figure 4. Uncertainty tree diagram illustrating the components contributing to uncertainty in DHP-derived FIPAR and
LAI values.

The two terms were then added in quadrature, such that

usamp(FIPAR) =

√√√√√
 1

n

√√√√ n

∑
j = 1

σx[P(θi)within]j
2

2

+ σx[P(θi)between]
2 (7)
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where σx[P(θi)within] and σx[P(θi)between] represent within- and between-image variability
in gap fraction (quantified as the standard error of the mean, denoted σx). The gap fraction
in zenith ring i, with a central zenith angle of θ, is denoted P(θi), whilst j represents the
image in question.

To obtain the combined standard uncertainty in FIPAR, all considered components
were added in quadrature, such that

u(FIPAR) =
√

ulevel(FIPAR)2 + uclass(FIPAR)2 + usamp(FIPAR)2 (8)

where ulevel(FIPAR), uclass(FIPAR), and usamp(FIPAR) are the standard uncertainties
in FIPAR due to instrument levelling, image classification, and sampling, respectively.
At Wytham Woods, measurements using upwards- and downwards-facing DHP were used
to characterise the overstory and understory vegetation, such that

FIPARtotal = FIPARup +
(
1 − FIPARup

)
FIPARdown (9)

u(FIPARtotal) =

√√√√ [(
1 − FIPARup

)
u(FIPARdown)

]2
+[

(1 − FIPARdown) u
(

FIPARup
)]2 (10)

where FIPARup and FIPARdown are the FIPAR values derived using upwards- and downwards-
facing DHP, whilst u

(
FIPARup

)
and u(FIPARdown) are their respective standard uncertainties

as determined according to Equation (8).

2.3. Quantification of In Situ CCC Measurement Uncertainties

As the product of LAI and LCC, the uncertainty associated with in situ measurements
of CCC was determined as

u(CCC) =

√
[LCC u(LAI)]2 + [LAI u(LCC)]2 (11)

where u(LAI) and u(LCC) are the standard uncertainties in LAI and LCC, respectively.
The calculation of these two uncertainty components is described in Sections 2.3.1 and 2.3.2.

2.3.1. LAI Uncertainty Estimation

To estimate the uncertainty associated with in situ LAI measurements, four uncertainty
components were considered: levelling, image classification, sampling, and differences
between analysis methods (Figure 4). As for FIPAR, the standard uncertainty due to
levelling was assessed using ‘Type B’ evaluation: in the case of LAI, Origo et al. [40] report
a relative standard uncertainty of approximately 2%. Again, the remaining uncertainty
components were assessed using ‘Type A’ evaluation. For image classification, the operator-
influence experiments described in Section 2.2 resulted in a relative standard uncertainty
in LAI of 12%. As for FIPAR, the standard uncertainty due to sampling was assessed on
the basis of variability in gap fraction (Section 2.2). Finally, the standard uncertainty due to
differences between analysis methods was determined as the standard error of the mean of
the V5.1 and V6.1 solutions.

Unfortunately, propagating the standard uncertainties in gap fraction due to sampling
through the look-up-table inversion approaches used by CAN-EYE to estimate LAI is not
straightforward. Therefore, an estimate of the standard uncertainty in LAI due to sampling
was determined by propagating the standard uncertainties in gap fraction values through
the Warren-Wilson method [41], making use of Lang and Yueqin’s approach [42] to account
for foliage clumping, such that

usamp(LAI) =
σx[ln P(θ57.5◦)]

0.93
(12)
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where σx[ln P(θ57.5◦)] is the variability in the natural logarithm of gap fraction values at
57.5◦, determined as in Equation (7). Note that the V6.1 solution provided by CAN-EYE is
constrained to provide results close to those obtained using Warren-Wilson’s method [32],
meaning that the resulting standard uncertainties are likely of a similar magnitude to those
associated with CAN-EYE’s look-up-table inversion approaches, and represent a good
first-order approximation.

To obtain the combined standard uncertainty in LAI, all considered components were
added in quadrature, such that

u(LAI) =
√

ulevel(LAI)2 + uclass(LAI)2 + usamp(LAI)2 + umethod(LAI)2 (13)

where ulevel(LAI), uclass(LAI), usamp(LAI), and umethod(LAI) are the standard uncertain-
ties in LAI due to instrument levelling, image classification, sampling, and differences
between analysis methods, respectively. At Wytham Woods, LAI was derived as the sum
of the understory and overstory components (as obtained using upwards- and downwards-
facing DHP). In this case, the standard uncertainty in total LAI was calculated as

u(LAItotal) =

√
u
(

LAIup
)2

+ u(LAIdown)
2 (14)

where u
(

LAIup
)

and u(LAIdown) are the standard uncertainties in LAI derived using upwards-
and downwards-facing DHP, respectively, as determined according to Equation (13).

2.3.2. LCC Uncertainty Estimation

In terms of individual in situ LCC measurements, two sources of uncertainty must be
considered: those inherent to the SPAD-502, and those related to the calibration function.
The uncertainties inherent to the SPAD-502 are easily assessed using ‘Type B’ evaluation,
and include accuracy, repeatability, reproducibility, temperature drift, and resolution
(Figure 5) [43]. As such, the standard uncertainty in SPAD-502 values was determined as

u(M) =
√

uacc(M)2 + urep(M)2 + urepro(M)2 + utemp(M)2 + ures(M)2 (15)

where uacc(M), urep(M), urepro(M), utemp(M), and ures(M) are the standard uncertain-
ties in SPAD-502 values due to accuracy, repeatability, reproducibility, temperature drift,
and resolution, respectively.
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On the other hand, the uncertainties related to the calibration function are dependent
on the uncertainties inherent to the SPAD-502, in addition to those associated with the
instruments and apparatus used to determine LCC spectrophotometrically. These include
various uncertainty sources related to the spectrophotometer (i.e., photometric accuracy,
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repeatability, noise, drift, stray light, baseline flatness, and resolution) [44,45], in addition
to the volume of extraction solvent released by the dispenser [46], and the area of the leaf
disc extracted by the cork borer (Figure 6). These uncertainties can also be assessed using
‘Type B’ evaluation [45,46], with the exception of the latter term, which we assessed by
removing discs from a subset of 60 leaves, measuring their area using a flatbed scanner,
and determining the standard error of the mean.
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It is worth noting that some terms, such as photometric accuracy, noise, and stray
light, are dependent on the measured absorbance itself. For these terms, the corresponding
uncertainty was determined by linearly interpolating between specifications provided by
the manufacturer at different absorbance values. An additional source of uncertainty is
related to the accuracy and repeatability of wavelength selection. Experiments in which the
measured wavelength was adjusted by ±1 nm were carried out over a range of samples to
assess the influence of these components. As the resulting error in absorbance was found
to lie within the overall photometric uncertainty, these wavelength related components
were not considered further.

Taking into account all the uncertainty sources related to the spectrophotometer,
the standard uncertainty in absorbance measured at a given wavelength was obtained as

u(Absλ) =

√√√√ uacc(Absλ)
2 + urep(Absλ)

2 + unoise(Absλ)
2 + udri f t(Absλ)

2

+ustray(Absλ)
2 + u f lat(Absλ)

2 + ures(Absλ)
2 (16)

where uacc(Absλ), urep(Absλ), unoise(Absλ), udri f t(Absλ), ustray(Absλ), u f lat(Absλ),
and ures(Absλ) are the standard uncertainties in absorbance at wavelength λ due to pho-
tometric accuracy, repeatability, noise, drift, stray light, baseline flatness, and resolution,
respectively [44]. By propagating the uncertainties in absorbance values through the spec-
trophotometric equations described in Section 2.1, we could then obtain the standard
uncertainties in chlorophyll-a and -b concentrations. For example, using the equations
of Wellburn [36] for DMSO Equations (1) and (2), the standard uncertainties were deter-
mined as

u(Ca) =

√
[12.19 u(Abs665)]

2 + [3.45 u(Abs649)]
2 (17)

u(Cb) =

√
[21.99 u(Abs649)]

2 + [5.32 u(Abs665)]
2 (18)
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where u(Abs665) and u(Abs649) are the standard uncertainties in absorbance at 665 nm and
649 nm, respectively. Finally, the combined standard uncertainty in spectrophotometrically-
determined LCC on a mass per unit area basis was derived as

u
(

LCCspec
)
=

√[
V
A

u(Ca)

]2
+

[
V
A

u(Cb)

]2
+

[
Ca + Cb

A
u(A)

]2
+

[
V (Ca + Cb)

A2 u(V)

]2
(19)

where u(V) and u(A) are the uncertainties in the volume of solvent dispensed and area of
the leaf disc, respectively.

As described in Section 2.1, calibration functions were derived using ODR [39],
in which the uncertainties in both SPAD-502 values and spectrophotometrically-derived
LCC were used to inform the model fit. To determine the standard uncertainty associated
with calibrated LCC values, the uncertainties in both the SPAD-502 values and calibration
coefficients were propagated through the calibration function Equation (6). Correlation
was accounted for, such that

u(LCCSPAD) =

√√√√√√√
[
eb M u(a)

]2
+
[

a M eb M u(b)
]2

+
[

a b eb M u(M)
]2

+2
[

eb M a b eb M u(a, b) + eb M a M eb M u(a, M)
+a b eb M a M eb M u(M, b)

] (20)

where u(a) and u(b) are the standard uncertainties of the calibration coefficients provided
by ODR, and u(a, M), u(a, b), and u(M, b) are covariance terms.

Because the mean of multiple in situ measurements was taken to represent each ESU,
the uncertainties associated with each individual observation were finally propagated
through the calculation of the mean, whilst the standard error of the mean was calculated
to reflect uncertainty due to sampling. Thus, the combined standard uncertainty in SPAD-
derived LCC at the ESU level was determined by adding these two terms in quadrature,
such that

u(LCC) =

√√√√[ 1
n

√
n

∑
i = 1

u(LCCSPADi)
2

]2

+ σx(LCCSPAD)
2 (21)

where σx(LCCSPAD) is the standard error of the mean of LCC observations within the ESU.

2.4. Estimation of Uncertinaites in High-Spatial-Resolution Imagery

Sentinel-2 Multispectral Instrument (MSI) imagery acquired within one week of in
situ data collection was used for the purposes of upscaling in situ reference measurements.
MSI provides data in 13 spectral bands at visible, near-infrared, and shortwave-infrared
wavelengths, including three bands positioned in and around the red-edge, making it
well-suited to upscaling FIPAR and CCC data. Currently, per-pixel uncertainties are not
provided within MSI L1C or L2A products. However, the Sentinel-2 Radiometric Un-
certainty Tool (RUT) developed by Gorroño et al. [47] enables per-pixel uncertainties to
be estimated for L1C top-of-atmosphere reflectance products. Whilst such a tool is not
yet available for L2A bottom-of-atmosphere reflectance products, because our upscaling
approach is based on an empirical transfer function using a single image and the atmo-
spheric conditions could be considered constant over the 5 km x 5 km study site extent,
atmospheric correction was not mandatory [17,28]. The RUT currently incorporates the
following uncertainty components, which are combined in accordance with the GUM [47]:

• Instrument noise (shot, thermal etc. noise introduced by the detectors);
• Out-of-field straylight systematic (telescope out-of-field light that results in a posi-

tive bias)*;
• Out-of-field straylight random (telescope out-of-field light that results in a random

spatial dispersion);
• Crosstalk (focal plane (optical) and front-end electronics (electrical) interband signal);
• Analogue-to-digital conversion quantisation (at MSI’s video chain unit);
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• Dark signal stability (residual thermal fluctuations of the detector offset along the or-
bit)*;

• Gamma knowledge (knowledge on the correction for nonlinearity and nonuniformity);
• Diffuser absolute knowledge (knowledge on the diffuser reflectance factor)*;
• Diffuser temporal knowledge (estimated effect of diffuser degradation)*;
• Diffuser cosine effect (cosine correction knowledge as a consequence of angular noise)*;
• Diffuser straylight residual (residual of the correction of the stray-light during in-flight

diffuser calibration)*;
• L1C image quantisation (effect of the finite resolution of the L1C reflectance factor).

For consistency with the extent of the sampled ESUs, and to take advantage of MSI’s
red-edge bands, L1C top-of-atmosphere reflectance values were aggregated to a common
20 m spatial resolution using mean value downsampling. However, mean value down-
sampling cannot be used to correctly propagate the per-pixel uncertainties provided by the
RUT through the aggregation procedure, since several uncertainty components (marked
with * above) are considered to be correlated in space. Instead, the ‘select/deselect’ ap-
proach described by Gorroño et al. [48] was adopted. This involved running the RUT twice,
enabling the uncertainty components that are uncorrelated in space to be separated from
those that are correlated in space. The standard uncertainty in the aggregated pixel values
was then taken as the mean of the two RUT outputs [48].

2.5. Derivation of Transfer Functions Accounting for Uncertainties and Production of
High-Spatial-Resolution Reference Maps with Per-Pixel Uncertainty Estimates

To enable uncertainties associated with the in situ reference measurements and high-
spatial-resolution imagery to be used by the fitting procedure, as with the SPAD-502
calibration functions, ODR was used to derive transfer functions for upscaling [39]. Trans-
fer functions were established between in situ reference measurements and one of three
vegetation indices (depending on the study site and bio-geophysical variable). For FIPAR,
the normalised difference vegetation index (NDVI) [49] was used for both campaigns
as a result of its known near-linear association [50]. For CCC, the Sentinel-2 Terrestrial
Chlorophyll Index (S2TCI) [51,52] was used for the Las Tiesas–Barrax campaign, whilst
the Inverted Red Edge Chlorophyll Index (IRECI) [51] was found to provide better perfor-
mance for the Wytham Woods campaign. The NDVI, S2TCI and IRECI were calculated
as

NDVI =
B8 − B4
B8 + B4

(22)

S2TCI =
B6 − B5
B5 − B4

(23)

IRECI =
B7 − B4
B5/B6

(24)

where B8, B7, B6, B5, and B4 are top-of-atmosphere reflectance values in MSI bands centred
at 842 nm, 783 nm, 740 nm, 705 nm and 665 nm, respectively. Standard uncertainties were
determined as

u(NDVI) =

√√√√[ 2 B4

(B8 + B4)2 u(B8)

]2

+

[
2 B8

(B8 + B4)2 u(B4)

]2

(25)

u(S2TCI) =

√√√√[ 1
B5 − B4

u(B6)
]2

+

[
B4 − B6

(B5 − B4)2 u(B5)

]2

+

[
B6 − B5

(B5 − B4)2 u(B4)

]2

(26)

u(IRECI) =

√[
B6
B5

u(B7)
]2

+

[
B6
B5

u(B4)
]2

+

[
B6 (B4 − B7)

B52 u(B5)
]2

+

[
B7 − B4

B5
u(B6)

]2
(27)
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where u(B8), u(B7), u(B6), u(B5), and u(B4) are the standard uncertainties in top-of-
atmosphere reflectance values provided by the RUT for MSI bands centred at 842 nm,
783 nm, 740 nm, 705 nm and 665 nm, respectively. Note that for the Las Tiesas–Barrax
campaign, seven alfalfa ESUs were excluded from the derivation of the transfer functions
because the crop had been thinned prior to the MSI acquisition, but after the in situ
measurements were made.

Once fit, the transfer functions were used to derive high-spatial-resolution reference
maps of FIPAR and CCC over the 5 km × 5 km extent of each study site. Since linear
transfer functions were adopted, FIPAR and CCC were derived as

y = a x + b (28)

where x is the associated vegetation index, and a and b are the regression coefficients
provided by ODR. An analysis to verify that linear transfer functions were the most
appropriate is presented in Appendix B. Accounting for correlation, per-pixel uncertainties
were derived as

u(y) =

√
[x u(a)]2 + [a u(x)]2 + u(b)2 + 2[x a u(a, x) + x u(a, b) + a u(x, b)] (29)

where u(a) and u(b) are the standard uncertainties of regression coefficients provided by ODR,
u(x) is the standard uncertainty in the vegetation index as determined in Equations (25)–(27),
and u(a, x), u(a, b), and u(x, b) are covariance terms.

Following CEOS WGCV LPV good practices [16], in addition to the derived FIPAR
and CCC values and their uncertainties, a categorical quality flag layer was produced
to identify areas in which the transfer function was acting as an extrapolator (and there-
fore might provide less reliable outputs). This was achieved by identifying pixels lying
within the multispectral convex hull of the sampled ESUs, following the approach of Mar-
tinez et al. [28]. Both ‘strict’ and ‘large’ convex hulls were defined (the latter by assuming
5% noise in the high-spatial-resolution imagery). Pixels within the ‘strict’ convex hull
were not subject to extrapolation and could be categorised as high confidence. Pixels lying
outside of the ‘strict’ convex hull, but within the ‘large’ convex hull could be categorised as
good confidence. Pixels lying outside of the ‘large’ convex hull represented extrapolation
and were categorised as low confidence.

The derived high-spatial-resolution reference maps were primarily evaluated using
leave-one-out cross validation. Overall agreement was quantified in terms of the coeffi-
cient of determination (r2), root mean square error (RMSE), and relative RMSE (RRMSE),
the latter of which was computed by dividing the RMSE by the mean of the reference
values. To benchmark our ODR-based upscaling approach against current state-of-the-art
techniques, we also derived transfer functions and high-spatial-resolution reference maps
using ordinary least squares (OLS) and IRLS regression. As a robust regression procedure,
IRLS has been previously used by the CEOS WGCV LPV community to minimise the
influence of outliers in the derivation of transfer functions [28], whilst OLS, which does
not consider measurement uncertainties in the predictor or response variables, remains
a widely used approach. A pixel-to-pixel comparison of the ODR- and OLS/IRLS-based
high-spatial-resolution reference maps was conducted, and agreement was quantified
using the r2, root mean square difference (RMSD), and relative RMSD (RRMSD).

3. Results
3.1. In Situ Reference Measurements

As a result of their distinct bio-geophysical characteristics, the in situ reference mea-
surements acquired during the FRM4VEG field campaigns varied substantially between
the two study sites. In situ FIPAR measurements ranged from 0.00 to 1.00 in the Las Tiesas–
Barrax campaign, with a mean of 0.58 and median of 0.91 (Figure 7a). On average, higher
FIPAR values were experienced at Wytham Woods, where in situ measurements ranged
from 0.00 to 0.98, but with a mean and median of 0.80 and 0.90, respectively (Figure 7a).
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Considerably less variability was observed in the in situ measurements at Wytham Woods
(standard deviation = 0.02) when compared to the Las Tiesas–Barrax campaign (stan-
dard deviation = 0.29) (Figure 7a). Average in situ FIPAR measurement uncertainties
were comparable in both campaigns (mean and median = 0.04), but were more variable
in the Wytham Woods campaign (range = 0.07, standard deviation = 0.02) than at Las
Tiesas–Barrax (range = 0.04, standard deviation = 0.01) (Figure 7b).
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As expected, an opposite pattern was observed for CCC, with lower average values
obtained in the Wytham Woods campaign (mean = 0.95 g m−2, median = 0.96 g m−2) than at
Las Tiesas–Barrax (mean = 1.21 g m−2, median = 1.12 g m−2) (Figure 7c). Again, however, in
situ CCC measurements were less variable at Wytham Woods (range = 2.16 g m−2, standard
deviation = 0.59 g m−2) than in the Las Tiesas–Barrax campaign (range = 3.31 g m−2, stan-
dard deviation = 0.96 g m−2) (Figure 7c). In contrast to FIPAR, higher and more variable in
situ CCC measurement uncertainties were observed at Las Tiesas–Barrax (mean = 0.17 g m−2,
median = 0.15 g m−2, range = 0.52 g m−2, standard deviation = 0.13 g m−2) than in the
Wytham Woods campaign (mean = 0.10 g m−2, median = 0.11 g m−2, range = 0.25 g m−2,
standard deviation = 0.06 g m−2) (Figure 7d), though the magnitude of the CCC values in
each campaign should be borne in mind when interpreting these uncertainties.

3.2. High-Spatial-Resolution Reference Maps

As with the in situ reference measurements, differences in the range and distribution
of FIPAR and CCC values were observed between study sites in the derived high-spatial-
resolution reference maps, with lower FIPAR and higher CCC values observed at Las
Tiesas–Barrax (Figure 8) when compared to the Wytham Woods campaign (Figure 9).
From the high-spatial-resolution reference maps over Las Tiesas–Barrax, cropped and bare
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fields were clearly identifiable, and differences in the condition of vegetation within indi-
vidual fields were also apparent (Figure 8). These intrafield variations were more clearly
distinguished in terms of CCC than FIPAR. Fields demonstrating high FIPAR values were
not always characterised by high CCC, highlighting the different (but complementary)
information provided by the two bio-geophysical variables. For FIPAR, uncertainties ap-
peared to be predominantly correlated with FIPAR magnitude, whereas for CCC, patterns
were less clear (Figure A1 in Appendix C). Whilst the minimum uncertainty associated
with a given CCC value increased with CCC magnitude (such that the lower uncertainties
occurred only at lower CCC values), higher uncertainties did occur at all CCC magnitudes.
We hypothesise that pixels with higher uncertainties at low to mid CCC values represented
crop types that were not sampled (and so were not incorporated in the data used to train
the transfer functions) (Figure 8). Indeed, for CCC values between 0.0 and 0.5 g m−2,
the highest uncertainties were associated with pixels for which the transfer function was
acting as an extrapolator according to the convex hull-based quality flag layer (Figure A1
in Appendix C).
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the Las Tiesas–Barrax campaign.

At Wytham Woods, the high-spatial-resolution reference maps permitted easy identifi-
cation of the woodland, which had the highest FIPAR and CCC values, whilst lower values
were associated with the surrounding fields and nonvegetated areas (Figure 9). Within the
woodland, variations in vegetation condition were more clearly distinguished in terms of
CCC than FIPAR. In contrast to the patterns observed at Las Tiesas–Barrax, uncertainties in
CCC appeared to be predominantly controlled by CCC magnitude, whereas the greatest
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uncertainties in FIPAR occurred at low to mid FIPAR values (Figure A2 in Appendix D),
representing areas outside of the woodland (Figure 9). Since these areas were not sampled in
the field campaign, they were not incorporated in the transfer function’s training data, and as
a result uncertainties over these areas would be expected to be higher. Again, the convex
hull-based quality flag layer indicated that over the areas with the highest uncertainties in
FIPAR, the transfer function was acting as an extrapolator (Appendices C and D).
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The performance of the high-spatial-resolution reference maps, as assessed using
leave-one-out cross validation, varied between bio-geophysical variable and study site.
The FIPAR reference maps were characterised by the highest r2

CV and lowest RRMSECV
values (r2

CV = 0.96, RRMSECV = 6.10% to 15.12%), indicating the transfer functions were
better able to retrieve FIPAR than CCC, for which lower r2

CV and higher RRMSECV values
were obtained (r2

CV = 0.50 to 0.92, RRMSECV = 25.76% to 48.99%) (Figure 10). This reflects
the greater relative uncertainties associated with the in situ CCC measurements used to
train the transfer functions (Figure 7), which, as the product of LAI and LCC, incorporate
numerous additional sources of uncertainty. When combined with uncertainties inherent to
the Sentinel-2 MSI imagery, this explains the reduced accuracy for CCC. It is worth noting
that because the in situ reference measurements and high-spatial-resolution reference
maps were accompanied by uncertainty estimates, the expanded uncertainty (k = 2) of the
derived RMSECV and RRMSECV values could also be calculated. As expected, the standard
uncertainties within these statistics were highest for CCC (Figure 10).
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In terms of the comparison of our upscaling method with the current state-of-the-art,
the ODR- and OLS/IRLS-based high-spatial-resolution reference maps of FIPAR demon-
strated a high degree of consistency (r2 = 1.00, RMSD = 0.01 to 0.02, RRMSD = 1.41%
to 4.67%) (Figures 11 and 12), providing confidence that the approach represents a suit-
able alternative. Good correspondence was also obtained in the case of CCC (r2 = 1.00,
RMSD = 0.06 to 0.21, RRMSD = 3.05% to 24.56%), though with some disagreement at
Wytham Woods, where the OLS- and IRLS-based high-spatial-resolution reference maps
provided systematically higher CCC values then the ODR-based one (Figures 11 and 12).
This reflects the fact that ODR reduces the weight of points with larger measurement uncer-
tainties in the predictor and response variables (Figure 10), whereas IRLS simply reduces
the weight of points with larger residuals, regardless of the measurement uncertainty
associated with each point. Meanwhile, OLS applies no weighting. It is worth noting that
although absolute in situ CCC measurement uncertainties were lower at Wytham Woods
than at Las Tiesas–Barrax (Figure 7), relative to the magnitude of the CCC measurements
themselves, the uncertainties at Wytham Woods were, in fact, greater. In future work,
it may, therefore, be beneficial to derive relative uncertainties, for example by normalising
by the magnitude (or mean) of the variable in question.
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4. Discussion
4.1. Utility of End-to-End Uncertainty Evaluation for Conformity Testing

Although considerable progress in the validation of vegetation bio-geophysical prod-
ucts has been made over the past two decades, a lack of in situ reference measurement
uncertainty quantification has limited our ability to reliably demonstrate compliance with
product uncertainty requirements through conformity testing [8], whilst the incorporation
of uncertainties within upscaling procedures has remained poorly addressed. Following
FRM principles and adopting a metrological approach, we developed an end-to-end un-
certainty evaluation framework for quantifying the uncertainties associated with in situ
reference measurements of FIPAR and CCC, and incorporating these uncertainties (as
well as those associated with high-spatial-resolution imagery) within the upscaling proce-
dure. Importantly, the proposed uncertainty evaluation procedures are equally applicable
to other relevant bio-geophysical variables such as leaf area index (LAI), the fraction of
vegetation cover (FCOVER), and canopy water content (CWC). By providing high-spatial-
resolution reference maps with per-pixel uncertainty estimates, the FRM4VEG procedures
will facilitate conformity testing of moderate spatial resolution vegetation bio-geophysical
products. Instead of assuming that upscaled in situ reference measurements represent the
truth, in future validation exercises, it will be possible to determine a product’s compliance
with uncertainty requirements in a robust and traceable manner.

Though the scope of this study was limited to in situ reference measurement un-
certainty evaluation, for conformity testing to be most successful, there is also room for
advances in the uncertainty evaluation techniques used by the EO products themselves.
As recently noted [53], many vegetation bio-geophysical products are now providing some
form of uncertainty estimate, but this is often a statistical measure associated with the
retrieval scheme (for example, the standard deviation of candidate solutions within a
look-up table or as provided by machine learning regression algorithms such as Gaussian
process regression) [1,5,6,54]. In contrast, few products adopt a metrological approach
explicitly incorporating all relevant terms of the uncertainty budget [55–58]. In an ideal
case, uncertainty estimates accompanying EO products should also be derived in an end-
to-end manner, propagating uncertainties associated with L1 radiometry through to L2
atmospheric correction [26] and the subsequent bio-geophysical retrieval scheme.

4.2. Limitations and Potential Refinements

Whilst the uncertainty evaluation framework described in this paper represents an
important step towards the metrological treatment of vegetation bio-geophysical product
validation, it could be further extended and refined. For example, in terms of quantifying
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uncertainties for the DHP-derived in situ reference measurements, although several major
uncertainty components were considered, other sources of uncertainty (including exposure
settings and sub-optimal illumination conditions) were not, meaning that the uncertainties
associated with the in situ measurements may be somewhat optimistic. These factors, to
which DHP-derived variables are known to be sensitive [33,59–65], should be investigated
in future work. A further source of uncertainty that was not explicitly considered in
this study is the difference between FIPAR and FAPAR. Though the difference between
these two quantities is typically considered to be minimal [10,29–31], Gobron et al. [30]
demonstrated that errors of up to 0.1 can occur over very bright backgrounds, whilst
Putzenlechner et al. [66] suggest that two-flux FIPAR may overestimate four-flux FAPAR
in forest environments. In future work, the uncertainty associated with this assumption
should be better quantified and could be incorporated as an additional uncertainty compo-
nent.

For the in situ reference measurements of LCC at Wytham Woods, the fact that leaves
could not be sampled from the top of the tree crowns might also introduce some degree
of bias. For example, in a temperate mixed forest, Gara et al. [67] found statistically
significant differences in upper and lower canopy LCC during the summer, though these
differences were considerably lower than for other investigated leaf traits and were not
statistically significant during the spring or autumn. In terms of deciduous broadleaf
species, for ash, birch, and elm, Koike et al. [68] found LCC was highest in the middle of
the canopy, whereas, for alder and walnut, the greatest LCC values occurred at the top of
the canopy, and, for maple and basswood, LCC decreased throughout the vertical profile.
The varied nature of these previous findings indicates a need for further investigation,
and taking advantage of recently extended monitoring tower, an experiment to assess
vertical variations in LCC at Wytham Woods is planned under phase two of FRM4VEG.

In addition to incorporating further uncertainty components, another area where
the proposed uncertainty evaluation framework could be improved is in the handling
of correlation. Since the correlation between uncertainty terms related to the in situ
reference measurements was often unknown, independence was assumed in the majority
of uncertainty propagation equations described in this study. In future work, incorporation
of the best available knowledge on correlation could be envisaged, even if only to assume
terms are fully correlated, partially correlated, or fully uncorrelated, as was done by
Gorroño et al. [48]. Furthermore, the uncertainty evaluation procedures developed should
be applied to other instruments used for measuring bio-geophysical variables, such as the
LI-COR LAI-2200 and Meter Group AccuPar LP-80 devices. Since they operate on similar
principles, the methods described in this paper are also applicable to these instruments.

In terms of upscaling, a refinement to the procedure presented in this study would in-
volve the use of L2A bottom-of-atmosphere MSI data as opposed to L1C top-of-atmosphere
MSI data, once a L2 RUT is available. Because empirical transfer functions using a single
high-spatial-resolution image per campaign were adopted, and because atmospheric con-
ditions could be considered constant over the extent of each site, atmospherically corrected
data were not necessary in this study [17,28]. However, if in situ reference measurements
and high-spatial-resolution imagery acquired over multiple dates were to be used, at-
mospheric correction would be required. As an increasing number sites are equipped
with permanent, automated instrumentation, this will become an important consideration,
since consistent time-series of high-spatial-resolution imagery are needed to upscale the
temporally continuous in situ data provided by such systems [69,70]. It is worth noting
that the development of a L2 RUT for the Sentinel-2 mission is the subject of a recently
initiated ESA-funded project [71].

Having demonstrated the uncertainty evaluation framework over two sites of distinct
bio-geophysical characteristics, the next phase of FRM4VEG will focus on refining the
procedures developed in phase one, and applying them in additional field campaigns.
Using the consolidated data, it should be possible to identify the most common and
substantial uncertainty contributors and inform future in situ sampling and measurement
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protocols accordingly. In addition to further field campaigns, detailed consideration will
be given to the use of permanent instrumentation [72–79]. This will include a review of site
deployment considerations and an initial plan for the establishment of permanent ESA-
supported FRM4VEG ‘supersites’. Finally, to increase the volume of FRM-compliant data
available for vegetation bio-geophysical product validation, it is also anticipated that the
FRM4VEG uncertainty evaluation procedures will be adopted, where applicable, by other
related validation efforts, such as the Copernicus Ground Based Observations for Validation
(GBOV) service [9]. Combined, these activities will provide a rich resource of reference
data which can be exploited in future validation exercises for product conformity testing.

5. Conclusions

In this study, we developed and applied an end-to-end uncertainty evaluation frame-
work for quantifying the uncertainties associated with FAPAR and CCC reference data.
These procedures, which provide high-spatial-resolution reference maps with per-pixel
uncertainty estimates, will facilitate conformity testing of moderate spatial resolution
vegetation bio-geophysical products. Rather than assuming reference data represent the
truth, it will, therefore, be possible to determine a product’s compliance with uncertainty
requirements in a robust manner. Having demonstrated the uncertainty evaluation frame-
work in two field campaigns, future work will focus on extending and refining the FRM
procedures to incorporate additional sources of uncertainty, applying them to additional
sites and bio-geophysical variables, and investigating their applicability to permanent
instrumentation in addition to traditional field campaign-based measurements performed
under other validation projects and initiatives.
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Appendix A

Table A1. Calibration functions relating SPAD-502 values to spectrophotometrically-determined LCC in g m−2 and
associated performance statistics derived though leave-one-out cross-validation.

Vegetation Type Calibration Function r2
CV RMSECV (g m−2) NRMSECV (%)

Ash LCCSPAD = 0.05 e0.05 M 0.95 0.03 15.86
Beech LCCSPAD = 0.01 e0.08 M 0.96 0.02 26.27
Birch LCCSPAD = 0.06 e0.05 M 0.89 0.04 21.22
Crops LCCSPAD = 0.07 e0.03 M 0.77 0.04 12.49
Elm LCCSPAD = 0.01 e0.10 M 0.78 0.03 33.32

https://frm4veg.org/
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Table A1. Cont.

Vegetation Type Calibration Function r2
CV RMSECV (g m−2) NRMSECV (%)

Hawthorn LCCSPAD = 0.04 e0.05 M 0.92 0.03 17.68
Hazel LCCSPAD = 0.02 e0.06 M 0.89 0.04 31.21

Horse chestnut LCCSPAD = 0.03 e0.07 M 0.91 0.04 23.56
Oak LCCSPAD = 0.15 e0.03 M 0.72 0.10 26.80

Sycamore LCCSPAD = 0.04 e0.06 M 0.80 0.10 26.82

Appendix B

Previous work has demonstrated that relationships between the bio-geophysical
variables and vegetation indices considered in this study are near-linear [50–52]. For
other bio-geophysical variables such as LAI, however, exponential relationships are more
typical [80]. To verify that linear rather than exponential transfer functions were most
appropriate, we calculated the r2 associated with linear and exponential fits between in
situ measurements and vegetation indices (Table A2). In all cases, the linear fits provided
the highest r2 values.

Table A2. Coefficient of determination (r2) associated with linear and exponential fits between in
situ measurements and vegetation indices. The best performing fit is shown in bold.

Campaign Variable &
Vegetation Index

r2

Linear Exponential

Las Tiesas–Barrax
FIPAR vs. NDVI 0.97 0.96
CCC vs. S2TCI 0.93 0.90

Wytham Woods FIPAR vs. NDVI 0.53 0.45
CCC vs. IRECI 0.96 0.94
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CCC vs. S2TCI 0.93 0.90 

Wytham Woods FIPAR vs. NDVI 0.53 0.45 
CCC vs. IRECI 0.96 0.94 
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Figure A1. Comparison between pixel values and associated uncertainties for the high-spatial-resolution reference maps 
of FIPAR (left) and CCC (right) at Las Tiesas–Barrax (a,b) and Wytham Woods (c,d). The coloured points represent pixels 
lying within the multispectral convex hull of the sampled ESUs (i.e., where the transfer function is not extrapolating). 
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Figure A2. Quality flag layer for the Las Tiesas–Barrax (a) and Wytham Woods (b) high-spatial-resolution reference maps. 
The red, light blue, and dark blue pixels indicate low-, good-, and high-confidence, respectively. For low-confidence pixels, 
the transfer function is acting as an extrapolator. 
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