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ABSTRACT 

It is well known that acoustic cavities have frequencies at which certain free-response ‘modes’ of 

propagation respond especially strongly. In the absence of significant damping, these cause peaks 

of high SPL in the frequency response as well as spatial non-uniformity and temporal ringing. The 

spatial non-uniformity is especially problematic since it means the room cannot be ‘EQ’d’ to 

compensate, since the SPL is different in different positions. This phenomenon has been studied 

extensively in the room acoustics literature and various strategies for mitigation proposed. Many of 

these make use of the theoretical mode shapes for a cuboid with a rigid boundary condition, since 

this is a common shape of room and a reasonable approximation for a solidly constructed wall. But 

modes exist for other shape spaces too. Of particular interest is the cylindrical cavity that is formed 

when large enclosing arrays of loudspeakers are used to perform high-intensity acoustic tests on 

space hardware. These possess problematic modes that can cause over-testing in some positions 

and under-testing in others. In this work, it is investigated how a simple FEM simulation can 

compute Q-factors for these modes and identify which will be problematic. How this might inform 

control system design is discussed. 

 

1. INTRODUCTION 

1.1 Modal Control in Room Acoustics 

The acoustics of a room can affect quality of life for the people who live or work in it. A room 

modifies the sound a person hears, changing its frequency content and temporal structure [1]. This 

may cause musical notes to be emphasised or deemphasised and/or speech to become unintelligible. 

At high frequencies the dominant effect is reverberation, but at low frequencies ‘room modes’ are 

problematic. These can cause significant variation in SPL versus frequency and ringing artefacts, 

which have been shown to have an audible effect on reproduced music [2]. Often the focus has been 

on critical listening rooms, i.e., the control rooms where recorded music is mixed, since it is 

especially important that these are accurate and do not mask artefacts in recordings that would be 

audible in other rooms. But they can also affect environmental noise and its consequences [3]. 

Unsurprisingly, therefore, there is an extensive body of literature covering strategies to mitigate 

the effects of low frequency room modes. Historically, much of this has concerned room sizing and 

the application of passive absorbers [1], but electroacoustic solutions have also been suggested. 

Typically, this involves considering the placement of loudspeakers relative to the mode shapes of a 

room – these affect the positions from which modes are excited as well as where they are heard. 

Welti and Devantier compared a variety of configurations and used a metric based on standard 

deviation of SPL to rank their performance [4]. This is a useful metric because SPL variation versus 

frequency can be EQ’d for (in principle), but SPL variation versus position cannot. For this reason, 

Pedersen recommended EQ’ing the room to flatten the average energy curve [5].  
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Celestinos and Nielsen [6] proposed arrays of subwoofers at opposite end of a cuboid room – 

each arranged to nullify lateral modes up to some given order – which are then driven with a delay 

designed to nullify end-to-end modes. Hargreaves and Wankling [7] implemented this scheme in a 

cuboid listening room, where it eliminated all modal effects below 75Hz and reduced the range of 

SPL variation (versus frequency and position) from around 25dB to within ±3dB post EQ’ing, a 

significant improvement. Recently, a method has been proposed based on a similar idea (nullifying 

the back wall reflection) but which attempts to do it adaptively for any incident sound field [8]. 

1.2 Direct Field Acoustic Noise (DFAN) Testing 

Similar challenges present themselves in Direct Field Acoustic Noise (DFAN) Testing2. This is a 

technology developed for high-intensity acoustic testing, typically for qualification and pre-flight 

testing of satellite designs [9]. The launch environment, which typically lasts only a few minutes, is 

the most severe dynamic environment that a satellite will endure during its normal life. This testing 

aims to recreate the intense acoustic field the payload will be subjected to at launch in a controlled 

way in the laboratory, to verify a design can withstand this and so should complete its journey to 

orbit without damage. It has, therefore, become a mandatory part of the pre-flight testing process 

and is stipulated in launcher manuals for all payloads. 

The most established way of conducting these tests is using a reverberation chamber. Like their 

counterparts in building acoustics, these have very low absorption and aim to subject the test article 

to a diffuse sound-field, a chaotic field in which acoustic waves arrive from every direction with 

equal power. This is chosen to ensure that any possible pattern of excitation which the test article 

might be especially sensitive to is included in the exciting sound field, i.e., it always includes the 

worst case. Testing for aerospace applications adds to this a requirement for Sound Pressure Levels 

(SPLs) that are enormously higher, usually requiring gas-powered electro-pneumatic noise sources 

mounted on giant horns. This, combined with the large size of the chambers, is a significant 

infrastructure investment. It also requires large delicate payloads to be transported to these facilities. 

An alternative approach is to use electro-dynamic loudspeakers to generate the sound field. This 

approach has a history almost as long as reverberation chambers do, having been first suggested in 

1966, and uses large arrays of adapted high-power concert sound loudspeakers. The approach is 

called DFAN, since the intention is that the ‘Direct’ sound field from the loudspeakers dominates 

over the reverberant sound from the enclosing room. This is achieved through proximity of the 

loudspeakers and use of a more typical room, which will have much higher absorption. A major 

advantage of this approach is portability – the test system can be brought to the test article. 

Established best practice is to use a cylindrical array of loudspeakers encircling the test article. 

This subjects it to acoustic excitation from all angles – horizontally at least – while avoiding the 

risks associated with suspending heavy loudspeakers above a multi-million-dollar payload. The aim 

is to produce the same diffuse field that a reverberation chamber would, since this is the condition 

that standards, launches manuals and customers require. Arguably, DFAN is capable of much more 

than this – if every loudspeaker were controlled individually then it would implement Wave Field 

Synthesis [10] – and the launch environment inside a fairing has been shown to not be truly diffuse 

[11], but presently the demand is for diffuse fields and it is likely this will always be a requirement. 

Problems arise, however, because the loudspeaker array is so big and so densely packed that it 

forms a cylindrical cavity that exhibits its own modes [12]. This is the same phenomena that 

compromises music reproduction in rooms, but the volume is now cylindrical instead of cuboid, 

giving the modes a different shape. Another key difference is that rooms are closed, so modal 

damping only occurs through losses due to absorbing materials in the room or wall compliance. In 

DFAN, the cavity is open at the top, so modal damping is largely due to radiation of energy out of 

this aperture or through the gaps between the loudspeaker stacks. Physical and practical limitations 

mean this configuration is unlikely to change, so interest lies in not exciting these modes in the first 

place, as is the aim of the methods for Room Acoustics proposed in refs. [4] and [6]. 
 

2  DFAN Testing is also referred to in the literature and industry handbooks as DFAT (Direct Field Acoustic 

Testing). That acronym has been trademarked, however, so here the non-trademarked equivalent is used. 
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Research on how to best address issues with acoustics modes in DFAN has progressed down a 

very different path to the parallel work in Room Acoustics. Specifically, it has been informed by the 

state-of-the-art multi-axis shaker control [13]. Hence, there appears to be potential for bidirectional 

knowledge transfer. This paper aims at taking some first steps towards that aim. 

1.3 Control and Forward Versus Adaptive ‘Equalisation’ 

A key difference between how mode control is done in Room Acoustics and DFAN is whether 

these schemes can be regarded as forward ‘equalisation’ or adaptive ‘control’. The difference is 

essentially whether the system is ‘set and left’, as is common in audio, or continually adjusted to 

meet a criterion. DFAN systems do the latter, typically with a Multi-Input Multi-Output (MIMO) 

controller, development of which is a research area in its own right [13–15]. 

Fundamentally this difference is due to what the two fields aim to achieve and how many ‘drive’ 

signals they use. Audio reproduction uses either a single drive signal (mono) or multiple drive 

signals (stereo or surround) that all contain different material and must each be considered 

separately. If a single monitor microphone position is used to check the reproduced SPL spectrum, 

as is commonplace, then the resulting equalisation process is single-input-single-output (SISO). Or 

if multiple microphones are monitored, as proposed by Pedersen [5], then this is multi-input-single-

output (MISO). There is still only one ‘drive’ – the audio track to reproduce. 

DFAN differs because there is no specific audio signal to be reproduced. Instead, there is just a 

target SPL curve that the produced noise needs to achieve, and this can be accomplished with 

multiple noise signals as drives. The ‘random wave model’ of diffuse fields [16] suggests that the 

number of drives should be maximized, and that these should be completely incoherent. But this 

would be very inefficient at low frequencies, since even a diffuse field shows some local coherence 

effect due to the long wavelengths [16]; driving speakers without considering this leads to 

substantial power loss due to destructive interference. A large drive count also incurs a severe 

computational overhead. Hence, DFAN typically uses a modest number of drives – 8 is a common 

choice – and the MIMO controller adapts the level of, and coherence between, noise signal drives to 

achieve a balance between uniformity of SPL and power efficiency. 

DFAN control is, therefore, also adaptive. This lets it compensate, for example, for the reduction 

of loudspeaker efficiency during a test due to power compression. The controller monitors several 

microphones and adjust the drives to meet the target. This is a form of closed loop control, but what 

it implements is perhaps better termed adaptive noise shaping, because it is noise shaping that is 

adapting to (possibly changing) circumstances. Notably, the control loop is adapting very slowly 

compared to what would be required, for example, in Active Noise Control applications [17]. 

The consequence of this is that the MIMO controller will automatically eliminate modal effects, 

within the limits of: i) how well it can observe then, and ii) how well it can control them. These are 

important caveats that are termed Controllability and Observability in control system theory. These 

have a precise mathematical definition, but for the purposes herein the following definitions suffice: 

• A system is controllable if there are enough drive channels (appropriately routed) that all 

possible aspects of the system’s state can be controlled. In other words, no realisable system 

behaviour is beyond the influence of the controller. 

• A system is observable if there are enough sensors (appropriately located) that all possible 

aspects of the system’s state can be observed. In other words, no realisable system behaviour 

is unseen by the controller. 

At low frequencies, the system’s state is most readily expressed as the amplitudes (and phases) 

of all the modes. The modal summation equation, which is used to construct a system’s Frequency 

Response (equivalently ‘Room Transfer Function’) from a summation of its modes [17], shows this. 

This is normally written for point sources and receivers, in which case the contribution of each 

mode depends on: i) the position of a source on the mode-shape, ii) the position of the receiver on 

the mode shape, and iii) the proximity of the driving frequency to the modes natural frequency and 

the mode’s damping or decay rate. But for a large speaker array, as is used in DFAN, it is more 

appropriate to use a distributed model of boundary velocity in place of (i).  
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Figure 1 shows the modal summation equation adapted to take this form. The pressure measured 

at each microphone is a vector of mode amplitudes (not shown) times a matrix of mode shapes 𝝍𝑎. 

𝝍𝑎 is independent of drive frequency Each row in it corresponds to a microphone and each column 

to a mode – the entry where they cross is that mode shape evaluated at that microphone position.  

The vector of mode amplitudes this responds to is found by the chain of terms on the right: 

• The right most vector is the amplitudes of the DFAN drives output by the controller. 

• 𝚲a is a diagonal matrix that contains the frequency-dependent term for each mode. Its entries 

have magnitude inversely proportional to |𝑓𝑛
2 − 𝑓2| , where 𝑓𝑛  is the (complex) 

eigenfrequency for this mode and 𝑓 is the excitation frequency. It is diagonal because all 

modes operate independently. 

• 𝓒da  is a matrix that describes coupling between DFAN drives and acoustic modes. Each 

column corresponds to a drive signal and each row to an acoustic mode. Although the 

number of drives is finite, the acoustic source is now a continuous velocity distribution over 

a boundary – the faces of the loudspeaker cabinets. Entries in 𝓒da  involve a boundary 

integral that computes the spatial match between the acoustic mode shape and the 

distribution of loudspeaker cones moving in response to a drive signal. 

The ideal situation would be to have the controller able to observe and control all modes, but this 

is not possible because the number of modes grows rapidly with frequency and quickly exceeds the 

number of microphones and drives. Substantially increasing the number of these to mitigate this is 

not feasible because it adds significant computational cost to the control algorithm, meaning 

compromises would have to be made in frequency resolution and/or control loop update rate. 

A better strategy is therefore required. It is well known in Room Acoustics that some modes are 

more troublesome than others. This is usually to do with their damping, or inversely, their Q-factor. 

This has been witnessed in DFAN too. Kolaini et al. [12] showed that problem frequencies correlate 

with modes, but did not emphasise the large proportion of modes that are not problematic. The 

question is therefore how to identify which modes are problematic and which ones aren’t, so it can 

be ensured that the controller can control and observe the problematic ones. 

Figure 1 shows that 𝝍𝑎  and 𝓒da  respectively describe the observability and controllability of 

modes. These are, therefore, respectively defined by microphone positions and loudspeaker drive 

distributions. Altering the position of control microphones to optimize observability has previously 

been explored [18], but designing drive distributions to optimize controllability has not. MSI-DFAT 

call this their “Drive Matrix Switch” but, while there has been some discussion of it in the literature 

[19], its effect on modal coupling does not appear to have been considered 

The premise explored in this paper, therefore, is how the drive channels of the controller might 

be routed so that they optimally control modes that are identified as being the most problematic.  

1.4 Contribution by this paper 

This paper develops a methodology for optimizing the DFAN drive signal to loudspeaker routing 

matrix that is informed by a modal analysis. This idea has similarities to Wave-Domain Adaptive 

Filtering [10], in which families of solutions of the acoustic wave equation are used to map between 

drive channels and loudspeakers. The difference here is that the mapping is informed by modes of 

the physical space in question (albeit idealised), as are used for Room Acoustic equalisation  in refs. 

Figure 1: Modal summation model adapted to DFAN, showing 4 
drives being transmitted to 3 microphones via 5 acoustic modes 
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[4] and [6]. Compared to those, the difference is that they aimed to completely avoid excitation of 

those modes through spatial drive patterns that are applied to all frequencies. Here, the aim is rather 

the opposite, due to the use of the MIMO controller. It is to make drive patterns associated with 

problem modes available to the controller, so it can utilise them away from problem frequencies 

and attenuate them when needed. Hence, we aim to match drive patterns with problem modes. 

 Section 2 presents an analytical model of modes in a DFAN cavity following Kolaini et al. [12]. 

Section 3 presents a similar but slightly more realistic FEM model. This remains extremely simple 

but is able to calculate Q-factors for modes, and thereby rank how problematic they are likely to be. 

Section 4 uses this information to design a DFAN drive map and utilise it in a simulated MIMO 

controller. Finally, section 5 draws conclusions and lists some avenues for future research. 

 

2. ANALYTICAL MODEL OF MODES IN A DFAN CAVITY 

The Finite Element Method (FEM) can solve for eigenmodes of a cavity of arbitrary shape. It 

also has the capability to include absorption mechanism that damp the mode and find its Q-factor. 

These advantages will be exploited in section 4. But analytical models of modes remain extremely 

informative for geometries where they exist. Notably, they can be indexed in meaningful ways and 

usually take simple mathematical forms that provide an engineer with useful insight. 

In this section an analytical model of modes in a DFAN cavity will be presented. This follows 

ref. [12] but is included here because the presentation there is incomplete. Notably, the separated 

partial differential equation and boundary conditions are stated, but the final form of the solution is 

not. Additionally, the results are not presented in an especially clear way and do not appear to agree 

with our calculations, which have been validated using a commercial FEM code. 

The model is defined in cylindrical coordinates; radius 𝑟, azimuth 𝜃 and height 𝑧. Its dimensions 

match the cylinder used in ref. [12], which is based on the 2011 tests at Johns Hopkins University 

Applied Physics Laboratory (APL), as also reported by Maahs [20,21]. It has height 𝑍 = 150” ≈
3.81m and radius 𝑅 = 96" ≈ 2.4m. The boundary conditions applied in the model were as follows: 

• Rigid floor: 𝜕𝑃 𝜕𝑧⁄ = 0 at 𝑧 = 0.  

• Rigid loudspeaker stacks: 𝜕𝑃 𝜕𝑟⁄ = 0 at 𝑟 = 𝑅.  

• Top of stack pressure release condition: 𝑃(𝑍) = 0. 

Since this is a 3D problem, there are three mode indices. These are azimuthal mode number 𝑚, 

radial mode number 𝑛 and vertical mode number 𝑙. The mode shapes have the form: 

 𝜓
𝑚.𝑛.𝑙

(𝑟, 𝜃, 𝑧) = 𝐽𝑚(𝑘𝑚,𝑛𝑟) × cos(𝑘𝑙𝑧) × {
cos(𝑚𝜃)

sin(𝑚𝜃)
. (1) 

Here 𝐽𝑚  is a Bessel function of order 𝑚 , 𝑘𝑚,𝑛  is the wavenumber component in the horizontal 

plane, and 𝑘𝑙 is the wavenumber in the vertical plane. Variants with sine and cosine dependence are 

required to form a complete basis, but they are identical except for a 90∘ 𝑚⁄  rotational shift. 

Examples of these mode shapes are shown in Figure 2. It can be observed that these all tend to 

zero as 𝑧 → 𝑍 to satisfy the 𝑃(𝑍) = 0 boundary condition. To achieve this, valid values of 𝑘𝑙 are 

Figure 2: Examples of analytical mode shapes for various values of 𝑚, 𝑛 and 𝑙. Red, blue, and 

white respectively indicate in-phase, anti-phase, and zero pressure. 
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𝑘𝑙 = 2𝜋(2𝑙 + 1) 4𝑍⁄ . Valid values of 𝑘𝑚,𝑛  correspond to the 𝑛 th value of 𝑘𝑟  for which 

𝑑𝐽𝑚 𝑑𝑟⁄ (𝑘𝑟) = 0 at 𝑟 = 𝑅. More commonly, one would convert to normalised radial wavenumber 

𝜅𝑚,𝑛 = 𝑘𝑚,𝑛𝑅 and then search for the 𝑛th value of 𝜅 for which 𝑑𝐽𝑚 𝑑𝜅⁄ (𝜅) = 0. These points can 

be computed by a search routine or looked in up tables, e.g., eq. 6.28 in [22]. 

The total wavenumber 𝑘𝑚,𝑛,𝑙 of a given mode is found by 𝑘𝑚,𝑛,𝑙
2 = 𝑘𝑚,𝑛

2 + 𝑘𝑙
2, and its frequency 

can be found by 𝑓𝑚,𝑛,𝑙 = 𝑘𝑚,𝑛,𝑙 × 𝑐0 2𝜋⁄ , where 𝑐0 = 343ms−1 is the speed of sound in air. Natural 

mode frequencies 𝑓𝑚,𝑛,𝑙 predicted by this are given in column 3 of Table 1, there titled “𝑓𝑝=0” to 

acknowledge the boundary condition used at 𝑧 = 𝑍. A peculiarity is that none of these match the 

frequencies given in ref [12], the reason for which is not known. The frequencies presented in this 

report have been validated against a commercial FEM package simulating the same problem. 

2.1 Discussion of the realism of the analytical model for DFAN applications 

The analytical model above solves the Helmholtz equation for an idealised version of a DFAN 

cavity. Notably, real cavities are not truly cylindrical. They are made up of stacks of speakers with 

flat faces, with gaps in-between, and some (usually subwoofers) may be set back slightly. The 

boundary conditions are also approximate. Here, their realism should be considered. 

The rigid floor condition is a realistic assumption. Test chambers have floors of extremely heavy 

construction. The loudspeaker stack rigid boundary condition is also fairly realistic. Factors it omits 

includes the gaps between the loudspeakers and the compliance of the loudspeaker drivers. The 

former is quite small, however, so can either be ignored or could be accounted for by an appropriate 

slit impedance [1]. The latter could be accounted for with an impedance boundary condition. 

The boundary condition at top of the cavity includes the most approximation. In reality there is 

no boundary here; the loudspeaker array stops but the air continues. An analytical model requires a 

boundary condition to be chosen, however. The pressure release condition chosen by Kolaini et al is 

a reasonable first approximation but is not realistic and overestimates resonant frequencies. For 

equivalent pipe resonance or duct radiation problems, it is common to use an ‘end correction’ [23]. 

This adds some hypothetical extra length onto the end of the pipe to account for the additional mass 

of air that is not inside the pipe, but which moves with it. Such an approach could be used here, but 

standard corrections only exist for the zeroth radial and azimuthal mode orders. 

Another issue is that none of the boundary conditions allow energy to escape, hence modes do 

not decay and their Q-factors cannot be calculated. Inclusion of boundary impedances and radiation 

loss through the top aperture would allow Q-factor to be found, but this would complicate the 

model substantially. Hence it is easier to resort to numerical methods, as is done in the next section. 

 

3. FINITE ELEMENT METHOD (FEM) MODEL OF MODES IN A DFAN CAVITY 

As discussed above, the biggest source of approximation in the analytical model is the inability 

for acoustic energy to escape through the aperture at the top of the cavity. The FEM model reported 

in this section was conceived to investigate that limitation, hence all other aspects are identical. 

The geometry remains axisymmetric, like the analytical model. A radial slice is shown in Figure 

3a and the 3D geometry arising from its rotation (minus a 120° cut-out) is shown in Figure 3b. The 

grey area is the acoustic domain, and the blue regions are Perfectly Matched Layers (PMLs). These 

are used to terminate the mesh without reflection, meaning the model is performed as if it were an 

in an unbounded half-space above a rigid ground plane. The vertical gap in the air domain is where 

the loudspeaker stacks are located. The inner radius and height of the array are 2.4m and 3.81m 

respectively, matching the 2011 tests at APL and the analytical model, and individual loudspeaker 

stacks and the gaps between them are still not modelled. The thickness of this is chosen to be 0.5m, 

a typical depth for line array loudspeakers. The air behind the stack was included in the model 

because the geometry surrounding an aperture is known to affect end-correction formulae [23]. 

Two studies were conducted. The study that finds the mode shapes and frequencies is called an 

eigenfrequency study. For this, all boundaries are rigid. The second study computes the frequency 

response of the system to time-harmonic excitation. This comes from the loudspeakers, so a normal 

velocity boundary condition is applied to their inward face (coloured green in Figure 3a). 
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Use of axisymmetry also significantly expedites numerical solution of the problem in FEM. It 

allows the Partial Differential Equation (PDE) being solved using FEM to be simplified, such that 

only the 2D slice shown in Figure 3a need be meshed and solved for. The full 3D solution 

𝜓𝑚.𝑛.𝑙
3D (𝑟, 𝜃, 𝑧) is found from the 2D solution 𝜓𝑚.𝑛.𝑙

2D (𝑟, 𝑧) – which FEM computes – by: 

 𝜓
𝑚.𝑛.𝑙
3D (𝑟, 𝜃, 𝑧) = 𝜓

𝑚.𝑛.𝑙
2D (𝑟, 𝑧) × {

cos(𝑚𝜃)

sin(𝑚𝜃)
. (2) 

This has the same form as eq. 1, but FEM is computing 𝜓𝑚.𝑛.𝑙
2D (𝑟, 𝑧) numerically instead of it being 

stated analytical as the product of a Bessel and a cosine function. Azimuthal mode number 𝑚 is an 

argument passed to the FEM solver, so solutions can still be calculated for a range of values of 𝑚. 

0 ≤ 𝑚 ≤ 4 was used for the eigenfrequency study and 0 ≤ 𝑚 ≤ 3 for the frequency response. 

The simulations were performed in COMSOL Multiphysics v5.4 using a mesh of 936 quadratic 

Lagrange quadrilateral elements smaller than 0.23m. This is roughly 𝜆 5⁄  at the highest frequency 

simulated (300Hz). The PML was of the ‘rational’ type with both scaling factors set to 2. 

3.1 Eigenfrequency Study Results 

While this geometry remains simple, the aperture at the top of the cavity allows it to radiate 

energy, hence its modes are damped in a realistic way. This can be quantified from the frequency 

response via Q-factor, the ratio of peak centre-frequency to half-power bandwidth. Another useful 

metric is Modal Decay Time 𝑀𝑇60, the time in seconds it takes a mode to decay by 60dB. Both of 

these can be found from the FEM eigenfrequencies, which are complex for a damped problem [24]. 

Q-factor is equal to real(𝑓𝑛,𝑚,𝑙) 2 × imag(𝑓𝑛,𝑚,𝑙)⁄  and 𝑀𝑇60,𝑛,𝑚.𝑙 = 3 ln(10) 2π × imag(𝑓𝑛,𝑚,𝑙)⁄ .  

Table 1 presents these metrics for the FEM model, along with its eigenfrequencies and those of 

the analytical model. A colour scale is used to emphasise high values. Care has been taken to match 

the modes between the FEM and analytical model, which is necessary because a FEM solver does 

not index them in 𝑛 or 𝑙  – it just returns them in ascending order of frequency. This matching 

process is non-trivial since modes from the two models are not identical, and the FEM solver finds 

many extra highly damped modes that are of little physical importance. Modes were matched using 

the Modal Assurance Criterion [24] and similarity of eigenfrequency. Matches are typically clear 

cut for important high-Q modes but may be ambiguous or not possible for highly damped modes. 

Figure 3: a) Radial slice through the geometry modelled in FEM. The blue region is a PML, the 

green line is the velocity boundary condition, and the red dashed line is the axis of symmetry.  

b) 240° slice from the revolved geometry including the real part of a boundary pressure field.  

a) b) 

𝑧 

𝑟 
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Q-factor and 𝑀𝑇60 both quantify energy trapping. Large values indicate problem modes with 

trapped energy, while small values indicate fast decay due to rapid energy loss. Q-factor is the more 

established metric, but the data in Table 1 shows that 𝑀𝑇60 occupies a more consistent range. 

What is evident from both metrics is that the degree of energy trapping varies significantly 

between modes, and that modes with 𝑙 = 0 trap energy the most. This makes sense because modes 

also have a ray-orbit interpretation: modes with 𝑚 ≠ 0 are spinning around the cavity; modes with 

𝑛 ≠ 0 are contracting and re-expanding radially; and modes with 𝑙 ≠ 0 are travelling up and down. 

𝒎 𝒏 𝒍 𝒇𝒑=𝟎 (Hz) 𝒇𝐅𝐄𝐌 (Hz) Q-factor 𝐌𝐓𝟔𝟎 (s) 

0 0 0 22.51 16.35 8.28 1.11 

1 0 0 47.54 45.49 45.28 2.19 

0 0 1 67.52 51.41 2.99 0.13 

2 0 0 73.03 71.91 133.65 4.09 

1 0 1 79.45 67.77 6.93 0.22 

0 1 0 90.01 89.10 91.01 2.25 

2 0 1 96.88 89.46 13.02 0.32 

3 0 0 98.17 97.45 221.98 5.01 

0 1 1 110.25 103.06 14.59 0.31 

0 0 2 112.54 - - - 

3 0 1 117.01 111.56 24.74 0.49 

1 0 2 120.08 114.83 2.98 0.06 

4 0 0 123.03 122.51 372.55 6.69 

1 1 0 123.34 122.68 181.28 3.25 

2 0 2 132.25 120.16 4.95 0.09 

4 0 1 138.52 134.43 36.00 0.59 

1 1 1 138.80 134.13 19.49 0.32 

0 1 2 142.34 131.50 5.53 0.09 

3 0 2 147.63 137.56 9.38 0.15 

2 1 0 154.19 153.78 275.89 3.94 

0 0 3 157.56 - - - 

0 2 0 161.16 160.76 288.11 3.94 

1 0 3 163.03 - - - 

4 0 2 165.21 156.58 13.84 0.19 

1 1 2 165.44 155.59 9.32 0.13 

2 1 1 166.82 163.47 36.66 0.49 

2 0 3 172.19 159.46 4.57 0.06 

0 2 1 173.28 170.09 36.14 0.47 

0 1 3 180.06 - - - 

3 1 0 183.70 183.36 469.68 5.63 

3 0 3 184.27 171.99 6.37 0.08 

2 1 2 189.56 181.55 12.17 0.15 

3 1 1 194.42 191.56 45.97 0.53 

0 2 2 195.27 187.72 13.34 0.16 

1 2 0 195.49 195.20 512.52 5.77 

4 0 3 198.63 187.29 8.83 0.10 

1 1 3 198.82 187.61 5.38 0.06 

Table 1: Comparison of natural frequencies from the analytical model of the APL test cavity 

versus those computed with axisymmetric FEM, for 𝑓 < 200Hz and 𝑚 ≤ 4.  Q-factor and Modal 

Decay Time 𝑀𝑇60 are for the FEM result. The colour scale emphasises high values of Q and 𝑀𝑇60. 
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Since energy loss occurs at the top of the cavity, it follows that those modes with 𝑙 ≠ 0 interact with 

this aperture most often and therefore experience the fastest rate of energy loss. 

Figure 4 illustrates how different mode shapes can be trapped to different extents, and how there 

affects their Q-factor and 𝑀𝑇60. The zeroth mode, with 𝑚 = 𝑛 = 𝑙 = 0, is a wave that escapes into 

the surrounding enviroment. But this effect reduces as 𝑙 increases, and by 𝑙 = 3 there is a very high-

Q radial standing wave present that is trapped and experiences little energy loss to radiation. 

3.2 Frequency Response Results 

Figure 5 shows frequency results arising from the same model for 𝑚 ≤ 3. The response for each 

value of 𝑚  is shown separately. This is justified because the modes and driving functions are 

perfectly orthogonal in azimuthal angle due to the perfect axisymmetry.  

As expected, the peaks align perfectly with the high-Q eigenfrequencies, which all occur for 𝑙 =
0. Some other transitory damped peaks appear, e.g., the [3 0 1] mode marked at 111.5Hz, but the 

majority are sufficiently damped so as to be indistinguishable. This result validates one premise of 

the paper, that high-Q modes are worth searching for since it is these that cause SPL peaks. 

 

 

3.3 Comparison with the measurements reported by Kolaini et al. (2012) 

Modes with 𝑙 = 0 were also the most likely to have been excited by the DFAN configurations 

tested at APL in 2011. Maahs [21] reported that several drive configurations were investigated. In 

the MISO case, all the loudspeakers were fed by the same drive. This will mainly excite modes with 
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Figure 5: Spatially averaged frequency response for 1mm/s vibration of the loudspeaker array 
surface. Solid lines are maximum pressure in the cavity. Dashed lines are RMS pressure. Both are 
plotted as dB SPL. Results are shown separately for different values of azimuthal mode number  

𝑚, and high-Q eigenfrequencies are overlayed (vertical dotted lines and 𝑚𝑛𝑙 markers). 
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Figure 4: Radial cross-sections through FEM mode shapes with 𝑚 = 𝑙 = 0, for four values of 𝑛 
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𝑚 = 0  and 𝑙 = 0 . For the MIMO case, there were 12 independent drives each feeding a 

loudspeaker stack. This will excite modes with a variety of values of 𝑚, but still only with 𝑙 = 0. 

Kolaini et al. analysed data from these same tests. Figure 3 in ref. [12] presents the SPL results. 

In the MISO case, problem frequencies were identified as being 93 Hz and 229 Hz, which match 

well with the 89.1 Hz [0 1 0] Q = 91.01 mode in Table 1 and the 233.6 Hz [0 3 0] Q = 657.9 mode 

(not included in Table 1 but shown in Figure 5). These modes have 𝑚 = 0, as expected when all 

loudspeaker stacks are fed the same signal; the drive pattern is 𝑚 = 0 too. Notably the 97.45Hz  

[3 0 0] and 122.5Hz [4 0 0] modes are both high-Q but are not excited since they have 𝑚 ≠ 0. 

The MIMO drive caused a different response, despite the modes of the acoustic system being 

unchanged, because they are excited differently by the different drive pattern. Kolaini et al. report 

that the lower frequency problem mode increases in frequency to 95Hz, but it is more likely that 

this is the combination of two modes: [0 1 0] (89.1 Hz), as originally excited, plus [3 0 0] mode 

(97.45Hz), which is now excited due to the circumferential decorrelation in the excitation field. The 

right-hand plot of fig. 3 in ref. [12] also shows far more modes being excited (note the vertical axis 

is PSD on a linear scale, which makes them look small relative to the peaks – they would look more 

significant on a dB scale). This now appears to also include the [0 2 0] mode (160.7Hz) that Table 1 

predicts should be significant, but which doesn’t appear to be in the MISO case. 

In summary, Kolaini et al. explained the measured behaviour using the modes of the analytical 

model. That is a useful contribution, but it neglects to mention the large number of other modes that 

are not excited and proposes no methodology for predicting which ones are problematic. This study 

has addressed that need with a simple FEM model for which Q-factor can be computed. 

 

4. APPLICATION TO DFAN DRIVE MAP DESIGN 

The results above show that drive patterns can affect the excitation of modes. In single-drive 

Room Acoustics applications, the objective would be to design a drive pattern that would not excite 

those modes. But in DFAN the presence of the MIMO controller turns this logic on its head. 

Instead, it is beneficial to include drive patterns that match with problem modes, so the controller 

has control of them. This section aims to demonstrate that mechanism. 

The most problematic modes all have 𝑙 = 0. Matching this with drives amounts to driving all 

loudspeakers in each column with the same signal, as is likely to be common practice. The DFAN 

literature does not generally report this signal routing, but wiring columns together is easiest and is 

standard practice in concert sound, and in various photographs it appears that this is what was done. 

16 control and 8 monitor mics were simulated. The positions of these were chosen randomly 

with radius 0 ≤ 𝑟 ≤ 1.5m and heigh 0.5m ≤ 𝑧 ≤ 2.5m, to ensure they were more than 0.9m from 

the loudspeakers and not too close to the floor, following best practice recommended in NASA-

HDBK-7010. Seven drive patterns were used: uniform, cos(𝜃), sin(𝜃), cos(2𝜃), sin(2𝜃), cos(3𝜃), 
and sin(3𝜃). In a axisymmetric FEM model this is easier to implement than driving each angle 

sector (representing a loudspeaker stack) separately, but it is approximately a linear recombination 

of those patterns, so is roughly equivalent. Pressure at the microphones was computed using eq. 2. 

Transfer functions from drives to microphones were exported from COMSOL and postprocessed 

in Matlab. At each frequency, this yields a matrix 𝐇 that relates drive amplitudes to pressure at the 

microphones 𝐩 by 𝐩 = 𝐇𝐝. DFAN control is, however, done in terms of power statistics [13,15]. 

This involves squaring 𝐝 and 𝐩, which in matrix notation is 𝐒dd = 〈𝐝𝐝𝐻〉 and 𝐒pp = 〈𝐩𝐩𝐻〉. Here, 

superscript 𝐻 denotes Hermitian (conjugate) transpose and angled brackets 〈⋯ 〉 denote averaging 

over multiple FFT periods, as is a standard part of FFT-based transfer function measurement. 𝐒dd 

and 𝐒pp  are the Spectral Density Matrices (SDMs) for the drive and the microphone signals 

respectively. These are square and their diagonal gives the power in each signal. The off-diagonals 

are the square root of the product of the powers of a pair of signals, multiplied by their coherence 

and a phase term [15]. Hence, the diagonal of 𝐒pp can be used to find the SPL at the microphones. 
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Control is achieved by specifying a target SDM 𝐒tt  that should be achieved at the control 

microphones. This encapsulates the SPL and coherence requirements. The optimal drive SDM 𝐒dd 

(off-diagonals of which are complex, so include relative phase) can be found by [15]: 

 𝐒dd = 𝐇c
†𝐒tt(𝐇c

†)
𝐻
. (3) 

Here 𝐇c is the row-wise subset of 𝐇 pertaining to the control microphones. The dagger symbol † 

indicates a Moore-Penrose pseudo-inverse. The latter is required because rectangular MIMO uses 

more control microphones than drives. This means that 𝐒pp  will not exactly equal 𝐒tt at all the 

control microphones, but it has the benefit of forcing the controller to concentrate on readily 

realizable behavior that translates to all locations, including the monitor mics [14,15]. In contrast, 

square control – which uses the same number of control mics as drives – tends to use excessive 

drive power to chase precision at the control mic locations at the expense of deviations elsewhere. 

Finally, the SPL responses at all microphones are found from the diagonal of 𝐒pp computed by: 

 𝐒pp = 𝐇𝐒dd𝐇
𝐻. (4) 

4.1 Results 

The compromise present in the pseudo-inversion is quantified by the condition number of 𝐇c, 

being the ratio of its smallest and largest singular values. This is presented in Figure 6 above. It can 

be seen that condition number peaks at frequencies of high Q modes (shown in red), indicating that 

a single behaviour (the mode) is present in the matrix that dominates all others. Lower Q modes 

found by the eigenfrequency solver, shown in green, do not have this drastic effect. 

Figure 6: Condition number trends for the drive to control mic transfer function matrix 𝐇c. 
Mode frequencies with high Q are highlighted in red and those with lower Q in green. 

Figure 7: Drive power versus frequency. Mode frequencies with high Q are highlighted with 
vertical lines. Colour indicates azimuthal mode number. 
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Figure 7 shows the drive power that the controller sends to the loudspeakers. Since these were 

represented by a velocity boundary condition in the FEM model, the units of this is mm2/s2. It can 

be seen that the controller ‘turns down’ the drives that would excite problem modes at the 

frequencies where they occur, but utilises them at other frequencies to transmit power and improve 

homogeneity. The result is that Figure 7 is rather like an upside-down version of Figure 5. The high 

drive amplitudes at low frequencies arise to compensate for the low radiation efficiency of the 

velocity boundary condition at low frequencies, and a minima that occurs at 𝑘𝑟 ≈ 0 for modes with 

𝑚 > 0. In reality, subwoofers use ports and horns to produce high volume velocity, so have a 

frequency response that would counteract this effect. Overly high drive powers can be inhibited by 

introducing their norm into the matrix pseudo-inversion, as is done by Tikonov regularisation. 

Figure 7 is an idealised version of what would happen in a real system. The axisymmetry has 

given the modes and driving functions perfect orthogonality, meaning each 𝑚 acts independently. 

In a real system one would expect similar behaviour but with more interaction due to the absence of 

orthogonality. Note that both cosine and sine drives were required to achieve full control. Omitting 

one or other caused significant deviations in some monitor mic SPLs at some frequencies. 

 

 
 

Figure 8 shows the SPL at the control and monitor mics. 𝐒tt was set so as to give a target SPL of 

146dB at all mics, indicated by the thick black line. It can be seen that in both cases SPLs are close 

to the target, though not as close as is achieved by state-of-the-art controllers. Herein, 𝐒tt was set 

following the diffuse field sinc2 𝑘𝑅 theoretical coherence trend [16], but recent research has studied 

how this might be done optimally [14]. Notably, the control mics mostly have a tight standard 

deviation, but their mean sits a few dB below the target, whereas the monitor mic SPLs are more 

spread but have the correct mean. This phenomenon has been reported elsewhere in the literature. 

Alvarez Blanco et al refer to it as the “Energy sink” [15]. Experiments here showed that increasing 

the number of control microphones increased this effect but tightened the monitor mic spread. 

 

5. CONCLUSIONS 

This study has considered how modal analysis might inform DFAN drive patterns. These are not 

often reported in the DFAN literature, but this work shows that they should be since they have a 

significant effect on mode control. A FEM model of a simplified cylindrical DFAN cavity was 

created for this purpose. This is only slightly more detailed than the accepted analytical model but 

has the important advantage that it can predict Q-factors and modal decay times, which can be used 

to rank which modes are likely to be problematic. These were seen to tally very well with the 

measurements of the 2011 APL tests published by Kolaini et al. in 2012. Notably, the methodology 

herein predicts which modes will be problematic, whereas prior work only aims to explain them. 

Design of drive patterns to allow control of problematic modes was then considered. This led to 

patterns equivalent to loudspeakers being driven in stacks, as is believed to be common practice. 

Transfer functions from the model were then inserted into a MIMO control system model, allowing 

the response of the control algorithm to modes of different orders to be observed. 

Figure 8: SPL responses at the control mics (left) and monitor mics (right) versus frequency 
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5.1 Avenues for Future Research 

This was not a high-fidelity model of a DFAN test so is extremely idealised. It does not even 

include a payload, which fig. 14 of NASA-HDBK-7010 shows has a significant effect. But it has 

the significant benefit over more detailed models of being very simple, while also providing useful 

information that the analytical model cannot. Hence, it appears to be a quick yet useful approach. 

But nonetheless, a study to explore whether these findings extend to a more realistic configuration 

should be conducted. Some models of DFAN have been very sophisticated [25].  

Since the acoustic domain is unbounded a BEM solver might be advantageous. Historically these 

have only been able to compute frequency response results but eigenfrequency solvers for BEM are 

emerging [24]. This would avoid the need to choose PML parameters, which were found to affect 

the Q-factor of the lowest frequency modes. 

Other drives with 𝑙 ≠ 0 should also be tested to see how they perform. A configuration using 𝑙 =
1 drive patterns was briefly investigated and showed little improvement. But this was not done 

thoroughly and should be investigated further. 

Different target SDMs could also be investigated. Recently the phase of off-diagonal terms has 

been manipulated to render a directional wave [26], emphasising the parallels between DFAN and 

Wave Field Synthesis [27]. MIMO control theory could also be applied to mode control in Room 

Acoustics; rather than manually design a loudspeaker layout to nullify modal excitation, regularised 

matrix inversion could be used to find frequency-dependent drive patterns that minimise this. 

Finally, metrics for sound field diffuseness should also be added to the study. Coherence 

between different microphone positions is most widely used in practice [28], but measures based on 

intensity and isotropy [29] are also possible. 
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