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1  |  DNA METABARCODING , DIETARY 
ANALYSIS AND THE PREDATOR PROBLEM

Accurate knowledge of trophic interactions is crucial for understand-
ing everything from the behaviour of individuals to ecosystem pro-
cesses and how they respond to change (Thébault & Loreau, 2005). 

Traditional methods for dietary analysis, such as analysis of hard 
parts, overlook or fail to identify soft- bodied or morphologically 
cryptic prey (Jeanniard- du- Dot et al., 2017; Nielsen et al., 2018). By 
facilitating the accurate identification of prey from minute and de-
graded remains, molecular methods, such as DNA metabarcoding, 
have significantly advanced our ability to analyse the diets of animals 
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Abstract
Dietary metabarcoding has vastly improved our ability to analyse the diets of animals, 
but it is hampered by a plethora of technical limitations including potentially reduced 
data output due to the disproportionate amplification of the DNA of the focal predator, 
here termed “the predator problem”. We review the various methods commonly used 
to overcome this problem, from deeper sequencing to exclusion of predator DNA 
during PCR, and how they may interfere with increasingly common multipredator- 
taxon studies. We suggest that multiprimer approaches with an emphasis on 
achieving both depth and breadth of prey detections may overcome the issue to some 
extent, although multitaxon studies require further consideration, as highlighted by 
an empirical example. We also review several alternative methods for reducing the 
prevalence of predator DNA that are conceptually promising but require additional 
empirical examination. The predator problem is a key constraint on molecular dietary 
analyses but, through this synthesis, we hope to guide researchers in overcoming this 
in an effective and pragmatic way.

K E Y W O R D S
amplification, DNA metabarcoding, food webs, molecular analysis, trophic interactions

www.wileyonlinelibrary.com/journal/men
mailto:
https://orcid.org/0000-0002-0198-4940
https://orcid.org/0000-0003-2405-1198
https://orcid.org/0000-0002-3555-4295
https://orcid.org/0000-0003-0820-3278
https://orcid.org/0000-0003-3469-9609
https://orcid.org/0000-0003-4061-6726
http://creativecommons.org/licenses/by/4.0/
mailto:jordancuff@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1755-0998.13705&domain=pdf&date_stamp=2022-09-10


2  |    CUFF et al.

in nature (Jeanniard- du- Dot et al., 2017; Pompanon et al., 2012; 
Symondson, 2002). There are, however, many experimental biases 
inherent to metabarcoding, the intrinsic biases of PCR amplification 
being among the most pervasive. These biases compound an innate 
problem of predatory dietary analysis: that of the high prevalence of 
predator DNA detected in dietary samples.

In most cases, dietary metabarcoding studies aim to iden-
tify the dietary composition of a consumer as comprehensively as 
possible, but the taxonomic biases of PCR primers confound this. 
Mismatches between primers and target DNA result in inefficient 
annealing, causing amplification bias or prevention of amplification 
entirely (Piñol et al., 2018). Such biases cause a nonlinear relation-
ship between starting and amplified concentrations of DNA of each 
species detected (Paula et al., 2015), inhibiting accurate quantifica-
tion of input DNA concentrations from sequencing outputs (Piñol 
et al., 2018; Stadhouders et al., 2010). Metabarcoding PCR primers 
for dietary analysis of a predator ideally amplify the DNA of the 
full range of potential prey species contained in that predator's gut 
contents or faeces, but all primers ultimately fail to amplify some 
taxa (Brandon- Mong et al., 2015; Elbrecht & Leese, 2017; Mao 
et al., 2012), so compromises must often be made. These biases 
are particularly problematic in dietary studies concerning general-
ist predators which exploit taxonomically diverse resources. Richer 
samples increase the likelihood of problematic bias by demanding a 
greater range of detections from the same read depth, and phylo-
genetically diverse samples are more likely to fall victim to the tax-
onomic biases of PCR due to a higher likelihood of mismatches with 
the primer (Deagle et al., 2019). To further complicate matters, the 
diverse diets of generalists can often include taxa closely related to 
the predator itself, or even conspecific prey indistinguishable from 
the focal predator. This often results in the use of PCR primers which 
amplify the already highly prevalent DNA of the predator itself, re-
ducing the data output attributed to prey.

The amplification of consumer DNA is most relevant to dietary 
analyses of predatory animals, and specifically in studies for which 
the PCR primers used amplify a sufficiently broad taxonomic range, 
consequently amplifying DNA of both the predator and its prey 
(e.g., reptiles feeding on both vertebrates and invertebrates; Tercel 
et al., 2022; bats feeding on a broad range of insects; Tournayre 
et al., 2020; spiders predating invertebrates including other spiders; 
Cuff, Tercel, et al., 2022). Other instances may be affected by this 
problem, such as metabarcoding- based assessment of parasitism 
(Miller et al., 2021), filter- feeding (Siegenthaler et al., 2018) or use 
of invertebrate- aggregated DNA for biodiversity surveys (“iDNA”; 
Cutajar & Rowley, 2020; Drinkwater et al., 2021). Herbivorous di-
etary analyses will mostly circumvent this issue, although they are 
subject to their own limitations, particularly when concerning om-
nivores (Tercel et al., 2021). The “predator problem” is both quan-
titative and qualitative; that is, the predator's own DNA will often 
outnumber that of the prey, but will also be intact and undigested. 
Amplification of the dilute and digested prey DNA will be much less 
efficient than that of the predator DNA, thus it is likely to domi-
nate the PCR product (Paula et al., 2015; Vestheim & Jarman, 2008; 

Waldner et al., 2013), leading to predator DNA comprising up 
to or over 95% of the sequencing output (Cuff et al., 2021; Piñol 
et al., 2014). Not only does this restrict the value of the data out-
put of dietary studies by reducing the proportion of it attributed to 
prey, but it restricts the ability of researchers to easily identify and 
remove contamination (which can be common when using such sen-
sitive methods) given that prey DNA may be present in such low pro-
portions of samples (Drake et al., 2022), and it impacts the already 
questionable potential for quantification of sequencing outputs due 
to the reduced accuracy of read counts when they are significantly 
smaller values.

There are some circumstances that may modify these rela-
tionships, notably different sample types or predator physiologies 
(Figure 1). The predator DNA present in faecal samples, often used in 
dietary metabarcoding (Kaunisto et al., 2017; Pompanon et al., 2012; 
Rytkönen et al., 2019; Tercel et al., 2022), may be more degraded 
than that of gut contents of whole- body extracts, but prey DNA is 
also likely to be more degraded. Regurgitates, commonly extracted 
from birds voluntarily (Ravache et al., 2020) or via stomach flushing, 
but also taken even from some invertebrates like carabid beetles 
(Kamenova et al., 2018), are commonly used for molecular dietary 
analysis and theoretically contain a far smaller proportion of predator 
DNA than in whole- body extracts (e.g., for invertebrates with diver-
ticulating guts; Macıas- Hernández et al., 2018) and generally fresher 
prey DNA than that found in faeces. The feeding mode of predators is 
also important to consider; for example, arachnids tend to digest their 
prey externally, lending to greater degradation of prey DNA even be-
fore it enters the predator's gut. The same would also be the case for 
scavengers that feed on decaying animals (Calder et al., 2005; King 
et al., 2008). Such variables must be considered in each case when 
predicting how debilitating the predator problem is likely to be.

Predator DNA data can be useful for reliably identifying cryptic 
or difficult- to- identify predator species (Cuff et al., 2021; Tournayre 
et al., 2020, 2021), or, if the metabarcoding amplicon is sufficiently 
informative, to assess relatedness within populations and inte-
grate ecoevolutionary context in downstream analyses (Derocles 
et al., 2018; Handley et al., 2011), but such instances are rare. Some 
of the DNA attributed to the focal predator may also belong to can-
nibalized conspecifics, possibly increasing the perceived prevalence 
of problematic predator DNA (i.e., increasing the predator problem). 
While cannibalism can be ecologically and nutritionally significant, 
the distinction between cannibalism and predator detection is im-
possible with most commonly used short metabarcoding markers 
due to insufficient intraspecific sequence variation, resulting in 
the treatment of these detections as focal predator DNA. Despite 
some potential utility, detection of focal predator DNA is most often 
problematic, consuming large amounts of the potential sequenc-
ing output which would otherwise be descriptive of the diet of the 
predators assessed. This problem is also pertinent to other metabar-
coding applications such as parasitism (Miller et al., 2021). Here we 
discuss the dietary metabarcoding predator problem in depth, how 
this problem may be exacerbated in increasingly common multitaxon 
studies, but also several solutions, both common and novel.
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2  |  COMPARING COMMON STR ATEGIES 
FOR OVERCOMING THE PREDATOR 
PROBLEM

There are many solutions to the problem of predator amplification 
in dietary metabarcoding, each with its own set of pitfalls. First, the 
most conceptually straightforward approach is to use PCR primers 
that amplify a broad range of taxa but also knowingly amplify preda-
tor DNA. In such cases, the sequencing output can be dominated by 
predator reads, leaving little data for analysis of the prey consumed, 
but the taxonomic breadth of the prey detected is less restricted 
(Cuff et al., 2021; Piñol et al., 2014). This is a viable approach to di-
etary analysis so long as sufficient sequencing depth is achieved to 
identify a great enough proportion of the prey for the study's aims, 
but this increases the costs associated with the analysis and imposes 
additional technological constraints (i.e., higher capacity sequencers 
are necessary). Careful selection of tissues for optimal prey DNA 
presence can mitigate this issue to some degree (e.g., in spiders, 
the greatest prevalence of prey DNA existis in the abdomen, but 
the cephalothorax and even the femurs can contain viable concen-
trations of prey DNA; Macıas- Hernández et al., 2018). This is not, 

however, possible for all predators and the proportion of predator 
DNA is usually an unpredictable and pervasive problem nonethe-
less. Importantly too, even the most general primers will exhibit 
some degree of bias and may fail to amplify some taxa (Brandon- 
Mong et al., 2015; Elbrecht & Leese, 2017; Mao et al., 2012).

Second, primers can also be designed carefully with a compre-
hensive reference database to amplify only target taxa, excluding 
(or at least exhibiting bias against) the predator's DNA (Ammann 
et al., 2020; Lafage et al., 2019; Zeale et al., 2011; Figure 2). Such 
“exclusion primers” can serendipitously occur among existing prim-
ers, for example those designed by Zeale et al. (2011) which have 
demonstrated exclusion of many taxa other than the bats they were 
designed to exclude (Berman & Inbar, 2021; Mitchell et al., 2021). 
These primers can, however, have very specific biases that might 
not apply, or may apply unevenly, to even confamilial taxa (Cuff 
et al., 2021), reducing their utility across studies or for multitaxon 
studies (the latter discussed in greater depth later). This exclusion 
may also extend far beyond the focal predator and could disrupt 
amplification of potential prey, especially if those prey are phyloge-
netically proximate to the focal predator, as can often be the case in 
intraguild predation (Cuff, Tercel, et al., 2022; Hambäck et al., 2022).

F I G U R E  1  The hypothetical 
degradation of DNA throughout the 
digestive process preluding whole body 
DNA extraction (left), stomach flush or 
regurgitate DNA extraction (centre), and 
faecal DNA extraction (right). Line graphs 
below illustrate DNA prevalence over 
time. In whole bodies, prey DNA degrades 
linearly, but predator DNA remains 
constantly prevalent. In regurgitates, 
DNA prevalence will decrease following 
removal from the predator's body and 
will then degrade alongside the prey 
DNA. In faeces, predator DNA will be 
less prevalent following defecation, and 
will then degrade with prey DNA, which 
will have degraded throughout the entire 
digestive process. Figure created in Biore 
nder.com

http://biorender.com
http://biorender.com
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Third, blocking probes are a similar solution to exclusion primers, 
but are separate oligonucleotides that physically prevent amplifica-
tion of a given taxon by preventing the PCR primers from anneal-
ing to primer sites (Deagle et al., 2009; Vestheim & Jarman, 2008). 
These prevent amplification of the DNA of specific taxa but, sim-
ilarly to exclusion primers, can introduce biases of their own by 
incidentally blocking amplification of prey taxon DNA with similar 
priming site sequences (Murray et al., 2011; Piñol et al., 2015, 2018). 
Since blocking primers can be used alongside general primers, they 
can facilitate a taxonomically broad dietary analysis whilst specif-
ically excluding predators (e.g., for pigs, Robeson et al., 2018; ot-
ters, Pertoldi et al., 2021; wolves and coyotes, Shi et al., 2021), but 
their direct competition with PCR primers and the exclusion of prey 
phylogenetically proximate to the predator can result in greater sto-
chasticity of their success (Piñol et al., 2015). Successful application 
of blocking primers also requires accurate identification of the pred-
ator prior to molecular analysis; this is not always possible, especially 
for cryptic species, juveniles of many taxa, indirectly collected sam-
ples (e.g., faeces) and specimens for which morphological details are 
obscured, for example if animals are damaged during collection or 
storage (Cuff et al., 2021; Tournayre et al., 2020, 2021).

The choice of either attempting to silence or potentially being 
swamped by predator DNA is an insidious one given the financial, 
practical and experimental implications. The increased adoption of 
multiprimer (often multimarker, i.e., across multiple genes) metabar-
coding (e.g., Batuecas et al., 2022; Cuff, Tercel, et al., 2022; da Silva 
et al., 2019, 2020; Stenhouse et al., 2021; Tercel et al., 2022) offers 
the option of using both approaches in synergy, but is by no means a 
panacea. Multimarker metabarcoding has been more generally sug-
gested as a means of overcoming the issues associated with PCR 
primer bias (Browett et al., 2021; Cuff, Windsor, et al., 2022; da 
Silva et al., 2019). Given that each PCR primer pair exhibits a dis-
tinct taxonomic bias which profoundly impacts data output (Alberdi 

et al., 2018; Taberlet et al., 2018), the use of multiple markers can 
sometimes balance out the biases of each individually by generat-
ing distinct but overlapping data sets (da Silva et al., 2019). This ap-
proach is also advantageous for investigating taxonomically distinct 
food groups, such as vertebrates and arthropods (Drake et al., 2022) 
or, increasingly, plants and animals (Tercel et al., 2021), although 
such compartmentalisation is separate to the alleviation of bias 
given that these compartments will be subject to their own biases 
with little to no corrective overlap between them. Commitment to a 
combination of distinct primer pairs does not, however, answer the 
critical question of which primers to use and how best to tackle the 
predator problem, even if using multiple approaches (for compar-
isons of metabarcoding primers see Browett et al., 2021; Elbrecht 
et al., 2019; Piñol et al., 2018; Tournayre et al., 2020).

3  |  THE PREDATOR PROBLEM IN 
MULTITA XON DIETARY STUDIES:  DEPTH 
OR BRE ADTH

The predator problem is compounded, regardless of approach(es), in 
studies concerning multiple predator taxa. If using general primers, 
the bias exhibited toward the predator may vary between the differ-
ent predator taxa, resulting in uneven read depth attributed to those 
different predators. General primers are, however, by their nature 
less biased than the alternatives (Krehenwinkel, Wolf, et al., 2017) 
and this problem is only deepened when using exclusion or blocking 
primers. In these latter cases, a fundamental decision must be made: 
either separately use a different exclusion/blocking primer for each 
predator taxon, in which case the independent taxonomic biases of 
each will probably provide taxonomically distinct prey detections, 
confounding direct comparison, or use a single exclusion/blocking 
primer universally across all samples, in which case some predator 

F I G U R E  2  General PCR primers will 
amplify a broad taxonomic range, but 
most of the PCR product will be the 
predator itself, resulting in some species 
being omitted in the sequencing output. 
Exclusion primers will avoid amplification 
of the predator, but also some prey 
groups, particularly those phylogenetically 
close to the predator (e.g., the flour beetle 
being eaten by the carabid beetle in this 
image). Figure created in Biore nder.com

http://biorender.com
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taxa may lose more data output than others to the predator prob-
lem. This is ultimately a question of compromising depth (i.e., read 
depth evenness) or breadth (i.e., taxonomic breadth evenness), the 
answer to which may depend on the context of the specific study or 
research questions. It is possible to address both by amplifying every 
sample with a full series of exclusion primers, each suiting a differ-
ent predator, but this quickly multiplies costs and labour. Equally, 
a “cocktail” of blocking/exclusion primers could be multiplexed in 
a single reaction, but they may compete, resulting in unpredictable 
permutations of their individual biases, and with more primers it 
becomes increasingly difficult to optimize PCR conditions for all of 
them in one reaction.

Cuff, Tercel, et al. (2022) presented a figure displaying the pro-
portion of predator and prey reads in a dietary analysis of five spider 
genera using both general and exclusion primers (Figure 3). Whilst 
the general primers showed overall consistency in that the predator 
typically comprised 95%– 100% of the sequencing output across all 
genera, the exclusion primers were highly inconsistent. For Erigone, 
no predator DNA was recovered, whilst for the other Linyphiidae 
genera, exclusion was inconsistent (predator DNA comprised mean 
43.86% ± 39.86% of reads, ranging from 0% to 100%); at the other 
extreme, for the Lycosidae genus Pardosa, the vast majority of reads 
were lost to the predator (mean 99.14% ± 4.60% of reads, ranging 
from 69.98% to 100%; Table S1). The primers used were initially de-
signed for the exclusion of linyphiids and were subsequently opti-
mized for this purpose (Cuff et al., 2021), but they were used in this 
study even for the lycosid genus Pardosa to favour consistency of 

prey amplification despite lycosid exclusion primers existing (Lafage 
et al., 2019). The sequencing depth for each sample in this study 
was relatively large (including predator reads, 24,104 mean reads per 
sample for the general primers, and 15,004 mean reads per sample 
for the exclusion primers), still affording a relatively high and even 
detection of prey across samples (not accounting for the number of 
reads attributed to each prey taxon), but the results are indicative of 
a wider problem in dietary metabarcoding, especially as we transi-
tion toward increasingly multitaxon studies.

The use of general and exclusion primers together for the same 
dietary samples provided a far greater diversity of prey than would 
be detected using just one. That both primers exhibited taxonomic 
biases is unsurprising, but their complementary biases highlight 
the strength of this approach. In fact, greater similarity can gen-
erally be observed within primer pairs than within samples, with 
the prey detected by each primer pair generally presenting over-
lapping but unique assemblages due to these biases (Figure 4). If 
different exclusion primers were used for each predator, this may 
have resulted in similarly distinct prey detections for each, artifi-
cially inflating the differences in their diets. By using a consistent 
exclusion primer, the loss is restricted to the sequencing depth 
but, since this was sufficient to detect a high diversity of prey 
even with the general primers, this is theoretically not debilitating. 
An additional option would be the inclusion of another exclusion 
primer suitable for lycosids such as NoSpi (Lafage et al., 2019) 
alongside the existing two primer pairs, but applied across all 
samples. Unless they were multiplexed as discussed above, this 

F I G U R E  3  The percentage of reads attributed to predator and prey for each spider genus across two primer pairs used by Cuff, Tercel, 
et al. (2022). Colours distinguish between predator (red) and prey (blue) reads, and read counts are given as percentages of the total read 
count per sample. Figure originally presented by Cuff, Tercel, et al. (2022)
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approach would further multiply the costs of metabarcoding, but 
would be a viable means for reducing the uneven loss of read 
depth between taxa, and should be considered for future studies 
of this nature.

The unique biases and workflows associated with a specific 
primer pair, or combination of primer pairs, may undermine compar-
ative dietary analyses that use different primer pairs. The ecolog-
ical conclusions of such comparisons may be weakened given the 
differential coverage selected primer pairs may afford and how this 
influences our understanding of a single or multiple focal consumers. 
Consistent use of primer pairs therefore offers researchers greater 
power to resolve and analyse differences between focal species, 
which is increasingly important considering the increasing preva-
lence of multitaxon studies and multiple studies of the same taxon. 
Therefore, we ultimately encourage researchers to favour consis-
tency above specificity in primer selection for multitaxon studies, or 
for comparative analyses between studies.

4  |  ALTERNATIVE METHODS FOR 
THE E XCLUSION OF PREDATOR DNA IN 
METABARCODING

Whilst the common methods for dealing with the predator problem 
are inconsistent in their success and can introduce additional issues, 
there are other solutions, some of which are yet to be applied to 
dietary analysis. The solutions discussed above all concern the PCR 
stage, but the metabarcoding workflow presents other intervention 
points that warrant consideration for addressing the predator 
problem (Table 1).

Krehenwinkel, Kennedy, et al. (2017) suggested that removal of 
longer oligonucleotides via size selection techniques such as solid 
phase reversible immobilization (SPRI) beads or pulsed- field electro-
phoresis equipment such as the Blue Pippin (Sage Science) could be 
an effective means for reducing the prevalence of predator DNA in 
metabarcoding. This is based on the notion that prey DNA, being 
digested, will typically be fragmented into smaller molecules than 
the fresh intact DNA of a predator (Sint & Raso, 2011; Waldner 
et al., 2013). Since all gut and faecal contents will include some de-
graded predator DNA, this will not provide a perfect removal of the 
problem but may significantly improve data output. No published 
studies have yet replicated this approach though. Importantly, if 
effective, this might enact bias against recently consumed prey, 
although this is unlikely to be problematic for externally digesting 
predators such as arachnids, the context in which the method was 
initially presented. The efficacy of techniques such as this should be 
considered carefully for multitaxon studies, especially if the feeding 
mode (e.g., fluid feeding vs. coprophagous, digestive tract size/in-
tensity) or sample type (e.g., faeces vs. gut contents) of the predators 
differs, which may affect gut DNA half- life or predator DNA degra-
dation and therefore affect the difference in fragment size between 
predator and prey DNA (Paula et al., 2015; von Berg et al., 2008; 
Waldner et al., 2013).

It is also possible to restrict the impact of predator amplicons 
post- PCR by interfering with their interaction with the sequencer. 
Depletion of abundant sequences by hybridisation (DASH) is a 
method proposed for molecular studies that are burdened with 
high proportions of nontarget DNA (Gu et al., 2016; Ramani & 
Shendure, 2016). DASH involves hybridizing the unwanted DNA 
with recombinant Cas9 endonuclease via specific single guide RNAs 

F I G U R E  4  Nonmetric multidimensional 
scaling showing higher similarity of 
dietary data from the same primer pairs 
(colours; red and blue denoting general 
and exclusion primers, respectively) than 
within samples (points linked by black 
lines belong to the same sample). Creation 
of this figure is described in Appendix S1
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(sgRNAs) and cleaving one of the indexes prior to final amplifica-
tion of the library, effectively preventing amplification of these se-
quences and their downstream sequencing. The specificity of this 
approach relies on purpose- designed sgRNAs, but these must be 
proximate to an existing protospacer adjacent motif (PAM) site im-
mediately downstream from the cut site. This imposes a restriction 
on where amplicons can be cut, although different Cas endonucle-
ases can be used, each with its own specific PAM site sequence re-
quirements (e.g., the most common Cas9, SpCas9, requires NGG; Hu 
et al., 2018). This method appears promising for dietary analyses, 
but this late- stage intervention (i.e., post- PCR) could prove prob-
lematic in instances of high predator amplicon prevalence since the 
remaining yield could be unpredictably low. The specificity of sgR-
NAs for phylogenetically proximate predators and prey also requires 
some empirical validation in this context, particularly for application 
to multitaxon studies.

Target enrichment methods such as “baiting” (sequence- specific 
hybridisation capture) of specific organellar genomes or gene re-
gions has demonstrated great success with various environmental 
and ecological samples (Aylward et al., 2018; Seeber et al., 2019), 
even degraded and fragmented DNA (Kollias et al., 2015), but has yet 
to be applied in a dietary context. Specific baits can be produced for 
the isolation, or removal, of DNA of a given taxon, which could the-
oretically be applied to the removal of predator DNA, for example 
its mitochondrial genome, to limit or even eliminate its prevalence 
in downstream PCR. This would be achieved by designing baits to 
complement predator DNA, hybridizing the baits to predator DNA 
in samples, and removing the supernatant, leaving behind the baits 
hybridized to a large proportion of the predator DNA. The likeli-
hood of off- target effects of this are yet to be fully explored, but 
some removal of phylogenetically proximate prey DNA could be ex-
pected. For multitaxon studies, multiple baits would possibly have 
to be generated, each with their own possible nontarget effects, but 
this method could theoretically present a viable advance for dietary 
studies faced with the predator problem.

This baiting approach would also be a viable means for removing 
predator DNA prior to PCR- free metagenomic analysis, which avoids 
the biases associated with PCR (Paula et al., 2016). PCR- free metag-
enomics theoretically improves the taxonomic breadth of consumed 
species identified, semi- quantification of consumption events and 
the potential for lateral data collection (e.g., parasites, microbiome, 
endosymbionts; Chua et al., 2021; Paula et al., 2016; Srivathsan 
et al., 2014, 2016), but at a greater overall cost given the need for 
increased sequencing depth and the higher incidence of nontarget 
reads. This constraint could be somewhat alleviated for dietary ap-
plications by adoption of a bait- based approach to removing preda-
tor DNA, but this importantly would only remove specific targets, 
leaving nontarget DNA that may consume sequencing depth. If 
sufficiently general baits could be designed, this approach could, 
however, first be used to retain only DNA from specific organelles, 
which could then be enriched irrespective of removal of the preda-
tor. Through isothermal amplification, such as rolling circle amplifi-
cation, often- circular whole organelle genomes could be amplified 
and concatemeric branches accurately sequenced using accessible 

long- read sequencing platforms such as nanopore sequencing 
(Baloğlu et al., 2021). Such approaches are yet to be demonstrated 
in empirical dietary research but could present a natural progres-
sion away from DNA metabarcoding approaches for increased taxo-
nomic resolution and breadth, and reduced bias. A substantial body 
of research must first be completed to validate these approaches, 
alongside increased accessibility to long- read and increasingly deep 
sequencing platforms.

5  |  CONCLUSIONS

The predator problem is a pervasive and widespread issue in molec-
ular dietary analyses, with profound and unaddressed implications, 
particularly for increasingly common multitaxon studies such as 
those constructing complex ecological networks (Clare et al., 2018; 
Hemprich- Bennett et al., 2021; Ingala et al., 2021; Mata et al., 2021). 
The methods used to overcome the problem are variably effective 
and present significant trade- offs, particularly regarding bias and the 
amount of data output. We suggest that dietary studies use multi-
ple primer pairs with an emphasis on normalizing bias and prey read 
depth across studies. The less common methods presented as pos-
sible solutions to the predator problem require additional empirical 
exploration to ascertain their efficacy before widespread adoption 
by the dietary metabarcoding community.

The predator problem is laterally relevant to other contexts such 
as filter feeding (Zamora- Terol et al., 2020) and parasitism (Miller 
et al., 2021). Metabarcoding studies should consider the relevance 
of this problem before embarking on empirical work. Regardless of 
the solution selected, there are several key steps that can be taken 
to understand the extent to which the predator problem is likely to 
affect each study. Empirical pilot studies can be invaluable in iden-
tifying downstream problems for metabarcoding studies (Browett 
et al., 2021), although these can inflate overall costs. PCR primers 
must also be tested prior to working with samples. Primers can be 
tested in silico (i.e., computationally through simulated PCR reac-
tions) to evaluate the likelihood of amplifying the target species 
prior to investing in sequencing or in vitro (i.e., laboratory- based; 
Clarke et al., 2014; Elbrecht & Leese, 2016; Ficetola et al., 2010; 
MacDonald & Sarre, 2016). Results from in vitro testing, which can 
differ substantially from in silico results, can then be used to con-
firm the range of taxa amplified by the primer pair. Given that each 
PCR primer pair exhibits a distinct taxonomic bias which profoundly 
impacts data output (Alberdi et al., 2018; Taberlet et al., 2018), se-
lection of primers can be among the most crucial decisions in any 
metabarcoding workflow (Piñol et al., 2018), not least to avoid im-
plications of the predator problem. Arguably most crucially though, 
is the transparent and clear reporting of the extent to which the 
predator problem impacts each study. This should not be viewed as 
a detraction from the research itself, but rather a hallmark of open 
science in molecular dietary analysis. By making this information 
accessible, future studies, particularly those in similar systems, can 
refine their approach to mitigate the potentially large impacts of the 
predator problem.
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