
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 207 (2022) 1641–1648

1877-0509 © 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 26th International Conference on Knowledge-Based and Intelligent
Information & Engineering Systems (KES 2022)
10.1016/j.procs.2022.09.221

10.1016/j.procs.2022.09.221 1877-0509

© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 26th International Conference on Knowledge-Based and
Intelligent Information & Engineering Systems (KES 2022)

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2022) 000–000
www.elsevier.com/locate/procedia

26th International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems (KES 2022)

3D Gaze in Virtual Reality: Vergence, Calibration, Event Detection
Andrew T. Duchowskia, Krzysztof Krejtzb, Matias Volontec, Chris J. Hughesd, Marta

Brescia-Zapatae, Pilar Oreroe

aClemson University, Clemson, SC, USA
bSWPS University of Social Sciences & Humanities, Warsaw, Poland

cNortheastern University, Boston, MA
dUniversity of Salford, Manchester, UK

eUniversitat Autònoma de Barcelona, Barcelona, Spain

Abstract

Eye movement analysis in modern 3D rendering systems is reviewed and three new techniques are derived inspired by work
developed in early Virtual Reality so-called 2.5D implementations, namely (a) gaze depth (i.e., vergence) estimation, (b) vergence
calibration, and (c) real-time 3D event detection that considers eye- and head-coupling. The new 3D calibration shows excellent
error reduction in terms of Mean Squared Error (MSE).

© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the KES International.

Keywords: virtual reality; eye tracking

1. Introduction & Background

In 2002, Duchowski et al. [2, 3] documented techniques for eye movement processing in Virtual Reality (VR) that
estimated gaze rays in 3D obtained from the projection of the 2D left and right gaze points measured by the left and

∗ Andrew Duchowski
E-mail addresses: duchowski@clemson.edu (Andrew T. Duchowski)., kkrejtz@swps.edu.pl (Krzysztof Krejtz)., m.volont@northeastern.edu

(Matias Volonte)., C.J.Hughes@salford.ac.uk (Chris J. Hughes)., Marta.Brescia@uab.cat (Marta Brescia-Zapata)., pilar.orero@uab.cat (Pilar
Orero).

∗ Corresponding author. Tel.: +1-864-656-7677 ; fax: +0-000-000-0000.
E-mail address: duchowski@clemson.edu

1877-0509© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the KES International.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2022) 000–000
www.elsevier.com/locate/procedia

26th International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems (KES 2022)

3D Gaze in Virtual Reality: Vergence, Calibration, Event Detection
Andrew T. Duchowskia, Krzysztof Krejtzb, Matias Volontec, Chris J. Hughesd, Marta

Brescia-Zapatae, Pilar Oreroe

aClemson University, Clemson, SC, USA
bSWPS University of Social Sciences & Humanities, Warsaw, Poland

cNortheastern University, Boston, MA
dUniversity of Salford, Manchester, UK

eUniversitat Autònoma de Barcelona, Barcelona, Spain

Abstract

Eye movement analysis in modern 3D rendering systems is reviewed and three new techniques are derived inspired by work
developed in early Virtual Reality so-called 2.5D implementations, namely (a) gaze depth (i.e., vergence) estimation, (b) vergence
calibration, and (c) real-time 3D event detection that considers eye- and head-coupling. The new 3D calibration shows excellent
error reduction in terms of Mean Squared Error (MSE).

© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the KES International.

Keywords: virtual reality; eye tracking

1. Introduction & Background

In 2002, Duchowski et al. [2, 3] documented techniques for eye movement processing in Virtual Reality (VR) that
estimated gaze rays in 3D obtained from the projection of the 2D left and right gaze points measured by the left and

∗ Andrew Duchowski
E-mail addresses: duchowski@clemson.edu (Andrew T. Duchowski)., kkrejtz@swps.edu.pl (Krzysztof Krejtz)., m.volont@northeastern.edu

(Matias Volonte)., C.J.Hughes@salford.ac.uk (Chris J. Hughes)., Marta.Brescia@uab.cat (Marta Brescia-Zapata)., pilar.orero@uab.cat (Pilar
Orero).

∗ Corresponding author. Tel.: +1-864-656-7677 ; fax: +0-000-000-0000.
E-mail address: duchowski@clemson.edu

1877-0509© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the KES International.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2022.09.221&domain=pdf

1642 Andrew T. Duchowski et al. / Procedia Computer Science 207 (2022) 1641–1648
2 Duchowski et al. / Procedia Computer Science 00 (2022) 000–000

(a) Unity 3D.

y

z x

P1

R1

P3

R2

Pa = P1 + t1R1

Pb = P3 + t2R2

(b) Vector geometry.

Fig. 1: Captured data in Unity 3D (a) and corresponding vector geometry (b). Note that the gaze rays do not intersect where they appear to cross
over. Rather, their intersection is defined as the midpoint of the shortest segment PaPb perpendicular to both rays (in green). Note that P2 and P4
are not shown as they are arbitrarily located along the rays R1 and R2, i.e., P2 = P1 + t1R1 and P4 = P3 + t1R2 for some arbitrary choice of t1 and
t2, respectively.

right eye trackers embedded in a Helmet-Mounted Displays (HMD). Such 2.5D gaze ray computation was then used
for VR object selection via gaze ray-object intersection, and later for gaze-contingent foveated rendering.

At the time, the main concern was estimation of a combined gaze ray, which Duchowski et al. [3] derived as a
ray emanating from the central head position as a function of interpupillary distance. Today, this type of functionality
is built in to eye-tracking VR systems such as the HTC Vive Pro Eye. Vive provides Eye and Facial Tracking Soft-
ware Development Kits (SDKs) that give real-time access to eye gaze features through their SRAnipal code plugin.
SRAnipal is meant to drive the eye rotation of an avatar, but it also provides functions to obtain run-time gaze ray
information as well as gaze-object ray intersection. Although their ray intersection mechanism (SRAnipal’s Focus()
function) yields depth of an object being looked at, computation of gaze depth in virtual reality free space is left to
the developer.

The purpose of this paper is to provide details of such computation, based on prior art and what appears to be
a novel instantiation of a ray-ray intersection derivation (as opposed to line-line intersection). C# implementation is
provided (see Listing 1 below), suitable for inclusion in Unity 3D along with a novel 3D gaze calibration.

2. 3D Eye Tracking in Virtual Reality

There are at least two reasons for measuring gaze in Virtual Reality: determining gaze direction, e.g., for foveated
rendering, and determining object and gaze ray intersection e.g., for object selection. Both of these for the most part
ignore vergence, i.e., the measurement of gaze depth. However, this estimate can be useful for many reasons, e.g., for
gaze-contingent depth-of-field rendering.

2.1. Gaze Depth Computation

Wibirama and Hamamoto [18] provide a derivation of gaze depth given the left and right gaze ray origins, P1 and
P3 and two distant points along those gaze rays, P2 and P4 (see Fig. 1(b) where the points P2 and P4 are omitted as
they are arbitrarily located along the rays R1 and R2.).

 Andrew T. Duchowski et al. / Procedia Computer Science 207 (2022) 1641–1648 1643
2 Duchowski et al. / Procedia Computer Science 00 (2022) 000–000

(a) Unity 3D.

y

z x

P1

R1

P3

R2

Pa = P1 + t1R1

Pb = P3 + t2R2

(b) Vector geometry.

Fig. 1: Captured data in Unity 3D (a) and corresponding vector geometry (b). Note that the gaze rays do not intersect where they appear to cross
over. Rather, their intersection is defined as the midpoint of the shortest segment PaPb perpendicular to both rays (in green). Note that P2 and P4
are not shown as they are arbitrarily located along the rays R1 and R2, i.e., P2 = P1 + t1R1 and P4 = P3 + t1R2 for some arbitrary choice of t1 and
t2, respectively.

right eye trackers embedded in a Helmet-Mounted Displays (HMD). Such 2.5D gaze ray computation was then used
for VR object selection via gaze ray-object intersection, and later for gaze-contingent foveated rendering.

At the time, the main concern was estimation of a combined gaze ray, which Duchowski et al. [3] derived as a
ray emanating from the central head position as a function of interpupillary distance. Today, this type of functionality
is built in to eye-tracking VR systems such as the HTC Vive Pro Eye. Vive provides Eye and Facial Tracking Soft-
ware Development Kits (SDKs) that give real-time access to eye gaze features through their SRAnipal code plugin.
SRAnipal is meant to drive the eye rotation of an avatar, but it also provides functions to obtain run-time gaze ray
information as well as gaze-object ray intersection. Although their ray intersection mechanism (SRAnipal’s Focus()
function) yields depth of an object being looked at, computation of gaze depth in virtual reality free space is left to
the developer.

The purpose of this paper is to provide details of such computation, based on prior art and what appears to be
a novel instantiation of a ray-ray intersection derivation (as opposed to line-line intersection). C# implementation is
provided (see Listing 1 below), suitable for inclusion in Unity 3D along with a novel 3D gaze calibration.

2. 3D Eye Tracking in Virtual Reality

There are at least two reasons for measuring gaze in Virtual Reality: determining gaze direction, e.g., for foveated
rendering, and determining object and gaze ray intersection e.g., for object selection. Both of these for the most part
ignore vergence, i.e., the measurement of gaze depth. However, this estimate can be useful for many reasons, e.g., for
gaze-contingent depth-of-field rendering.

2.1. Gaze Depth Computation

Wibirama and Hamamoto [18] provide a derivation of gaze depth given the left and right gaze ray origins, P1 and
P3 and two distant points along those gaze rays, P2 and P4 (see Fig. 1(b) where the points P2 and P4 are omitted as
they are arbitrarily located along the rays R1 and R2.).

Duchowski et al. / Procedia Computer Science 00 (2022) 000–000 3

Two rays in 3 dimensions do not generally intersect at a point. They may be parallel (no intersections) or they may
be coincident (infinite intersections) but most often only their projection onto a plane intersect. When they do not
exactly intersect at a point they can be connected by a line segment, the shortest line segment is unique and is often
considered to be their intersection in 3D.

According to Paul Bourke1 the two endpoints of the unique line segment Pa and Pb are defined as

Pa = P1 + t1(P2 − P1) (1)
Pb = P3 + t2(P4 − P3) (2)

with the shortest line found by minimizing |Pb − Pa|:
Pb − Pa = P3 − P1 + t2(P4 − P3) − t1(P2 − P1) (3)

Because PaPb is perpendicular to both lines P1P2 and P3P4 the dot products between them are zero:

(Pb − Pa) · (P2 − P1) = 0 (4)
(Pb − Pa) · (P4 − P3) = 0 (5)

Substituting (3) into (4) and (5) yields:

[P3 − P1 + t2(P4 − P3) − t1(P2 − P1)] · (P2 − P1) = 0 (6)
[P3 − P1 + t2(P4 − P3) − t1(P2 − P1)] · (P4 − P3) = 0 (7)

Wibirama and Hamamoto [18] note that (6) and (7) can be solved to produce t1, t2 which then can be used to find Pa

and Pb and then the gaze depth is computed as the midpoint of this segment:

Pm =
Pa + Pb

2
(8)

Indeed, Bourke1 provides the solution using explicit vector elements x, y, z. Several code examples are also provided
that can directly be used in a system such as Unity.

The problem with the above derivation is that it relies on two (distant) points along both gaze rays. Wibirama and
Hamamoto [18] use a gaze tracking system where the gaze rays intersect a 2D screen, and so they provide two natural
gaze ray intersections that can be used as P2 and P4. In VR, however, there is no such obvious plane to use, making
choice of points P2 and P4 arbitrary.

What is needed instead is derivation of the segment PaPb using rays R2 and R4 directly, without the need for
estimation of either of P2 or P4, i.e., R2 � (P2 − P1) and R4 � (P4 − P3) necessarily since neither of P2 nor P4
need be specified. Rather, in Unity, the SRAnipal SDK simply provides both R2 and R4 via two GetGazeRay() calls
(see below). The ray-based derivation is similar to the system described by Abbott and Faisal [1], who omit explicit
derivation of the vector intersection. Our derivation makes this explicit and is as follows.

Equations (6) and (7) are rewritten with gaze rays R2 or R4:

[(P3 − P1) + t2R2 − t1R4] · R2 = 0 (9)
[(P3 − P1) + t2R2 − t1R4] · R4 = 0 (10)

This derivation is easier to follow than Bourke’s, especially when expressed in vector form, so long as one keeps
track of whether the resultant expression elements are themselves vector or scalar quantities, remembering that the
dot product yields a scalar. Expanding (9) and (10) yields

(P3 − P1) · R2 + t2(R2 · R2) − t1(R4 · R2) = 0 (11)
(P3 − P1) · R4 + t2(R2 · R4) − t1(R4 · R4) = 0 (12)

Rewriting (11) and solving for t1 gives

t1 =
(P3 − P1) · R2 + t2(R2 · R2)

(R4 · R2)
(13)

1 http://paulbourke.net/geometry/pointlineplane/

1644 Andrew T. Duchowski et al. / Procedia Computer Science 207 (2022) 1641–1648
4 Duchowski et al. / Procedia Computer Science 00 (2022) 000–000

public bool CalculateVectorVectorIntersection(

Vector3 P1 , Vector3 P3 ,

Vector3 R2 , Vector3 R4 ,

out float t1 , out float t2) {

Vector3 p13 = P1 - P3;

t1 = t2 = 0.0f;

// dot products

float r4dotr4 = Vector3.Dot(R4 ,R4);

float r2dotr2 = Vector3.Dot(R2 ,R2);

float r2dotr4 = Vector3.Dot(R2 ,R4);

// check denominator (R2 · R4)2 − (R2 · R2)(R2 · R4)
float denom = Mathf.Pow(r2dotr4 , 2) - (r2dotr2 * r4dotr4);

if (r2dotr4 < Mathf.Epsilon || Math.Abs(denom) < Mathf.Epsilon)

return false;

t2 = ((Vector3.Dot(p13 ,R2) * r4dotr4) -

(Vector3.Dot(p13 ,R4) * r2dotr4)) / denom;

t1 = (Vector3.Dot(p13 ,R2) + t2 * r2dotr2) / (r2dotr4);

return true;

Listing. 1: C# implementation.

Substituting (13) into (12) gives:

(P3 − P1) · R4 + t2(R2 · R4)
(R4 · R4)

=
(P3 − P1) · R2 + t2(R2 · R2)

(R4 · R2)
(14)

Re-arranging and solving for t2 yields:

t2 =
(P3 − P1) · R2(R4 · R4) − (P3 − P1) · R4(R4 · R2)

(R2 · R4)2 − (R2 · R2)(R2 · R4)
(15)

If either |(R2 ·R4)|<ϵ or |(R2 ·R4)2 − (R2 ·R2)(R2 ·R4)|<ϵ then the rays do not intersect. If either t1<0 or t2<0 then
the intersection is behind the gaze ray origins, i.e., when gaze diverges. The line segment endpoints are obtained as in
(1) and (2), namely Pa = P1 + t1R2 and Pb = P3 + t2R4 and gaze depth is the segment bisector given in (8).

Example implementation in C# suitable for inclusion in Unity is given in Listing 1. Note that the SRanipal plugin
for Unity provides the SRanipal Eye v2.GetGazeRay() function that returns the gaze ray origin and direction of
either of the left or right eyes (or combination thereof).

2.2. Vergence Calibration

Gaze estimation in Virtual Reality, at least in the HTC Vive Pro Eye, depends on calibration of the eye tracker
based on gaze localization on a 2D plane, e.g., as performed in SteamVR before rendering of a 3D environment. Thus
gaze depth estimation as derived above yields raw gaze data in 3D and is uncalibrated.

Wang et al. [15, 16] described a method of 3D gaze depth calibration using a continuous form of calibration using
a simple sphere traversing along a Lissajous-knot path where the sphere’s position S (t) = (x(t), y(t), z(t)) over time t
in seconds, is specified by the vector equation

S(t) = Λ cos(2πΓ(t) +Φ) (16)

 Andrew T. Duchowski et al. / Procedia Computer Science 207 (2022) 1641–1648 1645
4 Duchowski et al. / Procedia Computer Science 00 (2022) 000–000

public bool CalculateVectorVectorIntersection(

Vector3 P1 , Vector3 P3 ,

Vector3 R2 , Vector3 R4 ,

out float t1 , out float t2) {

Vector3 p13 = P1 - P3;

t1 = t2 = 0.0f;

// dot products

float r4dotr4 = Vector3.Dot(R4 ,R4);

float r2dotr2 = Vector3.Dot(R2 ,R2);

float r2dotr4 = Vector3.Dot(R2 ,R4);

// check denominator (R2 · R4)2 − (R2 · R2)(R2 · R4)
float denom = Mathf.Pow(r2dotr4 , 2) - (r2dotr2 * r4dotr4);

if (r2dotr4 < Mathf.Epsilon || Math.Abs(denom) < Mathf.Epsilon)

return false;

t2 = ((Vector3.Dot(p13 ,R2) * r4dotr4) -

(Vector3.Dot(p13 ,R4) * r2dotr4)) / denom;

t1 = (Vector3.Dot(p13 ,R2) + t2 * r2dotr2) / (r2dotr4);

return true;

Listing. 1: C# implementation.

Substituting (13) into (12) gives:

(P3 − P1) · R4 + t2(R2 · R4)
(R4 · R4)

=
(P3 − P1) · R2 + t2(R2 · R2)

(R4 · R2)
(14)

Re-arranging and solving for t2 yields:

t2 =
(P3 − P1) · R2(R4 · R4) − (P3 − P1) · R4(R4 · R2)

(R2 · R4)2 − (R2 · R2)(R2 · R4)
(15)

If either |(R2 ·R4)|<ϵ or |(R2 ·R4)2 − (R2 ·R2)(R2 ·R4)|<ϵ then the rays do not intersect. If either t1<0 or t2<0 then
the intersection is behind the gaze ray origins, i.e., when gaze diverges. The line segment endpoints are obtained as in
(1) and (2), namely Pa = P1 + t1R2 and Pb = P3 + t2R4 and gaze depth is the segment bisector given in (8).

Example implementation in C# suitable for inclusion in Unity is given in Listing 1. Note that the SRanipal plugin
for Unity provides the SRanipal Eye v2.GetGazeRay() function that returns the gaze ray origin and direction of
either of the left or right eyes (or combination thereof).

2.2. Vergence Calibration

Gaze estimation in Virtual Reality, at least in the HTC Vive Pro Eye, depends on calibration of the eye tracker
based on gaze localization on a 2D plane, e.g., as performed in SteamVR before rendering of a 3D environment. Thus
gaze depth estimation as derived above yields raw gaze data in 3D and is uncalibrated.

Wang et al. [15, 16] described a method of 3D gaze depth calibration using a continuous form of calibration using
a simple sphere traversing along a Lissajous-knot path where the sphere’s position S (t) = (x(t), y(t), z(t)) over time t
in seconds, is specified by the vector equation

S(t) = Λ cos(2πΓ(t) +Φ) (16)

Duchowski et al. / Procedia Computer Science 00 (2022) 000–000 5

with component amplitudes Λ = (9, 5, 20) in mm, frequencies Γ = (0.101, 0.127, 0.032) in Hz, and phase angles
Φ= (0,−90, 57) in degrees. Calibration can take a short amount of time, e.g., 10 seconds, which, at a sampling rate of
120 Hz, yields 1,200 gaze position (and sphere position) samples.

Calibration relies on Lagrange’s method of least squares, or the multivariate multiple regression model [8, 4], to
minimize errors due to systematic shift (from x=0, y=0 and z=0) and scale.

In two dimensions, e.g., when calibrating x- and y-coordinates on a 2D plane, often perpendicular to the viewer as
on a computer monitor, calibration points (six, siy) are defined by their screen coordinates. A second-order polynomial
is often used to handle quadratic distortions such as pin-cushion or barrel effects [12]:

six = a0 + a1xi + a2yi + a3xiyi + a4x2
i + a5y2

i (17)
siy = b0 + b1xi + b2yi + b3xiyi + b4x2

i + b5y2
i (18)

where parameters a0–a5 and b0–b5 are the unknowns. Equations (17) and (18) can be reformulated into matrix form:

[
six siy

]
=
[
1 xi yi xiyi x2

i y2
i

] [a0 a1 a2 a3 a4 a5
b0 b1 b2 b3 b4 b5

]T

For each time sample i, (six, siy) denotes the known coordinate of the calibration point, and (xi, yi) the corresponding
gaze point. With ai and bi the unknown coefficients, a second order model is used to minimize error for x and y:

S = XB̂ with B̂ = (XT X)−1XT S

where XT X is the symmetric covariance matrix and the estimate of B̂ is the result of Lagrange’s method of least
squares. Wibirama and Hamamoto [18] used a quadratic model such as this followed by Singular Value Decomposition
to correct for the z-coordinate.

Wang et al. [16] showed that for calibrating gaze depth in a desktop eye-tracking stereo system, a linear system
can be used instead, constructed for the z-coordinates Sz = Zc, where Sz is the vector of known values for z, Z is the
matrix formed from measured values of z, and c = [c0, c1]T is the vector of unknown coefficients:

[
siz

]
=
[
1 zi

] [c0
c1

]

In the case of desktop stereo with a remote 2D eye tracker, both the x- and y-coordinates are calibrated in 2D, and are
used to yield the 3D gaze vectors, and so there is no need to re-calibrate. Instead, only the solution for z is sought,
where the solution to this over constrained system, yielding the least mean squared error, is c = (ZT Z)−1ZT Sz. The
resulting coefficient vector (c) is saved and used in real-time during eye tracking to compute the calibrated gaze depth

(x̂, ŷ, ẑ) = (x, y, c0 + c1z) (19)

from the measured gaze vectors and gaze intersection point (x, y, z). Collecting 3D data in VR exposes the inadequacy
of this so-called 2.5D solution, as seen in Fig. 2(a). Although the calibration z-coordinate fluctuates sinusoidally
as per the z-coordinate of the Lissajous curve in (16), gaze depth appears linear, before and after transformation.
Transformed gaze depth is properly aligned with the apparent mean of the Lissajous curve z-coordinate, but the
sinusoidal undulations are not faithfully reproduced due to the linear nature of the transform given by (19). The
approach may have been sufficient for the 2.5D stereoscopic setup used by Wang et al. [16], but a more complete
solution is needed for 3D gaze.

In 3D, neither 2D quadratic solution for x- and y-coordinates (17-18) nor 1D linear solution for the z-coordinate
(19) is sufficient. In 3D, a quadratic system for solving all three x-, y-, and z-coordinates simultaneously is needed:

six = a0 + a1xi + a2yi + a3zi + a4xiyi + a5xizi + a6yizi + a7xiyizi + a8x2
i + a9y2

i + a10z2
i (20)

siy = b0 + b1xi + b2yi + b3zi + b4xiyi + b5xizi + b6yizi + b7xiyizi + b8x2
i + b9y2

i + b10z2
i (21)

siz = c0 + c1xi + c2yi + c3zi + c4xiyi + c5xizi + c6yizi + c7xiyizi + c8x2
i + c9y2

i + c10z2
i (22)

1646 Andrew T. Duchowski et al. / Procedia Computer Science 207 (2022) 1641–1648
6 Duchowski et al. / Procedia Computer Science 00 (2022) 000–000

0 200 400 600 800 1000 1200

t

−20

0

20

40

60

z

(a) 1D calibration.

x

−15 −10 −5 0 5 10 15

y

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

z

−40

−20

0

20

40

(b) 3D calibration.

Fig. 2: Calibration visualization. The black scatter plot shows the position of the calibration target traversing the Lissajous curve path. In (a) only
the z-coordinate is visible. 10.94 for transformed z-coordinate (in Unity meters). The green scatter plot is the raw 3D gaze position. The blue scatter
plot shows the transformed gaze coordinates. Mean squared error for raw 3D coordinates is 25.93 and 6.05 for transformed 3D coordinate (in Unity
meters).

or in matrix form S = XB̂ as before, where

S =


six siy siz



X =

1 xi yi zi xiyi xizi yizi xiyizi x2

i y2
i z2

i



and

B̂T =


a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10



Results of the transformation are shown in Fig. 2(b) which show much better adherence of the transformed 3D gaze
to the Lissajous curve then when uncalibrated. Mean squared error between gaze point and target is clearly reduced
following 3D calibration. The advantage of this method is that it provides a direct solution (via least-squares minimia-
tion), obviating the need for more exotic solutions, such as neural networks suggested by Li et al. [9] or visual-intertial
simultanesou localization and mapping, i.e., SLAM-based localization given by Wang et al. [14].

2.3. Real-time 3D Event Detection

Defining the gaze point Pi = (x̂, ŷ, ẑ) as in (19), the next step is to derive an event detection [6] algorithm suitable
for implementation in virtual reality to distinguish fixations from saccades, as well as smooth pursuits and Vestibulo-
Ocular Reflex (VOR) movements, if possible. VOR movements (and depth estimation) can be useful in disambiguating
selection of occluded targets at depth [11]. Llanes-Jurado et al. [10] note that fixation detection in head-mounted
displays, where head movement is unrestricted, is still an open issue. Their dispersion-based approach was based on
one given by Duchowski et al. [3], who used the gaze point computed as the intersection of the gaze ray and objects
in the scene, which, for example, is possible to retrieve via the Focus() call within the SRAnipal SDK.

 Andrew T. Duchowski et al. / Procedia Computer Science 207 (2022) 1641–1648 1647
6 Duchowski et al. / Procedia Computer Science 00 (2022) 000–000

0 200 400 600 800 1000 1200

t

−20

0

20

40

60

z

(a) 1D calibration.

x

−15 −10 −5 0 5 10 15

y

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

z

−40

−20

0

20

40

(b) 3D calibration.

Fig. 2: Calibration visualization. The black scatter plot shows the position of the calibration target traversing the Lissajous curve path. In (a) only
the z-coordinate is visible. 10.94 for transformed z-coordinate (in Unity meters). The green scatter plot is the raw 3D gaze position. The blue scatter
plot shows the transformed gaze coordinates. Mean squared error for raw 3D coordinates is 25.93 and 6.05 for transformed 3D coordinate (in Unity
meters).

or in matrix form S = XB̂ as before, where

S =


six siy siz



X =

1 xi yi zi xiyi xizi yizi xiyizi x2

i y2
i z2

i



and

B̂T =


a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10



Results of the transformation are shown in Fig. 2(b) which show much better adherence of the transformed 3D gaze
to the Lissajous curve then when uncalibrated. Mean squared error between gaze point and target is clearly reduced
following 3D calibration. The advantage of this method is that it provides a direct solution (via least-squares minimia-
tion), obviating the need for more exotic solutions, such as neural networks suggested by Li et al. [9] or visual-intertial
simultanesou localization and mapping, i.e., SLAM-based localization given by Wang et al. [14].

2.3. Real-time 3D Event Detection

Defining the gaze point Pi = (x̂, ŷ, ẑ) as in (19), the next step is to derive an event detection [6] algorithm suitable
for implementation in virtual reality to distinguish fixations from saccades, as well as smooth pursuits and Vestibulo-
Ocular Reflex (VOR) movements, if possible. VOR movements (and depth estimation) can be useful in disambiguating
selection of occluded targets at depth [11]. Llanes-Jurado et al. [10] note that fixation detection in head-mounted
displays, where head movement is unrestricted, is still an open issue. Their dispersion-based approach was based on
one given by Duchowski et al. [3], who used the gaze point computed as the intersection of the gaze ray and objects
in the scene, which, for example, is possible to retrieve via the Focus() call within the SRAnipal SDK.

Duchowski et al. / Procedia Computer Science 00 (2022) 000–000 7

Table 1: Event detection w.r.t. coupled head and eye motion.

Ω̇ Θ̇ Event
< Th < Te both still =⇒ fixation
< Th > Te head still, eye motion =⇒ saccade
> Th < Te head motion, eyes still =⇒ VOR
> Th > Te both in motion, eye motion =⇒ pursuit or VOR, depending on congruence

Duchowski et al. [3] and Llanes-Jurado et al. [10] defined an estimate of instantaneous visual angle at each gaze
sample θi, obtained from the dot product of successive gaze points and averaged head position:

θi = cos−1
(
ρi · ρi−1

∥ρi∥∥ρi−1∥

)
, where ρi = Pi − h (23)

and h= (hi + hi−1)/2 is the (averaged) head position. With this definition, ρi is simply the gaze ray originating at the
head position. Note also that either the gaze intersection point or the gaze point, as defined in (19) and at calibrated
gaze depth ẑ located in free (virtual) space, can be used in (23) to compute the visual angle.

However, Duchowski et al. [3] originally used this because their system at the time was not as completely integrated
as modern eye-tracked VR systems are, case in point the HTC Vive Pro Eye. Using such a modern system, one can
easily obtain the head position as well as head and gaze directions, without needing to explicitly re-compute the gaze
direction vector. Moreover, using (23) ignores head movement since it only uses head position.

Taking advantage of modern eye-tracking code plugins, the gaze ray R = (R1 + R4)/2, bisector of the two gaze
rays R1 and R4, easily computed or available via SRAnipal call GetGazeRay(), can be used directly to obtain the
instantaneous visual angle Θi, at each gaze sample, from the dot product of successive gaze rays:

Θi = cos−1 (Ri · Ri−1) (24)

assuming the gaze ray R is normalized. The head angle can be obtained similarly,

Ωi = cos−1 (Hi ·Hi−1) (25)

assuming normalized head direction H. Given both directions, a velocity-based approach can be derived with head
and gaze direction velocities as follows:

Θ̇i =
1
∆t

n∑
j=0

Θi− jg j, Ω̇i =
1
∆t

n∑
j=0

Ωi− jg j, j ∈ [0, n] (26)

where Θ̇ and Ω̇ are gaze and head velocities, respectively, g is a Finite Impulse Response (FIR) high-pass differen-
tiation filter, n is the filter length, and ∆t is the sampling period over the length of the filter. Although Duchowski
et al. [3] suggested that filters as short as 2-tap filters could be used for this purpose, e.g., one with with normalized
coefficients −1/

√
2, 1/

√
2, these are known to be noisy. Instead, a filter derived by Savitzky and Golay [13] offers

additional smoothing at minimal computational expense. A 7-tap filter incurs convolution of only 7 recent samples
over a period of ∆t=7 × (1/120)=56 ms.

Given both gaze and head velocities, Θ̇ and Ω̇, it is now possible to consider the coupling between eye and head
movements [5, 7]. Because the head is relatively much slower than the eyes [17], an event detection algorithm can be
proposed based on two thresholds of head and eye rotation, Th and Te, respectively, as given in Table 1. Thresholds
can be determined empirically, with initial setting potentially guided by known quantities. For example, saccades are
roughly bounded by 250 deg/s. Fixations can potentially be identified with velocity less than 3 deg/s, while smooth
pursuits are expected to range from 3 to 100 deg/s. Validation of this proposed event detection algorithm is left as
future work.

3. Conclusion

Given the proliferation of affordable eye-tracking Virtual and Augmented Reality (VR, AR) equipment, it seemed
timely to review three straightforward techniques for gaze estimation in what is collectively referred to as eXtended

1648 Andrew T. Duchowski et al. / Procedia Computer Science 207 (2022) 1641–1648
8 Duchowski et al. / Procedia Computer Science 00 (2022) 000–000

Reality (XR). Namely, three methods were reviewed: (a) gaze depth (i.e., vergence) estimation in free space (as
opposed to gaze ray-object intersection), (b) vergence calibration using continuous rather than discrete sampling, and
(c) proposed real-time 3D event detection, including fixation, saccadic, smooth pursuit, and vestibulo-ocular response
eye movement.

Acknowledgments

This work is supported in part by the U.S. National Science Foundation (grant IIS-1748380 and grant CAREER
IIS-2045523), and Polskie Ministerstwo Nauki i Szkolnictwa Wyższego (Regional Initiative of Excellence, grant
012-RID-2018/19). Any opinions, findings and conclusions or recommendations expressed in this material are the
author(s) and do not necessarily reflect those of the sponsors.

References

[1] Abbott, W., Faisal, A., 2012. Ultra-low-cost 3D gaze estimation: An intuitive high information throughput compliment to direct brain-machine
interfaces. Journal of Neural Engineering 9, 11. doi:10.1088/1741-2560/9/4/046016.

[2] Duchowski, A., Medlin, E., Cournia, N., Gramopadhye, A., Melloy, B., Nair, S., 2002a. 3D Eye Movement Analysis for VR Visual Inspection
Training, in: ETRA ’02: Proceedings of the 2004 symposium on Eye tracking research & applications, ACM, New Orleans, LA. pp. 103–
110,155.

[3] Duchowski, A.T., Medlin, E., Cournia, N., Gramopadhye, A., Nair, S., Vorah, J., Melloy, B., 2002b. 3D Eye Movement Analysis. Behavior
Research Methods, Instruments, Computers (BRMIC) 34, 573–591.

[4] Finn, J.D., 1974. A General Model for Multivariate Analysis. Holt, Rinehart and Winston, Inc., New York, NY.
[5] Guitton, D., Munoz, D.P., Galiana, H.L., 1990. Gaze Control in the Cat: Studies and Modeling of the Coupling Between Orienting Eye and

Head Movements in Different Behavioral Tasks. Journal of Neurophysiology 64, 509––531. URL: https://doi.org/10.1152/jn.1990.
64.2.509, doi:10.1152/jn.1990.64.2.509.

[6] Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., van de Weijer, J., 2011. Eye Tracking: A Comprehensive Guide to
Methods and Measures. Oxford University Press, Oxford, UK.

[7] Kothari, R., Yang, Z., Kanan, C., Bailey, R., Pelz, J.B., Diaz, G.J., 2020. Gaze-in-wild: A dataset for studying eye and head co-
ordination in everyday activities. Scientific Reports 10. URL: https://doi.org/10.1038/s41598-020-59251-5, doi:10.1038/
s41598-020-59251-5.

[8] Lancaster, P., Šalkauskas, K., 1986. Curve and Surface Fitting: An Introduction. Academic Press, San Diego, CA.
[9] Li, S., Zhang, X., Webb, J.D., 2017. 3-D-Gaze-Based Robotic Grasping Through Mimicking Human Visuomotor Function for People With

Motion Impairments. IEEE Transactions on Biomedical Engineering 64, 2824–2835. doi:10.1109/TBME.2017.2677902.
[10] Llanes-Jurado, J., Marı́n-Morales, J., Guixeres, J., Alcañiz, M., 2020. Development and Calibration of an Eye-Tracking Fixation Identifi-

cation Algorithm for Immersive Virtual Reality. Sensors 20. URL: https://www.mdpi.com/1424-8220/20/17/4956, doi:10.3390/
s20174956.

[11] Mardanbegi, D., Langlotz, T., Gellersen, H., 2019. Resolving Target Ambiguity in 3D Gaze Interaction through VOR Depth Estimation.
Association for Computing Machinery, New York, NY. p. 1–12. URL: https://doi.org/10.1145/3290605.3300842, doi:10.1145/
3290605.3300842.

[12] Morimoto, C.H., Mimica, M.R.M., 2005. Eye Gaze Tracking Techniques for Interactive Applications. Computer Vision and Image Under-
standing 98, 4–24.

[13] Savitzky, A., Golay, M.J.E., 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 36,
1627–1639. URL: http://pubs.acs.org/doi/abs/10.1021/ac60214a047.

[14] Wang, H., Pi, J., Qin, T., Shen, S., Shi, B.E., 2018. SLAM-Based Localization of 3D Gaze Using a Mobile Eye Tracker, in: Proceedings
of the 2018 ACM Symposium on Eye Tracking Research & Applications, Association for Computing Machinery, New York, NY. URL:
https://doi.org/10.1145/3204493.3204584, doi:10.1145/3204493.3204584.

[15] Wang, R., Pelfrey, B., Duchowski, A.T., House, D.H., 2012. Online Gaze Disparity via Binocular Eye Tracking on Stereoscopic Displays, in:
Second Joint 3DIM/3DPVT Conference: 3D Imaging, Modeling, Processing, Visualization & Transmission (3DimPVT 2012), IEEE, Zurich,
Switzerland.

[16] Wang, R.I., Pelfrey, B., Duchowski, A.T., House, D.H., 2013. Online 3D Gaze Localization on Stereoscopic Displays. Transactions on Applied
Perception .

[17] Watson, B., Walker, N., Hodges, L.F., 1997. Managing Level of Detail through Head-Tracked Peripheral Degradation: A Model and Resulting
Design Principles, in: Virtual Reality Software & Technology: Proceedings of the VRST’97, ACM. pp. 59–63.

[18] Wibirama, S., Hamamoto, K., 2013. 3D Gaze Tracking System for NVidia 3D Vision, in: Proceedings of the Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, IEEE Engineering in Medicine and Biology Society. doi:10.1109/EMBC.2013.
6610220.

