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to local habitat and wider landscape characteristics, 
applying a multiscale approach.
Methods  We conducted bat acoustic surveys at 33 
sites, comprising old secondary forests and fragments 
of primary forest. Taxonomic, functional and phylo-
genetic diversity facets were calculated within a Hill 
numbers framework. We analysed responses to frag-
ment size, interior-edge-matrix gradients, as well as 
local vegetation structure, continuous forest cover, 
edge density and patch density across five spatial 
scales (0.5−3 km) surrounding detector locations.
Results  Compared with continuous forest, second-
ary forest matrix around the smallest fragments har-
boured lower diversity. The overall negative effect of 
the matrix became less pronounced with increasing 
fragment size. In contrast, forest edges generally con-
tained higher taxonomic, functional and phylogenetic 

Abstract 
Context  Human-modified landscapes are globally 
ubiquitous. It is critical to understand how habitat 
loss and fragmentation impact biodiversity from both 
a local habitat context and landscape-scale perspec-
tive to inform land management and conservation 
strategies.
Objectives  We used an experimentally fragmented 
landscape in the Brazilian Amazon to investigate var-
iation in aerial insectivorous bat diversity in response 
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diversity. We found subtle scale-sensitive associations 
for functional diversity, responding positively to for-
est cover (at the 1 km scale) and negatively to edge 
(1 km scale) and patch density (2.5 km scale).
Conclusions  Despite a low-contrast matrix of tall 
secondary forest surrounding fragments after ~ 30 
years of forest recovery, aerial insectivorous bat 
diversity is not comparable to continuous primary 
forest. Assemblage functional diversity responds to 
compositional and configurational landscape charac-
teristics at scales deserving further evaluation at guild 
and species level.

Keywords  Amazon · Fragmentation · Landscape 
context · Diversity dimensions · Multiscale analysis

Introduction

Globally, over the past 300 years, there has been a 
net forest loss of ~ 7–11  million km2, primarily due 
to logging and conversion to agricultural use (Foley 
et  al. 2005). Loss of suitable habitat to sustain spe-
cies populations leads to an overall increased risk of 
extinction (Ceballos et  al. 2015, 2017; Powers and 
Jetz 2015). Forest patches of varying sizes and shapes, 
embedded in various land cover types, are conspicu-
ous features of present-day human-modified land-
scapes (Melo et al. 2013). The link between remain-
ing native habitat and the species persisting in the 
aftermath of habitat fragmentation was first described 
through the lens of Island Biogeography Theory, 
which sought to predict species loss on islands sur-
rounded by a ‘hostile’ matrix of water (MacArthur 
and Wilson 1967). Yet, mounting evidence now sup-
ports that the structure and composition of the inter-
vening matrix significantly affect species’ persistence 
in adjoining forest fragments, a dynamic that is better 
conceptualised under alternative theoretical frame-
works, such as Countryside Biogeography (Daily 
1997; Mendenhall et  al. 2013). Through this frame-
work, community changes in modified landscapes 

are forecast based on the interaction between the spe-
cies’ spatial requirements and their tolerance towards 
matrix habitats, thus offering a more realistic portrait 
of biodiversity persistence in landscapes with matrix 
habitats more salubrious than water (Mendenhall 
et al. 2014; Wolfe et al. 2015; Farneda et al. 2020).

In the Amazon, deforestation rates dropped from 
30,000 km2/year in the 1980s to 5843 km2/year in 
2013 (Davidson et  al. 2012; Nepstad et  al. 2014). 
However, since 2013, alongside the main driver of 
deforestation in the Amazon, pasture expansion for 
cattle production (Skidmore et al. 2021), compound-
ing threats such as oil palm plantations (Butler and 
Laurance 2009), expanding soy agriculture (Rosa 
et al. 2017) and dam development (Lees et al. 2016) 
have contributed to a sharp increase. Much of this 
deforested land has been abandoned, and a recent 
study estimates a total of 262,791 km2 of recovered 
secondary forests in Brazil between 1986 and 2018 
(Silva Junior et al. 2020). Secondary forests make up 
a significant proportion of fragmented tropical land-
scapes (Chazdon et al. 2009; Chazdon 2014). A grow-
ing body of literature supports that these regenerating 
forests can alleviate fragmentation impacts and sup-
port diverse assemblages and overall ecosystem func-
tioning (Spake et al. 2015; Farneda et al. 2018; Rocha 
et al. 2018; Rozendaal et al. 2019).

The Neotropics are a major hotspot of chiropteran 
diversity and the Amazon basin, with over 160 spe-
cies, is especially rich (López-Baucells et  al. 2018). 
Throughout the region, bats play essential roles in 
countless ecological networks and provide valuable 
ecosystem services such as seed dispersal, pollination 
and arthropod population regulation (Aguiar et  al. 
2021; Ramírez-Fráncel et al. 2022). They are demon-
strably sensitive to habitat loss, fragmentation, and 
habitat degradation (reviewed in Meyer et  al. 2016) 
and have become a popular indicator group of envi-
ronmental disturbance (Cunto and Bernard 2012). 
Yet, while the consequences of anthropogenic forest 
fragmentation for phyllostomid bats have received 
substantial research attention (e.g., Klingbeil and Wil-
lig 2009; Avila-Cabadilla et  al. 2014; García-García 
et  al. 2014; Arroyo-Rodríguez et  al. 2016; Muylaert 
et  al. 2016; Farneda et  al. 2021; Silva et  al. 2020), 
aerial insectivores—non-phyllostomid counterparts—
have largely been neglected and their responses to 
habitat fragmentation remain understudied (but see 
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e.g., Estrada-Villegas et  al. 2010; Rodríguez-San 
Pedro and Simonetti 2015; Núñez et al. 2019).

Measures of diversity based solely on traditional 
species counts fail to encapsulate the complexities 
associated with the distinct functional roles of dif-
ferent species or the evolutionary history contained 
within a given assemblage (Cadotte et  al. 2013). A 
multifaceted approach considering the complemen-
tary taxonomic, functional and phylogenetic dimen-
sions of diversity can provide a more detailed and 
comprehensive understanding of the drivers of bio-
diversity change across human-modified landscapes 
(Swenson 2011). However, studies simultaneously 
assessing how multiple dimensions of Neotropi-
cal bat diversity are affected by habitat gradients are 
still scarce (Cisneros et  al. 2014; Frank et  al. 2017; 
Carrasco-Rueda and Loiselle 2020; Carvalho et  al. 
2021), particularly for aerial insectivores (but see 
e.g., Pereira et al. 2018).

Amongst the research questions commonly posed 
by fragmentation studies, the role of fragment size, 
edge effects, and compositional vs. configurational 
aspects of the landscape has rarely been addressed 
for aerial insectivorous bats. Here, we set out to help 
fill this gap by investigating how local vegetation 
structure and landscape composition and configura-
tion affect this ensemble along a disturbance gradi-
ent formed by continuous primary forest (CF) and 
primary forest fragment interiors (I), forest edges (E) 
and secondary forest matrix (M) habitats (hereinafter 
IEM gradients; sensu Rocha et  al. 2017a). Specifi-
cally, we aimed to address two objectives:

(1)	 Quantify between-habitat differences in the 
taxonomic, functional and phylogenetic diver-
sity of aerial insectivorous bats along IEM and 
fragment-size gradients. We anticipated (i) that 
assemblages in CF are taxonomically, function-
ally and phylogenetically most diverse, with 
diversity being eroded through fragment interiors 
(< 10 ha) and further still in the matrix, (ii) simi-
lar levels of diversity in CF and larger fragments 
(100 ha), with a reduction in the three biodiver-
sity dimensions with decreasing fragment size 
(10 and 1 ha), (iii) a positive response of all three 
diversity facets at the fragment edges as more 
species are able to take advantage of foraging 
opportunities along the ecotone.

(2)	 Assess the importance of the following variables 
as determinants of assemblage diversity, using a 
multiscale approach; local vegetation structure, 
landscape composition (forest cover), and land-
scape configuration (edge density and patch den-
sity). We predicted that (i) taxonomic, functional 
and phylogenetic diversity would exhibit only 
subtle responses to the local and landscape char-
acteristics, (ii) local vegetation structure would 
generally have a weaker effect than landscape 
metrics and, when present, would manifest at the 
smallest scale (0.5 km), possibly turning neutral 
as the scale increases, (iii) forest cover would be 
the most important predictor of all three diversity 
facets at the landscape scale, similar to findings 
for the species richness and abundance of phyl-
lostomids (Rocha et al. 2017a).

Materials and methods

Study area

Fieldwork was conducted at the Biological 
Dynamics of Forest Fragments Project (BDFFP), 
located ~ 80  km north of Manaus, Central Ama-
zon, Brazil (see Fig.  1). Established in 1979, the 
BDFFP is the world’s largest and longest running 
experimental study focused on habitat fragmenta-
tion, landscape dynamics, forest regeneration, and 
regional and global changes affecting plant and ani-
mal communities (Laurance et al. 2018). The topog-
raphy of the ~ 1000 km2 study area is relatively flat, 
with many small streams cutting through the nutri-
ent-poor soil. Annual rainfall varies from 1900 to 
3500 mm with a moderately strong dry season from 
June to October (Laurance et al. 2011). The area is 
characterised by a mosaic of primary forest frag-
ments embedded in a second-growth forest matrix 
surrounded by large areas of continuous terra firme 
forest. The fragments were first isolated through 
logging and burning for cattle pasture in the early 
1980s. Fragments of different sizes (1 ha, 10 ha and 
100 ha) were isolated from CF by distances ranging 
from 80 to 650  m. Following the abandonment of 
the cattle ranches, the second-growth forest matured 
around the fragments over ~ 30 years (Laurance 
et  al. 2018), creating a landscape of low structural 
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fragment-matrix contrast (Fig.  1). A 100  m-wide 
strip of regrowth vegetation has been cleared on 
at least five occasions since fragments’ creation to 
maintain their integrity. The last re-isolation event 
prior to data collection for this study occurred 
between 1999 and 2001 (Rocha et al. 2020).

Bat surveys

Acoustic data were collected between 2011 and 2013 
in both the interior and at the edges of eight for-
est fragments (three of 1  ha, three of 10  ha, two of 
100 ha), eight secondary forest sites (located 100 m 

Fig. 1   Map of the study area at the BDFFP, Central Amazon, 
Brazil and schematic representation of the BDFFP landscape 
during data collection (2011–2013), illustrating the low struc-

tural contrast between the continuous forest, late-stage second-
ary regrowth forest matrix (approximately 30 years of regen-
eration) and forest fragments



Landsc Ecol	

1 3
Vol.: (0123456789)

into the matrix from the nearest fragment edge) and 
nine control sites in three continuous forest areas. 
Recordings were obtained with SM2Bat + detectors 
with omnidirectional microphones SMX-US (Wild-
life Acoustics Inc., Massachusetts, USA). At each 
site, the detector was positioned at ~ 1.5 m height and 
programmed to record from 18:00 to 06:00. Record-
ings were captured in real time with a full spectrum 
resolution of 16-bit, with a high pass filter set at fs/32 
(12  kHz) and a trigger level of 18SNR. Sites were 
sampled for one night each survey during the first 
year (2011) and five consecutive nights thereafter 
(2012–2013) (López-Baucells et al. 2021). Four sur-
veys were conducted annually, two in the wet season 
and two in the dry season.

Sound analysis

Recordings were manually analysed with Kaleido-
scope 4.0.4 software (Wildlife Acoustics Inc., Mas-
sachusetts, USA) following López-Baucells et  al. 
(2019), using  the acoustic key in López-Baucells 
et  al. (2018) and a local reference call library (A. 
López-Baucells, unpublished data). Calls were iden-
tified to species level when possible or assigned to 
groups of taxa with similar calls (sonotypes). A total 
of 21 species/sonotypes were identified (Table S1 in 
Online Supplementary Material). Since it is not pos-
sible to estimate abundance with acoustic data, we 
used activity as a proxy of abundance based on the 
number of bat passes (Rowse et al. 2016). The sam-
ple unit, a bat pass, was defined as any call sequence 
with a maximum duration of 5 s, which contained at 
least two distinguishable echolocation pulses (Torrent 
et al. 2018; López-Baucells et al. 2021). Bat activity 
was quantified by the total number of bat passes per 
night per species/sonotype.

Calculation of diversity response metrics

We calculated taxonomic (TD), functional (FD) 
and phylogenetic (PD) alpha diversity using a uni-
fied framework based on Hill numbers. Hill (1973) 
integrated species richness, the converted Shannon 
entropy and Gini-Simpson index measures into a fam-
ily of diversity measures by order q or the effective 
number of species. The sensitivity of the measure to 
the relative frequency of species is determined by 
the parameter q and is expressed in units of species. 

Hill numbers offer advantages over standalone diver-
sity measures, including satisfying the mathematical 
replication principle, allowing for direct compari-
son across orders q due to values being expressed 
as units of effective number of species. They can be 
partitioned into independent group components and 
by doing so can be generalised to taxonomic, func-
tional, and phylogenetic diversities providing a uni-
fied framework for measuring biodiversity (Chao 
et  al. 2014). Using the R package ‘hillR’ (Li 2018), 
we calculated each diversity facet based on total bat 
activity per site and per night using the Hill numbers 
framework. Diversity values become more sensitive 
to common species as q increases. When q = 0, spe-
cies/sonotype abundance is ignored (species rich-
ness); q = 1, all species/sonotypes are weighted by 
their abundance equally (Shannon diversity (the 
exponential of entropy)); q = 2, greater weight is 
placed on common than rare species/sonotypes 
(Simpson diversity (inverse of the Simpson index)). 
We calculated all three q values (0, 1 and 2), repre-
senting a full diversity profile illustrating the species 
abundance differentiation of the assemblage. For FD, 
we selected functional traits that have been shown to 
indicate potential vulnerability to habitat fragmenta-
tion in aerial insectivorous bats (Núñez et al. 2019). 
Trait information on echolocation call structure, fre-
quency and alternation, body mass, aspect ratio and 
relative wing loading, as well as vertical stratification 
were considered, encompassing both continuous and 
categorical data (Table S2 in Online Supplementary 
Material). To adhere with the Hill number frame-
work, each ‘species/sonotype’ must be a distinct 
entity with its own (attribute) diversity data (Chiu and 
Chao 2014). Complete trait data was not available 
for Saccopteryx gymnura, thus, calls of this species 
were removed from the analysis (1817 calls in total). 
Also, for molossid sonotypes, body mass, aspect ratio 
and relative wing loading were calculated using the 
mean of values for individual species within each 
sonotype. To quantify PD, phylogenetic informa-
tion was extracted from a species-level supertree for 
bats (Shi and Rabosky 2015) and pruned to include 
only the species of aerial insectivorous bats known 
to occur at the BDFFP (Fig. S1 in Online Supple-
mentary Material). Again, the ‘hillR’ methodology 
required a single entity species to be selected from 
the supertree, therefore to deal with sonotype data, 
we selected a single representative species, based on 
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the likelihood of occurrence at the BDFFP, for the PD 
analysis; Molossidae II—Molossus rufus, Molossidae 
III—Eumops auripendulus, Molossops I—Molossops 
neglectus and Promops I—Promops centralis (See 
Table  S3 in the Online Supplementary Material). 
Pteronotus alitonus was not present in the supertree 
and so was replaced by its closest congener, Pterono-
tus parnellii (Pavan et  al. 2018). It has been argued 
that this approach of substitution by close congeners 
does not cause serious changes in the distance matri-
ces (Cisneros et al. 2014).

Local and landscape predictor variables

Local vegetation structure

Local vegetation structure was quantified within three 
plots of 100 m2 (5 × 20 m) around the detector loca-
tions at each of the 33 sampling sites. In each plot, 
seven variables were assessed (details in Rocha et al. 
2017a): (i) number of trees (> 10  cm diameter at 
breast height [DBH]), (ii) number of woody stems 
(< 10 cm DBH), (iii) average DBH of trees > 10 cm, 
(iv) percentage canopy cover, (v) liana density (visu-
ally classified every 5  m in five categories varying 
from no lianas to very high liana density), (vi) canopy 
height (based on visual estimation) and (vii) vertical 
stratification in vegetation density. Vegetation vari-
ables were submitted to a Principal Component Anal-
ysis (PCA), and scores from the first axis (PCA1) 
were retained as predictor metric summarising local 
vegetation structure for use in subsequent modelling. 
PCA1 represented vegetation structure and explained 
38.3% of the total variance (Fig. S2; Table  S4 in 
Online Supplementary Material). This first compo-
nent was positively correlated with average DBH of 
trees > 10 cm, canopy height and percentage canopy 
cover. Although these features describe more struc-
turally complex habitats, the metric represented a gra-
dient, including negative values, characteristic of sec-
ondary regrowth (matrix), with an increased number 
of woody stems and liana density.

Landscape structure

Landscape composition and configuration were 
quantified using 2011 LandSat Thematic Map-
per™ satellite images (30 m spatial resolution) with 
continuous forest and secondary forest land cover 

classes identified. Collinearity is a common problem 
with landscape predictor variables. Therefore, we 
selected the same three landscape metrics as Rocha 
et al. (2017a), which were acceptable based on vari-
ance inflation factor calculations (VIF). Metrics of 
landscape composition (primary forest cover) and 
configuration (patch density, edge density) were cal-
culated using the R package ‘landscapemetrics’ (Hes-
selbarth et  al. 2019). Circular buffers were defined 
with radii of 0.5, 1, 1.5, 2, 2.5, and 3 km around the 
33 sampling sites. In selecting these buffer sizes, we 
took into consideration the observed scale of effect 
for bats (Jackson and Fahrig 2015) and their utilisa-
tion in other tropical aerial insectivorous bat stud-
ies (e.g., Rodríguez-San Pedro and Simonetti 2015; 
Ongole et al. 2018; Rodríguez-San Pedro et al. 2019; 
Falcao 2021; López-Bosch et al. 2021). Although it is 
acknowledged that overlapping landscape buffers may 
not necessarily violate statistical independence (Zuck-
erberg et al. 2020), we chose not to investigate radii 
larger than 3 km to minimise spatial overlap between 
sites (Meyer and Kalko 2008). At each spatial scale, 
we first fitted a linear model between the landscape 
composition variable (primary forest cover) and the 
landscape configuration variables (edge and patch 
density) (Trzcinski et al. 1999). The residuals of the 
simple linear regression were then extracted and new 
configuration variables were created for use in sub-
sequent modelling (Bélisle et al. 2001; Klingbeil and 
Willig 2010).

Modelling taxonomic, functional and phylogenetic 
diversity

The diversity metrics (TD, FD, PD/q = 0, q = 1, q = 2) 
were modelled (1) with the fragment size/IEM vari-
ables (see below) and (2) the local- and landscape-
scale variables, using Bayesian generalised linear 
mixed-effects models (GLMMs) as implemented in 
package MCMCglmm (Hadfield 2010). A measure of 
significance of the difference between effects (pMCMC) 
can be produced via the proportional overlap of the 
distribution estimates produced, accompanied by an 
estimate of the mean and 95% credible intervals with-
out post-hoc tests (Sweeny et al. 2021). For fragment 
size/IEM variables we fit a set of nine models, three 
for each diversity facet (TD, FD, PD/q = 0, q = 1, 
q = 2), specifying a single categorical fixed effect 
with combined information on the fragment size and 
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IEM gradient (10 categories: continuous forest inte-
rior, 100  ha interior, 100  ha edge, 100  ha matrix, 
10 ha interior, 10 ha edge, 10 ha matrix, 1 ha interior, 
1 ha edge, 1 ha matrix; Rocha et al. 2017a) and incor-
porated research camp location as a random effect. 
To model local- and landscape-scale variables, we 
fit a set of models using each by site alpha diversity 
metric (TD, FD, PD/q = 0, q = 1, q = 2) in turn, with 
four fixed effect local and landscape-scale variables 
(local vegetation structure, continuous forest cover, 
edge density, patch density) for each buffer size (0.5, 
1, 1.5, 2, 2.5 and 3 km) and research camp location 
as a random effect. Each model set contained six full 
models and nine sets were run in total. All models 
were fitted with a Gaussian error distribution and a 
“non-informative” prior, which is weakly informa-
tive and is equivalent to an inverse-gamma prior with 
shape and scale equal to 0.001 (Gelman 2006; Wilson 
et al. 2010).

Parameter sampling

Using the MCMCglmm package, each model chain 
was run for 50,000 iterations. As the chain begins to 
run the early samples may show a strong dependence 
on the starting parametrisation. As such, we allowed 
5000 iterations to pass before the samples were stored 
(burn-in period) and estimates were retained every 
10 iterations (thinning interval) following burn-in. 
We then evaluated convergence through (a) visual 
check of parameter time series representations, i.e. 
trace plots, (b) calculation of the lag k autocorrela-
tion statistic to check lag progress and independence 
of posterior distribution samples, and (c) calculation 
of the Gelman-Rubin diagnostic statistic (compari-
son of four chains). All point estimates of potential 
scale reduction factor were < 1.1, indicating good 
convergence (Gelman and Rubin 1992). All models 
achieved convergence. Posterior distributions for the 
predictor variables were obtained. As model output, 
we report posterior means, 95% credible intervals 
and Bayesian p-values (pMCMC) indicating the signifi-
cance of variables with a threshold of *pMCMC < 0.05, 
**pMCMC < 0.01 ***pMCMC < 0.001.

Results

Across the 33 sites, 281,425 bat passes were analysed 
belonging to 20 different species/sonotypes from five 
different families (Table S1 in Online Supplementary 
Material). Given that there were a number of species/
sonotypes with low call numbers we present here the 
results for Hill numbers of order q = 2, interpreted as 
the effective number of dominant or very abundant 
species in the assemblage. Results for q = 0 and q = 1 
are included in Online Supplementary Material for 
comparison and completeness.

Fragment size and IEM gradients

The secondary forest matrix around the smallest frag-
ments (1  ha) harboured significantly lower TD and 
PD compared to CF interiors (Fig. 2). The same was 
true for PD in the matrix of the 10 ha fragments, with 
a similar pattern of erosion exhibited for FD in the 
1 ha and 10 ha fragments and TD in the 10 ha frag-
ments, albeit not significantly so. The negative effect 
of the matrix gradually became less pronounced with 
increasing fragment size, with minimal differences 
evident between the 100  ha matrix sites compared 
with CF interiors. In contrast, the edges of the 1 ha 
and 10  ha fragments contained significantly higher 
TD, FD and PD compared with CF interiors (Fig. 2). 
This positive edge effect extended to even the largest 
fragments, with the 100 ha edge sites harbouring sig-
nificantly greater PD than CF interiors (see Table S5 
in Online Supplementary Material for q = 2 (inverse 
Simpson) modelling results). Modelling results for 
q = 0 (Table  S6 in Online Supplementary Material) 
and q = 1 (Table S7 in Online Supplementary Mate-
rial) showed a larger number of significant effects. In 
particular FD was significantly reduced along with 
TD and PD in the matrix of the 1 ha fragments, con-
tributing to the general pattern of significant erosion 
of all three diversity facets in the 1 ha fragments (Fig. 
S3 in Online Supplementary Material).

Influence of local and landscape‑scale predictors

Overall, the assemblage response to local- and 
landscape-scale variables was subtle, with scale-
sensitive associations for FD, whereas no sig-
nificant relationships were found for TD or PD 
(Fig.  3). Vegetation structure does not appear to 
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be a particularly relevant predictor of any diversity 
dimension. Vegetation structure had a negative rela-
tionship with FD across all diversity metrics (see 
Table S6; Table S7; Table S8 in Online Supplemen-
tary Material for modelling output for q = 0; q = 1; 
q = 2), but this manifested as a significant result 
only for the 2.5 and 3  km scale for q = 1 (Fig. S5 
in Online Supplementary Material). FD responded 

significantly and positively to forest cover (compo-
sitional metric), and significantly and negatively to 
edge density (configurational metric) at the 1  km 
scale. These responses weakened with increasing 
buffer size. Finally, at the 2.5 km scale, patch den-
sity had a significant negative effect on FD (Fig. 3).

Fig. 2   Comparison of α-diversity metric q = 2 across the Inte-
rior-Edge-Matrix and size gradients at the Biological Dynam-
ics of Forest Fragments Project (forest fragment interiors, 
forest fragment edges and adjoining secondary forest/matrix). 
The predicted differences between each habitat and continuous 
forest interior, modelled using MCMCGLMM are plotted with 

their corresponding 95% credible interval. Those which do not 
touch or overlap the vertical dashed line (0) are considered sig-
nificant (*pMCMC < 0.05, **pMCMC < 0.01 ***pMCMC < 0.001). 
See Fig. S3 in Online Supplementary Material for q = 0 and 
q = 1

Fig. 3   Taxonomic, functional and phylogenetic diversity met-
rics q = 2 modelled as a function of local and landscape pre-
dictor variables (vegetation structure, forest cover, edge density 
and patch density) based on surveys of aerial insectivorous bats 
at the Biological Dynamics of Forest Fragments Project, Bra-

zil. Shown are posterior mean estimates ± 95% credible inter-
vals. Credible intervals which do not touch or overlap the zero 
line are considered significant (* pMCMC < 0.05). See Fig. S4 
in Online Supplementary Material for q = 0; Fig. S5 in Online 
Supplementary Material for q = 1
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Discussion

Our study indicates that despite the advanced-stage 
secondary forest around the BDFFP fragments (~ 30 
years), the diversity recovery of the aerial insectivo-
rous bat assemblage in forest fragments and matrix 
habitats is still incomplete. Whilst our results indi-
cated variation in FD, we found no clear evidence 
of the local- or landscape-scale variables analysed to 
accurately predict the diversity responses in our study 
area.

Responses to fragment size and IEM gradients

Despite the advanced stage of maturation of the sec-
ondary regrowth, its aerial insectivorous bat assem-
blage shows evidence of degradation compared to 
levels observed in CF interiors. These findings are 
consistent with similar phyllostomid bat studies at 
the BDFFP (Farneda et  al. 2015, 2018; Rocha et  al. 
2017b; Aninta et  al. 2019). The loss of TD and FD 
in the secondary forest is likely to reduce ecosystem 
services provided by aerial insectivorous bats such 
as arthropod suppression (Kunz et  al. 2011; Puig-
Montserrat et al. 2015). Most importantly, our results 
support that specialist forest-dwelling bats might 
be strongly affected by deforestation even after ~ 30 
years of forest recovery. The fact that PD is also lower 
in the secondary forest reflects depletion of evolu-
tionary richness due to the loss of the overall genetic 
diversity of the assemblage (Struebig et  al. 2011; 
Rivera-Ortíz et  al. 2015; Edwards et  al. 2021). The 
close relationship between the decrease in PD and 
the low structural complexity of secondary forests 
compared to CF suggests that habitat fragmentation 
reduces total evolutionary history by eliminating dis-
tantly related species in less complex habitats.

Forest fragment interiors were either not signifi-
cantly different or slightly more diverse than CF, as 
was the case for the 100  ha fragments. This aligns 
with our prediction that diversity levels in CF and the 
larger fragments (100  ha) would be homogeneous, 
contrasting previous research on phyllostomids at the 
BDFFP, which found significantly lower diversity in 
the fragments than CF (Rocha et al. 2017a; Farneda 
et al. 2018; Aninta et al. 2019; Silva et al. 2020). As 
fragment size decreased, we found increasing ero-
sion of all three facets of diversity in the intervening 
secondary matrix. Larger fragments (10 and 100 ha) 

and adjoining secondary forests tended to harbour 
higher TD, FD and PD than the smaller fragments 
(1  ha). The fact that TD, FD and PD in secondary 
forests next to the largest fragments (10 and 100 ha) 
were higher than in those adjoining smaller fragments 
(1 ha) suggests that, in this landscape, the largest frag-
ments act as important reservoirs of aerial insectivo-
rous bat diversity for the nearby regenerating areas.

In line with our prediction, all three diversity met-
rics peaked at the primary-secondary forest inter-
face. Fragment edges were generally more diverse in 
TD, FD and PD than the CF and fragment interiors. 
Rodríguez-San Pedro et al. (2019) reported a similar 
positive response of aerial insectivorous bats to for-
est edges. The tall secondary forest at the BDFFP 
provides a low-contrast matrix that could facilitate 
connectivity, buffering the isolation effects of the 
smallest fragments and function as commuting cor-
ridors (Van Houtan et  al. 2007; Jantzen and Fenton 
2013; Kalcounis-Rueppell et  al. 2013). Coleoptera, 
Hymenoptera, Lepidoptera and Araneae are among 
the most species-rich canopy invertebrates in tropi-
cal forests (Basset 2001). Coleoptera and Hymenop-
tera are more abundant in secondary forest compared 
to the other habitats at the BDFFP (De Aquino et al. 
2021). This increased abundance of prey items could 
also provide increased foraging opportunities simul-
taneously, for edge-, open- and interior- specialists in 
and around the edge habitat (Ingala et al. 2021).

Influence of local‑ and landscape‑scale predictors

We anticipated subtle responses across the three 
diversity facets, but we only found statistically sig-
nificant responses for FD. Uncovering significant 
responses at the community level is often difficult due 
to diversity metrics amalgamating species-specific 
responses that may cancel each other out (Klingbeil 
and Willig 2009; López-Bosch et al. 2021).

Our results concur with some other studies on the 
effects of fragmentation on aerial insectivorous bats, 
in which community responses were muted. For 
instance, Estrada-Villegas et  al. (2010) found that 
sonotype abundance levels were indistinguishable in 
a land-bridge island system which comprised inte-
rior and edge mainland sites and island sites (near 
and far/large and small) regardless of the sonotype 
group analysed and the level of island isolation or 
size. Falcão et al. (2021) compared activity levels and 
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sonotype composition across two landscapes (forested 
vs. deforested/pasture-dominated) in the Brazilian 
Atlantic Forest and found that aerial insectivorous bat 
community richness was not related to any landscape 
descriptors.

We predicted that vegetation structure would have 
an effect at the smallest spatial scale, possibly turn-
ing neutral at large scales. However, we found no 
such effect on any of the diversity facets at any scale. 
Our findings contradict that of Blakey et  al. (2017) 
who utilised LiDAR technology to comprehensively 
scan and characterise vegetation structure and found 
evidence that understorey forest structure was related 
to overall taxonomic and functional bat diversity at 
the community level. In a study in Panama, density 
of obstacles or vegetation clutter, which restrict the 
flight manoeuvrability of aerial insectivorous bats, 
were the main factor explaining both species richness 
and total abundance (Estrada-Villegas et  al. 2012). 
Aerial insectivorous bats are known to utilise verti-
cal space in a number of ways; foraging below, at and 
above canopy level, with much less activity within the 
forest interior (Marques et al. 2015). Perhaps vegeta-
tion structure is a limiting factor, albeit the effect may 
not be of the same magnitude as for phyllostomids at 
the BDFFP, where vegetation structure was a relevant 
predictor of total abundance (Rocha et al. 2017a).

We only observed responses to landscape compo-
sition and configuration at the assemblage level from 
a FD perspective. We expected that the amount of for-
est cover would be an important predictor of all three 
diversity facets at the landscape scale, but it was only 
important at the 1 km scale. Some recent studies ana-
lysed the influence of landscape composition and for-
est cover on aerial insectivorous bat assemblages in 
agricultural systems (Azofeifa et al. 2019; Rodríguez-
San Pedro et  al. 2019; Put et  al. 2019), illustrating 
the nuanced responses to forest cover embedded in 
“hard” matrix types (i.e., rice fields, vineyards, graz-
ing lands). For instance, Azofeifa et al. (2019) found 
forest cover to have no effect on overall species rich-
ness or composition in a study comparing two rice 
field sites in Venezuela. However, forest cover had 
a differential effect on functional groups, with back-
ground-cluttered space species responding more sen-
sitively to changes in forest cover than uncluttered/
open space specialists. A study of vineyards in cen-
tral Chile found that preservation of native vegeta-
tion cover positively affected bat diversity and species 

richness and that areas of landscape with more irreg-
ular and smaller patches and higher edge density 
facilitated a more diverse assemblage (Rodríguez-San 
Pedro et al. 2019).

We also found that FD responded to landscape 
configuration. At the 1 km scale, edge density had a 
negative effect, indicating that an increase in the total 
perimeter of edge habitat resulted in a functionally 
less diverse assemblage. A study quantifying edge 
effects across the interface of primary and second-
ary forest at the BDFFP suggested that the conse-
quences of edge effects on some aerial insectivorous 
bat species could potentially extend for more than 
2  km (Yoh et  al. 2022). In contrast, at the 2.5  km 
scale, patch density had a positive effect, suggesting 
that the spatial configuration of patches at this land-
scape scale facilitates a more diverse assemblage. 
These two results for edge density and patch density 
agree with Chambers et al. (2016), who investigated 
scale dependence of habitat associations and scaling 
patterns of landscape metrics about bat occurrence 
in forests of southwestern Nicaragua and found that 
edge density and patch density may be as important 
as compositional metrics in predicting bat capture 
rates across multiple scales.

We have limited evidence to suggest a specific 
scale of effect for this community. It is reasonable to 
theorise that to gain access to both foraging and roost 
sites (landscape complementation), the species within 
the BDFFP community are responding, not at a sin-
gle scale but across multiple scales, to both local and 
landscape features to secure the necessary resources 
(Ethier and Fahrig 2011). We suggest that further 
species-specific analysis might show the complex-
ity of responses from species within an assemblage 
(Rodríguez-San Pedro et al. 2019). We are currently 
exploring species and guild level responses, which 
might uncover interesting and possibly conflicting 
patterns that may be masking an effect in this study 
(Gomes et al. 2020). Appel et al. (2021) investigated 
the interaction between habitat and moonlight at the 
BDFFP and analysed aerial insectivores on a species-
specific basis. They found that Saccopteryx biline-
ata, Saccopteryx leptura, Centronycteris maximil-
iani, Cormura brevirostris, Eptesicus brasiliensis and 
Furipterus horrens had lower activity in secondary 
forest and Pteronotus alitonus and Furipterus horrens 
showed lower activity in fragments compared to con-
tinuous forest. It is understandable to see how these 
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contrasting species-specific preferences can make 
community-level interpretation challenging.

Conclusions

Our study shows that at the BDFFP aerial insectivo-
rous bat diversity in secondary regrowth is still not 
comparable with that of undisturbed forest even after 
~ 30 years of recovery. The low-contrast matrix at the 
BDFFP does, however, appear to create opportuni-
ties for aerial-hawking bats to take advantage of for-
est edge habitat created as a result of fragmentation. 
For aerial insectivorous bat diversity, specifically, 
this may help to buffer some of the negative isolation 
effects of the smaller remnants. It also reinforces the 
importance of including > 10 ha forest patches in land 
management and conservation strategies to maximize 
bat diversity in human-modified landscapes. Whilst 
the effects of fragmentation manifest as different 
responses in aerial insectivores and phyllostomids, 
our findings reinforce the irreplaceable value of old-
growth forest in tropical landscapes for both groups. 
We found significant variation in functional diversity 
which might be overlooked with a traditional taxo-
nomic focus, and we observed responses to both local 
and landscape-scale variables at the 1 and 2.5  km 
scale. We therefore recommend that future studies of 
tropical bats follow a multidimensional biodiversity 
approach integrated with a multiscale analysis when 
assessing responses to fragmentation in human-mod-
ified landscapes.
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