
Physical Communication 52 (2022) 101685

a

b

c

d

e

b
C
d
a
d
i
z
a
b

U

a

h
1
n

Contents lists available at ScienceDirect

Physical Communication

journal homepage: www.elsevier.com/locate/phycom

Full length article

Injection attack detection usingmachine learning for smart IoT
applications
Tarek Gaber a,b,e,∗, Amir El-Ghamry c,e, Aboul Ella Hassanien d,e

School of Science, Engineering, and Environment, University of Salford, UK
Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt
Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
Faculty of Computer and Artificial Intelligence, Cairo University, Cairo, Postcode 12631, Egypt
Scientific Research Group in Egypt (SRGE), Egypt

a r t i c l e i n f o

Article history:
Received 29 August 2021
Received in revised form 18 February 2022
Accepted 10 March 2022
Available online 16 March 2022

Keywords:
Intrusion detection
Injection attacks
Feature selection
Smart cities
In door wireless network
Machine learning
Internet of Things

a b s t r a c t

Smart cities are a rapidly growing IoT application. These smart cities mainly rely on wireless sensors
to connect their different components (smart devices) together. Smart cities rely on the integration
of IoT and 5G technologies, and this has created a demand for a massive IoT network of connected
devices. The data traffic coming from indoor wireless networks (e.g., smart homes, smart hospitals,
smart factories , or smart school buildings) contributes to over 80% of the total data traffic of the
current IoT network. As smart cities and their applications grow, security and privacy challenges have
become a major concern for billions of IoT smart devices. One reason for this could be the oversight of
handling security issues of IoT devices by their manufacturers, which enables attackers to exploit the
vulnerabilities in these devices by performing different types of attacks, e.g., DDoS and injection attacks.
Intrusion detection is one way to detect and mitigate the risk of such attacks. In this paper, an intrusion
detection method was proposed to detect injection attacks in IoT applications (e.g. smart cities). In this
method, two types of feature selection techniques (constant removal and recursive feature elimination)
were used and tested by a number of machine learning classifiers (i.e., SVM, Random Forest, and
Decision Tree). The T-Test was conducted to evaluate the quality of this proposed feature selection
method. Using the public dataset, AWID, the evaluation results showed that the decision tree classifier
can be used to detect injection attacks with an accuracy of 99% using only 8 features, which were
selected using the proposed feature selection method. Also, the comparison with the most related
work showed the advantages of the proposed intrusion detection method.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The global cybersecurity market is estimated to reach $270
illion by 2026 as reported by Forbes [1]. IDC International Data
orporation [2], also predicts there will be 55.7 billion connected
evices by 2025, of which 75% will be connected to the IoT. In
ddition, IDC reported that by 2025, the data generated by IoT
evices would reach 73.1 zettabytes which would be massively
ncreased by three times of the data generated in 2019 (18.3
ettabytes). Using the current communication network 4G/5G
nd the future generation (6G), the IoT model is foreseen to
ecome the typical service-centric computing. It will play a large

∗ Corresponding author at: School of Science, Engineering, and Environment,
niversity of Salford, UK.

E-mail addresses: t.m.a.gaber@salford.ac.uk (T. Gaber),
mir_nabil@mans.edu.eg (A. El-Ghamry), aboitcairo@cu.edu.eg (A.E. Hassanien).

URL: http://www.salford.ac.uk/our-staff/tarek-gaber (T. Gaber).
ttps://doi.org/10.1016/j.phycom.2022.101685
874-4907/© 2022 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
role in building what is called Smart City 4.0 including smart
homes, smart hospitals, smart factories etc.

Smart cities rely on the integration between IoT and 5G tech-
nologies and this has created a demand for a massive Smart cities
rely on the integration of IoT and 5G technologies, and this has
created a demand for a massive IoT network of connected devices.
Indoor wireless networks (e.g., smart homes, smart hospitals,
smart factories, or smart schools) account for more than 80% of
total data traffic on the current IoT network. The high volume
of data traffic may lead to high risk of security problems such
as denial of service, data integrity, etc. One application of the
indoor wireless network is a smart hospital. Imagine such a smart
hospital being attacked by a DoS (ransomware) attack. Patients
could die because the service has been stopped. Recently, in
September 2020, while a patient was hospitalized in a smart
hospital in Germany, a ransomware attack was mounted on this
hospital. Consequently, the service was stopped, and the patient
died [3].
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.phycom.2022.101685
http://www.elsevier.com/locate/phycom
http://www.elsevier.com/locate/phycom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.phycom.2022.101685&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:t.m.a.gaber@salford.ac.uk
mailto:amir_nabil@mans.edu.eg
mailto:aboitcairo@cu.edu.eg
http://www.salford.ac.uk/our-staff/tarek-gaber
https://doi.org/10.1016/j.phycom.2022.101685
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

T. Gaber, A. El-Ghamry and A.E. Hassanien Physical Communication 52 (2022) 101685

t
t
c
n
i
w
c
g
o
c
p
a
i
c
o
W
h
a
i

b
(
b
o
o
a
a
t
c
d
d
i
s
f
t
a
i
f

t
i
m
s
o
v
b
i
B
b
o
t
c
t
(

t
t
e
o
(
d

F
i
t

Generally speaking, with the development and adoption of
he IoT model in indoor and outdoor wireless-based applica-
ions, there is a significant risk of abuse of IoT services. This
ould be done by aiming devices installed at the edge of the
etwork, where personal, critical, or semi-critical data could be
llegitimately captured and maybe leaked [4,5]. By exploiting the
eaknesses of wireless networks, a huge number of attackers
ould attempt to illegally obtain personal information from tar-
et users or get illegitimate access to specific resources. One
f the weaknesses is the open nature of these networks. This
ould be exploited by attackers to easily intercept and collect
ersonal or sensitive data from a particular data traffic. There are
lready various security solutions for wireless network (including
ndoor networks) to minimize the security risks and ensure se-
ure communications between senders and receivers. Examples
f these solutions include: WEP (Wired Equivalent Protection),
PA (Wi-Fi Protected Access), and WPA2 protocols [5]. No matter
ow much progress has been made, these solutions/technologies
re still suffering from different vulnerabilities, making them
nsufficient to fully communicate reliable data.

Because they continuously monitor computer networks and
lock malicious incoming traffic, intrusion detection systems
IDSs) play a critical role in the cybersecurity domain. IDSs are
uilt in order to supplement security protocols, such as the above
nes. IDSs aim to provide constant monitoring and identification
f cyber attacks throughout a network’s operational life. An IDS is
typical security protection mechanism that detects suspicious
ctivity in a system and intercepts the attacking source in real
ime in order to protect the network [6]. IDSs are generally
lassified into two main classes based on the types of cyber
ata that are available: host-based detection and network-based
etection. The host-based one refers to a system that detects
ntrusion within standalone electronic devices, e.g., laptops or
martphones, from their resources such as logs, disc space, and
ile systems. On the other hand, a network-based detection sys-
em is a type of IDS aiming to detect attacks by continuously
nalysing the traffic exchanged between network devices and the
nternet [7]. Wireshark is a well-known tool that is usually used
or network traffic analysis to identify anomalies.

In this paper, we will focus on network-based intrusion de-
ection systems for monitoring and analysing malicious traffic
n IoT-based communication, which is the main infrastructure of
any indoor wireless-based applications such as smart hospitals,
mart manufacturing, and smart industries [8]. A good design
f a network-based IDS should be able to identify and detect
arious attacks on a wireless IoT network [7]. These attacks could
e a wide range of attacks, which include DoS/DDoS attacks,
njection attacks, impersonation attacks, and flooding attacks.
ecause of the breadth of these attacks, the current network-
ased IDSs are still unable to detect all these attacks accurately
r satisfactory [9]. In particular, this paper will focus on the de-
ection of injection attacks that aim to replace (or inject) original
ode/data with malicious code/data. If these attacks are mounted,
hey could have a significant impact on the system’s decisions
e.g., controlling the devices).

In this paper, an intrusion detection method was proposed
o detect injection attacks in IoT applications. In this method,
wo types of feature selection techniques (constant removal and
ecursive feature elimination) were used and tested by a number
f machine learning (ML) classifiers (i.e., Support Vector Machine
SVM), Random Forest (RF), and Decision Tree (DT)) on a public
ataset, AWID.
The main contribution and novelty of this paper is fourfold.

irstly, based on the best knowledge of the authors, this paper
s the first to suggest machine learning-based IDS for the de-

ection of injection attacks in smart city applications. Secondly,

2

employing two feature selection technique, constant removal and
eecursive feature elimination (RFE) to get the best discriminative
features that produced a high detection accuracy (99%) of the
injection attacks while using fewer features (8 features). Using
a fewer number of attributes could enable to decrease compu-
tational time overhead, which makes our methodology resource
friendly for the IoT limited capabilities devices. Thirdly, the paper
reports the 8 features that are used to detect the injection attacks
from the AWID dataset. This would help the practical adoption
of our method. Fourthly, the proposed method was evaluated
using various evaluation metrics: accuracy, recall, precision, and
F1-score and compared with the most related published work.

The rest of this paper is organized as follows. Section 2 high-
lights the impact of injection attacks on the Smart IoT environ-
ment. The related work is analysed in Section 3. The proposed in-
trusion detection method and its evaluation are presented in Sec-
tions 4 and 5 respectively. Finally, the conclusion is highlighted
in Section 6.

2. Injection attack and smart IoT environment

Smart cities, smart hospitals, and smart factories are important
applications of IoT technology that are growing rapidly all over
the world. The basic principle in smart cities/hospitals/factories
is to connect all their components (called ‘‘smart devices’’) using
wireless sensor devices. As the demand on the smart devices
grows, the manufactures may oversight to hand security issues of
these smart devices. Consequently, enabling attackers to exploit
vulnerabilities in the IoT smart devices by performing various
types of malicious activities such as DDoS attacks, injection at-
tacks, impersonation attacks, and flooding attacks to uncover user
personal information from the IoT sensitive applications such
as in the health care system, there is a need for high-security
requirements [10].

Injection attacks refer to a wide range of attack spectrums
through which an adversary can submit various types of input
(code or data) to an application. This input is interpreted by the
processor, considering it a legitimate query or command, and
so executing it, generating unexpected results. Injection attacks
can target web applications, the users that own the applications’
data, and other connected applications and services. Injection
attacks can have catastrophic consequences in a smart home en-
vironment using indoor wireless technology. For example, smart
assistants with voice control systems such as Google Home, Alexa,
Portal and Siri can actually open the main door of a smart home
for an adversary without permission from an authorized user.
This can take place by executing a remote command injected into
the voice-controlled system. Additionally, smart home devices
such as smart TV, smart thermostats, smart lights, and baby mon-
itors can be easily compromised via wireless network injection
attacks such as malicious packet injection [11].

To further illustrate the impact of an injection attack on IoT
applications, a brief overview of the general architecture of the
IoT paradigm is needed. The IoT architecture, as illustrated in
Fig. 1, consists of four basic layers: perception, network, middle-
ware, and application layer. The Perception Layer is the one that
is responsible for managing smart devices across the system. The
network layer is the one that transfers data between cloud nodes
and IoT devices. The middleware layer is to provide an abstraction
between IoT details and user applications. Finally, the application
layer is responsible of the analytics, device control, and reporting
to users [12,13].

Each of these layers can be threatened by different types
of injection attacks. In the perception layer, there is the code
injection attack that allows an adversary, who resides near to
an IoT node, to inject malicious code into any victim node. This

T. Gaber, A. El-Ghamry and A.E. Hassanien Physical Communication 52 (2022) 101685

e
a
w
t

Fig. 1. IoT architecture.
nables the adversary to tamper with the nodeś firmware. The
dversary can compromise the entire IoT communication net-
ork by compromising just one node [14]. In the network layer,
here is the malicious code injection attack, in which an adversary
3

relies on hacked IoT devices to inject malicious codes into the
infrastructure of the IoT network. After the adversary succeeds in
compromising the infrastructure, he/she can gain control of the
overall IoT system. In addition, the network layer can be exposed

T. Gaber, A. El-Ghamry and A.E. Hassanien Physical Communication 52 (2022) 101685

t
a
t
a
t
M
k
s
t
i
F

n
c
n
s
o
T
b
k
a
T
d
t
o

o
m
t
b
T
a
s
r
c
f
f
t
s
m
o
i
s
f
f
c
i
b
p

t
I
s
a
a
c

(
i
A
a
w
a

o a malicious node injection attack in which the adversary instals
malicious node between two or more nodes and monitors the

raffic to and from the nodes [14]. The malicious node injection
ttack is a very dangerous attack as it can abort and cause the data
o be modified. This type of attack is also known as Man-in-The-
iddle-Attack [15]. Different network layer attacks can cause
ey/keystream retrieving attacks, in which the attacker monitors
pecific network packets to crack a shared secret key or to use
he keystream to forge and inject packets into the network as an
nitial step for more different attacks, such ARP, ChopChop and
ragmentation attacks [7].
ARP attack is a common and effective way to disturb IoT

etworks. The ARP attack enables adversaries to intercept and
hange data exchanged between victim nodes in a smart IoT
etwork. In this attack, the adversary transmits a large number of
mall data frames over a local IoT network for a particular period
f time, causing the network to send an appropriate response.
hen, the generated responses, captured by the attacker, can
e fed to an offline key cracking algorithm to get the network
ey. Another consequence of the ARP attack is that it allows the
ttacker to intercept information intended for a given IoT device.
his can then cause the collection and modification of the private
ata during the network transmission. This could happen because
he ARP attack helps to establish a link between the MAC address
f the adversary and the IP address of the IoT device [7].
In a ChopChop attack, the adversary can derive large portions

f the keystream, which allows him/her to create and embed
alicious frames into the network. This can be done by chopping

he last byte of the encrypted part of the packet, replacing this
yte’s values, and then recomputing the encryption checksum.
he changed packets are subsequently transmitted to the local
ccess point, which may dismiss these packets until the attacker
ubstitutes an acceptable checksum [7]. A similar keystream
etrieval attack is the fragmentation attack, in which an intruder
an exploit the design flaw in the Wi-Fi’s frame fragmentation
eature to execute a keystream retrieval attack. The fragmentation
unctionality helps to increase the reliability of a frame by split-
ing larger frames into smaller ones. The smaller frames from the
ame block are encrypted using the same key. This sends fewer
essages than the ChopChop attack to extract a large portion
f the keystream. Then, the attacker can use the keystream to
nject malicious packets into the network. [7]. Another attack
cenario of Wi-Fi technology (i.e., indoor wireless network) is the
ragment cash attack, which exploits Wi-Fi’s frame fragmentation
eature. This attack could be mounted because Wi-Fi devices, dis-
onnected from the network, retain non-reassembled fragments
n their memory. An attacker could then exploit this vulnerability
y injecting a malicious fragment into the memory of the access
oint.
In the application layer, all IoT infrastructures include a cen-

ral control application-based interface, enabling users to control
oT devices. If this interface is not protected properly, cross-site
cripting attacks can be mounted. Additionally, Denial of Service
ttacks can occur as a consequence of a code injection attack. So,
n adversary can congest the IoT application interface by injecting
ode, which results in a denial of service for the users [15].
In our work, we focus on the detection of injection attacks

ARP, ChopChop and Fragmentation) that target the network layer
n the IoT smart environment. So, we used a training dataset,
WID, that includes instances of fragmentation and ARP injection
ttacks. In addition, we used a testing dataset of AWID data,
hich contains ChopChop attacks in addition to fragmentation
nd ARP attacks.
4

3. Related work

Generally, the intrusion detection area has found an attraction
among many researchers due to its importance in protecting
networks. For wireless sensor networks and IoT applications,
there is lots of published work suggesting solutions/approaches
for intrusion detection. Batiha et al. [16] has recently proposed an
intrusion detection system based on a neural network, mainly fo-
cusing on the impact of the learning process on the classification
accuracy and energy consumption. In [17], the authors integrated
the SVM classifier with the binary grey wolf optimizer and pro-
posed an IDS for weirless sensor networks. Using, the datast,
NSL KDD’99, the proposed IDS showed an enhanced performance
in terms of the number of features used, accuracy, false alarm
and detection rate. Using the Aquila optimizer and the DL (Deep
Learning) technique, CNN, the authors in [18] designed a novel
feature extraction and selection techniques for the IDS system.
The developed IDS technique was tested on four well-known
public datasets, including CIC2017, BoT-IoT, NSL KDD, and KDD99.
According to the evaluation results, the created approach has a
high level of performance. An IDS technique based on Fruitfly
optimization and deep Autoencoder was developed by Sekhar
et al. [19]. They employed fuzzy C-Means to deal with the missing
data in the datasets and then they used the deep Autoencoder
to extract robust features, which were then given to the back
propagation neural network for attack categorization. Further-
more, the hidden layers of the Autoencoder were optimized using
the Fruitfly algorithm. Using data from the NSL-KDD and UNSW-
NB15 datasets, the evaluation showed that the proposed method
performed well.

As the proposed IDS system was evaluated using AWID dataset
[7], in this section, we provide discussion of some relative work
that evaluated also using the AWID dataset. In particular, the
selected related work discusses the impact of feature selection
phase on the detection accuracy. This work is classified into
machine and deep learning based work as below.

Machine learning-based work: Kolias et al. [7], the creators
of the AWID dataset, applied several traditional ML algorithms
(AdaBoost, OneR, J48, Naïve Bayes, Random Forest, ZeroR and
Random Tree) to find the best classifier for detecting the in-
trusions. They achieved an accuracy of 96.20% using J48 as a
classifier, considering the complete set of 154 features and 96.26%
when reducing the number of features to 20. Also, Thanthrige
et al. [20] proposed an IDS in which feature selection was done by
information gain and Chi-Squared statistics methods. Then they
used different sizes of features vectors (111, 41, and 10 features).
The performance evaluation demonstrated that the accuracy in-
creased from 92.17% to 95.12% with 41 features when applying
Random Tree as a classifier. Aminanto et al. [21] proposed an
approach to enhance the detection of impersonation attack in
wireless networks. For the feature selection, they used a weight-
based feature selection method, and for the classification, they
adopted three machine learning (ML) techniques: ANN, Decision
Tree, and SVM. The evaluation showed that the best performance
was 99.86% using the SVM method while training 11 selected
features. However, they did not consider the other two attacks
(injection and flooding attacks). Kaleem et al. [22] proposed an
IDS approach based on ANN classifier and cognitive feature rank-
ing technique. Their approach classifies every instance as normal
and attack classes. Their approach applies a cognitive feature
ranking approach based on feature space analysis. Then they per-
formed a pruning process on the input neurons of the first layer
of the ANN to eliminate neurons that corresponded to irrelevant
features. This approach showed an improvement in accuracy from
97.84% to 99.3% when reducing the number of features from 154
to 6.

T. Gaber, A. El-Ghamry and A.E. Hassanien Physical Communication 52 (2022) 101685

a
t
o
i
U
i
p
a
a
o
d
F
n
e
o
c
t
m
e
t
S
t
f
c
f

D

(
(
f

Table 1
Literature review summary.
Reference Classifier type Feature selec-

tion/extraction
Classifier
algorithm

Attack Num of
features

Addressed
data
imbalance

Accuracy

[21] Binary ANN, SVM,C4.8 ANN Impersonation 11 Yes 99.86%

[20] Multi-class Information gain,
chi squared
statistics

OneR, Ada Boost,
J48, Decision
tree, Random
Forest

Imperson-
ation,Flooding,Injection

111, 41,10 No 95.12% for 41
features

[22] Binary Feature space
analysis

ANN Group attacks in one
class

6 No 99.3%

[23] Multi-class SAE SAE Imperson-
ation,Flooding,Injection

154 No 98.67%

[7] Multi-class Theoretic-based
Manual Attribute
Selection

AdaBoost, OneR,
J48, Naïve Bayes,
Random Forest,
ZeroR

Imperson-
ation,Flooding,Injection

154, 20 No 96.26%

[24] Binary SAE, Mutual
Information, C4.8

SVM Impersonation 5 Yes 98.22%

[25] Multi-class, Binary DL DL Imperson-
ation,Flooding,Injection

95 Yes 98.54% for
multi-class
99.52% for
binary

[26] Binary SAE K means Impersonation 50 Yes 94.81%

[27] Multi-class Preprocessing SAE Imperson-
ation,Flooding,Injection

71 Yes 92.49%

[28] Multi-class, Binary Preprocessing Ensemble
Learning

Imperson-
ation,Flooding,Injection

36 No 95.88% for
multi-class

[29] Binary SAE,OneR,SVM,CFS MLP Impersonation 21 Yes 99.97% semi-
distributed,
97.80% for
distributed

Proposed Binary Eecursive feature
elimination,
constant removal

Decision Trees,
Random Forest,
SVM

Injection 76,13,8 Yes 99%
Vaca et al. [28] introduced an IDS for Wi-Fi networks using
n ensemble learning method. For feature reduction purposes,
hey removed the features having the same values in all rows
f the dataset or having missing values in more than half of
ts records. This process reduced the number of features to 36.
sing Ensemble Learning, the classification results of the attacks,
mpersonation, flooding, injection, and normal, showed that the
roposed method achieved an accuracy of 95.88% when all the
ttacks were grouped into one class. Rahman et al. [29] proposed
n IDS based on ML for the resource-constrained IoT that focused
n the impersonation attack only. In this work, IoT devices are
ivided into semi-distributed systems and distributed systems.
or feature extraction, they used the stacked autoencoder tech-
ique. Different feature selection approaches were applied on
ach partitioned dataset to select the top 7 features from the
riginal features. They utilized the MLP (multi-layer perceptron)
lassifier for classification. The evaluation results showed that
heir work achieved an accuracy of 99.97% in semi-distributed
odel, and 97.80% for distributed models using 21 features. Lee
t al. [24] implemented a three-phase framework for wireless IDS
hat focused on impersonation attack detection. In the first phase,
AE was used for feature extraction while in the second phase,
he Mutual Information and C4.8 algorithms were applied, and
inally, the SVM with gradient descent optimization was used for
lassification. They reported an accuracy of 98.22% with a set of
ive features.

eep learning based work:
Thing [23] suggested an IDS based on the deep learning model

using stacked auto-encoder (SAE)) to classify between 4 classes
3 attacks — impersonation, flooding, injection, and normal traf-
ic). The authors suggested two variants of the model: one with
5

two hidden layers, and the second with three hidden layers.
Without explicit feature selection, the one consisting of two
hidden-layer achieved a better accuracy, 98.67%, than the one
with 3 layers. Wang et al. [27] proposed yet another deep learning-
based IDS approach. This approach aims to detect and classify
wireless network traffic into four categories: normal traffic, im-
personation, injection, and flooding attacks. From a data prepro-
cessing, removing features with zero variance and missing val-
ues, 71 attributes were obtained. For the classification/detection
phase, two variants of the deep neural network were suggested:
one with three hidden layers and another with seven hidden lay-
ers. The best accuracy, 92.49%, was achieved using the one with
the 7-hidden-layer. Also, Kim et al. [26] employed a deep learning
approach (stacked auto-encoder) and unsupervised clustering to
detect impersonation attacks from wireless traffic. The proposed
approach consists of two main steps: feature extraction using a
stacked auto-encoder with two hidden layers, and unsupervised
clustering using the K-means algorithm. They achieved accuracy
of 94.81% when using 50 attributes. Furthermore, Ran et al. [25]
proposed an IDS for wireless networks using a semi-supervised
deep learning to classify the network traffic into four types of
flow: normal, impersonation attack, flooding attack, and injection
attack. They adopted a ladder network approach whose archi-
tecture consists of a stacked auto-encoder with a clean decoder
unit, a noisy encoder unit, and a decoder unit. To increase the
generalization ability of the proposed method, they employed a
focal loss function. The accuracy of the classification results was
99.77 percent, 89.32 percent, 73.41 percent, and 82.79 percent for
normal, impersonation, flooding, and injection, respectively. This
method’s overall accuracy was 98.54 percent.

Table 1 summarize the difference between the work in the
literature and our proposed work.

T. Gaber, A. El-Ghamry and A.E. Hassanien Physical Communication 52 (2022) 101685

4

p
u
a
a
t
o
t
i
t
c

c
c
s
d
u
b
f
8
T
w
m

4

w
a
d
i
c
T
t
A

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2

t
g
i
i
o
c
d
i
t

n
a
c
t
t
i

w
p
c
i
s
1
w
i
e

4

t
d
f
r
h
a
m
c

b
a
v
t
r
N
m

. Proposed method

In this section, we present our approach, which aims at im-
roving the accuracy of the detection of injection attacks while
sing fewer features. The proposed method consists of four steps,
s shown in Fig. 2. Firstly, the data is collected. In our work, to
chieve the first step, we used the AWID dataset [7], which con-
ains real Wi-Fi traces. Secondly, the cleaning and preprocessing
f the data are done. To achieve high performance when using
he AWID dataset, we should perform cleaning and preprocess-
ng operations. The preprocessed dataset will be the input to
he classifiers. In this case, the number of features used in the
lassification after the data cleaning process is 76 features.
In the third step, feature selection is achieved. The prepro-

essed dataset is fed into feature selection methods before the
lassification phase. Feature selection methods that include con-
tant removal and eecursive feature elimination result in a re-
uced set of important features to detect injection attacks. When
sing the constant removal technique, the number of features to
e used is 13. When using both constant removal and eecursive
eature elimination, the resulting number of features reduced to
features. In the final step, the classification using SVM, Decision
ree, and Random Forest was conducted, and the performance
as evaluated using several measures (see the results section for
ore details).

.1. Cleaning and preprocessing

AWID dataset contains continuous and discrete data types as
ell as symbolic types with a flexible value range. In addition as
ny intrusion detection dataset, the AWID dataset is an imbalance
ataset. Using the raw dataset will be difficult for the learn-
ng process in most pattern classification approaches. Therefore,
leaning and preprocessing techniques should be applied first.
he cleaning and preprocessing phase includes a set of steps
hat make the raw dataset convenient for subsequent phases.
lgorithm 1 summarizes these steps.

Algorithm 1 Dataset Cleaning and Preprocessing
1: RawDataset = ReadDataset(Path)
2: procedure Cleaning_Preprocessing(RawDataset)
3: Select rows with normal and injection labels
4: Features, Labels = split dataset to fearures and labels
5: Encode(Labels)
6: dataset = Replace(Features,"?",None)
7: for each column col in dataset do
8: if nullvalues ≥ 50% then
9: delete(col)
0: end if
1: end for
2: for each row r in dataset do
3: for each value v in r do
4: if v = null then
5: delete(r)
6: end if
7: end for
8: end for
9: for each datainstance in dataset do
0: cast into integer value
1: end for
2: Normalize(dataset)
3: end procedure
4: procedure Balance(TrainDataset)
5: Pick 10% instances of normal instances randomly
6: end procedure
6

The AWID dataset contains almost all possible 802.11 fields.
In this dataset, the missing values are represented by question
marks (‘‘?’’). This means that the dataset contains the question
mark (‘‘?’’) for unavailable values for the corresponding attributes.
To deal with this question mark (i.e., clean the dataset), we re-
placed the question mark with a null value (a distinguishing value
from other normal values in the dataset), as reported in [30]. We
then dropped the columns (features) with 50% of the null data.
Then we deleted the rows that contained at least one null value.
Following that, a set of type casting is performed such as non
integer values being casted into numbers. The symbolic values
(such as transmitter, destination, and receiver) are mapped into
integers which are scaled to a value between 1 to max, where
max is the number of the symbolic features. The hexadecimal
values (such as the value of the Integrity Check and the WEP
Initialization Vector) are also mapped into integers. Also, the
target class is mapped into binary classes: 0 for normal, 1 for
injection attacks. Finally, we linearly normalized the values of
attributes to values between 0 and 1. By this, the data should be
properly formatted and ready for the classification process.

Addressing AWID imbalance problem: As any intrusion de-
ection dataset, the AWID dataset is an imbalance dataset. As
iven in Table 3, the training dataset contains 1,795,575 million
nstances and 154 features. It is clear that the number of records
n the normal target class is very large compared to that of any
ther attack class. Considering the injection attacks, the main fo-
us of this paper, it can also be noticed that there is an imbalanced
ata problem: the normal class has 1,633190 instances while the
njection class has 65,379 instances only. To address this problem,
wo preprocessing steps were taken.

Firstly, following the work in [5], we selected 10% of the
ormal instances randomly, and 65,379 instances for the injection
ttack class, as shown in Table 5. Selecting 10% from the normal
lass instances makes the number of normal instances is more
han the number of injection attack instances, which maintains
he real life scenario in which the normal flow exceeds the
njection attack flow in real networks.

Secondly, as shown above, data cleaning and preprocessing
ere executed on the training dataset. The cleaning and pre-
rocessing steps reduced the number of instances of the normal
lass to 68,074 instances while leaving the number of injection
nstances the same as given in Table 6. From this table, it can be
een that the ratio between the normal and injection classes is
:1, i.e., producing balanced data. In all our experiments below,
e used the balanced training dataset in the training phase, while

n the testing phase we used the unbalanced test dataset as
xplained in the evaluation Section 5.3.

.2. Feature selection

The cleaned and pre-processed data is then given to the fea-
ure selection step. Feature selection is the process of reducing
ata dimensionality in order to enhance machine learning per-
ormance. The goal of feature selection is to get rid of useless or
edundant features and keep only those that are important and
elp improve machine learning performance [31]. Further this
lso would lead to decreasing computation time. In the proposed
ethod, we used two techniques to choose the best features:
onstant removal and eecursive feature elimination.
Constant removal is a simple feature selection approach that

elongs to invariant filter-based methods which can be fed into
ny machine learning (ML) models. It can be categorized as
ariance-based feature selection. It is also known as ‘‘variance
hreshold feature selection’’. The constant removal technique
anks features based on specific criteria and selects the top
from these ranked features. It works by removing all zero-
ean features, which have the same value for every instance.

T. Gaber, A. El-Ghamry and A.E. Hassanien Physical Communication 52 (2022) 101685
Fig. 2. Proposed approach.
It also removes the columns (features), where the differences
between their values are very small (i.e. the varianceis less than a
particular threshold). In both of these situations, the data would
not contribute to the classification phases because it could not
help distinguish a tuple with a normal class from tuples with the
injection attack class [31].

Recursive feature elimination (RFE) is a wrapper-based feature
selection approach that uses a search mechanism to reduce the
feature set. This method gives more accurate results than filter-
based methods. The RFE technique works by first training an
initial feature set, then the feature weights are computed, and
finally, the features with the lowest weight values are removed
from the feature set. This process is executed recursively until
the relevant features are obtained [32,33]. We adopted the RFE
approach because of its flexibility and ease of use. The algorithm
can produce the best possible set of features that gives the highest
performance in less computation time. The major factor that
makes the REF approach stable is the ML algorithm executed in
every iteration. For this purpose, in this work, we adopted the
random forest classifier as an ML model since the relationship
between the features and the target is not linear. The random
forest consists of multiple decision trees which compute the
entropy of the features’ values in the dataset and then partition
7

the dataset samples layer by layer. Finally, the dataset instances
are partitioned based on the target column [34].

As shown in Algorithm 2, the feature selection process in
this paper has been done in three scenarios to show the impact
of combining the constant removal and REF techniques. In the
first scenario, there was no feature selection. After cleaning and
preprocessing the data, we directly used a set of features for
the classification. In the second scenario, we only applied the
constant removal approach, which produced 13 features that
were then used for the classification. In the third scenario, we
applied the eecursive feature elimination (RFE) technique to the
13 features obtained from applying the constant removal ap-
proach. This produced 8 features which were then used in the
classification process and gave the best results, as can be seen in
Section 5. Based on these results, using the pipeline of constant
removal followed by the RFE technique was reported as the
feature selection method for our intrusion detection system for
the injection attack. It is important to note that the metrics for the
feature selection in this paper are based on two factors: (1) What
is the difference between the classification accuracy attained with
a certain feature set and the classification accuracy obtained with
the best feature set? (2) What is the optimal number of features
to employ?

T. Gaber, A. El-Ghamry and A.E. Hassanien Physical Communication 52 (2022) 101685

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3

p
f
w
i
a
a
T
s
t
f
s

Algorithm 2 Feature Selection

1: procedure Feature_Selection(preprocessed_dataset,scenario)
2: if scenario = 1 then
3: Apply_ML_Classifiers (preprocessed_dataset)
4: else if scenario = 2 then
5: selected_13 = Apply_ConstantRemoval(preprocessed_dataset)
6: Apply_ML_Classifiers (selected_13)
7: else if scenario = 3 then
8: selected_13 =Apply_ConstantRemoval(preprocessed_dataset)
9: selected_8 =Apply_RecursiveFeatureElimination(selected_13)
0: Apply_ML_Classifiers (selected_8)
1: end if
2: end procedure
3: procedure ConstantRemoval(Dataset)
4: for each column col in Dataset do
5: if col.values.mean() ≤ 1 then
6: delete(col)
7: end if
8: end for
9: end procedure
0: procedure RecursiveFeatureElimination(Dataset) input: initial Feature set FList=(1,2,3,4, ..., n)
1: output: Rank list based on smallest weight criteria RList
2: Set RList = {}
3: do
4: Train Random Forest using feature list (FList)
5: Calculate weight vector
6: Calculate rank criteria
7: Find the features with smallest rank (f)
8: Update Rank List features (RList) by adding rank of feature (f)
9: Remove feature with lowest rank from feature list (FList)
0: while FList ̸= null
1: end procedure
Table 2
The corresponding p-values of each significant feature.
1. The variable frame.timeepochisstatisticallysignificantwithapvalue = 0.0
2. The variable frame.timedeltaisstatisticallysignificantwithapvalue = 9.8e−14
3. The variable frame.timedeltadisplayedisstatisticallysignificantwithapvalue = 9.8e−14
4. The variable frame.timerelativeisstatisticallysignificantwithapvalue = 0.0
5. The variable frame.len is statistically significant with a pvalue = 0.0
6. The variable frame.caplenisstatisticallysignificantwithapvalue = 0.0
7. The variable radiotap.mactime is statistically significant with a pvalue = 0.0
8. The variable radiotap.datarate is statistically significant with a pvalue = 0.0
9. The variable radiotap.channel.type.cck is statistically significant with a pvalue = 0.0
10. The variable radiotap.channel.type.ofdm is statistically significant with a pvalue = 0.0
11. The variable radiotap.dbmantsignalisstatisticallysignificantwithapvalue = 0.0
12. The variable wlan.fc.type is statistically significant with a pvalue = 2.8e−06
13. The variable wlan.fc.subtype is statistically significant with a pvalue = 0.0
14. The variable wlan.fc.frag is statistically significant with a pvalue = 1.5e−77
15. The variable wlan.fc.retry is statistically significant with a pvalue = 0.0
16. The variable wlan.fc.pwrmgt is statistically significant with a pvalue = 2.2e−11
17. The variable wlan.fc.moredata is statistically significant with a pvalue = 5.3e−47
18. The variable wlan.duration is statistically significant with a pvalue = 0.0
19. The variable wlan.frag is statistically significant with a pvalue = 6.5e−60
20. The variable data.len is statistically significant with a pvalue = 0.0
To evaluate the quality of the feature selected by the pro-
osed method, the T-Test was conducted. The idea is to evaluate
eatures by comparing the p-value of each feature. The p-value
ill be computed from t-test. When performing a T-Test of the

njection attack features, it was found that the set of features that
re statistically significant for the injection attack classification
re the 20 features listed with their corresponding p-values in
able 2. We further plotted these features, showing the most
ignificant ones as illustrated in Fig. 3. Based on these results and
he results discussed in Section 5, it can be remarked that all the 8
eatures selected by the proposed method above are statistically
ignificant where their p-value equals zero.
8

4.3. Classification

In the classification step, as shown in the features selected in
the previous step, in order to do performance validation on the
set of selected features in each of the three conducted experi-
ments, we adopt three classification algorithms, which are Deci-
sion Tree (DT), Random Forest (RF), and Support Vector Machine
(SVM). We chose the DT as it is easy to interpret, understand, and
visualize. It mimics the human thinking power that helps to make
good interpretations. The DT can predict the class by learning
decision rules and is not largely influenced by outliers. Also, it has

no assumptions about space distributions and classifier structures

T. Gaber, A. El-Ghamry and A.E. Hassanien Physical Communication 52 (2022) 101685

[
r
s
t
v
n
f
g
S
p
t
v

5

u
‘
t
u
g

r
g
T
c
1
t
c
t
f
d
r
T
t
t
a

c
a
n
d
w
n
e
T

Fig. 3. A bar chart for sorted p-values of most significant features.
35–37]. We also adopted the RF classifier because it is more
obust and highly accurate. It creates multiple decision trees and
elects the data sample randomly from the training set, obtaining
he prediction from individual decision trees and getting the most
otes. The high accuracy of the RF algorithm is based on the
umber of used decision trees, and it does not suffer from over-
itting [36,38]. Finally we used the SVM classifier due to its good
eneralization capabilities, which prevent it from over-fitting. The
VM provides a kernel technique that helps solve any complex
roblem. In this work, we used the linear kernel function. Fur-
hermore, the SVM has a nature of Convex Optimization which is
ery helpful for optimal results [37,39].

. Evaluation and discussion

To evaluate the proposed method, the AWID dataset was
sed, specifically ‘‘AWID-CLS-R-Trn’’ was used for training and
‘AWID-CLS-R-Tst’’ was used for testing purposes [7]. For valida-
ion purposes, we concatenated the two datasets which are then
sed to obtain the accuracy and other performance metrics as
iven below.
The AWID dataset [7] contains a set of records which resemble

eal traces of WiFi traffic. This dataset is categorized into two
roups depending on the number and type of attack classes.
he first category is called ‘‘CLS’’ which consists of four target
lasses. The second category is called ‘‘ATK’’ which consists of
6 target classes, which are the breakdown of (or the types of)
he four attacks included in the ‘‘CLS’’ dataset. There is another
ategorization of the AWID dataset where it is divided into two
ypes depending on the number of records: the first type is the
ull version, and the second one is the reduced version of the
ataset. In this paper, we performed our experiments on the
educed version that falls into the ‘‘CLS’’ category of the dataset.
he reduced version of AWID dataset is further divided into
raining (see Table 3) and testing datasets (see Table 4). For the
raining purposes, the datasets were cleaned and pre-processed
s discussed in Section 4.1.
For the purpose of testing, the number of instances of each

lass label is shown in Table 4. As the scope of this paper is
bout injection attacks, we only selected injection attack and
ormal network data from the testing dataset. After applying the
ata cleaning and preprocessing techniques, as shown in Table 8,
e have got a testing dataset with 277,960 instances from the
ormal class and 16,682 from the injection attack class). The
xperimental results and their discussions are given below (see
able 7).
9

Table 3
AWID training dataset with all classes.
Original training dataset

Class labels Number of instances

Normal 1,633,190
Injection 65,379
Impersonation 48,522
Flooding 48,484

Total size 1 795575, 155

Table 4
AWID testing dataset with all classes.
Original testing dataset

Class labels Number of instances

Normal 530,785
Injection 16,682
Impersonation 20,079
Flooding 8097

Total size 575,643

Table 5
Balanced training dataset with normal and injection classes.
Balanced training dataset

Class labels Number of instances

Normal 150,500
Injection 65,379

Total size 215,879

Table 6
Cleaned and preprocessed training dataset of normal and injection classes.
Preprocessed training dataset

Class labels Number of instances

Normal 68,074
Injection 65,379

Total size 133,453

Table 7
Testing dataset with normal and injection classes.
Testing dataset

Class labels Number of instances

Normal 530,785
Injection 16,682

Total Size 547,467

T. Gaber, A. El-Ghamry and A.E. Hassanien Physical Communication 52 (2022) 101685

b
P
N

l
P

a
t
w
i
(

Table 8
Preprocessed testing dataset with normal and injection classes.
Preprocessed testing dataset

Class labels Number of instances

Normal 277,960
Injection 16,682

Total size 294,642

5.1. Evaluation metrics

The performance of the proposed intrusion detect method has
een evaluated using the confusion matrix consisting of: True
ositive (TP), True Negative (TN), False Positive (FP) and False
egative (FN) which are defined below.

• True Positive (TP): # of records successfully recognized as
injection attack.

• True Negative (TN): # of records classified as a normal class.
• False Positive (FP): # of records wrongly classified as injec-

tion attack
• False Negative (FN): # of injection attacks undetected by

IDS

Using the parameters of the confusion matrix above, the fol-
owing evaluation metrics have been used in this study: Accuracy,
recision, Recall, and F1 metrics.

Accuracy: The ratio of number of records that are correctly
classified to the total number of records. The higher the
accuracy, the better the model applied.

Accuracy =
TP + TN

TP + TN + FP + FN
Precision: The ratio of the number of positive records

that are correctly classified to the total number of positive
records. This means that the lower the false positive rate,
the higher the precision result. The precision measure is a
good measure when the cost of a false positive is high.

Precision =
TP

TP + FP
Recall (Sensitivity): the ratio of the number of positive

records that are classified correctly to the total number of
classifications in the actual class. This means that the higher
the FN rate, the lower the value of the recall. The recall
measure is important when we want to select the best
model in case the FN rate is very high.

Recall =
TP

TP + FN
F1-Score: This measure is known as the harmonic mean

of the precision and the recall measures. It is considered a
good evaluation measure for imbalanced data.

F1 =
2Precision × Recall
Precision + Recall

=
2TP

2TP + FP + FN

It is important to note that we used the k-fold (and k = 10)
cross validation process after we merged the training and testing
datasets. Cross validation is used to evaluate the trained models
by partitioning the dataset into n partitions (in our case, we use
10 partitions), and then using the (n-1) partitions for the training
nd the remaining partition for the testing process. We iterated
his process by changing the testing partition at each iteration,
hile using the other partitions for training. As a result of this, the

nstances of the dataset will be tested at least once and trained
n-1) times.
10
Table 9
Parameter settings of decision tree algorithm.
Parameter Explanation Value applied

criterion Measure the quality of a
split

Gini impurity

max_depth Maximum depth of the
tree

Nodes are expanded
until all leaves are pure

min_samples_split Minimum number of
samples required to split
an internal node

1

min_samples_leaf Minimum number of
samples required to be
at a leaf node

1

Table 10
Parameter settings of SVM Algorithm.
Parameter Explanation Value applied

c Regularization parameter
which shows that the strength
of the regularization is
inversely proportional to C

1.0

kernel Specifies the kernel type to be
used in the algorithm

Linear

tol Tolerance for stopping
criterion.

0.001

maxiter Hard limit on iterations within
solver or no limit

−1(No limit)

Table 11
Parameter settings of random forest algorithm.
Parameter Explanation Value applied

nestimators Number of trees in the
forest

100

criterion Measure the quality of a
split

Gini impurity

maxdepth Maximum depth of the tree Nodes are
expanded until
all leaves are
pure

minsamplessplit Minimum number of
samples required to split an
internal node

2

minsamplesleaf Minimum number of
samples required to be at a
leaf node

1

maxleafnodes Maximum no of leaf nodes
generated

Unlimited
number of leaf
nodes

minimpuritydecrease A node will be split if this
split induces a decrease of
the impurity greater than
or equal to this value.

0.0

5.2. Parameter settings

Each of the adopted classifiers (DT, SVM, RF) has a set of
parameters. It is worth mentioning the explanation and the val-
ues of these parameters, which were used in the experiments
presented below. This is shown in Tables 9, 10, and 11.

5.3. Results and discussion

Three main experiments were designed to evaluate the pro-
posed intrusion detection system. In the first experiment, the
cleaning algorithm (Algorithm 1) was executed on both training
and testing datasets. The output of this algorithm was 76 features
which are listed in Table 12. These 76 features were given to

T. Gaber, A. El-Ghamry and A.E. Hassanien Physical Communication 52 (2022) 101685

r
t
w

Table 12
AWID 76 features list.
AWID 76 Features

1 (frame).(interface_id) 39 (radiotap).(flags).(wep)
2 (frame).(offset_shift) 40 (radiotap).(flags).(frag)
3 (frame).(time_epoch) 41 (radiotap).(flags).(fcs)
4 (frame).(time_delta) 42 (radiotap).(flags).(datapad)
5 (frame).(time_delta_displayed) 43 (radiotap).(flags).(badfcs)
6 (frame).(time_relative) 44 (radiotap).(flags).(shortgi)
7 (frame).(len) 45 (radiotap).(datarate)
8 (frame).(cap_len) 46 (radiotap).(channel).(freq)
9 (frame).(marked) 47 (radiotap).(channel).(type).(turbo)
10 (frame).(ignored) 48 (radiotap).(channel).(type).(cck)
11 (radiotap).(version) 49 (radiotap).(channel).(type).(ofdm)
12 (radiotap).(pad) 50 (radiotap).(channel).(type).(2ghz)
13 (radiotap).(length) 51 (radiotap).(channel).(type).(5ghz)
14 (radiotap).(present).(tsft) 52 (radiotap).(channel).(type).(passive)
15 (radiotap).(present).(flags) 53 (radiotap).(channel).(type).(dynamic)
16 (radiotap).(present).(rate) 54 (radiotap).(channel).(type).(gfsk)
17 (radiotap).(present).(channel) 55 (radiotap).(channel).(type).(gsm)
18 (radiotap).(present).(fhss) 56 (radiotap).(channel).(type).(sturbo)
19 (radiotap).(present).(dbm_antsignal) 57 (radiotap).(channel).(type).(half)
20 (radiotap).(present).(dbm_antnoise) 58 (radiotap).(channel).(type).(quarter)
21 (radiotap).(present).(lock_quality) 59 (radiotap).(dbm_antsignal)
22 (radiotap).(present).(tx_attenuation) 60 (radiotap).(antenna)
23 (radiotap).(present).(db_tx_attenuation) 61 (radiotap).(rxflags).(badplcp)
24 (radiotap).(present).(dbm_tx_power) 62 (wlan).(fc).(version)
25 (radiotap).(present).(antenna) 63 (wlan).(fc).(type)
26 (radiotap).(present).(db_antsignal) 64 (wlan).(fc).(subtype)
27 (radiotap).(present).(db_antnoise) 65 (wlan).(fc).(frag)
28 (radiotap).(present).(rxflags) 66 (wlan).(fc).(retry)
29 (radiotap).(present).(xchannel) 67 (wlan).(fc).(pwrmgt)
30 (radiotap).(present).(mcs) 68 (wlan).(fc).(moredata)
31 (radiotap).(present).(ampdu) 69 (wlan).(fc).(protected)
32 (radiotap).(present).(vht) 70 (wlan).(fc).(order)
33 (radiotap).(present).(rtap_ns) 71 (wlan).(duration)
34 (radiotap).(present).(vendor_ns) 72 (wlan).(frag)
35 (radiotap).(present).(ext) 73 (wlan).(seq)
36 (radiotap).(mactime) 74 (wlan).(fcs_good)
37 (radiotap).(flags).(cfp) 75 (wlan).(wep).(key)
38 (radiotap).(flags).(preamble) 76 (data).(len)
Table 13
Classification results using different set of features.

Accuracy Precision Recall F1 Score

Results of using 76 features

Decision tree 0.9681 0.6731 0.8500 0.7513
Random forest 0.9888 0.9511 0.8470 0.8960
SVM 0.9758 0.7008 0.9999 0.8240

Results of using 13 features

Decision tree 0.9908 0.9539 0.8807 0.9158
Random forest 0.9887 0.9507 0.8439 0.8941
SVM 0.9757 0.7001 0.9999 0.8235

Results of using 8 features

Decision tree 0.9891 0.9521 0.8500 0.8982
Random forest 0.9891 0.9537 0.8492 0.8985
SVM 0.9756 0.6989 0.9999 0.8227

the three classifiers (SVM, DT, RF) and results were recorded as
given in Table 13. From this table, it can be noticed that the RF’s
results are the best with accuracy, precision and F1-score 98.88%,
95.11 and 89.60% respectively. While the SVM’s results are the
best in terms of recall with 99.99%. A high recall value is very
important in real smart cities attack detection. If an injection
attack instance is falsely categorized as normal network traffic,
catastrophic consequences (e.g., denial of service) would affect
most of smart cities applications. In this case, the SVM could be
the best classifier to be used for detecting the injection attacks.

In the second experiment, after applying the cleaning algo-
ithm (Algorithm 1), we then applied the constant removal fea-
ure selection to remove redundant values. This gave 13 features,
hich are listed in Table 14. We then used these 13 features for
11
the classification processing using SVM, RF, and DT and the results
are reported in Table 13. From this table, one could observe
that the DT performed better than both the RF and SVM in
classifying the injection attack. With the DT, the proposed method
achieved an accuracy of 99.08 percent and an F1-score of 91.58%.
The results are better than using all 76 features. This indicates
that applying the constant removal method helped us to select
the most discriminating set of features as well as improve the
classification accuracy. Also, achieving a higher F1-Score (91.58%)
means that the RF could be a good classifier for imbalanced data,
as in the case of AWID.

From Table 13, comparing results of 76 and 13 features, it
can be seen that the RF nearly produced the same results using
76 and 13 features respectively. like using 76 features, the SVM
gave the highest recall with 99.99%. This indicates that the SVM
classifier preserves its high performance while using a reduced
set of features.

In the third experiment, the eecursive feature elimination
(RFE) technique was applied on the output of the constant re-
moval (i.e., 13 features). This produced the top 8 features, which
are listed in Table 15. Giving these 8 features to the three clas-
sifiers (SVM, DT, RF), we got the results summarized in Table 13.
From this table, it can be seen that the DT and RF gave the same
highest accuracy value of 98.91%.

Comparing results of 76 and 13 features, as can be seen in
Table 13, it can be noticed that using 8 features, (a) the DT and
RF gave slightly better results than ones they achieved with 13
features, (b) the RF performed slightly better than its using 13
features. In addition, it can be seen that using only 8 features, the

RF performed better in terms of all metrics. This indicates that the

T. Gaber, A. El-Ghamry and A.E. Hassanien Physical Communication 52 (2022) 101685

f
t
r
p
s
I
h
t
h
t
W
i
d

t
f
a
f
t
m
i
t
b
g
a
w

5

w
s
m

t
l
t

Table 14
AWID 13 features list.
AWID 13 Features

1 (frame).(time_epoch)
2 (frame).(time_relative)
3 (frame).(len)
4 (frame).(cap_len)
5 (radiotap).(length)
6 (radiotap).(mactime)
7 (radiotap).(datarate)
8 (radiotap).(channel).(freq)
9 (wlan).(fc).(type)
10 (wlan).(fc).(subtype)
11 (wlan).(duration)
12 (wlan).(seq)
13 (data).(len)

Table 15
AWID 8 features list.
AWID 8 Features

1 (frame).(time_relative)
2 (frame).(len)
3 (frame).(cap_len)
4 (radiotap).(mactime)
5 (radiotap).(datarate)
6 (wlan).(fc).(subtype)
7 (wlan).(duration)
8 (data).(len)

feature selection proposed in this paper can help in detecting the
injection attack using a few features.

The experiments and the results above show that the proposed
eature selection method can reduce the features of the injec-
ion attack from 76 to 8 while achieving a very good detection
ate (0.9891) using the RF classifier, which also achieved high
recision, recall, and F1-Score by 95.37%, 84.92%, and 89.85% re-
pectively. These results are very useful when adopted for smart
oT applications such as indoor wireless applications (e.g., smart
ospitals, smart factories) and outdoor applications (e.g., smart
ransportation) in smart cities. All such applications require a
uge number of WI-FI network connections between various
ypes of smart devices to exchange information between them.
ith 8 features out of 76, our proposed method can detect

njection attack activities with little processing time and a high
etection rate.
These results further showed that the aim of our work (de-

ecting injection attacks with high accuracy while using fewer
eatures) has been achieved. The results proved that our method
chieved a detection rate of 99% and F1-Score 90% using only 8
eatures. Using fewer numbers of attributes means less compu-
ational cost is required for attack detection, which makes our
ethod resource friendly. In other words, the proposed method

s appropriate for the resource-constrained IoT devices that are
he basic building blocks of smart hospitals, smart factories, smart
uildings, and smart cities. Also achieving an F1-Score of 90% is a
ood indicator that our proposed method can handle the imbal-
nced data expected in a network intrusion detection problem
here most of the data is normal traffic.

.4. Comparison with literature

To further evaluate the proposed intrusion detection method,
e conducted two types of comparisons: one for the feature
election and one for the performance of the intrusion detection
ethod.
Feature Selection Comparison: The proposed feature selec-

ion method was compared with two well-known feature se-
ection techniques: mutual information [40] and Extra Tree (Ex-

remely Random Tree Classifier) [41]. Mutual information is a

12
Table 16
Mutual information-based results of 8 features.
Algorithm Accuracy Precision Recall F1 Score

Decision tree 0.9889 0.9469 0.8507 0.8948
Random forest 0.9821 0.9535 0.8431 0.8932
SVM 0.9684 0.6432 0.9936 0.7809

Table 17
Extra Tree-based results of 8 features.
Algorithm Accuracy Precision Recall F1 Score

Decision tree 0.9823 0.9447 0.8507 0.8939
Random forest 0.9860 0.9238 0.8418 0.8862
SVM 0.9744 0.6990 0.9998 0.8138

technique that applies information gain to select a feature subset
from an original feature set. In Extra Trees, each individual tree
has a random sample of a specific number of features, and the
algorithm selects the best feature to split the data. The compari-
son was conducted on the best 8 features selected using mutual
information and Extra Tree. This is because our method gave
the best results when all 8 features were used (see Table 13).
The results of this comparison are summarized in Tables 16 and
17. From these two tables and Table 13, it can be noticed that
the proposed feature selection method (with the DT classifier) is
still better than the results of the 8 features selected by mutual
information and Extra Tree techniques.

Intrusion detection comparison: This section presents and
discusses a comparison with work in the literature that is related
to our proposed method.

The work in [25] utilized a ladder network that is based on
Stacked Auto-Encoder (SAE) to select optimal attributes from a
list of features and then to perform network traffic classification
into normal, impersonation attack, flooding attack, and injection
attack. Using 95 attributes from the AWID dataset, the authors
reported 98.54% overall accuracy, but for the injection attack
detection, they reported 82.79% accuracy. In addition, they only
used one experimental scenario for feature selection, which is
based on deep learning. They mentioned that more layers of
the deep learning algorithm should be added to improve the
accuracy improvement. However, this would limit the adoption
of their model in the IoT environment as it would be compu-
tationally expensive on top of its poor accuracy (82.79%). The
work in [27] to detect intrusion, the authors followed a similar
preprocessing approach by removing features with missing val-
ues and zero variance, which led to a set of 71 features. Then
they applied a Deep Neural Network (DNN) model with seven
hidden layers. However, they did not apply any known feature
selection technique, just employed the preprocessing steps above
to perform feature reduction. Although they achieved slightly
higher classification accuracy (99.99%) of injection attacks, which
is around 1% higher than ours, the use of the DNN algorithm with
a seven-layer structure would incur more computational time,
thus making it difficult to adopt in smart IoT applications. In
the work [28], the authors utilized ensemble learning algorithms
and performed feature analysis and correlations to remove and
combine features, which ended up with 18 features. For injection
attacks, they achieved 44% precision, 93% recall, and 60% F1-
Score. Like the work in [27], their results could require more
computational power than ours, as the former needs 18 features
while the latter requires 8 features only.

As shown in earlier, the proposed intrusion detection method
achieved 99% accuracy, 95% precision, and 90% F1 score using just
8 features through the decision tree classifier. Compared with all
the related work above, it could be remarked that our proposed
method achieves nearly the same accuracy while achieving better

T. Gaber, A. El-Ghamry and A.E. Hassanien Physical Communication 52 (2022) 101685

r
t
i

a
T
p
t
t
i
d
f
n
(
W
(
t
(
4
(
i
b
a
o
e
l
w
i
t
s

a
c
e
T
t
m
p
c
s
t

6

i
i
s
t
r
o
R
u
i
C

a
t
o
r
t
m
r
f
a
t

esults in terms of precision and F1-Score, and it only needs 8 fea-
ures to achieve these results, which makes it more appropriate
n a smart IoT environment.

Time_dependent features: According to the authors in [24],
ny IDS system should be independent on any temporal features.
his makes it difficult to obtain the values of these features in
ractical applications. Additionally, if these features are used in
he training phase of ML, then the trained model will remember
he timing of each attack. Hence, the detected attacks in test-
ng set are dependent on time-dependent information learned
uring the training phase. Our proposed method partially con-
orms to this recommendation. For example, consider the sce-
ario of 13 features, the constant removal approach excludes:
frame).(time_delta) and (frame).(time_delta_displayed) features.
hile in the scenario of 8 features, the RFE technique excludes:

frame).(time_epoch) features before the classification step. Thus
he final 8 features includes two temporal features which are
frame).(time_relative) and (radiotap).(mactime). The work in [5,
2] utilized all three temporal features: (frame).(time_epoch),
frame).(time_relative), and (radiotap).(mactime). While the work
n [24] has only reported temporal feature (frame).(time_epoch),
ut it uses it for impersonation attack detection. The work in [25]
nd [27] did not mention whether they rely on temporal features
r not when doing the classification task. While the work in [28]
liminated all time_specific features. Their evaluation metrics is
ower than our results using more number of features, and their
ork lacks data balancing. So, it can be said that our proposed

njection attack detection method conforms to the temporal fea-
ures recommendations reported in [24] about building any IDS
ystem.
In terms of applications, our proposed method can find many

pplications in the IoT field. For example, the operation of smart
ities is mainly based on wireless communication to transfer an
normous amount of information between smart IoT devices.
hus, the success of smart city applications such as smart irriga-
ion systems, smart parking systems, smart lighting, smart waste
anagement, and smart air quality management is subject to the
ivotal development of security architectures. Our methodology
an help to secure these applications by facing injection attacks
uch as ChopChop, fragmentation, and ARP attacks, which target
he network layer in IoT smart city architecture.

. Conclusion

An injection/intrusion attack detection method was proposed
n this paper to address the problem of detecting these attacks
n IoT applications, including indoor wireless IoT applications
uch as smart hospitals, factories, or buildings. This method used
wo types of feature selection techniques (constant removal and
ecursive feature elimination). The impact of the performance
f these techniques was evaluated using three classifiers (SVM,
andom Forest, and Decision Tree). The experimental results,
sing the public dataset, AWID, showed that the decision tree
s the best classifier to be used to detect injection attacks (ARP,
hopChop and Fragmentation).
The proposed injection attack detection method achieved 99%

ccuracy, 95% precision, and 90% F1 score using the decision
ree classifier with just 8 features. This was further achieved by
nly using 8 features selected using a pipeline of the constant
emoval and eecursive feature elimination. Compared with all
he related work above, it could be remarked that our proposed
ethod achieves nearly the same accuracy while achieving better

esults in terms of precision and F1-Score and it only needs 8
eatures to achieve these results, which makes it more appropri-
te in a smart IoT environment. Thus, it could be concluded that
he proposed method is not only accurate but could also save
13
resources which are limited in the IoT environment. The main
purpose of this paper is to propose an IDS with high accuracy
and a minimum number of features. In the future, it is planned
to further investigate a deep comparison between the proposed
feature selection technique and other well-known techniques
in terms of convergence time, convergence iteration, and their
impact on the detection accuracy.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] L. Columbus, 2020 Roundup of cybersecurity forecasts and market
estimates, 2020, URL: https://www.forbes.com/sites/louiscolumbus/
2020/04/05/2020-roundup-of-cybersecurity-forecasts-and-market-
estimates/?sh=1b00bf61381d.

[2] IDC, IoT Growth demands rethink of long-term storage strategies, 2020,
URL: https://www.idc.com/getdoc.jsp?containerId=prAP46737220.

[3] Y. Chahid, M. Benabdellah, N. Kannouf, Smart hospitals and cyber se-
curity attacks, in: International Conference on Digital Technologies and
Applications, Springer, 2021, pp. 291–300.

[4] H.H. Pajouh, R. Javidan, R. Khayami, A. Dehghantanha, K.-K.R. Choo,
A two-layer dimension reduction and two-tier classification model for
anomaly-based intrusion detection in IoT backbone networks, IEEE Trans.
Emerg. Top. Comput. 7 (2) (2019) 314–323.

[5] M.E. Aminanto, R. Choi, H.C. Tanuwidjaja, P.D. Yoo, K. Kim, Deep abstrac-
tion and weighted feature selection for Wi-Fi impersonation detection,
IEEE Trans. Inf. Forensics Secur. 13 (3) (2017) 621–636.

[6] L. Tian, Design and implementation of a distributed intelligent network
intrusion detection system, in: 2010 International Conference on Electrical
and Control Engineering, IEEE, 2010, pp. 683–686.

[7] C. Kolias, G. Kambourakis, A. Stavrou, S. Gritzalis, Intrusion detection in
802.11 networks: empirical evaluation of threats and a public dataset, IEEE
Commun. Surv. Tutor. 18 (1) (2015) 184–208.

[8] S.K. Singh, Y.-S. Jeong, J.H. Park, A deep learning-based IoT-oriented
infrastructure for secure smart city, Sustainable Cities Soc. 60 (2020)
102252.

[9] M. Kalinin, V. Krundyshev, P. Zegzhda, Cybersecurity risk assessment in
smart city infrastructures, Machines 9 (4) (2021) 78.

[10] E. Bou-Harb, N. Neshenko, Cyber Threat Intelligence for the Internet of
Things, Springer, 2020.

[11] T. Takeshi, C. Benjamin, R. Sara, et al., Light commands: laser-based audio
injection attacks on voice-controllable systems, 2019.

[12] N. Abosata, S. Al-Rubaye, G. Inalhan, C. Emmanouilidis, Internet of things
for system integrity: a comprehensive survey on security, attacks and
countermeasures for industrial applications, Sensors 21 (11) (2021) 3654.

[13] S. Latif, Z. Idrees, Z. e Huma, J. Ahmad, Blockchain technology for the in-
dustrial internet of things: A comprehensive survey on security challenges,
architectures, applications, and future research directions, Trans. Emerg.
Telecommun. Technol. 32 (11) (2021) e4337.

[14] V. Varadharajan, U. Tupakula, K. Karmakar, Study of security attacks against
IoT infrastructures, Technical Report TR1: ISIF ASIA Funded Project, 2018.

[15] M.R. Islam, K. Aktheruzzaman, An analysis of cybersecurity attacks against
internet of things and security solutions, J. Comput. Commun. 8 (4) (2020)
11–25.

[16] T. Batiha, P. Krömer, Design and analysis of efficient neural intrusion
detection for wireless sensor networks, Concurr. Comput.: Pract. Exper.
33 (23) (2021) e6152.

[17] M. Safaldin, M. Otair, L. Abualigah, Improved binary gray wolf optimizer
and SVM for intrusion detection system in wireless sensor networks, J.
Ambient Intell. Humaniz. Comput. 12 (2) (2021) 1559–1576.

[18] A. Fatani, A. Dahou, M.A. Al-Qaness, S. Lu, M. Abd Elaziz, Advanced feature
extraction and selection approach using deep learning and aquila optimizer
for IoT intrusion detection system, Sensors 22 (1) (2022) 140.

[19] R. Sekhar, K. Sasirekha, P. Raja, K. Thangavel, A novel GPU based intrusion
detection system using deep autoencoder with fruitfly optimization, SN
Applied Sciences 3 (6) (2021) 1–16.

[20] U.S.K.P.M. Thanthrige, J. Samarabandu, X. Wang, Machine learning tech-
niques for intrusion detection on public dataset, in: 2016 IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE), IEEE, 2016,
pp. 1–4.

[21] M.E. Aminanto, H. Tanuwidjaja, P.D. Yoo, K. Kim, Weighted feature selec-
tion techniques for detecting impersonation attack in Wi-Fi networks, in:
Proc. Symp. Cryptogr. Inf. Secur.(SCIS), 2017, pp. 1–8.

https://www.forbes.com/sites/louiscolumbus/2020/04/05/2020-roundup-of-cybersecurity-forecasts-and-market-estimates/?sh=1b00bf61381d
https://www.forbes.com/sites/louiscolumbus/2020/04/05/2020-roundup-of-cybersecurity-forecasts-and-market-estimates/?sh=1b00bf61381d
https://www.forbes.com/sites/louiscolumbus/2020/04/05/2020-roundup-of-cybersecurity-forecasts-and-market-estimates/?sh=1b00bf61381d
https://www.forbes.com/sites/louiscolumbus/2020/04/05/2020-roundup-of-cybersecurity-forecasts-and-market-estimates/?sh=1b00bf61381d
https://www.forbes.com/sites/louiscolumbus/2020/04/05/2020-roundup-of-cybersecurity-forecasts-and-market-estimates/?sh=1b00bf61381d
https://www.idc.com/getdoc.jsp?containerId=prAP46737220
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb3
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb3
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb3
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb3
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb3
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb4
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb4
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb4
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb4
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb4
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb4
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb4
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb5
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb5
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb5
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb5
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb5
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb6
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb6
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb6
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb6
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb6
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb7
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb7
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb7
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb7
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb7
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb8
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb8
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb8
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb8
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb8
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb9
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb9
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb9
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb10
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb10
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb10
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb11
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb11
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb11
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb12
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb12
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb12
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb12
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb12
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb13
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb13
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb13
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb13
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb13
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb13
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb13
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb14
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb14
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb14
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb15
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb15
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb15
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb15
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb15
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb16
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb16
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb16
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb16
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb16
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb17
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb17
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb17
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb17
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb17
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb18
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb18
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb18
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb18
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb18
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb19
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb19
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb19
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb19
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb19
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb20
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb20
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb20
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb20
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb20
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb20
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb20

T. Gaber, A. El-Ghamry and A.E. Hassanien Physical Communication 52 (2022) 101685
[22] D. Kaleem, K. Ferens, A cognitive multi-agent model to detect malicious
threats, in: Proceedings of the 2017 International Conference on Applied
Cognitive Computing (ACC’17), 2017.

[23] V.L. Thing, IEEE 802.11 Network anomaly detection and attack classifica-
tion: A deep learning approach, in: 2017 IEEE Wireless Communications
and Networking Conference (WCNC), IEEE, 2017, pp. 1–6.

[24] S.J. Lee, P.D. Yoo, A.T. Asyhari, Y. Jhi, L. Chermak, C.Y. Yeun, K. Taha,
IMPACT: IMpersonation attack detection via edge computing using deep
autoencoder and feature abstraction, IEEE Access 8 (2020) 65520–65529.

[25] J. Ran, Y. Ji, B. Tang, A semi-supervised learning approach to IEEE 802.11
network anomaly detection, in: 2019 IEEE 89th Vehicular Technology
Conference (VTC2019-Spring), IEEE, 2019, pp. 1–5.

[26] K. Kim, M.E. Aminanto, H.C. Tanuwidjaja, Network Intrusion Detection
Using Deep Learning: A Feature Learning Approach, Springer, 2018.

[27] S. Wang, B. Li, M. Yang, Z. Yan, Intrusion detection for WiFi network:
A deep learning approach, in: International Wireless Internet Conference,
Springer, 2018, pp. 95–104.

[28] F.D. Vaca, Q. Niyaz, An ensemble learning based wi-fi network intrusion
detection system (wnids), in: 2018 IEEE 17th International Symposium on
Network Computing and Applications (NCA), IEEE, 2018, pp. 1–5.

[29] M.A. Rahman, A.T. Asyhari, L. Leong, G. Satrya, M.H. Tao, M. Zolkipli, Scal-
able machine learning-based intrusion detection system for IoT-enabled
smart cities, Sustainable Cities Soc. 61 (2020) 102324.

[30] D.T. Larose, C.D. Larose, Discovering Knowledge in Data: An Introduction
to Data Mining, Vol. 4, John Wiley & Sons, 2014.

[31] C. Sammut, G.I. Webb, Encyclopedia of Machine Learning, Springer Science
& Business Media, 2011.

[32] N.V. Sharma, N.S. Yadav, An optimal intrusion detection system using
recursive feature elimination and ensemble of classifiers, Microprocess.
Microsyst. (2021) 104293.

[33] S. Ustebay, Z. Turgut, M.A. Aydin, Intrusion detection system with recursive
feature elimination by using random forest and deep learning classifier, in:
2018 International Congress on Big Data, Deep Learning and Fighting Cyber
Terrorism (IBIGDELFT), IEEE, 2018, pp. 71–76.

[34] B.F. Darst, K.C. Malecki, C.D. Engelman, Using recursive feature elimination
in random forest to account for correlated variables in high dimensional
data, BMC Genet. 19 (1) (2018) 1–6.

[35] A.L. Buczak, E. Guven, A survey of data mining and machine learning
methods for cyber security intrusion detection, IEEE Commun. Surv. Tutor.
18 (2) (2015) 1153–1176.

[36] N. Chaabouni, Intrusion Detection and Prevention for Iot Systems Using
Machine Learning (Ph.D. thesis), Université de Bordeaux, 2020.
14
[37] P.S. Kumar, S. Akthar, Execution improvement of intrusion detection
system through dimensionality reduction for UNSW-NB15 information,
in: Mobile Computing and Sustainable Informatics, Springer, 2022, pp.
385–396.

[38] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[39] V. Vapnik, The Nature of Statistical Learning Theory, Springer science &

business media, 2013.
[40] R. Battiti, Using mutual information for selecting features in supervised

neural net learning, IEEE Trans. Neural Netw. 5 (4) (1994) 537–550.
[41] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Mach. Learn.

63 (1) (2006) 3–42.
[42] M.E. Aminanto, K. Kim, Detecting impersonation attack in WiFi networks

using deep learning approach, in: International Workshop on Information
Security Applications, Springer, 2016, pp. 136–147.

Tarek Gaber is a Lecturer at University Salford, UK.
Dr. Gaber received a Ph.D. in Computer Science (In-
formation Security) from the University of Manchester
in 2012. He received a M.Sc. in Computer Science
from Faculty of Computers and Information Sciences,
Ain Shams University, Egypt in 2003. He has worked
in many universities including Faculty of Computers
and Informatics, Suez Canal University, Egypt, Faculty
of Computers and Information Sciences, Ain Shams
University, Egypt and the School of Computer Science,
University of Manchester, Manchester, UK. He had a

postdoctoral position at the Faculty of Electrical Engineering and Computer
Science, VSB Technical University of Ostrava, Ostrava, Czech Republic. He is
also a member of IEEE and the Scientific Research Group in Egypt (SRGE).
As a guest editor, he has co-edited several special issues of SCI journals. He
has served as a co-chair and PC member in many international conferences
and reviewed many scientific papers. He has more than 70 publications in
international prestigious journals, conferences, and book chapters. In addition,
he has 6 edited books. He is the PI and Co-PI of several research projects
funded by governments and industries. Tarek has successfully supervised 4 MSc-
by-Research students and he is currently supervising other PhD/MSc students.
His major research interests include cybersecurity, secure software engineering,
behaviour authentication, machine learning, wireless sensor network, Internet
of Things, and pattern recognition.

http://refhub.elsevier.com/S1874-4907(22)00049-0/sb23
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb23
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb23
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb23
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb23
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb24
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb24
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb24
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb24
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb24
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb25
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb25
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb25
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb25
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb25
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb26
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb26
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb26
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb27
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb27
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb27
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb27
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb27
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb28
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb28
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb28
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb28
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb28
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb29
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb29
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb29
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb29
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb29
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb30
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb30
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb30
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb31
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb31
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb31
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb32
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb32
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb32
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb32
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb32
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb33
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb33
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb33
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb33
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb33
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb33
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb33
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb34
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb34
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb34
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb34
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb34
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb35
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb35
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb35
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb35
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb35
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb36
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb36
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb36
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb37
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb37
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb37
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb37
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb37
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb37
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb37
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb38
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb39
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb39
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb39
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb40
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb40
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb40
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb41
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb41
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb41
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb42
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb42
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb42
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb42
http://refhub.elsevier.com/S1874-4907(22)00049-0/sb42

	Injection attack detection using machine learning for smart IoT applications
	Introduction
	Injection attack and smart IoT environment
	Related work
	Proposed method
	Cleaning and preprocessing
	Feature selection
	Classification

	Evaluation and discussion
	Evaluation metrics
	Parameter settings
	Results and discussion
	Comparison with literature

	Conclusion
	Declaration of competing interest
	References

