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A B S T R A C T

To accurately model the dynamics of a complex built-up structure it is often necessary to
forgo the assumption of ideal rigid coupling between components. The dynamic behaviour of
inter-component connections, or joints, can have a significant impact on the performance, even
survivability, of an assembled structure. For complex structures, where many joints are present,
the complete characterisation and/or modelling of all joints is often not feasible. Hence, in the
development or refinement of a component-based model there is a need to identify the response-
critical joints of an assembly — those joints whose refinement would benefit the modelling effort
most. In the present paper we address this issue by considering a ‘possibilistic’ interval-based
assessment of joint variability, and propose a sensitivity metric to rank order joints based on
their influence towards the dynamics of the assembled structure. Results are compared against
local gradient-based and global sampling-based metrics as part of two numerical examples.

. Introduction

Complex engineering structures (such as vehicles, satellites, domestic products, buildings and more) are built-up from individual
omponents that are joined with connections that rely on frictional contact or other dissipative mechanisms (such as elastomeric
lements). To model such a structure it is conventional to follow a component-based strategy, where individual components
re measured, or modelled, independently of one another, before being assembled to form the complete model. Typically, this
ssemblage is achieved by enforcing equilibrium and continuity conditions (or energetic equivalents) at the connecting interfaces
etween components; a process referred to as sub-structuring [1]. This is, however, an idealisation. The joints that connect
omponents possess their own dynamics; ideal rigid coupling is rarely achieved in practice. Importantly, these joint dynamics
an have a significant impact on the performance, or even survivability, of an operational assembly [2]. Hence, when adopting
component-based strategy, it is essential that, where necessary, jointed connections are characterised and modelled appropriately.

The types of joints encountered in practical engineering structures are wide ranging, and can include bolted connections, rivets,
elds, and resilient elements, among many others [3]. Likewise, their dynamics can vary greatly, from linear spring or beam-

ike coupling, to non-linear hysteretic, perhaps discontinuous (e.g. frictional), connections [4,5]. Whether linear or non-linear, two
rincipal issues arise when modelling complex jointed structures.

First, an experimental characterisation of each joint is required before they can be represented within a component-based
odel. This characterisation is an experimentally demanding task [6–11], often reinquiring supplementary numerical models [12–
4]. As an example, in [6,7,9] the experimental procedure involves measuring the point and transfer admittance between the
nterface/joint and a set of remote DoFs on both the assembled and individual components. In [12] the individual component
dmittances are instead obtained by FE models. In [13,14] the need for interface-based measurements is avoided using a hybrid
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experimental/numerical ‘System Equivalent Model Mixing’ scheme, though several remote measurements are still required on the
connected components. For a non-linear characterisation experimental efforts are multiplied, often requiring controlled shaker
excitations with increasing amplitude levels [11] or advanced time domain identification methods [10]. As an alternative to
experimental characterisation, joint characteristics might be obtained indirectly by model updating [15,16].

Second, the computational effort required to incorporate a non-linear or 3D elastic joint model can be many times greater than
hat of a linear or 1D joint [17,18]. For complex built-up structures, where many joints are present, these efforts are multiplied, and
complete characterisation/modelling of all joints is often not feasible. Hence, in the development or refinement of a component-
ased model there is a need to identify the response-critical joints of an assembly – those that have the greatest influence on the target

response – so that experimental and computational resources may be focused towards those joints which will benefit the modelling
effort most. Importantly, the influence of a specific joint will depend not only on the passive dynamics of its connected components,
but also on the operational activity of the assembly.

It is worth noting that the identification of ‘critical joints’ is often considered in the context of structural analysis, where joints
that experience high static loads are identified and subject to local non-linear reanalysis [16]. In the present paper we consider,
instead, the dynamic response of an assembled structure, and the relative importance of individual joints towards said response. We
ddress the issue of response-critical joint identification by considering an interval-based sensitivity analysis (SA) of the assembled
tructure’s response, with respect to the relaxation of individual interface connections.

When dealing with problems of uncertainty, such as sensitivity analysis (SA), are two common view points: probabilistic or non-
robabilistic. SA is typically treated probabilistically, describing uncertain parameters by their probability distributions. A principal
ifficulty here is that to evaluate the uncertainty of a complex system by probabilistic means, detailed statistical input data is
equired. If this data is not available, complex statistical analysis cannot be justified. This issue can be overcome by non-probabilistic,
r ‘possibilistic’, analysis methods, which include: interval analysis [19–25], convex modelling [26] and fuzzy set theory [27,28].
ossibilistic methods do not consider the probability of an outcome occurring, rather whether or not is it possible.

Joint characterisation is an experimentally demanding task, and so it is often challenging to obtain the statistical information
equired to conduct a conventional probabilistic analysis of uncertainty. Possibilistic, or interval analysis, methods offer a convenient
lternative. Interval-based methods have found numerous applications in the analysis of structural dynamic systems, including;
nterval Finite Element Analysis [20,21], eigenfrequency analysis [29,30], robustness evaluation [31], quantification of experimental
ncertainty [25], inverse force identification [23], stochastic response analysis [32,33], among many others. In the present paper,
e consider its application towards the identification of response-critical joints.

Based on the rank ordering of a proposed sensitivity metric, we are able to infer the relative importance of individual joints by
heir contribution towards the global dynamics of the assembled structure. The proposed metric is formulated by considering the
ual formulation of the sub-structuring problem in the presence of a flexible interface [34]. The Sherman–Morrison formula is used
o separate out the contribution of an individual joint, at which point a complex interval description is adopted for the interface
tiffness and damping. Employing interval arithmetic, the maximum and minimum bounds of the coupled assembly admittance
also operational response) are determined. Spatial averaging of the interval bounds over selected degrees of freedom (DoFs) yields
metric that indicates the relative importance of a particular joint towards the dynamics of the assembled structure, in a possibilistic

ense. Results are compared against local gradient-based and global sampling-based (Sobol) metrics, also proposed herein.
Having introduced its context and principal aim, the remainder of this paper will be structured as follows. Section 2 will begin by

ntroducing the notion of real and complex intervals, alongside their arithmetic operations. Primal and dual approaches to modelling
lexible interface dynamics are then summarised in Section 3, before Section 4 details the proposed interval-based assessment of joint
ariability. Section 5 then considers the identification of response-critical joints, before Section 6 presents two numerical examples
nd Section 7 draws some concluding remarks.

. Interval arithmetic

Interval analysis falls within a family of non-probabilistic methods for evaluating uncertainty in complex systems [35,36]. One
f the principal difficulties in evaluating the uncertainty of a complex system by probabilistic means is the acquirement of detailed
tatistical input data. In the absence of such data, complex statistical analysis cannot be justified. It is this issue that has lead to the
evelopment of non-probabilistic, or ‘possibilistic’, methods, to which interval analysis belongs.

.1. Real intervals

A real interval {𝑥} = [𝑥 𝑥] (denoted by curly braces) is represented by two numbers forming the upper (𝑥) and lower (𝑥) bounds
f the unknown variable 𝑥,

𝑥 < 𝑥 < 𝑥. (1)

Unlike a probability distribution, the interval bounds provide no detailed information on the likeliness of a particular value of 𝑥,
only that its true value must occur within it.

With the definition of an interval, as per Eq. (1), it is the role of interval arithmetic to compute the upper and low bounds of
functions whose inputs are intervals. This is achieved by redefining the basic arithmetic operations + − × ÷ as interval operations
⊕ ⊖ ⊗ ⊘.
2
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For real valued 𝑥 and 𝑦, the key interval arithmetic operations are defined as [37]:

{𝑥}⊕ {𝑦} = [𝑥 𝑥]⊕ [𝑦 𝑦] = [𝑥 + 𝑦 𝑥 + 𝑦] (2)

{𝑥}⊖ {𝑦} = [𝑥 𝑥]⊖ [𝑦 𝑦] = [𝑥 − 𝑦 𝑥 − 𝑦] (3)

{𝑥}⊗ {𝑦} = [𝑥 𝑥]⊗ [𝑦 𝑦] = [min(𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦) max(𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦)] (4)

{𝑥}⊘ {𝑦} = [𝑥 𝑥]⊗ [1∕𝑦 1∕𝑦] if 0 ∉ [𝑦 𝑦] (5)

Care should be taken with interval division; if the interval {𝑦} contains zero, its reciprocal will extend to ±∞.
Note that non-interval quantities can readily be incorporated within the interval arithmetic presented above by considering an

nterval whose upper and lower bounds are of equal value, 𝑥 = {𝑥} = [𝑥 𝑥]. More complex interval functions can be dealt with by
ecursively applying these arithmetic operations.

.2. Complex intervals

There are two common ways in which interval arithmetic can be extended to complex variables. In one, the complex interval is
epresented by a circular disk in the complex plane, characterised by its centre point and radius [37,38]. In the other, the real and
maginary parts of the complex number are represented by independent real intervals. This leads to a rectangular interval in the
omplex plane [37,39,40]. The rectangular approach has the advantage that the real and imaginary parts can be assigned different
ntervals, which is not possible via the circular disk representation, which assumes an inherent interdependency. In the present
aper we will adopt the rectangular complex interval approach as it will enable the independent assignment of joint stiffness and
amping.

Taking 𝑥 and 𝑦 now to be complex numbers, their rectangular intervals take the form,

{𝑥} = {𝑥𝑟} + 𝑖{𝑥𝑖}, {𝑦} = {𝑦𝑟} + 𝑖{𝑦𝑖} (6)

here,

{𝑥𝑟} = [𝑥𝑟 𝑥𝑟], {𝑥𝑖} = [𝑥𝑖 𝑥𝑖], {𝑦𝑟} = [𝑦
𝑟

𝑦𝑟], {𝑦𝑖} = [𝑦
𝑖

𝑦𝑖]. (7)

These intervals describe rectangular domains in the complex plane, as illustrated in Fig. 1 (orange and yellow rectangles). To analyse
complex interval functions we must extend the interval arithmetic defined above to the complex domain. For non-interval complex
variables, addition, subtraction and multiplication can be defined as,

𝑥 + 𝑦 = (𝑥𝑟 + 𝑦𝑟) + 𝑖(𝑥𝑖 + 𝑦𝑖), 𝑥 − 𝑦 = (𝑥𝑟 − 𝑦𝑟) + 𝑖(𝑥𝑖 − 𝑦𝑖), 𝑥 × 𝑦 = (𝑥𝑟𝑦𝑟 − 𝑥𝑖𝑦𝑖) + 𝑖(𝑥𝑟𝑦𝑖 + 𝑥𝑖𝑦𝑟). (8)

Based on the above, an equivalent set of complex interval operations can be defined as,

{𝑥}⊕ {𝑦} = {𝑥𝑟}⊕ {𝑦𝑟} + 𝑖 {𝑥𝑖}⊕ {𝑦𝑖} = [𝑥𝑟 + 𝑦
𝑟

𝑥𝑟 + 𝑦𝑟] + 𝑖 [𝑥𝑖 + 𝑦
𝑖

𝑥𝑖 + 𝑦𝑖] (9)

{𝑥}⊖ {𝑦} = {𝑥𝑟}⊖ {𝑦𝑟} + 𝑖 {𝑥𝑖}⊖ {𝑦𝑖} = [𝑥𝑟 − 𝑦𝑟 𝑥𝑟 − 𝑦
𝑟
] + 𝑖 [𝑥𝑖 − 𝑦𝑖 𝑥𝑖 − 𝑦

𝑖
] (10)

{𝑥}⊗ {𝑦} =
(

{𝑥𝑟}⊗ {𝑦𝑟}⊖ {𝑥𝑖}⊗ {𝑦𝑖}
)

+ 𝑖
(

{𝑥𝑟}⊗ {𝑦𝑖}⊕ {𝑥𝑖}⊗ {𝑦𝑟}
)

(11)

here ⊕, ⊖ and ⊗ are defined as per the real interval operations.
These complex interval operations are optimal; they provide the smallest rectangular interval that includes the set of all possible

utcomes. Shown in Fig. 1abc are the complex intervals arising due to {𝑥}⊕ {𝑦}, {𝑥}⊖ {𝑦} and {𝑥}⊗ {𝑦}, respectively, where {𝑥}
nd {𝑦} are the complex intervals represented by the yellow and orange rectangles. Results are compared against a sampling-based
stimation (blue dots). Note that in using the rectangular interval description described above, addition and subtraction do not
lter the shape of the interval. Multiplication, on the other hand, leads to a change in shape. Hence, the interval description over
stimates the true region of possible outcomes. Nevertheless, the resulting interval is still optimum in a rectangular sense.

Let us now consider the case of complex division, defined as,

𝑥 ÷ 𝑦 =
𝑥𝑟𝑦𝑟 + 𝑥𝑖𝑦𝑖
𝑦2𝑟 + 𝑦2𝑖

+ 𝑖
𝑥𝑖𝑦𝑟 − 𝑥𝑟𝑦𝑖
𝑦2𝑟 + 𝑦2𝑖

. (12)

Applying the above interval operations yields the following,

{𝑥}⊘ {𝑦} =
(

{𝑥𝑟}⊗ {𝑦𝑟}⊕ {𝑥𝑖}⊗ {𝑦𝑖}
)

⊘
(

{𝑦2𝑟}⊕ {𝑦2𝑖 }
)

+ 𝑖
(

{𝑥𝑖}⊗ {𝑦𝑟}⊖ {𝑥𝑟}⊗ {𝑦𝑖}
)

⊘
(

{𝑦2𝑟}⊕ {𝑦2𝑖 }
)

. (13)

he complex interval obtained as per Eq. (13) is not optimal. If standard interval arithmetic operations are applied to complex
ivision, the numerator and denominator intervals are treated independently (the so-called dependency problem). For example,
he instance of {𝑦𝑟} in the numerator is considered independent to that being squared in the denominator {𝑦2𝑟}. The same issues
ccurs with {𝑦 }. This can lead to a huge over estimation of the interval, as illustrated by the grey rectangle in Fig. 1d. Similar
3
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Fig. 1. Interval operations applied to the complex intervals {𝑥} = {𝑥𝑟} + 𝑖{𝑥𝑖} and {𝑦} = {𝑦𝑟} + 𝑖{𝑦𝑖} shown in yellow and orange, respectively: (a) addition
𝑥}⊕{𝑦}, (b) subtraction {𝑥}⊖{𝑦}, (c) multiplication {𝑥}⊗{𝑦}, and (d) division {𝑥}⊘{𝑦} (grey box — naive implementation, black box — optimum rectangular
ound [41]). Note that the intervals {𝑥} and {𝑦} are omitted from (d) to more clearly show the over estimation caused by the dependency problem. (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ependency issues are often encountered for more complex functions of interval input parameters and represent one of the main
imiting factors of conventional interval analysis. For complex division, special algorithms are required to compute the optimal
ectangular interval [39–41]. See for example the black interval in Fig. 1d, which was obtained as per the algorithm presented
n [41].

In the present work these algorithms are not well suited as the intervals used to describe a joint’s dynamics will extend from some
inimum stiffness/damping value, to infinity (representing a rigid joint). Hence, we propose an alternative algorithm to determine

he rectangular bounds for the special case of complex division considered here (see Appendix A).

. Flexible interface dynamics in complex built-up structures

For the sake of clarity, we consider two arbitrary components 𝐴 and 𝐵 coupled via 𝑁 spring–damper joints 𝐽 that connect the
nterface DoFs 𝑐 (see Fig. 2). Though, the developments below are easily generalised to more complex assemblies. Our intention
s to consider the dynamics of this structure when a joint’s characteristics are described in terms of a complex interval, whose
pper bounds extend to infinity (i.e. representing a rigid coupling). To this end, we first present the primal and dual sub-structuring
ormulations in the presence of flexible interface dynamics. The reader is referred to the many well established texts for further
etails on the primal and dual sub-structuring formulations [1,42].

For linear time invariant structures it is well known that the dynamics of a structural component can be described by the equation
f motion (EoM),

𝐌𝑖�̈�(𝑡) + 𝐑𝑖�̇�(𝑡) +𝐊𝑖𝐮(𝑡) = 𝐟 (𝑡) + 𝐠(𝑡) (14)

here 𝐌𝑖, 𝐑𝑖 and 𝐊𝑖 represent the discretised mass, damping and stiffness matrices of the 𝑖th component, 𝐮 is a vector of
isplacements with □̇ denoting differentiation wrt. time, 𝐟 is a vector of externally applied forces, and 𝐠 a vector of internal coupling
4

orces [43].
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Assuming time harmonic motion, Eq. (14) may be transformed into a more convenient frequency domain representation,
(

−𝜔2𝐌𝑖 + 𝑖𝜔𝐑𝑖 +𝐊𝑖
)

𝐮(𝜔) = 𝐟 (𝜔) + 𝐠(𝜔) (15)

from which we can define the dynamic stiffness matrix,

𝐙𝑖 = −𝜔2𝐌𝑖 + 𝑖𝜔𝐑𝑖 +𝐊𝑖. (16)

Alternatively, the dynamic stiffness matrix can be obtained through the inversion of a measured or modelled admittance matrix,

𝐙𝑖 = 𝐘−1
𝑖 . (17)

The component EoM then becomes,

𝐙𝑖𝐮(𝜔) = 𝐟 (𝜔) + 𝐠(𝜔). (18)

The purpose of (frequency-based) sub-structuring is to obtain the equation of motion, dynamic stiffness, or admittance matrix of a
multi-component structure based on those of its individual components. There exist two common formulations for doing so, primal
and dual.

3.1. Primal

The EoM representing the uncoupled 𝐴𝐽𝐵 system are obtained by block-diagonalising the component EoMs (explicit frequency
dependence has been omitted for clarity),

𝐙𝐮 = 𝐟 + 𝐠 (19)

where 𝐙 is a block diagonal dynamic stiffness matrix, 𝐮, 𝐟 , and 𝐠 are stacked response, external force and interface force vectors,
respectively. Importantly, the primal formulation considers the joint as an independent component such that,

𝐙 =
⎡

⎢

⎢

⎣

𝐘−1
𝐴

𝐙𝐽
𝐘−1
𝐵

⎤

⎥

⎥

⎦

(20)

where 𝐘−1
𝐴 and 𝐘−1

𝐵 are the inverse admittance matrices of components 𝐴 and 𝐵, and 𝐙𝐽 is the joint dynamic stiffness matrix. For
the spring–damper joint considered,

𝐙𝐽 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

𝑘 + 𝑖𝑟 −𝑘 − 𝑖𝑟
−𝑘 − 𝑖𝑟 𝑘 + 𝑖𝑟

)

1
⋱

(

𝑘 + 𝑖𝑟 −𝑘 − 𝑖𝑟
−𝑘 − 𝑖𝑟 𝑘 + 𝑖𝑟

)

𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(21)

where 𝑘 is the joint stiffness, and 𝑟 its damping coefficient. To assemble the 𝐴𝐽𝐵 system the conditions of continuity and equilibrium
must be satisfied. These are expressed concisely in matrix form, respectively, by,

𝐁𝐮 = 𝟎, (22)

and

𝐋T𝐠 = 𝟎 (23)

where 𝐁 and 𝐋 represent signed and unsigned Boolean matrices [1]. The primal formulation continues by defining a new response
vector 𝐮𝐶 that belongs to the assembled structure. Continuity is then satisfied by relating the two response vectors (coupled and
uncoupled) as so,

𝐮 = 𝐋𝐮𝐶 . (24)

By substituting Eq. (24) into Eq. (19), and pre-multiplying all terms by 𝐋T (hence satisfying Eq. (23)) we obtain,

𝐋T𝐙𝐋𝐮𝐶 = 𝐋T𝐟 (25)

or equivalently,

𝐮𝐶 = 𝐘𝐶 𝐟𝐶 (26)

where 𝐟𝐶 = 𝐋T𝐟 is the external force applied to the coupled assembly, and

𝐘𝐶 =
⎛

⎜

⎜

⎝

𝐋T
⎡

⎢

⎢

⎣

𝐘−1
𝐴

𝐙𝐽
𝐘−1
𝐵

⎤

⎥

⎥

⎦

𝐋
⎞

⎟

⎟

⎠

−1

(27)
5

is the coupled admittance of the 𝐶 = 𝐴𝐽𝐵 assembly.
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Fig. 2. General active–passive assembly (𝐴𝐽𝐵) with interface flexibility. The relative interface displacement at the 𝑛th connection 𝛿𝑛 = 𝑢𝐴𝑛 − 𝑢𝐵𝑛 is proportional
to the interface flexibility 𝛾𝑛 and the internal coupling force 𝜆𝑛. 𝑎 and 𝑏 represent remote source and receiver DoFs, 𝑐 are the interface DoFs, and 𝑜 is the
internal region where operational forces develop if 𝐴 were an active component.

Importantly, according to the primal procedure, a joint is represented by its dynamic stiffness matrix. Whilst in this form we are
able to accept arbitrarily complex joints, including inertial effects, an ideal rigid coupling would require the joint stiffness to tend
to infinity. This complicates the investigation of joint relaxation. Fortunately, a more convenient (albeit less general) form can be
derived following the dual sub-structuring formulation.

3.2. Dual

Unlike the primal formulation, which considers the joint as a separate component, the dual formulation treats the joint as a
relaxation of the continuity condition. In the presence of a flexible interface, for example due to the spring–damper joint, continuity
is not satisfied. Instead,

𝐁𝐮 = 𝛿 = Γ𝜆 (28)

where the interface separation 𝛿 is related to the unknown joint force 𝜆 by an interface flexibility matrix Γ. For the spring–damper
joint considered, this flexibility matrix is given by,

Γ =

⎡

⎢

⎢

⎢

⎣

(

1
𝑘+𝑖𝑟

)

1
⋱

(

1
𝑘+𝑖𝑟

)

𝑁

⎤

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

(𝛾𝑟 + 𝑖𝛾𝑖)1
⋱

(𝛾𝑟 + 𝑖𝛾𝑖)𝑁

⎤

⎥

⎥

⎦

(29)

where,

𝛾𝑟 =
𝑘

|𝑍|

2
, 𝛾𝑖 = − 𝑟

|𝑍|

2
, and 𝑍 = 𝑘 + 𝑖𝑟. (30)

To satisfy equilibrium, the interface force 𝐠 is given the form,

𝐠 = −𝐁T𝜆 (31)

where 𝜆 are the unknown joint forces and 𝐁 is a signed Boolean matrix. The presence of 𝐁T ensures that the forces applied to
components 𝐴 and 𝐵 are equal and opposite, thus satisfying equilibrium.

The unknown joint forces 𝜆 are found using the relaxed continuity condition as follows. The interface force 𝐠 is substituted into
Eq. (19), to give,

𝐮 = 𝐘
(

𝐟 − 𝐁T𝜆
)

. (32)

where 𝐘 = 𝐙−1 has been used. Note that 𝐘, as per the dual approach, does not contain a joint admittance matrix (𝐙𝐽 is non-
invertible); instead the joint is accounted for by Eq. (28). Eq. (32) is substituted into the relaxed continuity condition (Eq. (28)),

𝐁𝐘
(

𝐟 − 𝐁T𝜆
)

= Γ𝜆. (33)

Solving for 𝜆 then yields,

𝜆 =
(

𝐁𝐘𝐁T + Γ
)−1 𝐁𝐘𝐟 . (34)

Finally, substituting Eq. (34) into Eq. (32) leads to,

𝐮 = 𝐘𝐶 𝐟 (35)

where,

𝐘 = 𝐘 − 𝐘𝐁T (𝐁𝐘𝐁T + Γ
)−1 𝐁𝐘 (36)
6

𝐶
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is the coupled admittance of the 𝐶 = 𝐴𝐽𝐵 assembly. The advantage of this form of 𝐘𝐶 is that a rigidly connected system is obtained
y taking the limit as Γ → 𝟎 (i.e. 𝑘, 𝑟 → ∞), as opposed to 𝐙𝐽 → ∞. This simplifies the derivation of an interface sensitivity metric
hich can be used to identify response-critical joints.

. Interval-based assessment of joint dynamics

In this section we will consider an interval-based representation of joint dynamics, and its application in determining the
aximum and minimum bounds of an assembled structure’s admittance matrix due to an interface relaxation. As shown in

ection 3.2, the dual formulation, in the presence of a flexible interface, leads to the following equation for the assembled admittance
atrix,

𝐘𝐶 = 𝐘 − 𝐘𝐁T (𝐁𝐘𝐁T + Γ
)−1 𝐁𝐘 (37)

here the interface flexibility matrix Γ is defined as,

Γ =

⎡

⎢

⎢

⎢

⎢

⎣

𝛾1
𝛾2

⋱
𝛾𝑁

⎤

⎥

⎥

⎥

⎥

⎦

, 𝛾 = 1
𝑘 + 𝑖𝑟

= 𝛾𝑟 + 𝑖𝛾𝑖, 𝛾𝑟 =
𝑘

|𝑍|

2
, 𝛾𝑖 = − 𝑟

|𝑍|

2
, and 𝑍 = 𝑘 + 𝑖𝑟. (38)

With attention focused towards the influence of a single joint, it is convenient to separate its contribution by means of the
herman–Morrison formula (rank-one update) [44],

(𝐀 + 𝐗)−1 = 𝐀−1 − 1
1 + tr

(

𝐗𝐀−1
)𝐀−1𝐗𝐀−1, (39)

where 𝐀 is any invertible matrix, and 𝐗 is a matrix of rank 1. To apply the Sherman–Morrison formula, the interface flexibility
matrix Γ is split into two parts; Γ(𝑛), which contains the 𝑛th joint flexibility of interest, and Γ(∼𝑛), which contains all remaining
terms,

Γ(∼𝑛) =

⎡

⎢

⎢

⎢

⎢

⎣

𝛾1
𝛾2

⋱
0

⎤

⎥

⎥

⎥

⎥

⎦

, Γ(𝑛) =

⎡

⎢

⎢

⎢

⎢

⎣

0
0

⋱
𝛾𝑛

⎤

⎥

⎥

⎥

⎥

⎦

, Γ = Γ(∼𝑛) + Γ(𝑛). (40)

ote that Γ(𝑛) is a rank one matrix, so can take on the role of 𝐗 in Eq. (39). Hence, the matrix inverse in Eq. (37) can be rewritten
n the form,

(

𝐁𝐘𝐁𝑇 + Γ(∼𝑛) + Γ(𝑛))−1 =
(

𝐀 + Γ(𝑛))−1 = 𝐀−1 − 1
1 + tr

(

Γ(𝑛)𝐀−1
)𝐀−1Γ(𝑛)𝐀−1 (41)

where 𝐀 = 𝐁𝐘𝐁𝑇 +Γ(∼𝑛). Note that Γ(𝑛) is a single entry matrix. Its only non-zero value, the interface flexibility 𝛾𝑛, can be brought
out as a scalar term, and Γ(𝑛) replaced by 𝐏𝑛, which is a zero matrix bar the 𝑛th diagonal entry whose value is 1. Eq. (41) then
educes to,

(

𝐁𝐘𝐁𝑇 + Γ(∼𝑛) + Γ(𝑛))−1 = 𝐀−1 −𝑤𝑛𝐀−1𝐏𝑛𝐀−1 (42)

here,

𝑤𝑛 =
𝛾𝑛

1 + tr
(

𝐏𝑛𝐀−1
)

𝛾𝑛
= 1

1
𝛾𝑛

+ tr
(

𝐏𝑛𝐀−1
)

= 1
𝑍𝑛 + tr

(

𝐏𝑛𝐀−1
) (43)

is a complex scalar value, and 𝑍𝑛 = 𝑘𝑛 + 𝑖𝑟𝑛 is the dynamic stiffness of the 𝑛th interface connection. Note that 𝑤𝑛 is a non-linear
function of 𝛾𝑛; the joint flexibility, although linear in its dynamics, has a non-linear effect on the assembled structure.

Herein we propose that the interface stiffness 𝑍𝑛 be treated as a complex interval {𝑍𝑛}, such that its bounds are supposed to
contain all possible values of joint stiffness and damping, including those of a rigid connection. The complex interval {𝑍} = {𝑘}+𝑖{𝑟}
is characterised by a pair of real intervals, namely {𝑘} = [𝑘 𝑘] and {𝑟} = [𝑟 𝑟], where □ and □ denote, respectively, lower and
pper bounds. In particular, we are interested in the case that 𝑘 = 𝑟 = ∞, i.e. a rigid connection. That is, we are interested in the
ange of possible outcomes given the relaxation of a rigid connection.

Treating the interface stiffness as a complex interval {𝑍𝑛}, Eq. (43) now describes a complex interval reciprocal,

{𝑤𝑛} = 1⊘
[

{𝑍𝑛}⊕ tr
(

𝐏𝑛𝐀−1)] = 1⊘ {𝑧𝑛} (44)

here {𝑧𝑛} = {𝑍𝑛}⊕ tr
(

𝐏𝑛𝐀−1) = {𝑥} + 𝑖{𝑦}. In Appendix A we present a straightforward approach to determine the bounds of the
omplex interval {𝑤𝑛}, given {𝑥} = [𝑥 ∞] and {𝑦} = [𝑦 ∞].

Having determined the interval bounds of {𝑤𝑛}, substituting Eq. (42) and (44) into Eq. (37), leads to the interval expression,

{𝐘𝐶} = 𝐘 − 𝐘𝐁𝑇 (

𝐁𝐘𝐁𝑇 + Γ(∼𝑛))−1 𝐁𝐘
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⊕

[

{𝑤𝑛}⊗ 𝐘𝐁𝑇 (

𝐁𝐘𝐁𝑇 + Γ(∼𝑛))−1 𝐏𝑛
(

𝐁𝐘𝐁𝑇 + Γ(∼𝑛))−1 𝐁𝐘
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

]

(45)
7

Coupled with rigid 𝑛 Interval matrix describing joint relaxation
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{𝐘𝐶} = 𝐘(∼𝑛)
𝐶 ⊕

{

𝛥𝐘(𝑛)
𝐶

}

= 𝐘(∼𝑛)
𝐶 ⊕

[

𝐉𝑛 ⊗ {𝑤𝑛}
]

(46)

here 𝐉𝑛 is the Jacobian matrix that contains the partial derivatives of the coupled assembly admittance with respect to the 𝑛th
nterface flexibility (see Section Section 5.1) , and {𝐘𝐶} is a complex interval admittance matrix whose bounds enclose all possible
alues obtainable given the range of permissible joint dynamics specified by the interval {𝑍𝑛}.

Note that 𝐘(∼𝑛)
𝐶 contains no intervals, and represent the structure’s admittance when 𝛾𝑛 = 0, i.e. when the 𝑛th contact is made

rigid. Hence,
{

𝛥𝐘(𝑛)
𝐶

}

represents an interval matrix that describes the effect, or influence, of the 𝑛th joint’s relaxation on the coupled
admittance.

4.1. Response interval

In the presence of an active component (i.e. a vibration source) the operational response 𝐮𝐶 is often of greater importance than
the assembly admittance. Hence, we look to extend the interval treatment above to account for an assembly’s operational activity.

The operational response of a complex assembly can be expressed in the form,

𝐮𝐶 = 𝐘𝐶 𝐟𝑆 (47)

where 𝐘𝐶 is the coupled admittance matrix, and 𝐟𝑆 is a vector of so called blocked forces [45]. The blocked force is an independent
source quantity that describes its operational activity. It has become an internationally standardised method for experimentally
characterising vibratory sources [46], and is used extensively across several engineering sectors, including: automotive [47,48],
railway [49,50], heavy machinery [51] and building acoustics [52].

As per Eq. (47), the complex interval of an operational response can be obtained by,
{

𝐮𝐶
}

=
{

𝐘𝐶
}

⊗ 𝐟𝑆 = 𝐮(∼𝑛)𝐶 ⊕
[{

𝛥𝐘(𝑛)
𝐶

}

⊗ 𝐟𝑆
]

= 𝐮(∼𝑛)𝐶 ⊕
{

𝛥𝐮(𝑛)𝐶

}

. (48)

where it is noted that ⊗ represents an interval matrix multiplication. Like the assembly admittance, the interval response is made up
of two parts; the first is that of the assembly when the 𝑛th joint is considered rigid 𝐮(∼𝑛)𝐶 , and the second is an interval contribution
describing a relaxation of the 𝑛th joint

{

𝛥𝐮(𝑛)𝐶

}

.

5. Identification of response-critical joints

The principal aim of this paper is to provide an efficient identification of the response-critical joints within a complex built-up
structure. Here, response-critical joints are deemed as those whose refinement would benefit the modelling effort most. In what
follows we propose three sensitivity metrics for this purpose; a local gradient-based, a global sampling-based, and a pseudo-global
interval-based metric.

Sensitivity analysis (SA) is a tool used to allocate, or apportion, the uncertainty in a system’s output to that of its input
parameters [53]. Methods of SA can be broadly categorised as local or global. Local methods assume a small variance on the
input parameters and consider a linearisation of the system’s dynamics. Such methods are typically based on partial derivatives
(obtained analytically or by numerical approximation), much like a typical error propagation [54]. Local methods are advantageous
in terms of computational efficiency, but limited in terms of accuracy, especially for non-linear systems with reasonable levels of
input variance. Global methods overcome this limitation by sampling the model output over the space of input parameters. Whilst
computationally more expensive, this approach ensures that model non-linearity and input parameter distributions are accounted
for. Hence, more a robust analysis is achieved.

In the context of response-critical joints, a naive identification might consider the Jacobian matrix (containing the partial
derivatives of the coupled admittance with respect to each joint parameter) alone, which describes the local sensitivity of the
coupled assembly based on a infinitesimal relaxation of the interface. Clearly, this does not account for the non-linear contribution of
a joint’s dynamics to those of the coupled structure (see Eq. (43)). An alternative approach might be to consider a global sampling-
based strategy, using metrics such as the Sobol indices [55], to identify and rank order response-critical joints. Whilst a robust
approach, providing sufficient samples are drawn, for a system with many joints the computational effort may become prohibitive.
Furthermore, in the absence of detailed statistical information, it is unclear how a joint’s dynamics should be represented. Herein,
we propose an interval-based sensitivity metric to identify the response-critical joints of an assembly. Its computational effort is
not too dissimilar to that of the Jacobian-based approach, whilst its application extends beyond the assumption of an infinitesimal
relaxation; it can be applied in the presence of an arbitrary relaxation. Whilst the interval approach considers the entire input space
(defined by the joint interval {𝑍}𝑛), it does not provide the detailed information offered by a global sampling-based approach, hence

e term this approach a pseudo-global method.
In what follows we introduce three sensitivity metrics, based on the above strategies (local, global and pseudo-global), to rank
8

rder the influence of individual joints towards the dynamics of the global assembly.
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5.1. Gradient-based sensitivity

To develop a gradient-based sensitivity metric we first derive the system’s Jacobian matrix, representing the derivative of the
ssembly admittance with respect to a specific joint’s flexibility. We begin by considering the complex differential of the assembly
dmittance,

d𝐘𝐶 = d (𝐘) − d
(

𝐘𝐁𝑇 (

𝐁𝐘𝐁𝑇 + Γ
)−1 𝐁𝐘

)

. (49)

oting that interest lies in the differential interface flexibility d(Γ), the above reduces to,

d𝐘𝐶 = −d
(

𝐘𝐁𝑇 (

𝐁𝐘𝐁𝑇 + Γ
)−1 𝐁𝐘

)

. (50)

pplication of the product rule, d (𝐀𝐁𝐂) = d (𝐀)𝐁𝐂 + 𝐀𝑑 (𝐁)𝐂 + 𝐀𝐁𝑑 (𝐂), then leads to,

d𝐘𝐶 = −𝐘𝐁𝑇 d
(

𝐁𝐘𝐁𝑇 + Γ
)−1 𝐁𝐘. (51)

Recalling the differential of a matrix inverse, d (𝐀)−1 = −𝐀−1d (𝐀)𝐀−1 [56], yields

d𝐘𝐶 = 𝐘𝐁𝑇 (

𝐁𝐘𝐁𝑇 + Γ
)−1 d

(

𝐁𝐘𝐁𝑇 + Γ
) (

𝐁𝐘𝐁𝑇 + Γ
)−1 𝐁𝐘 (52)

hich reduces to,

d𝐘𝐶 = 𝐘𝐁𝑇 (

𝐁𝐘𝐁𝑇 + Γ
)−1 d (Γ)

(

𝐁𝐘𝐁𝑇 + Γ
)−1 𝐁𝐘. (53)

n Eq. (53), we can interpret d𝐘𝐶 as the small (complex) change in admittance, due to a small (complex) change in the interface
lexibility d (Γ). Importantly, d (Γ) represents a small change in each matrix entry. Focusing attention on the 𝑛th interface connection
n particular, such that d (Γ) → 𝐏𝑛d𝛾𝑛, where 𝐏𝑛 is a zero matrix bar the 𝑛th diagonal entry, whose value is one, Eq. (53) becomes,

d𝐘𝐶 = 𝐘𝐁𝑇 (

𝐁𝐘𝐁𝑇 + Γ
)−1 𝐏𝑛

(

𝐁𝐘𝐁𝑇 + Γ
)−1 𝐁𝐘 dγn = 𝐉𝑛 d𝛾𝑛 (54)

here d𝛾𝑛 is a scalar differential of the 𝑛th interface flexibility, and 𝐉𝑛 is a complex Jacobian matrix containing the partial derivatives
f the coupled assembly admittance, with respect to the 𝑛th interface flexibility,

𝐉𝑛 =
⎡

⎢

⎢

⎢

⎣

𝜕𝑌11
𝜕𝛾𝑛

⋯ 𝜕𝑌1𝑁
𝜕𝛾𝑛

⋮ ⋱ ⋮
𝜕𝑌𝑁1
𝜕𝛾𝑛

⋯ 𝜕𝑌𝑁𝑁
𝜕𝛾𝑛

⎤

⎥

⎥

⎥

⎦

. (55)

ote that for a sufficiency small interface relaxation, the coupled admittance can be estimated according to,

𝐘𝐶 ≈ 𝐘(∼𝑛)
𝐶 + 𝛥𝐘(𝑛)

𝐶 = 𝐘(∼𝑛)
𝐶 + 𝐉𝑛𝛥𝛾𝑛 (56)

hich represents a linear approximation of the assembly admittance, and is of similar form to Eq. (46).
To evaluate the Jacobian for a rigidly connected structure we set Γ = 𝟎. Its entries then describe the sensitivity of each assembly

dmittance to an infinitesimal relaxation of the 𝑛th interface. Note that Eq. (55) represents a matrix of complex derivatives. To
rovide a convenient single number descriptor for the admittance sensitivity with respect to the 𝑛th joint, it is convenient to consider
he spatial average of the Jacobian’s squared magnitude. Hence, we propose the following gradient-based sensitivity metric,

𝑆(𝑔)
𝑛 =

⟨

|

|

𝐉𝑛||
2
⟩

𝑁
(57)

where ⟨□⟩ denotes the spatial average over a specified set of target DoFs, and 𝑁 is chosen such that 𝑆(𝑔)
1 + 𝑆(𝑔)

2 +⋯ + 𝑆(𝑔)
𝑁 = 1.

The greater the value of 𝑆(𝑔)
𝑛 , the more sensitive the admittance matrix is (on average) to an infinitesimal relaxation of the 𝑛th

interface.

5.2. Sample-based sensitivity

Among the global SA strategies available are a class of methods based on the use of a variance decomposition on the system’s
output [53]. A notable example being the Sobol indices [55].

Assuming a square integrable function 𝑌 = 𝑓 (𝐗), the total variance in the output 𝑌 can be decomposed in the form [55],

𝑉 (𝑌 ) =
∑

𝑖
𝑉𝑖 +

∑

𝑖

∑

𝑖>𝑗
𝑉𝑖𝑗 +⋯ + 𝑉𝑖,𝑗,…,𝑘 (58)

where 𝑉 (□) denotes the variance operator, and 𝑉𝑖,𝑗,…,𝑘 represents a contribution to the output variance due to the input parameters
𝑋𝑖,𝑗,…,𝑘. The decomposed variance terms are given by,

𝑉𝑖 = 𝑉𝑋𝑖
(𝐸𝐗∼𝑖

(𝑌 |𝑋𝑖)) (59)
9

𝑉𝑖,𝑗 = 𝑉𝑋𝑖𝑗
(𝐸𝐗∼𝑖𝑗

(𝑌 |𝑋𝑖, 𝑋𝑗 )) − 𝑉𝑖 − 𝑉𝑗 (60)
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and so on, where 𝐸(□) denotes the expectation operator. T he term 𝐸𝐗∼𝑛
(𝑌 |𝑋𝑛) is read as, the expected value of the model output

taken over all possible values of 𝐗∼𝑛, whilst keeping the input 𝑋𝑛 fixed. The outer variance is then taken over all possible values
f 𝑋𝑛.

According to above decomposition, the variance in the output of a model can be attributed to terms related to each input
arameter (𝑉𝑖), as well as the interaction effects between them (𝑉𝑖,𝑗,…,𝑘).

Normalising Eq. (58) by the total variance then yields,
∑

𝑖
𝑆𝑖 +

∑

𝑖

∑

𝑖>𝑗
𝑆𝑖𝑗 +⋯ + 𝑆𝑖,𝑗,…,𝑘 = 1. (61)

he factors 𝑆𝑖,𝑗,…,𝑘 describe sensitivity measures (Sobol indices) of increasing order. Of principal interest in most cases are the first
rder sensitivity measures, defined as,

𝑆𝑛 =
𝑉𝑋𝑛

(𝐸𝐗∼𝑛
(𝑌 |𝑋𝑛))

𝑉 (𝑌 )
. (62)

Note that 𝑆𝑛 is a normalised metric, as 𝑉𝑋𝑛
(𝐸𝐗∼𝑛

(𝑌 |𝑋𝑛)) varies between zero and 𝑉 (𝑌 ). It provides a measure of the sensitivity of
the model output to the input 𝑋𝑛 alone; it neglects the influence of any interaction between 𝑋𝑛 and the remaining inputs 𝐗∼𝑛.

Another related metric is that of the total effect index, given by,

𝑆𝑇 𝑛 = 1 −
𝑉𝐗∼𝑛

(𝐸𝑋𝑛
(𝑌 |𝐗∼𝑛))

𝑉 (𝑌 )
. (63)

Here, the term 𝑉𝐗∼𝑛
(𝐸𝑋𝑛

(𝑌 |𝐗∼𝑛)) describes the first order effect due to all input parameters 𝐗∼𝑛 bar 𝑋𝑛. Hence, 𝑉 (𝑌 ) −
𝑉𝐗∼𝑛

(𝐸𝑋𝑛
(𝑌 |𝐗∼𝑛)) describes the contribution of all terms in the variance decomposition which include 𝑋𝑛. The total effect index

thus describes the influence of the input parameter 𝑋𝑛, along with the effect of its interaction with all other inputs. For details on
the numerical estimation of the Sobol indices the reader is referred to [57] (see Table 2 for necessary formulas).

To develop a global identification of response-critical joints we consider a model of the form,

𝑌 =
⟨

|

|

𝐘𝐶
|

|

2
⟩

= 𝑓 (𝑘1, 𝑟1, 𝑘2, 𝑟2,… , 𝑘𝑁 , 𝑟𝑁 ) = 𝑓 (𝐗) (64)

and compute the total effect index for each joint. To enable fair comparison against gradient and interval-based metrics, each index
is normalised,

𝑆(𝑠)
𝑛 =

𝑆𝑇 𝑛
𝑁

(65)

such that 𝑆(𝑠)
1 + 𝑆(𝑠)

2 + ⋯ + 𝑆(𝑠)
𝑁 = 1, where the superscript □(𝑠) is used to indicate that this is a sample-based sensitivity metric.

hese are then rank ordered to identify the response-critical joints. The greater the value of 𝑆(𝑠)
𝑛 , the greater the amount of output

variance that can be attributed to the relaxation of the 𝑛th interface.
To aid a fair comparison when using the sample-based metric 𝑆(𝑠)

𝑛 , the range of permissible stiffness and damping values (𝑘𝑛, 𝑟𝑛)
hould be the same for each joint. A principal advantage of the global method is that the interaction between several joints can
e accounted for; the gradient-based metric presented above, and the interval-based metric presented below, consider only a single
oint at a time. This advantage is, however, offset by the computational effort required to compute numerically the sample-based
etric.

.3. Interval-based sensitivity

The local and global methods described above are limited, respectively, by the assumption of linearity and computational
fficiency. Herein we propose an interval-based identification that overcomes both these limitations. Whilst the interval-based
pproach does not provide a detailed analysis like the global approach, it avoids the need to sample the entire input space to
dentify the response-critical joints; instead of treating each input as a distribution, intervals are considered and the bounds of the
utput are determined analytically. These bounds will form the basis of the proposed interval-based sensitivity metric 𝑆(𝑖)

𝑛 .
The general concept of interval-based sensitivity analysis was first introduced in [58], where the authors considered the change

n absolute interval widths on the input (𝑥) and the output (𝑦) side of the problem. Their proposed sensitivity metric takes the form,

𝑆 =
𝜕(𝑦 − 𝑦)

𝜕(𝑥 − 𝑥)
. (66)

The authors present a numerical example whereby the frequency response function of a lumped parameter truck model is subject
to an interval sensitivity analysis with respect to its lumped mass values. In the present paper we are interested in the sensitivity of
a scalar output quantity (the spatially averaged magnitude squared admittance) to a complex pair of input intervals (joint stiffness
and damping) whose maxima extend to ∞. For this specific case we propose an alternative metric, described below.

Recalling the interval matrix of Eq. (45), with consideration of Eq. (54), we have,

{𝛥𝐘(𝑛)} = {𝑤 }⊗ 𝐘𝐁𝑇 ( 𝑇 (−𝑛))−1 ( 𝑇 (−𝑛))−1
10

𝐶 𝑛 𝐁𝐘𝐁 + Γ 𝐏𝑛 𝐁𝐘𝐁 + Γ 𝐁𝐘 = 𝐉𝑛 ⊗ {𝑤𝑛} (67)
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Table 1
System parameters used in numerical mass–spring example, and natural frequencies obtained for rigid coupling.

Index 1 2 3 4 5 6 7 8 9 10 11

𝑚□ (kg) 1 0.5 1.2 0.65 0.9 0.56 1.2 0.52 1.1 0.25 1.5
𝑘□ × 104 (N/m) 2 3 1 4 0.5 1 2 2 3 1 0.8
𝑐□ (Ns/m) 1 1 1 1 1 1 1 1 1 1 1

𝑓□ (Hz) 7.3 14.9 18.6 21.8 34.3 38.2 68.3 73.5 – – –

Note that unlike 𝐉𝑛𝛥𝛾𝑛, which describes a linearised joint contribution, the interval 𝐉𝑛⊗{𝑤𝑛} represents the upper and lower bounds
for an arbitrary relaxation of the interface. Hence, it takes into account the non-linearities that arise due to the matrix inversion (see
Eq. (43)). Considering the upper and lower bounds of the complex interval {𝛥𝐘(𝑛)

𝐶 }, we define the interval-based sensitivity metric,

𝑆(𝑖)
𝑛 =

⟨

real
(

𝛥𝐘
(𝑛)
𝐶

)

− real
(

𝛥𝐘(𝑛)
𝐶

)⟩2
+
⟨

imag
(

𝛥𝐘
(𝑛)
𝐶

)

− imag
(

𝛥𝐘(𝑛)
𝐶

)⟩2

𝑁
(68)

where, as before, 𝑁 is chosen such that 𝑆(𝑖)
1 + 𝑆(𝑖)

2 + ⋯ + 𝑆(𝑖)
𝑁 = 1. The numerator of Eq. (68) may be interpreted as an (average)

measure of the size of the complex interval {𝛥𝐘(𝑛)
𝐶 }; recalling that a complex interval describes a rectangle in the complex plane, 𝑆(𝑖)

𝑛
represents the normalised squared distance across the diagonal of said rectangle.1 Hence, the greater the value of 𝑆(𝑖)

𝑛 , the greater
the size of the output interval.

Unlike the metric proposed in [58], we consider only the interval bound of the output (as the input bound extends to infinity).
To aid a fair comparison when using the interval-based metric 𝑆(𝑖)

𝑛 , each {𝛥𝐘(𝑛)
𝐶 } should be determined subject to the same joint

interval bounds {𝑍𝑛}.
For a sufficiently large lower stiffness bound 𝑍𝑛, we would expect 𝑆(𝑖)

𝑛 to follow the same trend as 𝑆(𝑔)
𝑛 , as {𝑧𝑛} = {𝑍𝑛}⊕tr

(

𝐏𝑛𝐀−1)

would be dominated by the joint stiffness {𝑍𝑛}, and so {𝑤} ≈ 1⊘ {𝑍𝑛} = {𝛾𝑛} would appear simply as a scaling factor. Treating the
nterface stiffness as a non-interval parameter, such that {𝛾𝑛} → 𝛥𝛾𝑛, this would be equivalent to the linearised estimation of the
oupled assembly admittance (Eq. (56)).

. Numerical example

In this section we present two numerical examples demonstrating the interval assessment of joint variability and the identification
f response-critical joints, the first a simple mass–spring system and the latter a more representative Finite Element (FE) frame
ssembly.

.1. A simple mass–spring system

The system considered in this initial example is illustrated in Fig. 3. It is an 11 DoF mass–spring–damper system. It constitutes
wo sub-systems (green and blue) connected by 3 joint elements (red). System parameters are given in Table 1, and were chosen
rbitrarily to obtain suitably spaced resonances between 1 to 200 Hz. Each joint element is characterised by its flexibility 𝛾𝑛, or
quivalently its dynamic stiffness 𝑍𝑛. We are interested in a) obtaining the interval bounds of the coupled admittance matrix 𝐘𝐶 ,
nd b) identifying the response-critical joints, i.e. determining, at each frequency, which joint contributes most to the dynamics of
he assembled system.

.1.1. Interval-based joint variability
We begin by considering the interval bounds of the coupled admittance based on the interval representation of a particular

oint; joint 1 is described by the complex interval {𝑍1} = {𝑘} + 𝑖{𝑟} = [𝑘 ∞] + 𝑖[𝑟 ∞] whilst joints 2 and 3 are taken to be
rigid (𝛾2 = 𝛾3 = 0). Hence, the interval admittance matrix should describe the entire range of possible admittance values given any
combination of joint stiffness and damping that is made permissible by the interval {𝑍1}. Note that the upper bounds of the joint
interval represent a rigid connection.

The complex admittance interval {𝐘𝐶} is determined as per Eq. (45),

{𝐘𝐶} = 𝐘 − 𝐘𝐁𝑇 (

𝐁𝐘𝐁𝑇 + Γ(∼𝑛))−1 𝐁𝐘 ⊕

[

{𝑤𝑛}⊗ 𝐘𝐁𝑇 (

𝐁𝐘𝐁𝑇 + Γ(∼𝑛))−1 𝐏𝑛
(

𝐁𝐘𝐁𝑇 + Γ(∼𝑛))−1 𝐁𝐘
]

where

{𝑤𝑛} = 1⊘
[

{𝑍𝑛}⊕ tr
(

𝐏𝑛𝐀−1)] = 1⊘ {𝑧𝑛} (69)

1 An alternative metric could be formulated by instead considering the (average) area of the complex interval,

𝑆 (𝑖)
𝑛 =

⟨

real
(

𝛥𝐘
(𝑛)
𝐶

)

− real
(

𝛥𝐘(𝑛)
𝐶

)⟩⟨

imag
(

𝛥𝐘
(𝑛)
𝐶

)

− imag
(

𝛥𝐘(𝑛)
𝐶

)⟩

∕𝑁.
11



Journal of Sound and Vibration 529 (2022) 116850J.W.R. Meggitt

A
a
F

b
o
a

a
e

Fig. 3. Numerical mass–spring example. System parameters are given in Table 1 along with the natural frequencies for the rigidly coupled case. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

is a complex interval to be determined. Using the approach outlined in Appendix A (see Algorithm 1), alongside the interval
arithmetic described in Section 2, the complex reciprocal interval {𝑤𝑛} can be determined straightforwardly.

Shown in Fig. 4 are the upper and lower bounds of the real (b) and imaginary (c) parts of {𝑤𝑛} according to the joint interval
{𝑍1} = [100 ∞]+𝑖 [100 ∞]. The dashed blue curves indicate the interval computation, whilst the orange curves show the max/min
values obtained using a sampling-based estimation, where 40 000 combinations of 𝑘 and 𝑟 are considered. Shown in Fig. 4a are the
lower bounds of the complex interval {𝑧𝑛} used to compute {𝑤} (note that the upper bounds are ∞, representing a rigid connection).
It is clear from Fig. 4bc that a particular combination of joint stiffness and damping will yield a 𝑤 with a particular set of peaks, and
by uniform sampling we obtain a series of such. Gaps between successive peaks are a result of the discrete sampling employed and
represent a limitation of such a sample-based estimation. That is not to say that the sample based estimate is inaccurate, rather it
requires a greater computational effort to achieve a result similar to that of the interval computation, which, as expected, encloses
the max/min values of all samples drawn. The results of Fig. 4 demonstrate the application and validity of the conformal mapping
approach discussed in Appendix A.

Implementation of Eq. (45), taking into account the appropriate interval arithmetic, then yields a complex interval for the coupled
admittance. Shown in Fig. 5a and b are, respectively, the real and imaginary interval bounds of the transfer admittance 𝑌1,11. Dashed
blue curves were obtained by the interval method described above, whilst orange curves were obtained by sampling. Shown in
Fig. 6 is the magnitude transfer admittance |𝑌1,11| of the rigidly coupled assembly (black) alongside the maximum interval bound
(blue) obtained from the real and imaginary intervals presented in Fig. 5. Also shown in orange is the result obtained by sampling.
The interval computation can be seen to encapsulate entirely the sample estimate. This maximum bound represents the maximum
attainable admittance based on the relaxation of interface 1 in Fig. 6. It does not, however, provide any indication as to the most
likely outcome, as per the possibilistic paradigm.

Note that the lower bound in Fig. 6 has been omitted. The reason for doing so is that in computing the interval of the magnitude
admittance, the real and imaginary parts must each be squared. If both parts have a lower bound less than zero and an upper bound
greater than zero (i.e. zero is enclosed within the bound), their squared intervals must have a lower bound of zero. Hence, their sum
also has a lower bound of 0, so it cannot be presented on a logarithmic scale. Nevertheless, Fig. 6 demonstrates that the proposed
interval assessment of joint variability is able to provide an upper limit on the possible admittance. This is, of course, for a single
joint. The interval assessment of multiple joints simultaneously would require a non-trivial extension of the method proposed herein.

Shown in Fig. 7 are the upper interval bounds obtained by relaxing each interface individually according to the interval stiffness,
{𝑍𝑛} = [100 ∞]+𝑖 [100 ∞]. The upper bounds provide a visual indication of which interface joint has the greatest possible influence
on the coupled transfer admittance |𝑌1,11|. As expected, the relative importance of each joint varies with frequency. A more intuitive
presentation of this result is obtained by considering the sensitivity metrics proposed in Section 5. These will be shown in following
sub-section.

Shown in Fig. 8 are the upper and lower bounds of the magnitude transfer admittance |𝑌1,11| obtained by successively increasing
the minimum bound of the joint stiffness and damping, such that {𝑍𝑛} = [𝑍 ∞]+ 𝑖 [𝑍 ∞], where 𝑍 = [100, 1000, 10000, 100000].

s mentioned previously, if the complex interval
{

𝑌𝐶
}

contains the origin, then the lower bound of its squared magnitude will
lways be zero. This occurs frequently for large joint intervals. As the origin is always contained within the interval {𝑤𝑛} (see
ig. A.14), the bounds of

{

𝛥𝐘(𝑛)
𝐶

}

also contains the origin (since complex multiplication can be interpreted as a rotation followed

y a scaling). The subsequent addition, 𝐘(∼𝑛)
𝐶 ⊕

{

𝛥𝐘(𝑛)
𝐶

}

, translates the bound. To avoid enclosing the origin, this translation must
ccur in the appropriate direction. Had the upper bounds of {𝑍𝑛} been considered finite, the origin would not be enclosed by {𝑤𝑛},
nd a more useful lower bound obtained.

From Fig. 8 it can be observed that the interval bounds are not simply scaled for increasing relaxation; new characteristics emerge
s the joint is made more flexible. These flexibility dependent characteristics are neglected when considering a gradient-based
stimation of the coupled admittance, as per Eq. (56).
12
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Fig. 4. Interval computation for numerical example. a) Lower bounds of the complex interval {𝑧𝑛} = {𝑥𝑛} + 𝑖{𝑦𝑛}. b/c) Upper and lower bounds of the
real/imaginary parts of the complex interval {𝑤𝑛} = 1⊘ {𝑧𝑛}: blue dashed lines are interval computations, orange lines are sample-based estimates.

6.1.2. Response-critical joint identification
To identify the response-critical joints of an assembly it is necessary to compare their influence on the dynamics of the assembled

structure. In Section 5 we proposed three sensitivity metrics to do so. In this section we apply those metrics to the numerical example
of Fig. 3. We consider two cases: 𝑍𝑛 = 1× 108(1 + 𝑖) and 𝑍𝑛 = 100(1+ 𝑖), representing a minor and major relaxation of the interface,
espectively.

The interval and gradient-based metrics, 𝑆(𝑖)
𝑛 and 𝑆(𝑔)

𝑛 , are computed analytically according to Sections 5.1 and 5.3 (making
ure to adopt interval arithmetic for the former), taking mass 11 to be the target DoF. The sample-based metric 𝑆(𝑠)

𝑛 is computed
numerically by sampling over the input parameter space. For the example considered, the input space consists of 6 parameters, the
stiffness and damping of each joint. At each frequency, 2000 samples were drawn between 𝑍𝑛 and 𝑍𝑛×10

7 (representing an approx.
igid connection). Samples were distributed such that each parameter’s logarithm was uniformly distributed between the specified
ounds.

Shown in Fig. 9a and 9b are the sensitivity metrics obtained for the two cases considered (top — interval-based, middle —
radient-based, bottom — sample-based). The results of Fig. 9a represent the minor relaxation of the interface, and Fig. 9b the
ajor. Considering first Fig. 9a, it is clear that we get significant agreement between all three metrics (to be expected for a minor

elaxation). We observe that at low frequencies, joints 1 (blue) and 2 (yellow) dominate the response, whilst at high frequencies,
oint 3 (purple) becomes the key contributor. Across the middle range joint 2 tends to dominate, with joints 1 and 3 contributing
cross narrow frequency ranges.

Let us now consider Fig. 9b, representing the major interface relaxation. Note that the gradient-based metric is unchanged, as
t does not depend on the level of relaxation. Whilst the interval and gradient-based metrics share some similar trends, it is clear
hat across the middle frequency range some discrepancies have emerged. These differences are due to the non-linear contribution
f each joint’s flexibility (as observed in Fig. 8). Importantly, this suggests that the possible influence, or importance, of a joint
epends on the range of permissible stiffness and damping values that can be taken.

The sampling-based metric 𝑆(𝑠)
𝑛 is harder to interpret. The issue is that given the range of stiffness/damping values permissible,
13

large range of assembly responses are observed. This can cause numerical issues when estimating the Sobol indices. Furthermore,
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a

Fig. 5. Real (a) and imaginary (b) interval bounds of the admittance 𝑌1,11 due to relaxation of joint interface: blue lines are interval computations, orange lines
re sample-based estimates.

Fig. 6. Upper bound of the magnitude admittance |𝑌1,11| due to relaxation of the joint interface: blue lines are interval computations, orange lines are sample-based
estimates. Lower bounds are omitted for clarity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

as suggested by Fig. 6, at high frequencies a uniform sampling scheme leads to a series of peaks in the response bound. These
peaks cause rapid fluctuations in the obtained Sobol indices, complicating their interpretation. This issue could be alleviated by
increasing the number of samples drawn to more suitably cover the entire input space. This would of course come at the cost
of additional computational effort. This is the principal limitation of the sample-based approach. It is also worth noting that the
interval-based metric considers the entire range of possible assembly responses, no matter how unlikely the extreme values are.
The sample-based metric, on the other hand, considers the spread, or variance, of outcomes, so will be less influenced by unlikely
extremum values. For example, the sample-based metric does not indicate an increase in sensitivity due to joint 1 around 80–90 Hz,
whilst the interval-based metric does. This is likely due to the small range of input stiffness/damping values that cause this increased
14

sensitivity. These particular values are likely missed by the sample-based approach, or their influence is outweighed by regions of
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b

Fig. 7. Comparison of the upper bound on |𝑌1,11| due the relaxation of each interface joint such that {𝑍𝑛} = [100 ∞] + 𝑖 [100 ∞]. Rigid coupling is shown in
lack. Lower bounds are omitted for clarity.

Fig. 8. Comparison of the upper and lower bounds on |𝑌1,11| due an increasing relaxation of the interface joint, {𝑍𝑛} = [𝑍 ∞] + 𝑖 [𝑍 ∞] where
𝑍 = [100, 1000, 10000, 100000].

the output space that are more densely populated. Nevertheless, noticeable differences are observed between Fig. 9a and b, inline
with the results of the interval-based metric.

The results of Fig. 9b are supported by the upper interval bounds shown in Fig. 7, where it can be seen that, in general, the
greater the upper bound of the magnitude transfer admittance, the greater the sensitivity metric.

Whilst it may be argued that the sampling-based metric 𝑆(𝑠)
𝑛 will likely provide a more robust analysis, being less sensitive to

unlikely outcomes, this comes at the cost of considerable computational effort, especially for large levels of relaxation. For the
mass–spring example considered (running on a standard desktop machine with an Intel(R) Core(TM) i7-8700 CPU 3.20 GHz and
16 GB RAM, over 2000 frequency points), the metric computation times were as follows: gradient-based — 0.155 s; interval-based
— 0.424 s; sampling-based — 600.9 s. Note that the sampling-based metric involves the repeated sampling of 2000 log-uniformly
distributed values assigned to each of the 6 joint parameters (i.e. stiffness and damping of each joint), and that is done at every
frequency point, hence its rather large computation time. Furthermore, without detailed statistical information of the joint, such a
method is somewhat unwarranted. Computation of the interval-based metric, on the other hand, is of the order of the gradient-based
15

metric, and does not require any detailed statistical information.
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Fig. 9. Comparison of the interval (top), gradient (middle), and sample-based (bottom) sensitivity metrics for the minimum stiffness bounds 𝑍𝑛 = 1 × 108(1 + 𝑖)
(a) and 𝑍𝑛 = 100(1 + 𝑖) (b): 𝑆 (□)

1 - blue, 𝑆(□)
2 - yellow, 𝑆 (□)

3 - purple. (For interpretation of the references to colour in this figure legend, the reader is referred
o the web version of this article.)

.2. A more practical, albeit numerical, example

In this section we will demonstrate the identification of response-critical joints on a more representative numerical assembly.
he chosen assembly consists of two frame-like components coupled together at four locations, as illustrated in Fig. 10. At each
onnection, coupling is enforced through 4 translational links in the vertical 𝑧 direction; for simplicity in-plane coupling is neglected.

Through an appropriate interface transformation, each 4 link connection can be characterised by a single translational coupling,
with two accompanying rotations, yielding a total of 12 interface DoFs. A further remote DoF is included on each component.

The question to be answered is as follows: given limited experimental and/or numerical resources, which interface connection
(𝑐1, 𝑐2, 𝑐3, or 𝑐4; starting from the connection closest to the origin and moving clockwise) should be treated as a flexible joint,
characterised, and implemented numerically to aid model refinement? In what follows we will use the gradient and interval-based
sensitivity metrics proposed through Section 5 to identify the response-critical joints and answer this question.

The assembly is modelled using the FE method, implemented in MATLAB using the PDE Toolbox [59]. Both frames are specified
s steel with structural loss factor 𝜂 = 0.025. Shown in Fig. 11 are some example mode shapes of the rigidly coupled assembly. After

solving the eigen-problem for each frame, the free interface admittance matrices 𝐘𝐴 and 𝐘𝐵 are determined by modal summation
and a finite difference transformation is used to obtain the sought after translational/rotational admittances at each connection [60].
These form the inputs to the gradient and interval-based sensitivity analyses.

As before, we consider two cases with different levels of interface relaxation. In the first each joint is described in turn
by the interval {𝑍𝑛} = [1 × 108 ∞] + 𝑖 [1 × 108 ∞], representing a minor relaxation of the interface. In the second, we set
{𝑍𝑛} = [1 × 105 ∞] + 𝑖 [1 × 105 ∞], representing a moderate relaxation of the interface. For each case we employ the gradient
and interval-based sensitivity metrics described in Sections 5.1 and 5.3, respectively. Owing to its computational effort and poor
performance, the sampling-based Sobol metric is not considered here. Results are presented in Fig. 12 with left and right-hand side
plots representing the minor and moderate relaxations, respectively. Middle and bottom plots show, respectively, the interval and
gradient-based sensitivity metrics for each connection.

Note that the metrics presented describe the contribution of the entire connection, including both translational and rotational
16

DoFs. To obtain these results the sensitivity metrics for each DoF are summed together. For example, the combined metric for
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Fig. 10. Diagram of numerical example. Two frame structures coupled at 4 locations (𝑐1, 𝑐2, 𝑐3, and 𝑐4, located clockwise from the origin), each with 4
translational 𝑧 DoFs.

Fig. 11. Some example mode shapes of coupled structure.

connection 1 is given by,

𝑆(□)
1 = 𝑆(□)

11 + 𝑆(□)
12 + 𝑆(□)

13 (70)

where 𝑆(□)
11 , 𝑆(□)

12 , and 𝑆(□)
13 are the sensitivity metrics for the translational and 𝑥∕𝑦 rotational DoFs at connection 1. Using this

approach one could similarly compare the importance of different DoFs (e.g. translational vs. rotational), as opposed to connection
points.

Shown in the top plots of Fig. 12 are the remote DoF transfer admittances for the rigidly coupled assembly (black), and those
obtained by independently relaxing the DoFs at each connection by an amount equal to the minimal stiffness bound 𝑍𝑛. These plots
rovide an indication of the sensitivity of the transfer admittance given the relaxation of each interface connection. They do not,
owever, provide an insight into the range of possible outcomes. Nevertheless, we can use them to help interpret the sensitivity
etrics displayed beneath.

As before, for a minor relaxation the gradient and interval-based metrics display the same general trends. For the moderate
elaxation clear differences can be seen. This again illustrates the importance of considering the entire range of possible stiffness
nd damping values when determining the influence of specific joint. For a minor relaxation, in the low-mid frequency range (100–
50 Hz), both metrics indicate that the connection 3 has the greatest influence, with connection 4 contributing significantly over
arrower frequency ranges. At higher frequencies (> 350 Hz) the influence of connection 2 increases markedly. For the moderate
elaxation, according to the interval-based metric, the influence of connections 3 and 4 reduce considerably compared to Fig. 12a,
articularity around 200 Hz, with connection 2 becoming dominant. It is further observed that in the mid-high frequency range (>
00 Hz) the influence of connection 1 increases, and at some frequencies becomes dominant.

Comparing the interval-based metrics for the moderate relaxation (middle right plot) with their respective transfer admittances
top right plot) it can be seen that regions of increased sensitivity generally correspond to greater deviations from the rigid
dmittance (in black). Though, this is not always the case. It is important to recall that the interval-based metric considers the
ange of all possible transfer admittances given the permissible joint dynamics. The transfer admittances plotted are those obtained
or 𝑍𝑛 = 1 × 108 + 𝑖 1 × 108 alone, which is just one realisation.

The information provided by the proposed sensitivity metrics could be used to guide model refinement. As an example, from
ig. 12 it is clear that connection 1 has the least influence overall, hence efforts should not be focused towards refinement of this
17
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Fig. 12. Comparison of the interval (middle) and gradient (bottom) based sensitivity metrics for minimum stiffness bounds 𝑍𝑛 = 1 × 108(1 + 𝑖) (a) and
𝑍𝑛 = 1×105(1+ 𝑖) (b). Each metric describes the sensitivity of the transfer admittance with respect to a specific connection point, including both its translational
and rotational DoFs: 𝑆(□)

1 - blue, 𝑆 (□)
2 - yellow, 𝑆 (□)

3 - purple, 𝑆(□)
4 - green. Shown in the top figures are the transfer admittances obtained by independently

elaxing the DoFs at each connection point by an amount equal to the minimal stiffness bound. In black is the response obtained from the rigid assembly. (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

articular connection. In the low frequency range connection 3 has the greatest influence and should be prioritised. If attention is
ocused on the mid frequency range connection 4 might be prioritised instead.

. Conclusions

Whilst there exists a large body of literature related to the characterisation and modelling of joint dynamics, it appears few
orks have considered which joints to characterise and/or model; for a complex built-up structure the number of joints present may
rohibit the complete characterisation/modelling of all joints. With the development or refinement of a component-based model
here is a need to identify the response-critical joints of an assembly — those that have the greatest influence on the target response.
nce identified, experimental and computational resources may be focused towards those joints which will benefit the modelling
ffort most. In the present paper a possibilistic interval-based sensitivity metric is proposed to rank order the influence of individual
oints towards the dynamics of an assembled structure.

The interval-based sensitivity metric was formulated by exploiting the Sherman–Morrison formula and the dual sub-structuring
ormulation. A complex interval representation was adopted for the interface stiffness/damping, and the complex interval bounds
f the assembled admittance matrix (also operational response) were obtained. Spatial averaging of the admittance interval bounds
ver selected DoFs yield the proposed metric. Scaled between 0 and 1 the metric represents a normalised measure of the size of the
omplex output interval, and enables a clear identification of the assembly’s response-critical joints.

The advantages of an interval-based sensitivity metric, over a more conventional probabilistic one, are two fold: no detailed
tatistical information is required to describe the joint parameters (only a minimum bound for the stiffness and damping), and
omputationally expensive sampling methods are avoided. Furthermore, the interval-based approach, whilst providing only the
xtremum outcomes, considers the entire input space and so implicitly takes into account model non-linearity (hence we term the
ethod ‘pseudo-global’). This is in contrast to typical gradient-based methods which assume linearity and/or small input variance.

As part of a numerical example, the proposed metric was compared against local gradient-based and global sampling-based
Sobol) metrics, also proposed herein. For low levels of interface relaxation, all metrics are in strong agreement. For larger levels of
elaxation, the influence of model non-linearity is observed and the interval/sampling-based metrics differ from the gradient-based.
18
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Fig. A.13. Conformal map 𝑓 (𝑧) = 1∕𝑧 applied to the open regions 𝑥 > 𝑥 (blue) and 𝑦 > 𝑦 (green). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

This result demonsrates that the relative importance of a joint depends on the range of permissible stiffness and damping values that
can be taken. Owing to numerical and finite sampling issues, the global metric performs poorly at high frequencies where there
is large variance in the model output. For this reason the sample-based metric is considered the least beneficial. In contrast, both
gradient and interval-based metrics are computed analytically, and so avoid such issues. Nevertheless, whilst the gradient-based
metric avoids costly sampling efforts, it does not take into account the range dependent influence of a joint’s dynamics. For this
reason, its use should be limited to cases where joints are expected to be very nearly rigid. To account for a greater degree of
interface relaxation the interval-based metric should be used.

Overcoming the respective limitations of both the gradient and sampling-based strategies (linearity and computational efficiency),
the interval-based metric provides a convenient and computationally efficient identification of the response-critical joints in a
complex built-up structure. The information gained though its application may be used to focus model refinement towards the
connections or joints that will benefit the modelling effort most.
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Appendix A. Conformal mapping

Eq. (45) ((48)) yields the complex interval bounds of an assembly’s admittance matrix (response vector), based on an interval
relaxation of the 𝑛th joint. Its implementation requires first establishing the interval bounds of {𝑤𝑛}, defined as per Eq. (44). In

hat follows we consider Eq. (44) as a conformal map, and propose a simple algorithm to establish said bounds.
The denominator of Eq. (44) represents a complex interval of the form {𝑧} = {𝑥} + 𝑖{𝑦}, where the real and imaginary intervals

re taken to be, {𝑥} = [𝑥 ∞] and {𝑦} = [𝑦 ∞]. Taken together, these intervals describe an open rectangular domain in the complex
lane that extends from the point (𝑥, 𝑦) to infinity, as shown in Fig. A.13a. This domain contains all possible values of the complex

number 𝑧 given the real and imaginary intervals {𝑥} and {𝑦}. We are interested in the mapping of this domain onto that of the
complex variable 𝑤 = 1∕𝑧. That is, we are interested in the conformal map 𝑓 (𝑧) = 1∕𝑧 applied to the open rectangular domain {𝑧}.
In what follows we seek the smallest complex rectangular interval {𝑤} = {𝑢} + 𝑖{𝑣}, where {𝑢} = [𝑢 𝑢] and {𝑣} = [𝑣 𝑣], that
encloses the domain of 𝑓 (𝑧) = 1∕𝑧.

We start by considering the complex relation,

𝑤 = 𝑢 + 𝑖𝑣 = 1
𝑥 + 𝑖𝑦

. (A.1)

Taking the reciprocal of the above,

𝑥 + 𝑖𝑦 = 1
𝑢 + 𝑖𝑣

= 𝑢 − 𝑖𝑣
𝑢2 + 𝑣2

(A.2)

we obtain expressions for the real and imaginary parts of 𝑧 with respect to 𝑢 and 𝑣,

𝑥 = 𝑢 > 𝑥, 𝑦 = −𝑣 > 𝑦 (A.3)
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where 𝑥 and 𝑦 represent the lower bounds of the intervals {𝑥} and {𝑦}. Assuming 𝑥 > 0, rearranging the left-hand inequality above
leads to,

0 > 𝑢2 + 𝑣2 − 𝑢
𝑥
=
(

𝑢 − 1
2𝑥

)2
+ (𝑣 − 0)2 −

(

1
2𝑥

)2
, (A.4)

or equivalently,
(

1
2𝑥

)2
>
(

𝑢 − 1
2𝑥

)2
+ (𝑣 − 0)2 . (A.5)

Recalling that a circle of radius 𝑟 with centre point (ℎ, 𝑘), is given by,

𝑟2 = (𝑢 − ℎ)2 + (𝑣 − 𝑘)2 . (A.6)

the conformal map 𝑓 (𝑧) = 1∕𝑧 takes the region 𝑥 > 𝑥 of the complex plane and maps it to a closed circular domain of radius 𝑟 = 1∕2𝑥
centred at the coordinates (1∕2𝑥, 0). See for example the blue domain in Fig. A.13. Note that if 𝑥 < 0, the above inequality flips,
such that,

(

1
2𝑥

)2
<
(

𝑢 − 1
2𝑥

)2
+ (𝑣 − 0)2 . (A.7)

In this case, the conformal map 𝑓 (𝑧) = 1∕𝑧 takes the region 𝑥 > 𝑥 and maps it to the open domain surrounding a circle of radius
= 1∕2|𝑥| centred at the coordinates (1∕2𝑥, 0) (with 𝑥 < 0 this circle is located in the negative real half-plane). See for example the
lue domain in Fig. A.14c.

Let us now consider the inequality for 𝑦. Following similar steps as above, assuming 𝑦 > 0, we arrive at the inequality,

0 > 𝑢2 + 𝑣2 + 𝑣
𝑦
= (𝑢 − 0)2 +

(

𝑣 − −1
2𝑦

)2

−

(

1
2𝑦

)2

(A.8)

or equivalently,
(

1
2𝑦

)2

> (𝑢 − 0)2 +

(

𝑣 − −1
2𝑦

)2

(A.9)

which equally describes a closed circular domain in complex plane with radius 𝑟 = 1∕2𝑦 centred at the coordinates (0,−1∕2𝑦). See
or example the green domain in Fig. A.13. If 𝑦 < 0 the above inequality flips, such that,

(

1
2𝑦

)2

< (𝑢 − 0)2 +

(

𝑣 − −1
2𝑦

)2

. (A.10)

In this case, the conformal map 𝑓 (𝑧) = 1∕𝑧 takes the region 𝑦 > 𝑦 and maps it to the open domain surrounding a circle of radius
𝑟 = 1∕2|𝑦| centred at the coordinates (0,−1∕2𝑦) (with 𝑦 < 0 this is in the positive imaginary half-plane). See for example the green
omain in Fig. A.14d.

The complex map 𝑓 (𝑧) = 1∕𝑧 is shown in Fig. A.13 for the two regions 𝑥 > 0 and 𝑦 > 0. The intersection of 𝑥 > 𝑥 and 𝑦 > 𝑦 in
the 𝑥, 𝑦 plane describes the domain of possible complex values 𝑧 = 𝑥 + 𝑖𝑦 that satisfy both 𝑥 > 𝑥 and 𝑦 > 𝑦. This domain maps to a
vesica piscis (i.e. the intersection of two circles) in the 𝑢, 𝑣 plane, as shown in Figs. A.13b and A.14ab, which describes the range
of possible values the complex variable 𝑤 = 1∕(𝑥 + 𝑖𝑦) can take, given the restrictions on 𝑥 and 𝑦. For the case that 𝑥 < 0 or 𝑦 < 0
the domain maps to a more complex region that is the intersection of an open and closed circular region, as shown in Figs. A.14cd.

To adopted an interval-based approach we seek to describe the resulting intersection by means of the smallest enclosing rectangle.
To determine the interval bounds of 1⊘ {𝑧} we consider the four cases presented in Fig. A.14:

(a) If 0 < 𝑥 < 𝑦 then 𝑣 = 𝑢 = 0, 𝑢 = 1∕2𝑦, and 𝑣 < 0 corresponds to the point of intersection between the two domain’s circular
boundaries.

(b) If 𝑥 > 𝑦 > 0 then 𝑣 = 𝑢 = 0, 𝑣 = −1∕2𝑥, and 𝑢 > 0 corresponds to the point of intersection between the two domain’s circular
boundaries.

(c) If 𝑥 < 0 < 𝑦 then 𝑣 = 0, 𝑣 = −1∕𝑦, 𝑢 = 1∕2𝑦, and 𝑢 < 0 corresponds to the point of intersection between the two domain’s
circular boundaries if 1∕2|𝑦| < 1∕2|𝑥|, or −1∕2𝑦 otherwise.

(d) If 𝑦 < 0 < 𝑥 then 𝑢 = 0, 𝑢 = 1∕𝑥, 𝑣 = −1∕2𝑥, and 𝑣 > 0 corresponds to the point of intersection between the two domain’s
circular boundaries if 1∕2|𝑥| < 1∕2|𝑦|, or 1∕2𝑥 otherwise.

In the case that 𝑥, 𝑦 < 0, the domain of 𝑧 encloses the origin and so the domain of 𝑤 extends to ±∞.
An implementation of the above interval computation is summarised in Algorithm 1. Having established the bounds of {𝑤𝑛}, as

er the outlined procedure, Eq. (45) can be implemented by adopting the interval arithmetic operations detailed in Section 2, and
aximum/minimum bounds of the assembly admittance determined.
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Fig. A.14. Optimum complex interval enclosing 𝑤 = 1∕(𝑥 + 𝑖𝑦) for 𝑥 > 𝑥 (blue) and 𝑦 > 𝑦 (green). Four scenarios are considered: a) 0 < 𝑥 < 𝑦, (b) 0 < 𝑦 < 𝑥, (c)
𝑥 < 0 < 𝑦, and d) 𝑦 < 0 < 𝑥. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ppendix B. Intersection point

To determine the intersection point between the boundaries of two circular domains (i.e. the red markers in Fig. A.14) we should
olve the following pair of simultaneous equations,

(

𝑢 − 𝑢1
)2 +

(

𝑣 − 𝑣1
)2 = 𝑟21,

(

𝑢 − 𝑢2
)2 +

(

𝑣 − 𝑣2
)2 = 𝑟22 (B.1)

each representing a circle in the 𝑢, 𝑣 plane. We take subscript 1 to denote the mapped 𝑥 > 𝑥 domain (blue), and subscript 2 the
mapped 𝑦 > 𝑦 domain (green).

Subtracting Eq. (B.1) from one another yields,

−2𝑢
(

𝑢1 − 𝑢2
)

− 2𝑣
(

𝑣1 − 𝑣2
)

=
(

𝑟21 − 𝑟22
)

−
(

𝑢21 − 𝑢22
)

−
(

𝑣21 − 𝑣22
)

(B.2)

Isolating 𝑣, whilst noting that for all cases 𝑢2 = 0 and 𝑣1 = 0, yields,

𝑣 = −1
2
(

𝑣1 − 𝑣2
)−1 ((𝑟21 − 𝑟22

)

−
(

𝑢21 − 𝑢22
)

−
(

𝑣21 − 𝑣22
)

+ 2𝑢
(

𝑢1 − 𝑢2
))

= 1
2𝑣2

((

𝑟21 − 𝑟22
)

−
(

𝑢21
)

+
(

𝑣22
)

+ 2𝑢𝑢1
)

. (B.3)

Further, noting that 𝑢21 = 𝑟21 and 𝑣22 = 𝑟22 we have that,

𝑣 = 1
2𝑣2

((

𝑟21 − 𝑟22
)

−
(

𝑟21
)

+
(

𝑟22
)

+ 2𝑢𝑢1
)

=
𝑢1𝑢
𝑣2

. (B.4)

Substituting the above into equation ((B.1)a) we get,

(

𝑢 − 𝑢1
)2 +

(

𝑢1𝑢
𝑣2

)2
= 𝑢21 (B.5)

which, after expanding the above and grouping terms, yields a quadratic equation in 𝑢,

𝑢2
(

1 +
(

𝑢1
𝑣2

)2
)

− 2𝑢𝑢1 = 0, 𝑢 =
2𝑢1 ±

√

4𝑢21

2
(

1 +
(

𝑢1
)2

) =
𝑢1 ± 𝑢1

1 +
(

𝑢1
)2

. (B.6)
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Algorithm 1: Determine bounds of the complex interval {𝑤} = [𝑢 𝑢] + 𝑖 [𝑣 𝑣] =
(

[𝑥 ∞] + 𝑖 [𝑦 ∞]
)−1

𝑟1 = 1∕(2|𝑥|);
𝑟2 = 1∕(2|𝑦|);
if 𝑥 > 0 ∧ 𝑦 > 0 then

if 𝑟2 ≤ 𝑟1 then
// this is the case of figure A.14a
𝑢 = 0;
𝑢 = 𝑟1;
𝑣 = −2𝑟21∕

(

𝑟2
(

1 +
(

𝑟1∕𝑟2
)2
))

;
𝑣 = 0;

else
// this is the case of figure A.14b
𝑢 = 0;
𝑢 = 2𝑟1∕

(

1 +
(

𝑟1∕𝑟2
)2
)

;
𝑣 = −𝑟2;
𝑣 = 0;

end
lse if 𝑥 < 0 ∧ 𝑦 > 0 then
// this is the case of figure A.14c
if 𝑟2 ≤ 𝑟1 then

𝑢 = 2𝑟1∕
(

1 +
(

𝑟1∕𝑟2
)2
)

else
𝑢 = −𝑟2

end
𝑢 = 𝑟2;
𝑣 = −2𝑟2;
𝑣 = 0;

else if 𝑦 < 0 ∧ 𝑥 > 0 then
// this is the case of figure A.14d
𝑢 = 0;
𝑢 = 2𝑟1;
𝑣 = −𝑟1;
if 𝑟2 ≤ 𝑟1 then

𝑣 = −2𝑟1∕
(

1 +
(

𝑟1∕𝑟2
)2
)

else
𝑣 = 𝑟1

end
lse

𝑢 = −∞;
𝑢 = ∞;
𝑣 = −∞;
𝑣 = ∞;

end

Taking the positive square-root leads to the following pair of equations for the intersection point,

𝑢 =
2𝑢1

1 +
(

𝑢1
𝑣2

)2
, 𝑣 = −

2𝑢21

𝑣2

(

1 +
(

𝑢1
𝑣2

)2
) . (B.7)
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