
1.  Introduction
Globally, river deltas are home to more than 500 million people (Ericson et al., 2006; Syvitski et al., 2009). The 
formation of deltas is influenced by both climate characteristics and human activities, which determine sediment 
production, transport, storage, and deposition on its pathway from the drainage basin to the coast (Allen, 2017). 
In the present context of declining fluvial sediment loads and sea-level rise, deltas face an increased risk of 
erosion, which seriously threatens human occupation and sustainable development in deltaic regions (Syvitski 
et al., 2009). Considering that modern river deltas are the product of an evolution over ca. 8000 years (Stanley 
& Warne,  1994), there is an urgent need to understand delta evolution mechanisms at various timescales to 
prepare for future challenges. Hence, a number of studies have been carried out to reconstruct the trajectories 
of delta growth in the past (de Haas et al., 2018; Hobo et al., 2014; Li et al., 2003; Middelkoop et al., 2010; 
Wang et al., 2018). Through high-resolution stratigraphic and chronological analysis, reconstruction of sediment 
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Based on optically stimulated luminescence and AMS  14C ages, we calculated deposited sediment volumes 
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of flooding and drought events indicates that a wetter climate led to a higher sediment deposition, reflecting 
the role of fluvial discharge in delta growth. However, the highest sediment deposition (205 ± 29 × 10 6 m 3/a) 
over the last 500 years is not only related to the wetter conditions of the Little Ice Age, but also linked to 
dramatic regional population growth. We suggest that human activities have predominated over natural forcing 
in determining the deltaic growth over the last five centuries. Taking the Medieval Climate Anomaly with the 
lowest deposition volume as an analog of current climate warming, and considering the decline in sediment 
loads due to recent damming and soil conservation, the YRD is likely to face an even more severe deficit in 
sediment supply and higher risk of delta destruction in the coming centuries.

Plain Language Summary  Delta growth is influenced by both climate change and human 
activities through the production of sediments in the catchment, their transportation toward the coast, and 
storage in the delta region. Research on centennial-scale delta evolution over the last 2000 years is critical 
for understanding delta development mechanisms and future trends. However, this information is relatively 
scarce, as  delta  deposits are difficult to date. In this paper, based on a combination of newly obtained optically 
stimulated luminescence ages and existing records, sediment deposition volumes were calculated for 500-year 
intervals over the last 2000 years. The results show that deposition volumes peaked over the most recent 
500 years spanning the wetter climatic conditions of the Little Ice Age. In addition to the role played by 
climate in the centennial fluctuations in depositional volume, human activity has led to a dramatic increase 
of delta growth rate over the last five centuries. Using the warmer 1.0–0.5 ka period with the lowest sediment 
accumulation rate as an analogue to future climate warming, we suggest that the Yangtze River Delta will 
experience a much reduced growth rate and therefore a greater impact on this densely populated region from 
sea level rise in the coming centuries.
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depositional volumes can provide a better understanding of delta development and its response to climate change 
and human activities (de Haas et al., 2018).

Although millennial-scale variations in coastline migration and accumulated sediment volume have been reported 
for several deltas (Nageswara Rao et al., 2015; Tamura et al., 2009; Wang et al., 2018), centennial scale delta 
evolution over the last 2000 years, a period of marked climate changes as well as increasing human activity, 
remains poorly studied (Maselli & Trincardi, 2013), especially for large river deltas in Asia. This paucity partly 
reflects the poor chronological constraint on deltaic deposits using  14C as a dating technique. This is caused by 
the scarcity of dateable carbon material in sandy mouth bar deposits and/or the delayed input of aged carbon 
from the catchment. In Holocene deltaic sediments, it has been found that samples usually yield  14C dates that 
are too old and commonly inverted in stratigraphy due to the storage and reworking of older deposits in the 
catchment and delta environments (Stanley & Chen, 2000). However, the development of optically stimulated 
luminescence (OSL) dating (Huntley et  al.,  1985) provides a solution to these limitations (e.g., Chamberlain 
et al., 2018; Nian & Zhang, 2018; Shen et al., 2015; Tamura et al., 2012). Furthermore, the relative importance 
of human activities versus climate change in delta evolution remains an issue of debate (Ibáñez et  al., 2019; 
Maselli & Trincardi, 2013). Based on studies on deltas in the Mediterranean and the Black Sea, Maselli and 
Trincardi (2013) suggested that human activities have dominated delta growth over the last 2000 years. However, 
Ibáñez et al. (2019) suggested that both climate and physical setting in the marine environment play dominant 
roles (e.g., fluvial discharge and continental shelf slope) according to a statistical analysis of a global data set of 
observations spanning 86 deltas.

The Yangtze River Delta (YRD) is a delta that experiences strong fluvial-tidal interaction, which is also evident 
in a number of river deltas, particularly densely populated mega deltas in Asia. It also hosts the most active 
economic center in China. Studies on modern delta processes and millennial scale evolution have received great 
attention (e.g., Chen et al., 1988; Li et al., 2000; Wang et al., 2018). In terms of centennial variability in delta 
growth, studies using historical documents and geomorphological surveys have provided a framework for coast-
line shifts within the last 2000 years (e.g., Chen et al., 1979; Zhang, 1998). However, three-dimensional strati-
graphic analysis lacks a solid chronological control. In this study, based on a synthesis of 245 dates from 42 
cores, delta growth and the volume of deposits over the YRD during the last 2000 years have been reconstructed 
in 500-year interval for the first time. By comparing with available proxies of climate change (i.e., flood/drought 
occurrence (Zheng et al., 2014), river water level (Qin et al., 2020) and temperature (Ge et al., 2003)) and human 
activities (i.e., population (National Bureau of Statistics of China, 1953–2010; Zhang, 2000)), we elucidate the 
relative influence of climate and anthropogenic forcing on delta growth at multi-centennial timescale to offer a 
perspective on future delta evolution under a warming climate.

2.  Study Area and Methods
2.1.  The Yangtze River Delta

The Yangtze River originates on the Tibet Plateau and flows from west to east along a course of ∼6,300 km. 
It has a large drainage basin with a very dense population (presently ∼500 million people over an area of 1.8 
million km 2) concentrated in the middle to lower reaches of the catchment. Rainfall and fluvial discharge in the 
Yangtze River's catchment are influenced by the East Asian Summer Monsoon (EASM), although in southwest-
ern China, that is, the upper reaches of the river, the climate is controlled by the Indian summer monsoon (ISM) 
(Zhang et al., 2019) (Figure 1a). The monsoon climate displays significant variabilities in rainfall at millennial, 
centennial, decadal and seasonal timescales (e.g., Wang et  al.,  2005). As a reflection of rainfall and fluvial 
discharge variability, sediment load also shows marked variations, as evident in both modern observations and 
reconstructed sediment depositional volumes in the delta (e.g., Wang et al., 2018; Yang et al., 2015).

The evolution of the delta during the Holocene has resulted in a huge subaerial (∼30,000 km 2) and subaqueous 
(∼10,000 km 2) delta (Li et al., 2011). The YRD has prograded rapidly over the last two millennia in response 
to an increased supply of sediment from upstream due to intensified human activities (Chen et  al.,  1979; Li 
et al., 2000). Previous studies have shown that the YRD was a funnel shaped estuary 2000 years ago with the apex 
located between Zhenjiang and Yangzhou (Chen et al., 1979) (Figure 1b). Stratigraphic studies have revealed that 
the deposits over the last 2000 years reach a thickness of ∼20 m in the paleo-incised valley in the northern part 
of the delta, which becomes shallower toward its southern flank (e.g., Hori et al., 2001; Wang et al., 2019). The 
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deposits change from silty shallow marine/prodelta facies, sandy delta front platform (e.g., mouth bar) facies, to 
silty delta plain faces in ascending order (Wang et al., 2019). With delta progradation, the upper mouth bar and 
delta plain facies have migrated east- and south-ward (Figure 1b; Chen et al., 1979).

2.2.  Chronology, Sediment Accumulation Volume and Land Area Calculation

We have conducted luminescence dating on 17 Holocene sediment cores in the YRD and some of these data 
have been published (Table S2). In this study, OSL dating was further carried out on 52 samples from six cores 

Figure 1.  Location of the Yangtze River basin (a), and the red square depicts the location of the Yangtze River Delta 
(YRD) which is detailed in (b). a, The trajectories of the East Asian summer monsoon and Indian summer monsoon are 
shown by the white arrows. The white circles are historic water level markers on the Yangtze River at Baiheliang (Qin 
et al., 2020) and Datong Hydrological Station which gauges fluvial sediment flux to the sea. b, The red/magenta and green 
circles represent the cores dated by the optically stimulated luminescence and AMS  14C techniques, respectively. Red circles 
represent published cores while magenta new dated cores. Detailed core information can be found in Table S1 in Supporting 
Information S1, Table S2 and Table S3. Cores along three transects (white lines, A-A’, B-B’, C-C’) are used to construct the 
stratigraphy shown in Figure 2. The paleo-coastlines of the YRD over the last 2 ka follow previous studies (Chen et al., 1979; 
Delta Research Group, 1978) with modification according to the compilation of recent dating results. The blue-shaded zone 
indicates the area for which sediment deposition volume has been calculated.
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(Table S1 in Supporting Information S1), which were collected from Chongming Island (core CM01, CM02), 
Hengsha Island (core HSD), Maqiao (MQ), Jiandong (JD), and Niudu (ND) in the YRD (Figure 1b). The drilling 
was performed using a rotary-pressure mechanism method with a total core recovery value greater than 90%. 
Additional information about these six cores is available in Text S1 and Figure S1 in Supporting Information S1. 
Detailed descriptions of OSL sample pretreatment and measurement are presented in Text S2 in Supporting 
Information S1.

In the study area, all the previously published sediment cores with reliable age controls were included (Figure 1b). 
These relatively evenly distributed cores can reflect the three-dimensional stratigraphic structure over the study 
area in general (as shown in Figure 2). Through the integration of new data (52 ages from 6 cores, magenta circles 
in Figure 1b, Table S1 in Supporting Information S1) and 193 previously published ages, including 114 OSL 
samples (17 cores, red circles in Figures 1b and Tables S2) and 79 AMS  14C samples (19 cores, green circles 
in Figures 1b and Table S3), centennial-scale sediment accumulation volume and land area were calculated for 
500-year intervals spanning the last 2000 years. As shown in previous studies, AMS  14C ages often yield older 
or reversed ages due to the complex transport and deposition of exogenous carbon from the catchment to delta 
(Stanley & Chen, 2000). This is further confirmed by our studies (Nian et al., 2021; Nian & Zhang, 2018). There-
fore, this paper uses only the OSL ages for these cores dated by two methods. Isochrons at 2, 1.5, 1 and 0.5 ka 
were determined by linear interpolation of the ages obtained for the late Holocene sediments of the YRD (Table 
S4 in Supporting Information S1). From these data, the volume of deposited sediment were calculated using 
ArcGIS 10.5. In ArcGIS, the triangulated irregular network (TIN) tool was used to create TINs for the surface 
elevations and elevations of control points at each age (0.5, 1, 1.5 and 2 ka) of the cores. Then we used the TIN to 
Raster tool to convert the above TINs into the corresponding raster data, and finally the Cut Fill tool from ArcGIS 
Spatial Analyst was used as well to calculate the volume of sediments in each 500-year interval. Land areas were 
calculated according to the paleo-coastlines of the YRD over the last 2 ka (Figure 1a).

According to the stratigraphic reconstruction (Figure 2), we find that isochronic layers between the cores with 
longer distance (e.g., HSD and ECS0702) parallel each other, implying relatively homogeneous accretion along 
the progradation direction. Therefore, we assume linear change between neighboring cores when carrying 

Figure 2.  Stratigraphy along two longitudinal (A-A’, B-B’) and one transverse (C-C’) sections with 500-year intervals shown in different colors. Detailed age and 
isochron information are presented in Tables S1 and S4 in Supporting Information S1, Table S2 and Table S3. All the OSL and  14C ages were converted to ka relative to 
2020 CE.
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out interpolation. Hence, in the calculation of accumulation volume, we 
consider only the error of ascribing depth of isochronic layers. The depths 
of these controlling points for each core are obtained by age-depth model of 
linear  interpolation between adjacent dated points. Since typical total esti-
mated uncertainties are 5%–10% for the OSL age (Murray et al., 2021) and 
less than 2% for the AMS  14C age (Guilderson et al., 2005), we assumed that 
the depth error is 10%. Similarly, the estimation of uncertainty in land areas 
is also assumed to be 10%. Finally, an approximate uncertainty of 14% was 
introduced into the volume calculations for different time periods according 
to the method of error propagation (Table 1).

3.  Results
3.1.  Spatial Growth of Delta

The stratigraphic cross-sections A-A’, B-B’ and C-C’ (Figure 2) show upper 
sandy mouth bar facies overlying silty/clayey prodelta facies in cores sampled 

onshore and from the islands of the estuary. In the present subaqueous delta, such stratigraphic architecture is 
replaced by homogeneous delta front slope/prodelta facies with increasing water depth. Dating results reveal 
a deltaic progradation trend from northwest to southeast. Since cores DY, SD and NT are located in a nearly 
north-south orientation, the spatial distribution of their stratigraphy reflects a southward progradation during the 
2.0–1.5 ka period, with the delta front toe located around a line connecting cores SY and NT. Between 1.5 and 
1.0 ka, the delta front/prodelta transition had only been pushed to the site of core HM. Between 1.0 and 0.5 ka, 
the mouth bar shifted to the western part of Chongming Island (e.g., core CM01) and the delta front/prodelta 
transition was located on a line connecting cores HSD and H5. Over the last 0.5 ka, the sites of cores CM02, HSD 
and H5 became mouth bars and the delta front slope prograded to the site of core A6-6 at a current water depth of 
26 m. Clearly, coastline change shows large variability, with the smallest progradation occurring in the 1.0–0.5 ka 
period (Figure 1). According to reconstructed stratigraphy, the delta front slope is steeper for the period 2–1 ka 
than that of 1–0 ka, with the last 0.5 ka exhibiting the greatest extension of delta front deposit (Figure 2).

3.2.  Variability of Sediment Accumulation Volume and Land Area Growth

Marked multi-centennial variability exists in the sediment accumulation rate during the last 2 ka. The volume 
of deposited sediment during the past 2 ka averaged 152 × 10 6 m 3/a (Table 1), which approximately equals the 
previously reported value for this period of 129 × 10 6 m 3/a (Wang et al., 2018). The highest accumulation rate 
is observed over the last 500 years, which is also the highest over the Holocene (Figure 3). Based on bathy-
metric chart comparison, Shen et al. (1983) calculated a deposition rate of 160 × 10 6 m 3/a between 1958 and 
1978 in the delta, which is also lower than that of the last 0.5 ka. This highest value is followed by the period 
2.0–1.5 ka (Table 1). The lowest rate occurred from 1.5 to 0.5 ka, which is approximately one half of the value 
for the last 0.5 ka. Land area growth was approximately 4.6–5.5 km 2/a at 2.0–1.0 ka, but was found to be drasti-
cally decreased to around 3.3 km 2/a at 1.0–0.5 ka (only 60%–71% of 2.0–1.0 ka level) and then increased up to 
8.3 km 2/a in the last 0.5 ka (Table 1).

4.  Discussion and Conclusions
4.1.  Delta Growth: Area Versus Volume

Many studies have used subaerial delta area to indicate delta growth (e.g., Ibáñez et al., 2019), as this variable can 
be easily determined. In fact, sediments deposited in the delta are partitioned into subaerial and subaqueous parts, 
and land growth is determined by both aggradation and progradation of the subaqueous delta (Shen et al., 1983). 
The periods of 1.5–1.0 ka and 1.0–0.5 ka have similar accumulated sediment volumes, yet the former shows a 
larger subaerial delta growth than the latter (Table 1, Figure 1). The stratigraphic evidence indicates that the 
former period witnesses much steeper delta front deposit than the later (Figure 2). It is interesting to note that the 
aggradation of subaqueous delta for the 1.0–0.5 ka occurred mainly in the period 0.8–0.5 ka (Figure 2). Histor-
ical documents have suggested that coastline progradation occurred until 0.7 ka ago, after which the shoreline 

Time 
period (ka)

Total volume of 
trapped sediment 

(10 9 m 3)

Accumulation 
rate by volume 

(10 6 m 3/a)
Land area 

growth (km 2)

2.0–0 304 ± 43 152 ± 21 10,803 ± 108

2.0–1.5 80 ± 11 161 ± 23 2298 ± 230

1.5–1.0 63 ± 9 125 ± 18 2742 ± 274

1.0–0.5 59 ± 8 118 ± 17 1638 ± 164

0.5–0 102 ± 14 205 ± 29 4125 ± 413

Table 1 
Deposited Sediment Volume and Land Area Growth Over the Last 
2000 Years
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retreated until 0.4 ka by a distance of about 35 km (Tan, 1982; Wang et al., 2019). This means that sediment orig-
inally comprising subaerial delta was eroded and displaced to the subaqueous delta. Therefore, land area alone 
is an inadequate reflection of delta growth and maybe misleading without considering the sediment accumulated 
under water.

4.2.  The Relative Importance of Climate and Human Activities

Our investigation reveals that marked multi-centennial variability exists in the sediment accumulation rates of the 
YRD during the last 2 ka (Table 1, Figure 4a), which can be modulated by climate changes and human activities. 
Fluvial discharge is an important factor affecting delta growth, as with greater discharge, more fluvial sediment 
is delivered to the coast (e.g., Ibáñez et al., 2019; Yang et al., 2015). Indices of floods/droughts reconstructed 
using historical documents can be regarded as proxies of fluvial discharge. They reveal a greater occurrence of 
extreme flooding events over the periods 2.0–1.5 ka and the last 0.5 ka in the middle-lower Yangtze River region 
(Figure 4b) (Zheng et al., 2014). Archeological evidence (an inscription on rocks (rockfish)) in the main channel 
of the upper Yangtze River (Baiheliang, Figure 1) records water level fluctuations during the last 1000 years and 
indicates that severe droughts occurred more frequently during the warmer Medieval Climate Anomaly (MCA, 
950–1250 CE) and relatively less frequently during the cooler Little Ice Age (LIA, 1501–1900 CE) (Figures 4c 
and 4d) (Qin et al., 2020). Clearly, the change in accumulated sediment volume matches well with the flooding/
drought indices, suggesting that higher fluvial discharge leads to greater sediment delivery and sediment depo-
sition in the delta.

However, the last 500  years has a much higher sediment accumulation volume than that of the period of 
2.0–1.5 ka, although extreme flooding occurrence is similar for these two periods (Figure 4b). It is well docu-
mented that human activities (e.g., land use/land cover change and river engineering) can alter the relationship 
between fluvial discharge and sediment load (Yang et al., 2015). In the pre-industrial era, deforestation, which has 
been linked to demand for food and fuel under population growth (Woodbridge et al., 2014), led to greater runoff 
generation as well as soil erosion (Gentry & Lopez-Parodi, 1980). Enhanced soil erosion can lead to the siltation 
of river channels and promote flooding, which calls for leveeing for flood control. In a cascade, this can lead to 
enhanced downstream sediment transport (Figure 5) (Wohl et al., 2015; Yin & Li, 2001).

Figure 3.  Variations in sediment accumulation rate for the last 2 ka and their comparison with those pre-2 ka (Wang 
et al., 2018) and 1958–1978 CE (Shen et al., 1983) periods.
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Before the Northern Song Dynasty (960–1127 CE), the population of the Yangtze River's catchment was still 
relatively low (Figure 4e). Within the last 500 years, however, there has been a dramatic increase in the region's 
population reflecting the economic growth of southern China due to the southward shifting of the economic 
center of China since the Southern Song Dynasty (1127–1279 CE) (Han, 2013). The resource demands of popu-
lation growth promoted the expansion of agriculture across the Yangtze River catchment with deforestation on 
steeper hillslopes and the mountain regions (Han, 2013). At the same time, the introduction of American crops 
during the Ming Dynasty (1368–1644 CE) (Ho, 1955), especially sweet potatoes, eased the pressure for food 
production, but also promoted soil erosion. As a result, local chronicles have recorded the rapid emergence of 
in-channel bars and floodplain development in the middle reach of the Yangtze Rivers in the Ming and Qing 
Dynasties (1644–1911 CE), which promoted land reclamation along the rivers and floodplain lakes (Lu, 2016). 
Sediment crevasse outlets along the Yangtze River and its tributaries were blocked for flood control of such land 
(Yin & Li, 2001) and consequently, sediments previously deposited as crevasse splay, were less likely to be trans-
ferred to the floodplain (Wohl et al., 2015). Hence, sediment loads significantly increased in the river channel and 
were more likely to be transported downstream into the delta (Figure 5).

Figure 4.  Trends in sediment accumulation rate (a), flood occurrence (b and c), temperature (d), and population variations 
in the Yangtze River catchment (e) during the last 2000 years a, This study. b, Extreme floods/drought occurrence in 50-year 
intervals in the Yangtze-Huaihe Region (Zheng et al., 2014). c, Frequency of rockfish emergences in the Yangtze River since 
951 CE (Qin et al., 2020). d, Winter half-year temperature anomalies (black line) with a five-point smoothing (magenta line) 
in East-Central China (Ge et al., 2003). e, Population variations (Data compiled from Zhang (2000) and National Bureau 
of Statistics of China (1953–2000)). The red and gray bands mark the Medieval Climate Anomaly and Little Ice Age, 
respectively.
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The interplay of a greater population, enhanced river channel manipulation, and wetter climate conditions is 
therefore probably responsible for the dramatic sediment deposition levels in the delta within the last 500 years. It 
should be noted, however, that, in addition to fluvial sediment from the Yangtze River, sediment discharged into 
the Yellow Sea via the former course of the Yellow River (1128–1855 CE) and transported by coastal currents 
southward also contributed to the growth of the YRD over the last millennium, with a pronounced contribution 
over the last 0.6–0.4 ka (Liu et al., 2010; Shang et al., 2021; Wang et al., 2020; Zhang, 1984). The shift in the 
course of the Yellow River was also caused by human-caused avulsion due to war at the end of the Northern Song 
Dynasty (Storozum et al., 2018).

Globally, accelerated delta growth in the last 500 years has been found in deltas in the Mediterranean Sea (Maselli 
& Trincardi, 2013), the Godavari delta (Nageswara Rao et al., 2015) in the Indian Ocean, and the Mekong delta 
(Tamura et al., 2020) in the South China Sea. Investigation of the largest southern European deltas showed that 
delta outbuilding peaked during the LIA in addition to growth during the mild climatic conditions of the Roman 
Empire (350 BCE–250 CE) (Maselli & Trincardi, 2013). The land area of the Godavari delta in India has aver-
aged 225–301 km 2 during the last 2000–500 years, but increased by 2–3 times (∼632 km 2) over the last 500 years 
(Nageswara Rao et al., 2015). The muddy deltaic protrusion at Camau within the Mekong delta had an accumu-
lation rate of less than 1 km 2/a before 600 CE, but increased significantly to 4 km 2/a during the last 600 years 
(Tamura et al., 2020). Although the climatic background is different in these regions (Giosan et al., 2017; Maselli 
& Trincardi, 2013; Tamura et al., 2020), the increase in population and intensification in agriculture has been 
proposed as an explanation of the enhanced sediment loads. Our results are consistent with the viewpoint of 
human dominance over climate drivers in the last 0.5 ka.

4.3.  Future Delta Management

The gauged sediment load at Datong Hydrological Station (Figure 1a) in the lower Yangtze River is conventionally 
used to represent the river's sediment flux. It shows higher values before the 1980s due to intensive deforestation 
in the river's catchment (average 469 Mt/yr for the period 1958–1978 CE), but declining values toward the present 

Figure 5.  A sketch visualizing the effects of human activities on sediment production and delivery to the delta. (a) 
Pre-0.5 ka, (b) post-0.5 ka.
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due to the implementation of soil conservation strategies and tributary damming since the 1980s (Figure 6a) 
(Yang et al., 2014). The relatively stable fluvial discharge and precipitation over the last 70 years (Figures 6b 
and 6c) under recent climate warming (Figure 6d) further demonstrates that sediment discharge is strongly influ-
enced by human activities. Significantly, human population growth over the Industrial Era (Figure 6e) has not 
led to an increased sediment discharge as in the LIA (Figure 4a), which reflects the contrasting impacts of river 
damming versus catchment deforestation on sediment discharge. In a sense, the recent decline in the fluvial sedi-
ment load is reversing the pre-1980s sediment load increase caused by catchment deforestation.

Under the present warming trend, future fluvial discharge in the Yangtze River is still uncertain due to the nonlin-
earity between fluvial discharge and global climate trends (Zhang et al., 2018). However, geological evidence 
and historical documents suggest that a warming climate will result in lower rainfall in the Yangtze River basin 
as the rain belt in East Asia shifts further northward (Zhou et al., 2011). Recent modeling also demonstrates that 
the fluvial discharge of the Yangtze River will decrease with global warming of less than 1.1°C, but this trend 
will be reversed beyond a 1.1°C threshold (Zhang et al., 2018). The recent warming trend in the first decade of 

Figure 6.  Sediment load and fluvial discharge at Datong Hydrological Station on the Yangtze River (a and b) (Bulletin of 
Yangtze River Sediment, 1950–2010), precipitation and temperature in the Yangtze River basin (c and d) (Guo et al., 2018) 
and population change in the Yangtze River basin (e) (National Bureau of Statistics of China, 1953–2010). Arrows highlight 
recent trends in the curves during 2000–2010.
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the 21st century seems to be matched by declining rainfall levels (Figure 6c). If the current warming period has a 
climate similar to that of MCA, then it is quite likely that sediment deposition volumes will decrease. In combi-
nation with further reductions in sediment load due to channel damming and catchment soil conservation, the 
delta will face an even more severe deficit of sediment supply and higher risk of coastline erosion than anticipated 
from former studies (e.g., Yang et al., 2014). This study is therefore relevant to environmental management and 
the challenges of sustainable development in the Yangtze River and other, particularly densely populated, delta 
locations. Concerns over future delta growth should consider not only recent changes in fluvial sediment load, for 
example, over the last few decades, but also the longer-term legacy of environmental processes.

Data Availability Statement
The data set is available on the repository Figshare (https://doi.org/10.6084/m9.figshare.14406638).
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