Hindawi

Scientific Programming

Volume 2022, Article ID 7465640, 9 pages
https://doi.org/10.1155/2022/7465640

Research Article

Privacy Shield: A System for Edge Computing using Asynchronous

Federated Learning

Adnan Khalid ®,! Zeeshan Aziz,>2 and Mohamad Syazli Fathi®

'Department of Computer Science and Information Technology, The University of Lahore, Lahore, Pakistan
2School of Science, Engineering and Environment Maxwell Building, University of Salford, Manchester, UK
*Universiti Teknologi Malaysia, Razak Faculty of Technology and Informatics, Jalan Sultan Yahya Petra,

Kuala Lumpur, Malaysia

Correspondence should be addressed to Adnan Khalid; adnan.khalid@gcu.edu.pk

Received 23 March 2022; Revised 27 April 2022; Accepted 7 May 2022; Published 12 July 2022

Academic Editor: Sikandar Ali

Copyright © 2022 Adnan Khalid et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Due to increase in IoT devices, the data produced every day are also increasing rapidly. The growth in data means more processing
and more computations are required without delay. This introduced us to a new horizon of the computing infrastructure, i.e., edge
computing. Edge computing gained prominence as a solution to the problem of delayed transmission, processing, and response by
the cloud architecture. It was further augmented with the field of artificial intelligence. It has become a topic in research with
preservation of data privacy as the focal point. This paper provides Privacy Shield, a system for edge computing using asyn-
chronous federated learning, where multiple edge nodes perform federated learning while keeping their private data hidden from
one another. Contrary to the pre-existing distributed learning, the suggested system reduces the calls between the edge nodes and
the main server during the training process ensuring that there is no negative impact on the accuracy of the mode. We used
different values of Q) that affect the accuracy and the compression ratio. In the interval of Q= [0.2, 0.4], the C-ratio increases and
the value of Q) and the compression ratio value are directly proportional regardless of the fluctuations. We analyzed the accuracy of
the model which increases along with the increase in compression ratio. Compressing the gradient communications reduces the
likelihood of the data of being attacked. As the nodes train asynchronously on limited and different kinds of samples, the binary
weights adjustment method was used to handle the resulting “unbalanced” learning. The MNIST and Cifar10 dataset were used for
testing in both tasks, respectively.

1. Introduction

IoT plays a significant role in our day-to-day life and has
greatly impacted the efficiency of the business world. IoT is
responsible for generating an enormous amount of data
which the companies store in their cloud-based server. This
is where the necessary processing of the data takes place
and effective inference models are extracted. The Internet
giants collect myriads of training corpora from the client
side to implement deep neural network. The indisputable
extensive usage of deep learning, however, has some
downsides.

Furthermore, the cloud-based approach cannot handle the
bulk of data produced by the IoT devices which results in a

slowdown in data processing and transmission bottleneck.
This can be hazardous specifically to time-critical applications.

To combat the challenges mentioned above, we have
proposed Privacy Shield, a system for edge computing using
asynchronous federated learning that addresses the real-time
learning of data from multiple sources without unveiling
their own private information. Our method, as compared to
the customary distributed learning, makes sure that the
accuracy of each party’s local model is impeccable. Every
node trains autonomously on a local set of data. For higher
accuracy of the models, models extracted by the participants
are used for the purpose of optimizing parametric quantities
of the global general model.

Our suggestions in this paper are itemized below:

mailto:adnan.khalid@gcu.edu.pk
https://orcid.org/0000-0001-9880-5429
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7465640

(1) We offer an apt asynchronous federated learning
system where the collaborative learning across the
autonomous vertices, takes place except that there is
no sharing of private information.

(2) We devise and improvise an algorithmic program,
the gradient compression algorithm. It compresses
the gradient communications and minimizes the
possibility of interception.

(3) We resolve the problem of deterioration of perfor-
mance due to asynchronous learning of the edge
nodes by designing, proposing, and validating a
method called binary weights adjustment method.

The remaining part of this paper is structured as follows:
Section 1 gives a concise introduction of our work. Section 2
presents the already available solutions for federated learning.
Section 3 shows the core structure of the proposed system,
comprising two parts: gradient compression by a self-adjusting
threshold and asynchronous federated machine learning using
binary weights adjustment. It continues to elaborate the gra-
dient compression by a self-adjusting threshold, and examines
its test-free apparatus. It further suggests a binary weights
adjustment method for asynchronous federated machine
learning. Section 4 illustrates the experiment of our proposed
methods. Section 5 concludes our work.

2. Related Work

Basically, federated learning is a decentralized learning
approach which enables the training data to be stored on end
devices where the learners’ (nodes) local updates are ag-
gregated by a shared general model. Additionally, the self-
reliant nodes ensure data integrity. The distributed archi-
tecture of blockchain can aid even the federated learning
global server to become decentralized in nature, thereby,
eliminating any points of malfunction or failure problems.
Furthermore, it can also resolve the issues involving the
security of the global server [1-6].

Nonetheless, our focus here is on the traditional federated
learning. Most of the successful work performed on federated
learning such as the McMahen’s federated average algorithm
[7] and security aggregation [8], have used synchronous
training. Implementation of federated learning in vehicle-to-
vehicle communication [9] and in medical applications [10]
also falls under the category of synchronous learning. Security
in federated learning such as security aggregation [8] requires
device-level operations for synchronization, so it technically
falls in the category of synchronous training.

To minimize the problems of communication bottle-
necks, various methods have been proposed. Gradient
quantization and sparseization are one of the prominent
ones. Gradient quantization significantly cuts down the
communication bandwidth cost. In conventional speech
applications, the 1bit Stochastic Gradient Descent (SGD)
[11] scales down the size of the gradient transmission data to
attain ten times more speed while TernGrad [12] uses a 3-
level gradient on CNN and QSGD.

Both of these methods clearly illustrate the convergence of
quantitative training. Gradient sparseness compresses the

Scientific Programming

gradient communication to reduce network pressure. What
strikes initially is periodically omitting some of the gradient
interactions [13]. Dryden et al. [14] chose a predefined ratio of
positive and negative gradients, respectively. Chen et al. [15]
came up with a mathematical model that adjusted the com-
pression ratio all by itself in accordance with the local gradient
activity and achieved 200 times the compression and 40 times
the compression for the fully connected layer and for the
convolution layer respectively. In addition to this, it achieved
top-1 accuracy which is trivial in the ImageNet dataset.
However, disregarding the information of real-time gradients
and compressing communications in accordance with the
predefined ratio or an interval can have a negative impact on
the training process. Strom [16] made use of thresholds to
achieve gradient sparseness by only sending gradients that have
a greater value than the predefined fixed threshold. Gradient
dropping [17] made use of a single absolute threshold value to
sparse the gradient matrix and saves 99% of gradient swaps
resulting in a 0.3% loss of BLEU during the machine translation
procedures.

However, the tricky part is choosing the accurate
threshold value. One “perfect” fixed threshold may be an
ideal choice for a particular scenario, but the very same
threshold may be the worst choice for another. Furthermore,
as the selection of a threshold is time-consuming, it is in-
efficient for scenarios that require swift response.

At the moment, the Lazily Aggregated Gradient (LAG)
[18] seems appropriate as it is robust for gradient calculation
and for partial gradient communications in order to de-
crease the server pressure and reduce the communication
bandwidth. The fundamental principle is to detect the
gradual change in gradient and then to compress it. Al-
though it is remarkable, it confines the problem of opti-
mization to be obvious and Lipschitz smooth.

Moreover, defining gradient thresholds adversely affects
the scalability of the asynchronous federated learning
framework. Implementation of synchronous learning be-
comes an arduous task if the learning object is pushed to the
edge nodes. Few research studies which have used the
asynchronous learning method, have done so by usingitasa
regularization method [19], and they lack in detailed me-
thodical research. Furthermore, few research studies
[6, 20-22] has addressed this issue and explained different
methodologies in an effective way.

3. Privacy Shield: A System for Edge Computing
using Asynchronous Federated Learning

Federated learning is an additional approach to machine
learning where a shared general predictive model enables the
processing nodes to perform collaborative learning while
keeping the training data at the end devices, thus safeguarding
the private data. A classic mechanism of federated learning
involves a main server and numerous dispersed edge nodes
where every node locally learns from its respective sensitive
data as shown in Figure 1. The function of the server is collect
gradients transmitted to it by every independent learning node.
It then updates the criteria of the predictive model as per the
optimization algorithm, and maintains the global parameters.

Scientific Programming

The participants then download the updated guidelines from
the main server, override their local model parameters, and go
on to the next iteration.

3.1. Gradient Compression by a Self-Adjusting Threshold.
Gradient compression minimizes the number of calls made by
an edge node to the main server. As discussed above, the
gradient contains redundant information. The increase in the
number of edge nodes raises the communication cost expo-
nentially. Moreover, omitting redundant exchanges can lessen
the communication load the main server is under. Further-
more, the gradient data is indicative of the sample information
held secretly by the nodes. Intruders can infer illustrative target
node data by combining the trained global model with the
collected effective gradient information. Gradient compression
gives a boost to the performance of federated learning. It
unburdens the network load as well as reduces the likelihood of
sample privacy breaches. In the prior work [13-17], be it only
including the communication compression ratio or com-
pressing gradient communications based on a predefined
threshold, there are many drawbacks.

3.1.1. Mathematical Derivation
Table 1 contains a symbolic representation of the formulas
used.

The main server communicates with E learning edge
node to update of the parameters of the global model.

In the ith iteration, the main server transmits the current
model ©"V to all the nodes where each learning edge node
e € E calculates ye_l(a)i) and sends it to the main server. The
server then gathers the gradients from all the participating
nodes and updates the parameters of the model by
recapitulating the gradient descent algorithm.

By (1)

where B is the learning rate and yE™" is the aggregation
gradient, which represents a round of variation of the model.

By using the Lazily Aggregated Gradient (LAG) [12], we
reduced the communication bandwidth strain, i.e., the main
server communicates with the nodes which satisfy the
threshold called the “Hard Work” nodes (Eg) and not with
the “Lazy” ones (E;) that do not. Thus, the total number of
nodes in the network are

E=E, +Ey,. (2)

The lazy nodes accumulate the gradient locally till it
surpasses the threshold. So, y%! becomes

Ve =Yg + V- (3)
Let E; satisfy the inequality given below:
"YEL Hy “ (4)
er e ’

where e is the total number of nodes in set E and e; is the
total number of nodes in set E;.
By putting value of y;;! from (1) in (3), we get

n

i1
| < ghed 7T 5)
where [[yz; | =[|Zecrr y (@)]]*

As per the Inequality of Arithmetic and Geometric

Means, ||y%}||* satisfies equation (5):
A ye() (6)

If the node ecE; satisfies the following conditions,
equation (3) will be applicable'

J7.(

We simplify equation (6) by introducing a proportional
coeflicient) to represent the total number of nodes of the set
E;, that is, e, = Q.. This is because we cannot identify the
total number of e € E; beforehand.

O L k ®

Because of the smooth changes in parameters during the
learning process, w'— ' is estimated as

Z 0 (0" z—l)’ (9)

Z=1

SE 2,

i—1”2

(7)

Yel\W 'l <ﬂ_"w -

ere

where 0, and Z are constant coeflicients, and we choose
0,=1/Z

By putting the value of w' = ™! from (8) in (7), we get
the required expression:

2 <l (0 -

1 wi—z—l)
/32062 z=1

The nodes conduct the self-test operation at the end of
every iteration. Only those nodes will communicate with the
main server which do not satisfy (9). The ones that satisfy it
will accumulate the gradient locally and go on to next it-
eration of learning.

2
(10)

3.1.2. Gradient Compression without Examination. To
mitigate the local computation time, we have included an
apparatus without examination too.

Let I be a set of total epochs, i.e.,

I={I,1,,... 1}, (11)

where the kth variable I keI indicates the possibility of
nodes that directly communicate with the main server after
the kth iteration without undergoing the gradient check. If
and only if I > I', the node can pass up the self-test, where IT
is the default probability threshold.

3.2. Asynchronous Federated Machine Learning by Edge
Network. The proposed system centers around unrestrained
network edge nodes dealing with heterogeneous sources of
data and learn asynchronously. This can result in different
computing power and time for training of a particular task

4 Scientific Programming
pem— AL e
fomesme $ 090000 N "
| |
! e ;
’ ? x .| Sample epochs
,Fv
ol Modd ek’
FIGURE 1: Privacy shield, a system for edge computing using asynchronous federated learning.
TABLE 1: Symbols and their meanings used in the forthcoming formulas.
Symbol Meaning
E The set of edge nodes
S Total number of samples owned by every node
S Node j samples
vk Node j sample weight
yh Parameter weight of node j
0 The parameter of the iy, iteration of the main server
Q, (o) The iy, round gradient calculated by node e as per the iy, iteration parameter
Qp The sum of the iy, round gradient of all nodes in t E

by each node. We propose binary weights adjustment
method to solve these learning problems.

3.2.1. Asynchronous Federated Machine Learning without
Binary Weights Adjustment. The nodes performing fed-
erated learning asynchronously have diverse and het-
erogeneous learning samples and have different learning
state.

In Figure 2, the horizontal line represents the current
time. The total iterations for learning are same for all the
participating nodes. Each node takes its time for training
depending on the external factors.

3.2.2. Binary Weights Adjustment for Asynchronous Feder-
ated Learning. The two weights are as follows: the sample
weight and the parameter weight.

The sample owned by a specific edge node to the total
number of samples of all nodes gives the sample weight.

Let E be the set containing all the nodes.

E={e;, e ..., ,} and

S be the total number of samples.

To get the sample weight of an edge e;, we divide its
number of samples S; by S, i.e.,

i S

Vs = 5’ (12)
where /S is the sample weight of node e; and S=Y" im0 S; 1
the total sample number of n nodes.

The parameter weight is determined the temporal gap
between reception of parameters and transmission of gra-
dients by a node.

This process of downloading and uploading is, in a way, a
recurrent pattern optimize the global parameters.

Status
100%

il
. 60%

Status
20%
Status
0%

The Current Timeline \

I Learning

mrng

Ls\ ning
Node
D

FIGURE 2: Asynchronous federated learning.

The gradients being uploaded have a certain “staleness” to
them. The parameters of the nodes are outdated and inac-
curate. Staleness is the processing power of the nodes, i.e.,

A =1 - Idownload' (13)

staleness upload

As Figure 3 suggests, staleness is

Agaleness =t +T—t=T. (14)
We selected an exponential function with base less than 1

as the attenuation function of the parameter weights so that
the nodes possessing higher staleness have smaller parameter
weights and their process of weight attenuation becomes

somewhat levelled.where A% . is the staleness of node i and

! :ﬁ(”n slaleness)il_ (15)

B tells the speed of attenuation.

We want the exponential value and the parameter weight
to be inversely proportional when the former is positive,
reducing the interval of f8 to [0, 1].

Scientific Programming

Global
Iteration

*

FIGURE 3: Parameter staleness.

Obviously, larger the 8 in the interval [0, 1], the more
eventual the decline of the result of the calculation. For this
reason, we chose $=0.9.

The binary weights adjustment formula is given by

w! = w*yis * y;, (16)

where w is the original parameter of model and o' is the
adjusted parameter of model.

Figure 4 clearly shows the asynchronous federated
learning in the proposed system. It is an iterative process
where prior the optimization of the global model occurs, and
the gradient uploaded to the main server by an edge node
undergoes the binary weights adjustment. The adjusted
gradients then update the global parameters in accordance
with the specific optimization algorithm after which the
nodes override their local parameters by downloading the
updated parameters.

4. Experiment

4.1. Experimental Setup. We conducted our study in an
environment thusly controlled. We chose a GPU server with a
high processing power acted as the main server, several
personal computers, each with different computing power,
played the role of learning network edges and each performed
federated learning and stored data independently and locally.
The process of uploading gradients and downloading updated
parameters was based on the Thrift framework.

Each node’s data took a fraction of the total data, i.e.,
0.2% and trained its neural network model on its own private
data. Due to different processing time taken by every
computer, we added breaks after each epoch.

An administrative node controlled the federated learn-
ing systems of each learning nodes.

Initially, the administrator node produces a shuffled
series of order as per the total number of nodes (such as 2, 3,
9, ..., 6 in Figure 5), and produced the corresponding
random series of interval (as 15.70, 45.96, 62.47, ..., 325.12
in Figure 5). Order is the starting order of the nodes while
the interval is the time difference between two adjoining
epochs. After initialization, the administrator node started
the selected learning node in accordance with the generated
order: interval sequence pair.

4.2. Experimental Parameters. We chose three experimental
indices for evaluation: compression ratio (C-ratio), accuracy
(Accr), and compression balance index (CBI).

Main Server

Global Model

Optimization

Global
Parameters

Awl, Aw2,.

Parametric
Weights

£ SampleWeights f—g—a
| bt
v | ¢ 1
Aol | lm] Aw2 | w2 w3l a3 | 7] wa
| v v
E E : = I =
—di— e e [E——
Node A Node B Node C Node D

FIGURE 4: A detailed view of the asynchronous federal learning in
the proposed system.

Administrator
Node

f—

NodeA | Node B NodeC || Node M

f— — — —

Gradients f

Order:
interval

Main Server

F1GURE 5: Experiment setup.

Accr is the measure of the performance of classification
performed by the model, which is described below:

The number of samples classified correctly

100. 17
The number of total samples * (17

C-ratio is the measure of the gradient compression. So,
the smaller the C-ratio value is, the higher is the measure of
compression, described below:

Number of calls after compression

100. 18
Number of calls before compression * (18)

Accr decreases with the decrease in C-ratio making
the decision hard to make. So, CBI represents the details
of performance of gradient compression, described
below:

CBI = ¢, * ACCR + ¢, * (1 - C - Ratio), (19)

where ¢, and ¢, are adjustable parameters to determine the
precedence of Accr and C-ratio, ¢; + ¢, = 1,¢4,¢, > 0.

If the precedence of Accr is greater than the C-ratio, then
1> ¢, else, ¢; < c,. If both have the same precedence, then,
¢, = ¢,. The performance of the gradient compression bet-
ters if the CBI value is high.

6 Scientific Programming
TABLE 2: Measure of compression and accuracy for varying values of Q.
Q Average communication times after compression Accr for training set (%) Accr for test set (%) C-ratio (%)
0.2 30 93.68 91.98 6.33
0.4 428 95.4 92.4 71.3
0.6 540 95.3 92.5 90
0.8 566 95.34 92.52 94.3
0.10 580 95.46 92.52 96.7
0.12 585 95.44 92.44 97.5
0.14 585 95.45 92.4 98.83
0.16 593 95.31 92.35 98.83
0.18 594 95.41 92.42 99
1 600 95.41 92.41 100
0.960 - 0.94 -
0.955 A
g < ¢
2 0950 - £ 093 4
2 3
<
5 0.945 4 -
[95) L
: % | AP AR
= =I's)
0.940 - 5 0924
E &
= 0935 -
0.930 T T T T '~ 0.91 T T T T T —F—
0.20 0.24 0.28 032 036 0.40 1.00 020 0.24 0.28 0.32 036 0.40 1.00

Q
()

Q
(®)

FIGURE 6: (a) Training set accuracy with varying values of Q. (b) Testing set accuracy with varying values of Q.

4.3. Experiment for Gradient Compression by a Self-Adjusting
Threshold. We judged the performance of gradient com-
pression of our system by using a handwritten image dataset,
MNIST, with 60,000 samples for training and 10,000 sam-
ples for testing. We further normalized images to a 32 x 32
format for the purpose of making the handwritten number
appear at the center of the image.

We used three training edge nodes. The model used was a
three-layered multiperceptron, and the number of neurons in
each layer was 256 in the input layer, 256 in the hidden layer,
and 10 in the output layer. The dataset was spliced equally into
three portions, and the learning nodes arbitrarily got one of
them. In each conducted experiment, the nodes were given
new data to work with. We made sure to test different
hyperparameters Q and averaged the end results.

We did not make noticeable changes neither to the
structure of the model nor to the algorithms of optimization.
Consequently, when we compare the results of training set
and the test set, we can see that overfitting occurs in the
model. Furthermore, the three indices for evaluation were
used to compare the performance of each method only and
disregarded the strengths and weaknesses of the model. Our
system can be enhanced by adjusting the model structure to
resolve a variety of other learning.

4.3.1. Analysis of Gradient Compression Experiment in Terms
of Accr and C-ratio. Table 2 contains different values of Q)

that affect the accuracy and the compression ratio. Ap-
parently, in the interval of Q=[0.2, 0.4], the C-ratio in-
creases noticeably, whereas during the interval Q =[0.4, 1], it
does not increase that much.

The value of Q and the compression ratio value are
directly proportional. Regardless of the fluctuations, it is
clear that the accuracy of the model increases along with
the increase in compression ratio as shown in Figure 6,
i.e.,, the bold lines clearly suggest that in intervals
Q=[0.14, 1] and Q=[0.14, 1] of Figures 6(a) and 6(b),
respectively, that the gradient compression has negligible
effect on the accuracy. Although, irregularities do exist in
the result but the reason for this is that the model has
achieved maximum learning. In this case, the redundant
gradient communications are certainly unhelpful for
such a model. So gradient compressions ensure efficiency
of performance, i.e.,, C-ratio increases as () increases
because both of them are directly proportional as shown
in Figure 7.

4.3.2. Analysis of Gradient Compression Experiment in terms
of CBI. We computed the value of CBI in the interval
Q0 =[0.2, 0.4]. The optimal value of Q in our experiment
turned out to be () =0.2.

We compared the performance of gradient compression
in Privacy Shield with LAG algorithm [18] as shown in
Table 3.

Scientific Programming 7
600 - /
& 5004
<
s
s g 400 A
£ 2
2 £ 300 -
Q
g
£ 3 200 A
=
g O
£ 100
O
0 4
T T T T T
0.20 0.24 0.28 0.32 036 0.40 1.00
Q
Figure 7: Communication times for different values of Q.
TaBLE 3: Performance of the proposed system and LAG for different values of Q.
)) Privacy shield
Compression algorithm Q LAG
0.2 0.22
Accr (training set) 93.68% 94.23% 89.9%
Accr (test set) 91.98% 92.35% 89.13%
C-ratio 6.33% 8.77% 5.11%
CBI (¢, =0.8, ¢, =0.12) 0.9333 0.9206 0.9274
CBI (¢, =0.10, ¢, =0.10) 0.9325 0.9226 0.922
CBI (¢;=0.12, ¢, =0.8) 0.9316 0.9247 0.9167
71 0.693 0.653 0.642
. 5L 04809 04794 4773
X 7
£ % 4
< 3 4
£ 54 =
- :
oo
gt £37
g g
g 3
— 3 L 7]
g 51 2
= S
£ 51T
2 1+ <

Privacy Asynchronous Synchronous
Shield

(a)

Privacy Asynchronous Synchronous
Shield

(b

FIGURE 8: (a) Asynchronous federated learning performance on the training set. (b) Asynchronous federated learning performance on the

test set.

4.4. Experiment for Asynchronous Federated Learning.
The dataset used for the asynchronous learning was Cifar10
which consists of 50,000 training 32 x 32 color images and
10,000 32 x 32 color test images of 10 classes. We sectioned
the training set into 500 parts. The learning nodes arbitrarily
chose one of the parts, before the start of every experiment,
as their local learning data. The total number of nodes was
10.

We used a five-layered convolutional network model the
code of which is on the official website of Tensorflow.

In asynchronous federated learning trained network
models on the edges are not as stable as the ones trained by
the main server. So, we reduced the number of epochs for
training to 500 and added breaks at the end of every learning
epoch. But accuracy of the model suffered due to this re-
duction which can be improved by optimization or by using
other means. Keep in mind that the experiment needs to be
configured according to the specific problems.

The values of the hyperparameter in this experiment are
arbitrary. We selected ten distinct sets of hyperparameters in

a randomized manner for comparing the synchronous
learning, asynchronous learning, and Privacy Shield on the
training set, i.e., no breaks during training, breaks during
training, and breaks during training with the binary weights
adjustment.

The bar graphs in Figures 8(a) and 8(b) reveal the
performance of the ten chosen nodes under five different
hyperparameter sets for both the training set and the test set.

5. Summary

This paper proposes a system, Privacy Shield, a system for
edge computing using asynchronous federated learning, for
the purpose of learning data from multiple sources while
ensuring privacy protection. The core modules of the pro-
posed system are: gradient compression by a self-adjusting
threshold and asynchronous federated machine learning
using binary weights adjustment. The former is responsible
for reducing the gradient communications according to a
fixed threshold. We used the handwritten image dataset
known as MNIST for testing the performance of gradient
compression of our proposed system. We used different
values of Q that affect the accuracy and the compression
ratio. In the interval of) =[0.2, 0.4], the C-ratio increases
and the value of Q and the compression ratio value are
directly proportional regardless of the fluctuations. We
analyzed the accuracy of the model which increases along
with the increase in compression ratio. Compressing the
gradient communications reduces the likelihood of the data
of being attacked. As the nodes train asynchronously on
limited and different kinds of samples, the binary weights
adjustment method was used to handle the resulting “un-
balanced” learning. The dataset used for the asynchronous
learning was Cifar10 and the efficiency of asynchronous
federated learning reveals some major circumstances, like as
trained network models on the edges are not as stable as the
ones trained by the main server. So, we reduced the number
of epochs for training to 500 and added breaks at the end of
every learning epoch. However, accuracy of the model
suffered due to this reduction which can be improved by
optimization [23].

Data Availability

The data used in this research will be available upon request
from the corresponding author.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

References

[1] Y. Kim and C. Hong, “Blockchain-based node-aware dynamic
weighting methods for improving federated learning per-
formance,” in Proceedings of the 20th Asia-Pacific Network
Operations and Management Symposium, pp. 1-4, Matsue,
Japan, September 2019.

[2] D. Conway-Jones, T. Tuor, S. Wang, and K. K. Leung,
“Demonstration of Federated Learning in a Resource-

(3]

(4]

[5

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

Scientific Programming

Constrained Networked Environment,” in Proceedings of the
IEEE International Conference on Smart Computing,
pp. 484-486, Washington, DC, USA, June2019.

U. Majeed and C. Hoong, “Federated Learning via MECen-
abled Blockchain Network,” in Proceedings of the 20th
AsiaPacific Network Operations And Management Sympo-
sium, pp. 1-4, Matsue, Japan, September 2019.

Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep
gradient compression: reducing the communication band-
width for distributed training,” 2017, https://arxiv.org/abs/
1712.01887.

J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo, “DeepChain:
auditable and privacy-preserving deep learning with block-
chain-based incentive,” IEEE Transactions on Dependable and
Secure Computing, vol. 18, p. 1, 2019.

M. Arif and T. Mahmood, “Cloud computing and its envi-
ronmental effects international journal of grid and distributed
computing cloud computing and its environmental effects,”
vol. 8, no. 1, pp. 279-286, 2015.

C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho,
M. J. Morrow, and P. A. Polakos, “A comprehensive survey on
fog computing: state-of-the-art and research challenges,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 1,
pp. 416-464, 2018.

K. Bonawitz and V. B. A. H. B. S. D. A. K. Ivanov, “Practical
secure aggregation for privacy-preserving machine learning,”
in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1175-1191,
Dallas Texas, USA, October 2017.

S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Fed-
erated learning for ultrareliable low-latency V2V communi-
cations,” in Proceedings of the GLOBECOM IEEE Global
Communications Conference, Abu Dhabi, United Arab
Emirates, December2018.

T.S. Brisimiand R. T. A.I. C. W. Chen, “Federated learning of
predictive models from federated Electronic Health Records,”
International Journal of Medical Informatics, vol. 112, no. 1,
pp. 59-67, 2018.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit Stochastic
Gradient Descent and its Application to Data-Parallel Dis-
tributed Training of Speech DNNSs,” in Proceedings of the
Interspeech 2014, 15th Annual Conference of the International
Speech Communication Association, pp. 1058-1062, Singa-
pore, September 2014.

W. Wen, C. Xu, F. Yan et al., “Terngrad: ternary gradients to
reduce communication in distributed deep learning,” Ad-
vances in Neural Information Processing Systems, vol. 30, 2017.
S. Wang, T. Tuor, T. Salonidis et al., “Adaptive federated
learning in resource constrained edge computing systems,”
IEEE Journal on Selected Areas in Communications, vol. 37,
no. 6, 1221 pages, 2019.

N. Dryden, T. Moon, S. A. Jacobs, and B. Van Essen,
“Communication Quantization for Data-Parallel Training of
Deep Neural networks,” in Proceedings of the 2nd Workshop
on Machine Learning in HPC Environments, Salt Lake City,
UT, USA, November 2016.

C. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, and
K. Gopalakrishnan, “Adacomp: Adaptive Residual Gradient
Compression for Data-Parallel Distributed Training,” vol. 32,
2017.

N. Strom, “Scalable distributed DNN training using com-
modity GPU cloud computing,” in Proceedings of the
INTERSPEECH 2015 16th Annual Conference Of the

https://arxiv.org/abs/1712.01887
https://arxiv.org/abs/1712.01887

Scientific Programming

(17]

(18]

(19]

[20]

(21]

[22]

(23]

International Speech Communication Association, pp. 1488—
1492, Dresden, Germany, 2015.

A. Aji and K. Heafield, “parse Communication for Distributed
Gradient Descent,” in S, https://arxiv.org/abs/1704.05021, 2017.
T. Chen, G. Giannakis, T. Sun, and W. Yin, “LAG: Lazily ag-
gregated gradient for communication efficient distributed
learning,” Advances in Neural Information Processing Systems,
vol. 31, 2018.

R. Shokri and V. Shmatikov, “Privacy-preserving deep
learning,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pp. 1310-1321,
Denver, USA, October 2015.

M. Arif, F. Ajesh, S. Shamsudheen, and M. Shahzad, “Secure
and Energy-Efficient Computational Offloading Using LSTM
in Mobile Edge Computing,” Security And Communication
Networks, vol. 2022, Article ID 4937588, 13 pages, 2022.

M. Arif and F. Zaffar, “Challenges in efficient Data ware-
housing,” International Journal of Grid and Distributed
Computing, vol. 8, no. 2, pp. 37-48, 2015.

Z. Jie, S. Chen, J. Lai, M. Arif, and Z. He, “Personalized
Federated Recommendation System with Historical Param-
eter clustering,” Journal Of Ambient Intelligence And Hu-
manized Computing, pp. 1-11, 2022.

X. Lu, Y. Liao, P. Lio, and P. Hui, “Privacy-preserving
asynchronous federated learning mechanism for edge net-
work computing,” IEEE Access, vol. 8, pp. 48970-48981, 2020.

https://arxiv.org/abs/1704.05021

