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ABSTRACT 

Cerebrospinal fluid (CSF) is a symmetric flow transport that surrounds brain and central nervous 

system (CNS). Hydrocephalus is an asymmetric and unusual cerebrospinal fluid flow in the lateral 

ventricular portions. This dumping impact enhances the elasticity over the ventricle wall. Henceforth, 

compression change influences the force of brain tissues.  Mathematical models of transport in the 

hydrocephalus which constitutes an excess of fluid in the cavities deep within the brain, enable a 

better perspective of how this condition contributes to disturbances of the cerebrospinal fluid (CSF) 

flow in the hollow places of the brain. Recent approaches to brain phase spaces reinforce the foremost 

role of symmetries and energy requirements in the assessment of nervous activity. Thermophysical 

and mass transfer effects are therefore addressed in the present article to quantify the transport 

phenomena in pulsatile hydrocephalus CSF transport with oscillating pressure variations that 

characterize general neurological activity and transitions from one functional state to another. A new 

mathematical model is developed which includes porous media drag for brain tissue and solutal 

diffusion (concentration) effects. A classical Laplace transform method is deployed to solve the 

dimensionless model derived with appropriate boundary conditions. The analysis reveals that with 

increasing permeability of the subarachnoid space, the CSF velocity is increased, and a significant 

fluid flux enhancement arises through the brain parenchyma as the pressure of the fluid escalates 

drastically due to hydrocephalus disorder. Stronger thermal buoyancy (Grashof number) also results 

in deceleration in the flow. CSF temperature is reduced with progression in time. Particle (e. g. ion) 

concentration is suppressed with increasing Schmidt number. As heat conduction parameter increases 

there is a substantial depletion in CSF velocity with respect to time. Increasing Womersley parameter 
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displaces the CSF velocity peaks and troughs. The present effects are beneficial in determining the 

thermo-fluidic transport mechanism of the pathological disorder hydrocephalus. Also, the present 

results are compared with those clinical studies for some cases. we have confirmed that our validity 

provides a decent justification with the neurological studies. 

KEYWORDS: Cerebrospinal fluid, heat transfer, Pulsatile inlet velocity, Brain Parenchyma, oscillating pressure, 

Laplace transforms, Hydrocephalus, Grashof number, Schmidt number. 

 

NOMENCLATURE 

𝐶𝑆𝐹 ⟼ 𝐶𝑒𝑟𝑒𝑏𝑟𝑜𝑠𝑝𝑖𝑛𝑎𝑙 𝐹𝑙𝑢𝑖𝑑      

𝑢𝑐 , 𝑣𝑐   ⟼ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑓𝑜𝑟 𝐶𝑆𝐹  in 𝑥 and 𝑦 directions 

𝑢𝑐
∗, 𝑣𝑐

∗   ⟼ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑓𝑜𝑟 𝐶𝑆𝐹 𝑓𝑙𝑜𝑤 in 𝑥∗ and 𝑦∗ directions. 

𝐶𝑁𝑆 ⟼ 𝐶𝑒𝑛𝑡𝑎𝑙 𝑛𝑒𝑟𝑣𝑜𝑢𝑠 𝑠𝑦𝑠𝑡𝑒𝑚      

𝐼𝐶𝑃 ⟼ 𝐼𝑛𝑡𝑟𝑎𝑐𝑟𝑎𝑛𝑖𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

𝑆𝐴𝑆 ⟼ 𝑆𝑢𝑏𝑎𝑟𝑎𝑐ℎ𝑛𝑜𝑖𝑑 𝑆𝑝𝑎𝑐𝑒 

𝜌 ⟼ 𝑓𝑙𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

𝜈 ⟼ 𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 

𝑘𝑚 ∗⟼ 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑡𝑦 𝑜𝑓 𝑝𝑜𝑟𝑜𝑢𝑠 𝑙𝑎𝑦𝑒𝑟 (𝑝𝑖𝑎 𝑚𝑎𝑡𝑒𝑟)  

𝑈0  ⟼ Characteristic velocity 

𝛼2 ⟼ 𝑊𝑜𝑚𝑒𝑟𝑠𝑒𝑙𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 

𝜆 ⟼ 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

𝑐𝑝   ⟼ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡  𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑎𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  

𝑇𝑤  ⟼ Wall temperature of pia mater     

𝐶𝑤  ⟼ Wall concentration of CSF flow     

𝑇  ⟼ 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 temperature of CSF flow     

𝐶0  ⟼ 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 concentration of CSF flow    

 𝑅𝑒 ⟼ 𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑁𝑢𝑚𝑏𝑒𝑟  

𝐽 ⟼ 𝐻𝑒𝑎𝑡 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

 𝑘 ⟼  𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 

 𝐾𝑇 ↦ 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜     

𝑡 ⟼ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑡𝑖𝑚𝑒  

𝜎2   ⟼ 𝑃𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 
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𝑔 ⟼ 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑒 𝑡𝑜 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 

𝐺𝑐 ⟼ 𝐺𝑟𝑎𝑠ℎ𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑜𝑟 𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 

𝐺𝑟 ⟼ 𝐺𝑟𝑎𝑠ℎ𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑜𝑟 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 

𝑃𝑟 ⟼ 𝑃𝑟𝑎𝑛𝑑𝑡𝑙  𝑛𝑢𝑚𝑏𝑒𝑟 

𝑅 ⟼ 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑓𝑙𝑜𝑤 

𝑁 ⟼ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑓𝑙𝑜𝑤 

𝑆𝑐 ⟼  𝑆𝑐ℎ𝑚𝑖𝑑𝑡 𝑛𝑢𝑚𝑏𝑒𝑟  

𝜃𝑐 ⟼ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑   

𝐶 ⟼ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑  

𝑥 𝑎𝑛𝑑 𝑦 ↦  𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 

 

1. INTRODUCTION 

Transport phenomena in the human brain is a growing area of modern biomechanics which features 

multiple criteria including porous media, viscous flow, heat transfer, mass transfer, elasticity etc. In 

the past two decades, fluid dynamics has contributed increasingly to improve clinical understanding 

of cerebral behaviour. An important ailment in brain physiology is congenital hydrocephalus, a 

pathological condition in which the normal flow of the cerebrospinal fluid is disturbed, causing the 

brain to become deformed. This condition constitutes an asymmetric and unusual cerebrospinal fluid 

flow during fetal development. In this condition, the surplus cerebrospinal fluid (CSF) induces elastic 

deformations and compression change, influencing the brain tissues. Mathematical models of 

transport in the hydrocephalus which constitutes an excess of fluid in the cavities deep within the 

brain, enable a better perspective of how this condition contributes to disturbances of the cerebrospinal 

fluid (CSF) flow in the hollow places of the brain. Thermal and pulsating effects are very important 

in cerebrospinal transport. Hydrocephalic patients are growing worldwide and there is a need to 

further elucidate the interaction of thermal, solutal (mass transfer) and hydrodynamic effects to 

develop more effective treatments. Therefore, motivated by exploring in more detail the physiological 

transport in hydrocephalus, which enables a deeper understanding of this condition, it is important to 

simulate the temperature effects on pulsatile hydrocephalus CSF flow and how these influence 

oscillating pressure. To achieve this goal, fluid movement along the subarachnoid space passing 

through the central nervous system requires the pulsatile flow dynamics to include thermal effects ie., 
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thermal conduction and convective heat transfer, in addition to porous media characteristics of the 

brain tissue, mass transfer (solutal) and other phenomena. In recent years a number of investigators 

have explored both experimentally and numerically various thermal and flow aspects of 

hydrocephalus CSF. Hirashima et al.,[1] reported on brain temperature measurements at various 

depths beneath the pial surface in hydrocephalus patients of varying aetiology, noting that temperature 

increased gradually with depth in all patients, with the maximum temperature observed in the 

ventricle. Rajasekaran et al. [2] used a thermal time of flight method to quantify the cerebrospinal 

fluid flow rate in hydrocephalus shunts, by deploying a modified shunt tube system covered with 

artificial skin for thermal behaviour. They recorded velocity and flow rate of the cerebrospinal fluid 

by decoupling the thermal transfer in the measured differential time at two measurement spots and 

also validated a finite element analysis on the fluidic and thermal behaviors of the shunt system. They 

observed good correlation between simulation and measurements in the clinically practical flow rate 

range of 0.5 mm/sec to 1.0 mm/sec. Madsen [3] developed a new non-invasive device (Shunt check) 

to detect cerebrospinal fluid (CSF) flow in a shunt by sensing skin temperature downstream from a 

region of CSF in hydrocephalic patients. They also conducted a statistical analysis (Fisher’s test) on 

100 patients, including 48 evaluated during possible shunt malfunction, of whom 24 went on to 

surgical exploration. Neff [4] conducted noninvasive transcutaneous thermal convection CSF shunt 

flow measurements, developing an approach which improves on brain imaging and radionuclide shunt 

studies.  Herbowski and Gurgul [5] conducted experiments based on a thermodynamic approach to 

study cerebrospinal fluid circulation, using skin temperature measurement differences between the 

frontal and lumbar spinal regions. They emphasized that temperature difference between both ends of 

the subarachnoid space in the intracranial and the intracanal compartments may induce natural 

circulation of cerebrospinal fluid to attain a thermal equilibrium and the Brownian motions are the 

driving forces for the upward cerebrospinal fluid bulk flow, whereas gravity is the driving force for 

the downward cerebrospinal fluid bulk flow. Other studies of brain transport phenomena have utilized 

thermodynamic (entropy) approaches including Déli and Kisvárday [6] who simulated the brain as a 

thermodynamic cycle of perception that can be modeled by the Carnot engine. They showed that 

different entropy levels are relatable to different emotional states in the brain. Donnelly and Czosnyka 

[7] also analyzed the brain as a thermodynamic system, showing that blood flow acts effectively as a 

cooler for the brain. They also considered cerebral blood flow and volume, intracranial pressure and 

other aspects from a thermal view point, noting that blood is cooler normally than the cerebrum tissue 

temperature, and outflowing venous blood is typically hotter than the blood vessel but cooler than the 
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neural tissue. Zakharov and Sadovsky[8] developed a non-equilibrium second law (entropy) 

thermodynamic model for the role of circulating blood in temperature control in homeothermic 

creatures. Their model produced a direct relationship between skin and climate temperatures. 

Gholampour et al. [9] presented 3-D hydro-elastic numerical simulations of the interaction of 

cerebrospinal fluid (CSF) and cerebrum tissue in hydrocephalus patients, both before and after 

shunting. It was noted that CSF mean pressure and pressure amplitude (for non-communicating 

hydrocephalus) are both several times greater at least in hydrocephalus patients compared with 

healthy subjects.  Keong et al. [10] deployed diffusion tensor imaging (DTI) to determine the 

topography and reversibility of white matter injury in normal pressure hydrocephalus (NPH) pre- and 

early after shunting.  McAllister et al. [11] emphasized a number of critical areas for further research 

into hydrocephalus patients including causes (absorption, production, and related drug therapies), 

macromolecular (mass) transport mechanisms, thermal effects, biomechanical changes in 

hydrocephalus and age-dependent mechanisms in the development of hydrocephalus. Smillie et al. 

[12] presented numerical simulations of poro-elastic flow in the hydrocephalus. They extended 

previous studies by including flow through the aqueduct via more anatomically viable boundary 

conditions. They deployed a two-layered model for white and grey matter to better represent cerebral 

materials. Zhu et al. [13] developed quantitative MRI techniques to measure, model and visualize 

cerebrospinal fluid (CSF) hydrodynamics in both normal subjects and hydrocephalic patients. Tangen 

et al. [14] used computational fluid dynamics (CFD) to simulate the micro-anatomical effects on 

cerebrospinal fluid (CSF) flow patterns and flow resistance within the entire central nervous system 

(CNS) using reconstructed geometric models. They showed that nerve roots and trabeculae generate 

complex zones of microcirculation along the spine and that drug dispersion is boosted by pulsatile 

flow around microanatomy-induced vortices. Gholampour [15] used ADINA finite element software 

to simulate the fluid structure interaction in non-communicating hydrocephalus (NCH) geometries. 

He showed that the evaluation of ventricles volume and maximum CSF pressure (before shunting) 

are the dominant hydrodynamic indices for characterizing the flow and that the maximum CSF 

pressure is the most sensitive parameter to clinical symptoms. He also computed the phase lag 

between flow rate and pressure gradient functions and the degree of CSF pulsatility. H Balasundaram 

et al. [16] illustrated a mathematical study of flow and mass transfer in the congenital hydrocephalus 

with the effects of ventricular elasticity and chemical reaction using a simple porous medium model. 

They derived perturbation solutions for the dimensionless conservation equations with associated 

boundary conditions and showed that with increasing elastic (Young’s) modulus parameter and 
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Reynolds number, CSF flow is accelerated.  They also noted that concentration is enhanced with 

Péclet number and that the CSF flow is accelerated with Darcy (permeability) number.  

Although many other studies of transport in both communicating and non-communicating 

hydrocephalus models have been presented by Gholampour [17-19], Malm et al. [20], Linninger et 

al. [21] and Sweetman et al. [22], these have been restricted to only viscous flow and have neglected 

heat and mass transfer that is, thermo-solutal effects. As noted earlier, thermal and mass (molecular) 

diffusion have a significant role to play in CSF transport generally. Therefore, in the present study a 

mathematical model is developed to consider the pulsatile flow in a porous medium model of the 

hydrocephalus with combined heat and mass transfer. Thermal and mass (solutal) buoyancy effects 

are included. Darcy’s model is deployed for the pia matter (porous medium). The non-dimensional 

model is solved using Laplace transforms with error functions [23]. [24-28], investigated the 

convective Darcy–Forchheimer flow of nano particle over an energy and solutal reaction.  Graphical 

results are then presented with clinically viable data using MATLAB symbolic software for the 

influence of selected emerging transport parameters e.g., Darcy permeability number, Schmidt 

number, thermal Grashof number, Womersley number, heat conduction parameter etc., on pulsatile 

flow velocity, temperature and concentration distributions. The present study while using a simple 

geometric model provides a new direction in multi-physical transport phenomena in the 

hydrocephalus and furthermore a benchmark for more geometrically complex simulations with 

computational fluid dynamics (CFD) codes.  

 

2. MATHEMATICAL MODEL FOR THERMOSOLUTAL HYDROCEPHALUS TRANSPORT  

CSF is a watery fluid that protects the brain that passes through the spinal cord. CSF is formed mainly 

by two lateral ventricles next to the brain parenchyma pia mater. As hydrocephalus results in excessive 

secretion of volumes of CSF, a surplus in CSF fluid moves in the subarachnoid space (SAS). It is 

assumed in the present model that CSF is an isothermal and incompressible Newtonian fluid.  
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Fig: 1    Hydrocephalus and idealized geometrical model for transport 

The density and viscosity of its flow are considered to be 1000 𝑘𝑔/𝑚3 and 0.001 𝑘𝑔/𝑚𝑠. The 

physical model is shown in Fig. 1. A Cartesian coordinate system (𝑥∗, 𝑦∗), is adopted, where 𝑥∗ is 

transverse coordinate and 𝑦∗ is the vertical coordinate. The fluid is maintained no slip on the walls of 

subarachnoid space at the constant concentration 𝐶𝑤
∗,temperature  𝑇𝑤

∗ higher than the ambient 

temperature 𝑇 and ambient concentration 𝐶0 respectively. The rest of the properties of CSF fluid are 

assumed to be constant. To reduce the analysis of independent parameters we assume:(a) neglect body 

forces are considered as constant except the density variation in the buoyancy term. The temperature 

difference and concentration differences generate thermal and solutal buoyancy forces in the CSF. (b) 

The pressure exerted in the fluid is therefore oscillating with respect to time. (c) unsteady pulsatile 

CSF flow with hydraulic temperature and mass diffusion in a Darcian porous medium brain 

parenchyma is considered even though, the porous medium is isotropic and homogenous for the pia 

matter. (d) The surface of the CSF flow is embedded in a highly porous medium called brain 

parenchyma. (e) Neglecting electro-magnetic field strength, the brain fluid. 

 Consideration these assumptions, the equations governing the transport are the mass, momentum, 

energy (heat) and solute conservation with the Boussinesq approximation and boundary layer 

assumption for the Newtonian CSF flow is represented as follows: 

                                                                

Mass conservation [21] 

𝜕𝑢𝑐
∗

𝜕𝑥∗ +
𝜕𝑣𝑐

∗

𝜕𝑦∗ = 0               (1) 
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Momentum conservation [21] with some source terms added. 

 

𝜕𝑢𝑐
∗

𝜕𝑡∗ = −
1

𝜌

𝜕𝑃𝑐
∗

𝜕𝑡∗ + 𝜈 (
𝜕2𝑢𝑐

∗

𝜕𝑦∗2 ) + 𝑔𝛽𝑇(𝑇𝑐
∗ − 𝑇∞

∗) + 𝑔𝛽𝐶(𝐶𝑐
∗ − 𝐶∞

∗) +
𝑅𝑁

𝜌
𝑢𝑐

∗ −
𝜈

𝑘𝑚
∗ 𝑢𝑐

∗    (2) 

 

Energy Conservation [4] 

 

 (
𝜕𝑇𝑐

∗

𝜕𝑡∗ )  =
𝑘𝑇

𝜌𝐶𝑝
(

𝜕2𝑇𝑐
∗

𝜕𝑦∗2 ) − 𝐽(𝑇𝑐
∗ − 𝑇∞

∗)                         (3) 

 

Concentration (Solute) Conservation [29] 

 

  (
𝜕𝐶𝑐

∗

𝜕𝑡∗ )  = 𝐷 (
𝜕2𝐶𝑐

∗

𝜕𝑦∗2 )                                      (4) 

The spatial and temporal boundary conditions are prescribed as: 

 

 

  𝑢𝑐
∗ = 0 , 𝐶𝑐

∗ = 𝐶∞
∗ 𝑎𝑛𝑑  𝑇𝑐

∗ = 𝑇∞
∗ 𝑓𝑜𝑟 𝑦∗ ≥ 0, 𝑥∗ > 0,   𝑡∗ ≤ 0   

 

  𝑢𝑐
∗ = ℎ 𝐶𝑜𝑠𝜔𝑡∗ , 𝐶𝑐

∗ = 𝐶𝑤
∗𝑎𝑛𝑑  𝑇𝑐

∗ = 𝑇𝑤
∗ 𝑎𝑡 𝑦∗ = 0                                                                                

           𝑢𝑐
∗ = 0, 𝐶𝑐

∗ → 𝐶∞
∗ 𝑎𝑛𝑑  𝑇𝑐

∗ = 𝑇∞
∗ 𝑎𝑡 𝑦∗ → ∞                     𝑡 > 0                                                          (5) 

   

All parameters are defined in the nomenclature. It is useful to introduce dimensionless quantities 

which are defined as follows: 

                       𝑥 =
𝑥∗

ℎ𝑝
 ,  𝑦 =

𝑦∗𝑈0

𝜈
, 𝑢𝑐 =

𝑢𝑐
∗

𝑈0 
  , 𝜃𝑐

∗ =
𝑇𝑐

∗−𝑇∞
∗

𝑇𝑤
∗−𝑇∞

∗  ,                    (6) 

         𝐶∗ =
𝐶𝑐

∗−𝐶∞
∗

𝐶𝑤
∗−𝐶∞

∗  ,  𝑃 =  
𝑃𝑐

∗

𝜌𝑈0
2      𝑡 =

𝑡∗𝑣0
2

𝜈
 , ∝2=

𝜔𝑙2

𝜈
 

Here, 𝑢𝑐
∗, 𝑇𝑐

∗, 𝐶𝑐
∗, 𝑃𝑐

∗represents the dimensional components of fluid velocity, temperature, 

concentration, and pressure respectively. 𝑥∗, 𝑦∗, 𝑡∗indicates the dimensional coordinates, time 

taken, 𝑔 denotes the gravitational force. 𝛽𝐶 and 𝛽𝑇 identifies the coefficients of solutal and 

thermal expansion. 𝑇𝑤
∗ 𝑎𝑛𝑑 𝐶𝑤

∗ denotes wall temperature and concentration, 𝑇∞
∗ denotes ambient 

temperature. t is dimensionless time. 𝑅, 𝑁  denotes the resistance and number density. 
𝐶𝑝represents specific heat. 𝐷 indicats the mass diffusivity coefficient. x and y are dimensionless 
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coordinates. 𝑢𝑐, 𝐶, 𝜃𝑐 represents dimensionless fluid velocity, concentration of solute and 

temperature of hydrocephalus. 𝐺𝑝𝑣 is the resistance parameter. 𝑈0 denotes the characteristic 

velocity of the fluid. P is dimensionless pressure. ∝2 represents the Womersley number (ratio of 

transient inertial force to viscous force) which quantifies the pulsatile nature of the CSF flow in 

hydrocephalus and  is frequency of oscillatory (pulsatile) motion. 

The transverse pressure gradient decays exponentially with time in CSF flow in the regime.  

Implementing Eqn. (6) in Eqns. (1)-(5) yields the following system of dimensionless coupled partial 

differential equations: 

𝜕𝑢𝑐

𝜕𝑡
= −

𝜕𝑃

𝜕𝑥
+ (

𝜕2𝑢𝑐

𝜕𝑦2
) − 𝜎2𝑢𝑐 +

𝐺𝑝𝑣

𝑅𝑒2
𝑢𝑐 +  𝐺𝑟𝜃𝑐 +  𝐺𝑐𝐶             (7)              

                                    

𝜕𝜃𝑐

𝜕𝑡
 =

1

 𝑃𝑟

𝜕2𝜃𝑐

𝜕𝑦2 − 𝐽𝜃𝑐                                                                                                        (8)                          

                        

𝜕𝐶

𝜕𝑡
 =

1

 𝑆𝑐

𝜕2𝐶

𝜕𝑦2                                                                                               (9) 

          

In Eqn. (7), −
𝜕𝑃

𝜕𝑥
= 𝑒−𝜆𝑡 and expresses the exponentially decaying transverse pressure gradient. 

Furthermore, the dimensionless numbers in Eqns. (7)-(9) take the definitions: 

𝐺𝑟 =
𝑔𝛽𝑇(𝑇𝑤

∗−𝑇∞
∗)𝜈

𝑈0
3   [Grashof number];  

𝐺𝑐 =
𝑔𝛽𝑇𝐶(𝐶𝑤

∗−𝐶∞
∗)𝜈

𝑈0
3   [Mass Grashof number]; 

𝜎2 =
𝜈2

𝑈0
2𝑘𝑚

∗  [Darcy permeability number];  

 R𝑒 =
ℎ𝑢𝑐

𝜈
  [Reynolds Number]; 

𝑃𝑟 =
𝜇𝐶𝑝

𝑘𝑇
  [Prandtl number];   

𝐺𝑝𝑣 =
𝑅 𝑁 ℎ2

𝜇
 [Particle mass number].         

𝑆𝑐 =
𝜈

𝐷
  [Schmidt number].                  (10) 

Here ‘h’ is an arbitrary length. The transformed boundary conditions become: 
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𝑢𝑐 = 0 𝑎𝑠 𝑦 → ∞ 

𝑢𝑐 = 𝐶𝑜𝑠 ∝2 𝑡 𝑎𝑠 𝑦 → 0 

𝜃𝑐 = 0  𝑎𝑡 𝑦 ≥ 0,𝐶 = 0  𝑎𝑡 𝑦 ≥ 0                                                                                               (11)                    

𝜃𝑐 = 0 , 𝐶 = 0 𝑎𝑠 𝑦 → ∞ 

𝜃𝑐 = 1 , 𝐶 = 1 𝑎𝑠 𝑦 = 0                                                                                                                 

 

3. ANALYTICAL SOLUTIONS  

The mathematical model derived and defined by Eqns. (7)-(9) and boundary conditions (11) is solved 

with a classical Laplace technique and its inverse transforms [23]. Solutions are derived for the CSF 

velocity, temperature and concentration functions, using the following transforms:  

Taking Laplace transform of both sides of Eqns .(7),(8),(9), we get the results as follows 

𝐷2𝐿(𝑐) − (𝑆𝑐 + 𝑠)𝐿(𝑐) = 0 

𝑐 = 𝐿−1 [
𝑒−𝑦√(𝑆𝑐 𝑆)

𝑠
] 

𝐷2𝐿(𝜃) − (𝐽 + 𝑠)𝐿(𝜃) = 0 

𝜃 = 𝐿−1 [
𝑒−𝑦√(𝐽+𝑠)𝑃𝑟

𝑠
] 

𝐷2𝐿(𝑢𝑐) −
1

𝜎2
𝐿(𝑢𝑐) − 𝑠𝐿(𝑢𝑐) =

−1

𝑠 + 𝜆
− 𝐺𝑟𝐿(𝜃) − 𝐺𝑚 𝐿(𝑐) +

𝐺𝑝𝑣

𝑅𝑒2
𝐿(𝑢𝑐) 
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𝑢𝑐 = 𝐿−1 [𝑒−√𝑘+𝑠 (
𝑠

𝑠2 + 𝛽2
−

1

𝑘 + 𝜆
(

1

𝑠 − 𝑘
−

1

𝑠 − 𝜆
) +

𝐺𝑟

𝑅
(

1

𝑠
−

1 − 𝑃𝑟

𝑅 + (𝑃𝑟 − 1)𝑠
)

−
𝐺𝑚

𝑘
(

1

𝑠
−

𝑆𝑐 − 1

𝐾 − (𝑆𝑐 − 𝑠)𝑠
)) + 𝐿−1 [

1

𝑘 + 𝜆
(

1

𝑠 − 𝑘
−

1

𝑠 − 𝜆
)]

−
𝐺𝑟

𝑅
𝐿−1 (

𝑒−𝑦√(𝐽+𝑠)𝑃𝑟

𝑠
−

𝑒−𝑦√(𝐽+𝑠)𝑃𝑟(𝑃𝑟 − 1)

𝑅 + (𝑃𝑟 − 1)𝑠
)

+
𝐺𝑚

𝑘
𝐿−1 (

𝑒−𝑦√(𝑆𝑐 𝑆)

𝑠
−

𝑒−𝑦√(𝑆𝑐 𝑆)(𝑆𝑐 − 1)

𝑘 − (𝑆𝑐 − 1)𝑠
)] 

Using the formula in [23], we get  

𝐿(𝑢𝑐) = 𝑒−𝑦√𝑘+𝑠 [
𝑠

𝑠2+𝛽2 −
1

𝑘+𝜆
[

1

𝑠−𝑘
−

1

𝑠+𝜆
] +

𝐺𝑟

𝑅
[

1

𝑠
+

1−𝑝𝑟

𝑅−𝑠(𝑝𝑟−1)
]] −

𝐺𝑚

𝑘
[

1

𝑠
+

𝑠𝑐−1

𝑘−𝑠(𝑠𝑐−1)
] +

1

𝑘+𝜆
[

1

𝑠−𝑘
−

1

𝑠+𝜆
] −

𝐺𝑟

𝑅
[

𝑒−𝑦√(𝐽+𝑠)𝑝𝑟

𝑠
−

(1−𝑝𝑟)𝑒−𝑦√(𝐽+𝑠)𝑝𝑟

𝑅+𝑠(𝑝𝑟−1)
] +

𝐺𝑚

𝑘
[[

𝑒−𝑦√𝑆 𝑆𝑐

𝑠
−

(𝑠𝑐−1)𝑒−𝑦√𝑆 𝑆𝑐

𝑘−𝑠(𝑠𝑐−1)
]]      (10) 

𝐿(𝜃𝑐) =
𝑒−𝑦√(𝐽+𝑠) Pr  

𝑠
                                               (11) 

𝐿(𝐶) =
𝑒−𝑦√(S 𝑆𝑐)

𝑠
                            (12)         

 

The desired solutions take the form:   
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𝑢𝑐(𝑦) = 𝐶𝑜𝑠 𝛽(𝑡 − √𝑘 + 𝑠) −
1

𝑘 + 𝜆
𝑒𝑘(𝑡−√𝑘+𝑠) +

1

𝑘 + 𝜆
𝑒−𝜆(𝑡−√𝑘+𝑠)

+ [
𝐺𝑟

𝑅
−

𝐺𝑚

2𝑘
] [𝑒−𝑦√𝑘𝑒𝑟𝑓𝑐(𝜂 − √𝑘𝑡) + 𝑒𝑦√𝑘𝑒𝑟𝑓𝑐(𝜂 + √𝑘𝑡)]

−
𝐺𝑟𝑒𝑄𝑡

2
[𝑒−𝑦√𝑄+𝑘𝑒𝑟𝑓𝑐 (𝜂 − √(𝑄 + 𝑘)𝑡) + 𝑒𝑦√𝑄+𝑘𝑒𝑟𝑓𝑐 (𝜂 + √(𝑄 + 𝑘)𝑡)]

−
𝐺𝑚 𝑒−𝐷𝑡

2𝑘
[𝑒−𝑦√𝑘−𝐷𝑒𝑟𝑓𝑐 (𝜂 − √(𝑘 − 𝐷)𝑡)

+ 𝑒𝑦√𝑘−𝐷𝑒𝑟𝑓𝑐 (𝜂 + √(𝑘 − 𝐷)𝑡)] +
1

𝑘 + 𝜆
(𝑒𝑘𝑡 − 𝑒−𝜆𝑡)

−
𝐺𝑟

2𝑅
[𝑒−𝑦 𝑃𝑟√𝐽𝑒𝑟𝑓𝑐[(𝜂√𝑃𝑟) − √𝐽𝑃𝑟 𝑡]] + 𝑒𝑦 𝑃𝑟√𝐽𝑒𝑟𝑓𝑐[(𝜂√𝑃𝑟) + √𝐽𝑃𝑟 𝑡]]]

+
𝐺𝑟𝑒𝑄𝑡 

2𝑅
[𝑒−𝑦 𝑃𝑟√𝐽+𝑄 𝑒𝑟𝑓𝑐 [(𝜂√𝑃𝑟) − √(𝐽 + 𝑄) Pr 𝑡]]

+ 𝑒𝑦 𝑃𝑟√𝐽+𝑄 𝑒𝑟𝑓𝑐 [(𝜂√𝑃𝑟) + √(𝐽 + 𝑄) Pr 𝑡]]]

+
𝐺𝑚

𝑀
[𝑒𝑟𝑓𝑐(𝜂√𝑆𝑐) − 𝑒𝐷−(𝑡−√𝑆𝑐 𝑆)] 

            (13) 

 𝜃𝑐(𝑦) =
1

2
{[𝑒−𝑦 𝑃𝑟√𝐽 [𝑒𝑟𝑓𝑐(𝜂√𝑃𝑟) − √𝐽𝑃𝑟𝑡] +  𝑒𝑦 𝑃𝑟√𝐽 [𝑒𝑟𝑓𝑐(𝜂√𝑃𝑟) + √𝐽𝑃𝑟𝑡]}  

            (14) 

𝐶(𝑦) =  𝑒𝑟𝑓𝑐(𝜂√𝑆𝑐)                                  (15) 

 

Here the following relations apply: 

     𝑄 =
𝑅

𝑃𝑟−1
 , 𝐷 =

𝑘

𝑆𝑐−1
 , 𝛽 = 𝛼2, 𝑅 = (𝐽 𝑃𝑟 − 𝑘), 𝑘 = 𝜎2 +

𝐺𝑝𝑣

𝑅𝑒2
, 𝜂 =

𝑦

2√𝑡
                         (16) 

In the next section computations in MATLAB were performed using data selected to represent CSF 

in hydrocephalus conditions, material properties and also various dimensionless numbers as given in 

Table 1.  
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Table 1: CSF data and source references 

Density (kg/m3) 0.95 [2] Specific 

Heat (Cp) 

(J/g/K) 

4.19 [2] 

Thermal 

Conductivity 

(W/m/K) 

0.63 [2] Womersley 

Number 

6.3-7.8 [16] 

Permeability (m2) 0.3 Sc, Gr, Gm 0.2, 0.39, 

0.075 

Pressure (Pa) ≤ 3000Pa [20] Reynolds 

number 

31.8 to 468.3 

[19] 

 

4. RESULTS & DISCUSSION 

The purpose of this paper is to ascertain the impact of thermos solutal non-Newtonian CSF watery 

fluid which is shown in Figs: 2-10. The analytical solutions for velocity, temperature and 

concentration determined using classical Laplace and inverse transform methods are evaluated in 

MATLAB based on selected data in Table 1 and visualized graphically in the Figs. (2-10). To 

understand the behavior of the pulsatile flow characteristics in the hydrocephalus model, velocity 

(𝑢𝑐),temperature(𝜃𝑐) and Concentration (𝐶) are plotted against t for various values of different 

parameters such as Darcy permeability number, Schmidt number, heat conduction parameter and so 

on. 

A strong decrement in CSF solute concentration is induced with increment in Schmidt number, as 

seen in Fig. 2. Since Schmidt number relates the relative rates of momentum and mass (molecular) 

diffusivity in the regime, higher Schmidt number implies the solute particles diffuse slower in the 

CSF saturated porous medium.  

 CSF temperature variation with various Prandtl number in different times is shown in Fig: 3. There 

is a significant increase in temperature observed in various Prandtl number with increment in time, 

implying that thermal effects are amplified as time progresses in the hydrocephalus. It elucidates for 

varying Prandtl number increase the thermal conduction which decrease the mass transfer. 

Temperature decays with increment in vertical coordinate, as one ascends the pia matter space.  
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                                             Fig.2 CSF temperature variation with Schmidt number for various times (t) 

 

                            Fig: 3 CSF solute concentration variation with various Prandtl number for various time (t) 
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               Fig: 4 CSF velocity variation with time for various Womersley number (∝) 

 

                                   Fig: 5 CSF variation for velocity with time for various Darcy permeability (𝜎)numbers  
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                        Fig: 6 CSF variation for velocity with time for various Grashof numbers for mass transfer. 

 

 

                   Fig: 7 CSF variation for velocity with time for various thermal Grashof numbers   (Extra Graph added) 
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                                           Fig: 8 CSF for velocity with time for various Schmidt numbers      

 

     

                                          Fig: 9 CSF for velocity with time for various heat conduction parameters    
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                                Fig: 10 CSF for velocity with time for various Prandtl numbers.    

 

 

 

 

Fig: 11 CSF pressure with time variation for hydrocephalus patients 
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Fig. 4 shows that a strongly periodic (oscillatory) profile of the CSF flow has been captured. As 

Womersley number increases, the inertial force grows relative to the viscous (damping) force. This 

displaces the peak values of CSF velocity and also the troughs (minimal values), although magnitudes 

generally remain the same. The effect of time elapse is that pulsatile waves are displaced which is 

linked to the periodic nature of the flow.  

In Fig. 5, the CSF velocity is observed to be reduced with Darcy permeability parameter. In Eqn. (7), 

the Darcian body force, −𝜎2𝑢𝑐 , is a negative (drag) force exerted by the solid fibers in the pia matter 

on the CSF. However, since  𝜎2 =
𝜈2

𝑈0
2𝑘𝑚

∗  this force is inversely proportional to the permeability. As 

𝜎2 increases the permeability is clearly reduced, implying that greater resistance is exerted on the 

percolating CSF flow. This damps the flow i.e induces deceleration and manifests in a decrease in 

CSF velocity. Furthermore, the pulsating nature of the CSF flow is clearly captured with time 

variation in Fig. 5.  

Figures 6 and 7 display the influence of the Grashof number in heat transfer and solutal mass transfer 

Gm respectively.  Fig 6 illustrates the increase in Grashof numbers considerably escalates the fluid 

flow with decreasing CSF velocities. On the other way, In Fig. 7, a significant depletion in CSF flow 

velocity is computed with increment in thermal Grashof number. Gr arises in the momentum Eqn. (7) 

and couples the velocity and temperature field. Increasing thermal buoyancy is induced with higher 

values of Gr but this acts to damp the CSF flow in the regime. 

 Fig. 8 shows the impact of Schmidt number on oscillatory CSF velocity profiles plotted against time. 

The peaks are displaced clearly with time progression; however, the magnitudes of these peaks are 

not tangibly altered with Schmidt number. In Fig. 9 there is a strong decrement observed in CSF 

velocity with increasing heat conduction parameter (J). CSF velocity is also observed to decrease with 

elapse in time. Stronger heat conduction in the regime results in flow deceleration and this indicates 

that, if thermal effects are neglected in the simulations, erroneous results are obtained. It is therefore 

important to include thermal effects in realistic models of CSF hydrocephalus transport. 

 In Fig. 10, We display the effect of Prandtl number in CSF temperature profiles in figures 00 and 00 

with respect to time variation. It is understood that the increase in heat conduction parameter result in 

increase to heat diffusivity. Therefore, it is observed that an increase in the Prandtl number results in 
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decrease in the thermal boundary SAS layer thickness which slow down the average temperature 

within the wall of SAS layer. In this simulation, the values of Prandtl number used are 7.0, 0.54 and 

0.71 corresponds to the molecules of CSF with water, CSF and air respectively. 

 Finally, Fig. 11 shows that CSF pressure remains largely invariant at values increase in time values; 

however, after significant elapse in time, there is a strong elevation in the pressure computed. As the 

fluid flow increases in the subarachnoid space, a significant amount of fluid passes through the brain 

parenchyma and the pressure of the fluid escalates drastically due to hydrocephalus disorder. 

Interesting observations have been made of the thermal, solute (e. g. ion) and also velocity 

distributions in pulsating CSF flow in the hydrocephalus. Ions in the excess fluid diffuse strongly and 

this also contributes to excess molecules in this pathophysiological disorder. 

 

5. CONCLUSIONS 

A theoretical study has been presented for pulsatile flow in a porous medium model of the 

hydrocephalus with combined heat and mass transfer. Thermal and mass (solutal) buoyancy effects 

have been included. Darcy’s model is deployed for the pia matter (porous medium). The non-

dimensional model is solved using Laplace transforms with error functions. Graphical results are then 

presented with clinically viable data using MATLAB symbolic software for the influence of selected 

emerging transport parameters.  

The analysis reveals that with increasing permeability of the subarachnoid space, the CSF velocity is 

increased, and a significant fluid flux enhancement arises through the brain parenchyma as the 

pressure of the fluid escalates drastically due to hydrocephalus disorder. Stronger thermal buoyancy 

(Grashof number) also results in deceleration in the flow. CSF temperature is reduced with 

progression in time. Solute concentration (e.g. ions) is suppressed with increasing Schmidt number. 

As heat conduction parameter increases there is a substantial depletion in CSF velocity with respect 

to time.  

As Womersley number is elevated the inertial force grows relative to the viscous (damping) force and 

this displaces the peak values of CSF velocity and also the troughs (minimal values), although 

magnitudes generally remain the same. CSF pressure remains largely invariant at lower time values; 

however, after significant elapse in time, there is a strong elevation in the pressure computed. As the 

fluid flow increases in the subarachnoid space, a significant amount of fluid passes through the brain 
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parenchyma and the pressure of the fluid escalates drastically due to hydrocephalus disorder with 

associated ventricular enlargement. The present study has revealed some interesting features of 

thermo-solutal transport in an idealized model of the hydrocephalus of relevance to neurological 

medicine. The following were the conclusions that were made from the present investigation. 

✓ The velocity of a fluid flow decreases for increasing Prandtl number, heat conduction 

parameter and Schmidt number. 

✓ Increase in Darcy number, Grashof number of mass transfer, Grashof number of heat transfer 

with respect to time results in increase in CSF velocity. 

✓ There is a significant change in temperature fall due to the enhancement of heat conduction 

parameter and Prandtl number. 

✓ Impact of increase in Schmidt number considerably reduces the fluid concentration. 

✓ Increase in fluid velocity reflects significant changes in high intracranial pressure in the flow 

regime. 

  Future works may generalize the present approach to consider non-Newtonian characteristics of CSF 

and more complex geometries. 
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