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Abstract

Ferrites are a broad class of oxide materials with a wide range of

technologically important applications. The M-type hexaferrites, of

which BaFe12O19 is taken as a prototype compound, show particu-

lar promise as very high density magnetic and magneto-optical data

storage media. There are still serious gaps in the understanding of

the fundamental origins of, and mechanisms governing, the magnetic

properties of these materials. The detailed relationships between these

properties and the material structure over nanometre length scales are

also not fully understood. This thesis addresses both of these pressing

issues. It describes first a detailed ab initio theoretical treatment of

the origins and magnitudes of the two most important mechanisms

which give rise to magnetic anisotropy, namely dipolar interactions

and single-ion contributions. The thesis outlines the theory of these

two types of magnetic interactions in solid insulating oxide materials.

It also describes the theory of the deposition and growth of thin films,

and the implementation of both branches of this theoretical study

in a set of original computer programs developed and refined during

this study, comprising tools for both calculation and visualization. A

novel growth model and efficient Monte Carlo techniques are used to

investigate and quantify the dependence on growth conditions of the

structure of thin films of hexaferrite materials. The magnetic the-

ory is also implemented in a flexible and powerful program, which is

used in turn to comprehensively investigate the structural dependence

of magnetic properties in the bulk crystalline material, idealized thin

films, and finally by the simulated grown films. The influence of film

structure on volume and surface contributions to the anisotropy of

thin films is thereby quantified and discussed.
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1 Introduction

Ferrites are a broad class of oxide materials with a number of technologically

important applications. They have been used extensively in the construction

of microwave devices, but have also become very important in recent years as

magnetic recording media. One of the most promising sub-classes of the fer-

rites for the latter application is the M-type hexagonal ferrites [1]. In spite of

having been studied since the 1950s and their potential for technological ap-

plications, there are still serious gaps in knowledge regarding the origins and

magnitudes of the magnetic anisotropy exhibited by this class of materials.

In particular, there has been very little fundamental ab initio investigation

of their magnetic properties.

This thesis addresses these gaps by describing the ab initio calculation

of the magnetic anisotropy of the prototype M-type ferrite BaFe12O19. The

analysis performed is equally applicable to other M-type ferrites, and com-

mences with an examination of the bulk material, focussing on ab initio

evaluations of the intrinsic contributions to the anisotropy from two can-

didate physical mechanisms, namely single-ion anisotropy and dipole-dipole

anisotropy. The calculated values are compared with, and complement, the

results of experimental measurement. Precise experimental evaluation of the

anisotropy is difficult - most values tabulated in the literature have been de-

rived from measurements of magnetic hysteresis loops, rather than more di-

rect and accurate torque-based measurements. In this way the thesis stands

as a useful and timely complement to the existing body of experimental

knowledge.
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In addition, the thesis also addresses the problem of the theoretical in-

vestigation of magnetic anisotropy in thin films of these materials, a field

which has little or no pre-existing representation in the literature and which

has direct and timely relevance to existing and proposed technological ap-

plications. Combined with a novel model for the deposition and growth of

ferrite thin films developed in parallel with the magnetic investigations, the

interplay between the structure and the magnetic anisotropy of thin ferrite

films is elucidated using the same powerful ab initio techniques developed for

treatment of the bulk material. The results of these comprehensive studies

are then presented and discussed, along with ideas for future development.

The SI Kennelly system of magnetic units will be used in this thesis. The

magnetization M used in the SI Sommerfeld convention will also be used -

this is just an alternative way of stating the intensity of magnetization I,

using the relation I = µ0M [2].
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2 Synopsis

This work in concerned with the investigation of two fundamental aspects of

thin-film hexaferrite media.

The first of these is the ab initio calculation of the contributions to the

uniaxial magnetic anisotropy of both bulk samples and thin films arising from

two different microscopic mechanisms - the single-ion contribution and the

dipole-dipole interaction.

It has long been known [3] that hexaferrite materials have a very strong

uniaxial magnetic anisotropy. This has been attributed largely to the pres-

ence of a short-range ‘single-ion’ mechanism, in which each magnetic ion

contributes additively to the anisotropy, the contribution from each ion de-

pending on the geometry of its immediate atomic environment, with par-

ticularly strong contributions coming from the bipyramidal 2b(4e) sites (see

later). These ‘single-ion’ contributions have been calculated by applying the

superposition model [4] to bulk material structures and then for the first time

also to those of thin films.

Furthermore, each ion with non-zero spin in the material can also be con-

sidered as having an associated magnetic dipole moment. By treating these

dipoles as being effectively classical point dipoles, the anisotropy contribution

of the long-range dipole-dipole interaction was evaluated using a ‘complete’

summation procedure, allowing the evaluation of the dipolar anisotropy of

both isolated nanoscale particles and, using appropriately applied periodic

boundary conditions, continuous thin films and the bulk material.

The second aspect of this work concerns the modelling of the deposition

3



and growth of thin hexaferrite films, with particular attention to the effects

of the growth conditions on the morphology of the grown film. This was

achieved by applying an efficient Monte Carlo algorithm to a novel growth

model for hexagonal materials, which allows for both an in-plane orienta-

tional degree of freedom and for the presence of voids in the growing film.

The effects of the growth parameters on the morphology of the simulated

film have been examined.

Finally, these two aspects of the work have been united, by using the

output of the growth simulations as the input for the calculation of the uni-

axial magnetic anisotropy of barium ferrite thin films, as described above.

In this way, the magnetic characteristics of the simulated films have been

related to their physical growth conditions. This holds out the prospect of

tailoring a film with well-defined magnetic characteristics by a careful con-

trol choice of growth conditions to produce the desired microstructure. The

magnetic anisotropy of a number of such ‘grown’ films has been calculated

as a function of their thickness using the methods described above, and the

results compared to those for perfect uniformly oriented single-crystal films.

Particular attention was paid to the dependence of the surface anisotropy

associated with the films on their surface topography.
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3 Background

The first magnetic recording device (the ‘Telegraphone’) was invented by

Danish scientist Valdemar Poulsen in 1898 [5]. A century of development has

seen great advances: magnetic recording is one of the key technologies which

have fuelled the explosive development of information technology. In paral-

lel with the rapid advances achieved in computer power using developments

in semiconductor technology and very large scale integration, the capacity

and speed of data storage devices based on magnetic recording technologies

have continued to rise, offering an extremely reliable high-density informa-

tion storage medium at a cost which is approaching that of paper. The vast

majority of the data currently stored in electronic form is held on devices

using magnetic storage techniques, and the future markets for all forms of

magnetic recording are expected to grow substantially as areal storage den-

sities (i.e. the amount of data stored per unit surface area of the storage

medium) increase by orders of magnitude, and data rates and access times

also improve.

One of the key challenges faced by the developers of magnetic storage

devices is to increase the areal storage density of magnetic recording media.

After spectacular growth in the last four decades, the industry has recently

reached one of its long-sought goals of 10 Gb/in2, and devices meeting this

specification are now reaching production. Reaching the next major goal,

that of 100 Gb/in2, will require a far-reaching rethink as to how magnetic

recording is done.

Much research effort is now being focussed on the development of record-
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ing media based on thin films of magnetic materials. Thin films are inherently

denser than traditional magnetic media based on dispersions of magnetic par-

ticles, and so can be made to have the highest possible magnetization (to give

adequate signal voltages in the sensors by which the information is read from

the medium) whilst remaining extremely thin, a property which allows the

transitions between the magnetic domains recorded on the medium to be as

sharp as possible [6].

Much attention is now being concentrated on the development of perpen-

dicular magnetic recording [7, 8, 9, 10]. This technique, like conventional (or

longitudinal) recording, relies on the ability to ‘write’ very small magnetic

domains on the recording medium. The difference lies in the direction of the

magnetization in the pattern of domains. In longitudinal recording, mag-

netic domains are formed which have their magnetization lying in the plane

of the recording medium. In perpendicular recording, the magnetic domains

are formed such that their magnetization is parallel (or antiparallel) to the

normal to the surface of the thin film medium. The smaller magnetic interac-

tions between the latter type of domains means that they can be packed more

closely together before the demagnetizing effect of neighbouring oppositely

magnetized domains causes significant destabilization.

Another fundamental problem is that of superparamagnetism [11] - the

thermal destabilization of a magnetic domain when the magnetic energy

stored in the domain becomes comparable to the thermal energy in the mate-

rial. The probability of a magnetic domain undergoing a spontaneous change

in the direction of its magnetization is proportional to exp(−KV/kBT ),

6



where kB is the Boltzmann factor, T is the absolute temperature, V is the vol-

ume of the domain and K is the uniaxial magnetic anisotropy of the material

in which the domain exists. The effects of superparamagnetism can be min-

imised in perpendicular recording media, since domains can extend through

the entire thickness of the film, allowing V to be kept reasonably large whilst

simultaneously allowing the domain to become smaller in the plane of the

film. Such domains may therefore be packed more closely together than is

possible with longitudinal recording techniques.

The microstructure of the recording medium also plays a crucial part

in determining its magnetic properties. Inside a domain, the magnetic mo-

ments are strongly coupled to each other by short-range exchange forces (see

later) whose magnitude depends strongly on local atomic order. Practical

magnetic recording media are polycrystalline, and the local atomic order is

strongly disrupted at the boundaries between grains - the greater the local

disorder, the less the exchange coupling between neighbouring grains. The

magnetic state of one grain is then less likely to affect the magnetic states

of neighbouring grains, a situation which again allows magnetic domains to

be packed more closely together. Decreased inter-grain exchange coupling

also has favourable effects on the signal-to-noise ratio obtainable in practical

recording systems [12, 13, 14, 15, 16, 17].

These factors, taken together, suggest that an ideal microstructure for

a high-density perpendicular recording medium consists of closely packed,

magnetically decoupled ‘columns’ which extend through the entire thick-

ness of the film medium. The study of how to achieve this microstructure

7



through careful choice of film growth methods, film substrate materials and

the physical parameters controlling the film growth process is therefore of

major importance to the magnetic recording industry.

3.1 Importance of hexaferrite materials in magnetic

recording

M-type hexaferrite materials have been advanced as candidates for perpen-

dicular magnetic recording media [18, 19, 20, 21, 22], based on a number of

criteria, outlined below.

High uniaxial anisotropy. M-type ferrites have a very strong intrinsic uni-

axial anisotropy, reducing the destabilizing effects of superparamag-

netism and magnetostatic interactions between neighbouring domains.

Chemical stability. Hexaferrite media are chemically inert. This can be

contrasted with widely-used rare-earth/transition metal alloy media

e.g. GdTbCo and TbFeCo, which are susceptible to corrosion and

hence require protective overlayers to protect against attack from even

common atmospheric chemical species.

Mechanical stability and tribological properties. Hexaferrite media are

extremely hard and wear-resistant, allowing long media lifetimes. In

addition, they can be made extremely smooth, eliminating the need for

lubricating overlayers. The distance between the recording head and

the recording medium can therefore be reduced, which allows smaller

domains to be written, increasing the areal data density.
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3.2 Production of thin hexaferrite films by pulsed laser

deposition

A very important method for the production of thin films of semiconductors

and oxide materials is Laser Ablation Deposition (LAD). The possibility of

using lasers to deposit thin films has been known for over three decades [23],

but the technique only became widespread with the advent of high-Tc super-

conductors, when it was found that the technique could produce high-quality

films of stoichiometric composition of such materials [24]. In this method,

the desired film material is ablated from a target of stoichiometric compo-

sition by a powerful laser which is focussed onto a small spot on the target

surface, giving energy flux densities of the order of 108Wcm−2. The energy

flux from the laser is absorbed by the surface layers of the target, causing the

structure of the material to be explosively disrupted in a region around the

impact point of the beam. The ablated material, consisting of a mixture of

neutral and ionized species, is ejected from the target in a plume normal to

the target surface. This plume of ablated material then impinges on a sub-

strate (usually a few centimetres from the target) to form the desired film (see

Figure 3.1). The process is carried out in an enclosed chamber under varying

degrees of low partial pressures of oxygen and other gases, the laser beam

entering the chamber through a (usually quartz) window. Continuous lasers

have been used, but a more common variant of the process involves pulsed

lasers (Pulsed Laser Deposition or PLD). The equipment requirements of this

technique are therefore modest, and the fact that multi-component targets
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can be used and the material stoichiometry is preserved gives a substantial

advantage over other deposition techniques. The latter may require multiple

single-component targets, which may all have different vapour pressures and

hence evaporation rates, requiring a much more complicated deposition ap-

paratus. Despite these advantages, deposition using lasers has not yet been

widely adopted commercially, but it remains an extremely useful laboratory-

scale method for depositing thin films of a very wide range of materials.

The best type of laser to use varies with the target material, and is largely

determined by the thermal constants of the material and the laser wavelength.

For the ferrite materials discussed in this thesis, an excimer UV (λ = 248

nm) laser gives better results [25] (a deposited film with a specular surface

and a low level of particulate contamination) than a Nd:YAG (λ = 1.06 µ

m) laser. This has been attributed to the ferrite having a greater absorption

at UV than at infrared wavelengths, so that the energy is absorbed in a shal-

low region in the outermost layers of the target. By contrast, the infrared

energy from the Nd:YAG laser is absorbed less efficiently, and hence a much

deeper region under the surface is affected. As the explosive decomposition

then takes place deeper into the target, undisassociated particles and molten

droplets of the outermost surface layers can be thrown into the plume. This

process, known as ‘splashing’, causes the deposited film to contain partic-

ulates, spoiling the uniformity and the surface of the films which is rather

important for their applications. The effect can often be all but eliminated,

however, by polishing the target, rotating the target during deposition and

using an off-axis deposition geometry [26].
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Figure 3.1: Schematic of the laser ablation deposition process.
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High-quality films of M-type hexaferrite materials have been grown using

PLD [27, 28, 29, 30, 31, 32, 33]. In the first of these references, the substrate

used was the (0001) face of sapphire (Al2O3). Using a substrate temperature

of 840◦ C and introducing a slight partial pressure (0.1 mbar) of oxygen into

the deposition chamber yielded films of stoichiometric composition which

were very strongly c-axis oriented.
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4 Magnetism with particular reference to in-

sulating materials

4.1 Basic concepts of magnetism

Magnetism is caused by the motion of carriers of electric charge. In solid

materials, these charge carriers may be free to move throughout the ma-

terial (e.g., electrons in metals) or they may be localized (e.g. around an

atom in insulating materials), depending on the nature of the material and

its temperature. In the case of insulating materials, e.g., most metal ox-

ides and ferrites, the electrons, being predominantly confined to the regions

surrounding the atoms making up the material, are counterbalanced by the

formation of ions. Depending on the detailed electronic structure of an ion,

it may possess an effective magnetic dipole moment, arising from the orbital

and intrinsic spin angular momenta of the electrons. This dipole moment

will depend on the detailed interactions between the angular momenta of all

of the electrons associated with the ion, the intrinsic spin momenta of these

electrons, and interactions between one electron and another, whether on the

same ion or a neighbouring ion.

If a magnetic dipole m is placed in a uniform magnetic field H, the

potential energy, E, of the dipole is given by the scalar product

E = −m ·H. (4.1)

The magnetization M of an assembly of N colinear magnetic dipoles is defined
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[34] as the net magnetic moment per unit volume. When the dipoles are not

colinear, the component of the mean magnetization in the j direction is given

by

Mj =
1

V

N∑

i=1

mi · ej, j = x, y, z (4.2)

where V is the volume occupied by the assembly, mi is the magnetic moment

associated with the i th dipole and ej is a unit vector in the j direction.

A related quantity, the intensity of magnetization I is used in the SI

Kennelly convention for magnetic units [2]. It is defined by

I = µ0M. (4.3)

4.2 Types of magnetic order

The degree of magnetic order in a magnetic insulator may be discussed in

terms of the relative alignments of the overall angular momentum vectors

associated with a set of points in the structure, usually the magnetic atom

sites. It is conventional to refer to these points by their associated spin (even

though the orbital angular momentum may also contribute). Each point

therefore may be considered to have an associated magnetic moment, which

is taken to be a local property of that point. Exchange interactions act

between these localized spins (either directly or via an intervening atom) in

such a way that the spins become colinear at zero temperature. The magnetic

order can then be classified according to the relative magnitude, number and

orientations of the spins.
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4.2.1 Ferromagnetism

Ferromagnetic materials are characterized by having one unique type of spin

site, with all of the magnetic moments on the sites equal in magnitude and

parallel to each other at zero temperature (see Figure 4.1). These mate-

rials therefore have their maximum magnetization when T = 0K, and the

magnetization falls to zero at a certain critical temperature TC (the Curie

temperature) which is determined by the composition of the material. Fer-

romagnetic insulators are relatively rare (EuS being an example).

4.2.2 Antiferromagnetism

In antiferromagnetic materials there are only two sublattices, on which the

moments are antiparallel and equal in magnitude. There is therefore no net

magnetization at zero temperature, but there is a critical temperature TN

(the Néel temperature) above which the sublattice moments no longer can-

cel each other out and take random directions. This critical point exhibits

itself as a kink in the graph of magnetic susceptibility vs. temperature.

Antiferromagnetic insulators are much more common than ferromagnetic in-

sulators - most simple oxides of transition metals are antiferromagnetic. In

these materials, the magnetic moments associated with the metal cations

interact strongly with each other via the mechanism of indirect exchange

or superexchange, acting via the p-orbitals of the intervening O2− ion. The

effective exchange coupling is strongly dependent on the Me-O-Me (Me =

metal) angle, and is strongest when this angle is 180◦ (e.g., [35] for further

information and references). One example of an antiferromagnetic substance
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is the mineral goethite (α- Fe2O3).

4.2.3 Ferrimagnetism

In ferrimagnetic materials, there may be more than one type of spin site,

possibly with different numbers of sites of each type. All of the sites of

any given type are said to make up a sublattice. The magnetic moments

associated with the sublattices are either parallel or antiparallel to each other

at zero temperature, but do not all have equal magnitudes (see Figure 4.1).

These substances therefore have a net magnetization at zero temperature.

Antiferromagnetism may also then be regarded as a special case of the more

general phenomenon of ferrimagnetism.

The magnetic properties of ferrimagnetic substances can show a very wide

variety of temperature dependences, since the temperature dependences as-

sociated with the different sublattices can be very different, and can act to

reinforce or oppose each other. In particular, ferrimagnetic substances may

have two critical temperatures at which the magnetization falls to zero - as

the temperature passes through the lower of these (the so-called compensa-

tion temperature Tcomp ), the net magnetization of the substance falls to zero

and then changes direction. This property is particularly useful when these

materials are used in magneto-optical recording devices. Heating the ma-

terial locally to near its compensation temperature using a laser allows the

magnetic state of a very small region of the recording medium to be ‘flipped’

using an externally applied magnetic field, a fact which allows very small

magnetic domains to be written on the recording medium. The magnetiza-
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Antiferromagnetic

Ferromagnetic

Ferrimagnetic

Figure 4.1: The three main types of magnetic order.
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tion distribution in ferrimagnets can be very complex, since the presence of a

number of geometrically distinct sublattices can generate a very wide variety

of superexchange interactions. The most important ferrimagnets from the

point of view of magnetic recording are rare-earth garnets (the most widely

investigated being gadolinium gallium garnet [‘GGG’]) and hexagonal fer-

rites, such as the M-type hexaferrites which are the subject of this thesis.
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4.3 Magnetic anisotropy

A body is said to possess magnetic anisotropy if it has a net magnetization

(either intrinsic or induced by an external magnetic field) and the free energy

associated with the body depends on the direction of the magnetization with

respect to some body-fixed axes. The preferred directions for the magneti-

zation will be those which minimize the free energy of the system (so-called

‘easy’ directions). If the magnetization is to lie in any other direction, energy

must be supplied from outside the system. The so-called ‘hard’ directions

are those for which this additional energy requirement is a maximum.

Magnetic anisotropies are usually stated in terms of the angular depen-

dence of the free energy per unit volume, expressed in terms of functions of

the angles between the direction of magnetization and the body-fixed axes.

In crystalline materials the body-fixed axes are usually taken to be the crys-

tallographic axes. The functions used to describe the angular dependence

can take a number of forms, usually chosen for mathematical simplicity, but

also largely based on historical and experimental precedent. A number of

attempts have been made to advocate the adoption of sets of orthogonal an-

gular functions for the description of magnetic anisotropies (e.g. [36]). These

descriptions, in principle superior to all others, have been all but ignored by

most of the magnetism community. This is partly because of the vast amount

of experimental data already in existence using the traditional schemes, and

partly because most experiments seem to require only two or three terms

under the traditional schemes to fit experimental data to within the limits of

reliable measurement. The exception seems to be in the description of sur-
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face and interface anisotropies - Néel’s original paper on surface anisotropy

[37] used orthogonal Legendre polynomials, and more recent work (e.g. [38])

has continued in this tradition. The latter paper also contains a prescription

for transforming a traditional set of anisotropy constants (shown in the next

section) into a set of anisotropy coefficients for use with Legendre polynomi-

als. In this thesis, however, the traditional forms of the angular functions,

which may be derived through symmetry operations [35], will be used.

4.3.1 Magnetocrystalline anisotropy

Magnetocrystalline anisotropy is that part of the magnetic anisotropy which

depends on the microscopic properties of the magnetic ions in their crystal

lattice sites. We can imagine a non-magnetic host crystal, into which mag-

netic ions are substituted for non-magnetic ions, perhaps by some doping

process. Different mechanisms for the magnetic anisotropy will become im-

portant as the concentration of magnetic ions is increased. These mechanisms

are outlined below.

• Single-ion contributions

Each magnetic ion may contribute a ‘single-ion’ anisotropy to the over-

all anisotropy which expresses the dependence of the free energy of the

ion on the relative orientation of its overall magnetic moment. This

type of anisotropy is characterised by a linear dependence of the mea-

sured anisotropy on the concentration of magnetic ions, and can be

considered to exist across the entire possible range of concentrations.
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• Collective contributions

The aforementioned dependence of the measured anisotropy on the

concentration of magnetic ions becomes non-linear at all but low con-

centrations, as contributions from collective interactions between ions

begin to have a substantial effect. One such interaction is the dipolar

interaction. In an assembly of classical magnetic dipoles, any particular

dipole may be considered to sit in an effective magnetic field which is

the vector sum of contributions from the dipolar fields created by all

the other dipoles in the assembly. Another mechanism which is par-

ticularly important in magnetic alloys is exchange anisotropy, caused

by the existence of preferred local atomic ordering patterns between

neighbouring different metal atoms (see, e.g. [35]).

In cubic materials, the free energy per unit volume may be stated as [34, 35]

F = F0 + K1(α
2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1) + K2α

2
1α

2
2α

2
3 + . . . (4.4)

where α1,2,3 are the direction cosines of magnetization relative to the cubic

crystallographic axes and Ki are the cubic anisotropy constants, with F0

being the part of the free energy which is independent of the direction of

the magnetization. In materials having a hexagonal crystal structure, the

corresponding expression is [35]

F = F0 + Ku1 sin2 θ + Ku2 sin4 θ + Ku3 sin6 θ + K∗
3 sin6 θ cos6 ψ + . . . (4.5)
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where θ and ψ are respectively the polar and azimuthal angles of magnetiza-

tion relative to the hexagonal axes. The expressions above contain only even

powers of the angular functions due to the requirement that the free energy

be invariant under time-reversal symmetry.

4.3.2 Shape anisotropy

The shape of a magnetic sample is an important (extrinsic) source of mag-

netic anisotropy. If a particle is non-spherical, and in the absence of other

stronger anisotropy effects, the magnetization will tend to lie along the

longest axis of the sample. This behaviour is due to the fact that a strongly

magnetic (ferromagnetic or ferrimagnetic) finite sample will have uncompen-

sated magnetic ‘poles’ on its surface. The ‘poles’ create a demagnetizing field

which opposes the magnetization of the sample. In ellipsoidal specimens, the

demagnetizing field Hd is given by

Hd = −NdI/µ0 (4.6)

where I is the intensity of magnetization and Nd is a parameter known as

the demagnetizing factor or shape factor. This (dimensionless) quantity is

anisotropic since it depends on the direction in which the magnetization is

measured and also on the exact shape of the sample. In addition, the demag-

netizing field is only constant inside a sample when its shape is an ellipsoid of

revolution. General formulae exist for Nd (e.g. in [35, 39]) given the lengths

of the principal axes of the ellipsoid. In the case of an infinite flat plate which

is magnetized perpendicularly to its wide surface, the demagnetizing factor
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Nd = 1. The demagnetizing field therefore strongly opposes the magnetiza-

tion being perpendicular to the plate, and will cause the magnetization to

rotate into the plane of the plate unless opposed by other stronger anisotropy

mechanisms. This situation is particularly relevant in the case of thin films.

By contrast, a thin needle-like specimen magnetized along its length will

experience a neglible demagnetizing field, and hence in this case Nd ≈ 0.

Consequently, for an ellipsoid of revolution, the shape anisotropy energy can

be expressed [34] as

F =
1

2
(NB −NA)I2 sin2(θ) (4.7)

where NB and NA are the demagnetizing factors along the short and long

principal axes of the ellipsoid respectively, and θ is the angle between the

magnetization intensity I and the long ellipsoid axis.

4.3.3 Surface anisotropy

On or near a surface, the local environment of an atom is different from that

deep inside the bulk material, giving rise to an effective magnetic surface

anisotropy. This fact was first noted and examined by Néel [37]. The degree

to which the presence of the surface will affect the overall anisotropy contri-

bution from a given atom or atoms will depend on the relative sizes of the

distances from the atom or atoms to the surface and the length scales of the

different types of magnetic interaction. Lattice distortions due to relaxation

of the structure close to the surface may also contribute to this effect.
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4.3.4 Strain anisotropy

Strain anisotropy arises from the phenomenon of magnetostriction (where

the dimensions of a magnetic material change with its magnetization). Con-

versely, the magnetization of a magnetic sample can change as a result of

being subjected to strain (the magnetomechanical effect), which may be ei-

ther externally applied or arise from inclusions, defects in the crystal lattice,

or lattice mismatch at interfaces, such as the boundary between a thin film

and a substrate. The magnetostriction λ of a sample is given by [35]

λ =
∆l

l
(4.8)

where ∆l is the change in length induced in a sample of original length l.

When magnetostriction is isotropic, the energy stored in a sample due to

magnetostrictive strain (the magnetoelastic energy, Eme) is given by

Eme =
3

2
λSσ sin2 θ (4.9)

where λS is the value of λ at magnetic saturation, σ is the applied stress

and θ is the angle between the applied stress and the direction of magnetiza-

tion. Comparing Equations (4.9) and (4.5), we can therefore define a stress

anisotropy constant

Kσ =
3

2
λSσ. (4.10)

If Kσ is positive, the stress axis is an easy direction of magnetization, while

if Kσ is negative the plane normal to the stress direction is an easy plane of

magnetization.
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4.3.5 Induced anisotropy

The magnetic anisotropy of a substance may also be affected by mechanical

processing, and by the thermal history of the sample. This type of anisotropy

is usually referred to as induced anisotropy, and it can play a small part

(usually no more than a few percent) in determining the overall anisotropy

of the sample. An overview of some different types of induced anisotropy is

given by Chikazumi ([35]).
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5 M-type hexaferrites

5.1 Crystal structure

The M-type hexaferrites are ferrimagnetic materials whose chemical com-

position can be represented by the general formula MFe12O19 (≡ MO ·
6Fe2O3 ), where M represents a large divalent cation such as Ba2+, Sr2+

or Pb2+. When M = Pb2+, the structure corresponds to that of the natu-

ral mineral magnetoplumbite [40]. The conventional unit cell is hexagonal

(α = β = 90◦, γ = 120◦), and a number of structural studies exist in the

literature [41, 42] (note, however that the description given in [41] is in error,

a fact pointed out and corrected in [43]). For this study we have used the

structural data given by [42], which gives the lattice parameters as a = b =

5.892 Å, c = 23.182 Å.

The conventional unit cell is shown in Figure 5.1, comprising 2 formula

units, with space group P63/mmc. The structure may be regarded as consist-

ing of close-packed layers of O2− ions with Fe ions in some of the interstices

of the oxygen lattice (a more detailed description may be found in [43]).

There are five symmetry-nonequivalent Fe sublattices (as shown in Figure

5.1 and listed in Table 5.1), in three different types of oxygen coordination

polyhedron : tetrahedral, octahedral and a trigonal bipyramid. The trigonal

bipyramidal site (see Figure 5.2) has been given two different classifications

by experimental studies: either 2b (with the Fe ion in the same plane as

the equatorial oxygen atoms) or 4e (with the Fe ion effectively being split

into two sites, each with half occupancy and equidistant from the plane of
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Figure 5.1: Perspective view of conventional hexagonal unit cell of BaFe12O19.

The different Fe sublattices are listed by their Wyckoff symbols and the

geometries of their local coordination polyhedra. The relative directions of

the atomic spins are also shown.
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Number of Wyckoff’s Coordination Type of Magnetic moment

positions notation number site per formula unit

12 k 6 octahedral 6 ↑
4 f2 6 octahedral 2 ↓
4 f1 4 tetrahedral 2 ↓
2 a 6 octahedral 1 ↑
2 b 5 bipyramidal 1 ↑

Table 5.1: Notation, coordination number and the magnetic moment of Fe3+

cations in the elementary cell of BaFe12O19.

the equatorial oxygen atoms). A careful experimental study [42] has shown

that the latter arrangement is correct, with the Fe ion on each bipyrami-

dal site effectively ‘frozen’ randomly (with equal probability) in either the

‘up’ or ‘down’ position below T=70K, and dynamically disordered (each ion

effectively spending half its time in each position) above this temperature.

This study also puts the distance of each ‘sub-site’ from the equatorial plane

at 0.17 Å. If both such sites in the conventional unit cell are in the same

position (‘up’ or ‘down’), then the inversion symmetry of the unit cell is lost,

so that the space group becomes P6322.

The structure may also be described using the notation RSR∗S∗ describ-

ing the stacking sequence in the unit cell. The letters R and S denote struc-

tural sub-units, where the R blocks consists of everything in and between

the close-packed oxygen layers immediately adjacent to the plane of the M

atoms, and the S blocks consist of Fe and O atoms in a spinel structure.
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c-axis

(a) (b)

Figure 5.2: The two possible interpretations of the structure of the bipyra-

midal Fe site;(a) as a single ‘central’ site with full occupancy, or (b) two

‘sub-sites’ , each with half occupancy, spaced equidistantly from the plane

of the three equatorial oxygen atoms. The oxygen atoms are shown here as

open circles.
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The asterisk is used to denote the fact that the block in question is rotated

through 180◦ about the c-axis with respect to its un-asterisked counterpart.

This ‘layered’ arrangement has important consequences for the ease of for-

mation of the overall structure - recent work [44] has shown that because the

bonding between the M2+ ion and its surrounding oxygen ions is an order

of magnitude weaker than that between the Fe2+ ions and the oxygens, the

M2+ ion exhibits high mobility through the R and R∗ layers.

5.2 Magnetic order and anisotropy

The Fe ions are all nominally in the Fe3+ charge state, and at T=0K all

of the spins (corresponding to S=5/2) are colinear with the c-axis of the

crystal structure, which is also the ‘easy’ axis for the overall uniaxial magnetic

anisotropy. Cubic contributions to the overall anisotropy are negligible, since

the individual cubic contributions of the octahedral sites cancel each other

out. The distribution of ‘up’ and ‘down’ spins was first proposed by Gorter

[45], and is shown in Figure 5.1. The nominal net magnetization per unit

cell at T=0K is 20 µB, where µB is the Bohr magneton. This value is very

close to those found by experiments [46, 47].

5.3 Non-stoichiometric variants

Much research has been carried out on M-type hexaferrites which have had

some of their Fe ions replaced by single trivalent ions such as Al ([48, 49]), Ga

([48, 50]), In ([50]) and Sc ([50]. Also, ferrites in which equal numbers of Co2+

and Ti2+ have been substituted for pairs of Fe ions have been extensively
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studied ([51, 52, 53]) due to their particularly advantageous magneto-optical

properties. Other studied substitutions include non-stoichiometric (Ni-Zr)

[54] and [Ir-Me; Me=Co, Zn] [55] - many other studies are referenced in [1].
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6 Theoretical model of magnetic anisotropy

in insulators

6.1 Magnetic theory for bulk materials

6.1.1 Quantum mechanical treatment of magnetism

6.1.1.1 Energy levels of a free ion. The electronic configuration of

the Fe3+ ion is [Ar] (3d5), i.e. equivalent to that of an argon atom with 5

additional valence electrons in the 3d shell. The 3d orbitals (n=3, l=2) are

degenerate in the free ion and in the absence of an external magnetic field,

except for the zero-field splitting, giving an effective ground state of 6S5/2.

The shapes of the 3d wavefunctions are shown in Figure 6.1.

6.1.1.2 Splitting of energy levels by exchange, spin-orbit coupling

and the crystal field In a crystal, the electron wavefunctions associated

with the ion will be modified from their free-ion forms, along with their

energy levels. The dominant effect will be that of exchange, acting between

atomic spins. The part of the Hamiltonian of the system associated with

exchange may be written in the conventional form due to Heisenberg [56]:

Hex = 2
∑

i<j

JijSi · Sj (6.1)

This effect, however, is to all intents and purposes spherically symmetric

for 6S5/2 ions. The energy levels will be shifted from their free-ion values

by the effects of exchange, but there will be no additional splitting created
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between the levels. Exchange therefore plays no part in determining the

single-ion anisotropy [57, 58].

The presence of nearby atoms also removes the spherical symmetry of

the free ion and hence alters the relative energy associated with states with

different orbital angular momentum (assuming L-S coupling). The spin on

each ion can then ‘feel’ the effect of the local atomic environment through

the mechanism of spin-orbit coupling, which is usually taken to have a con-

tribution to the overall Hamiltonian of the form

Hso = λso(L · S) (6.2)

where λso is the spin-orbit coupling constant, and L and S are the total orbital

and spin angular momenta respectively. The overall effect on the spin can be

thought of as being that of a ‘crystal field’ created by the surrounding atoms.

In early work [59] this crystal field was taken to be a purely electrostatic

phenomenon, but it is now known that many mechanisms contribute to the

crystal field effect, most importantly the overlap of atomic wavefunctions and

covalency effects [60].

In the 3d transition metals, the magnitudes of the energies associated

with the exchange (Eex), spin-orbit coupling (Eso) and the crystal field (Ecf )

follow the order:

Eex > Ecf > Eso (6.3)

This is generally referred to [61] as the intermediate crystal field case. In or-

der to obtain an expression for the energy levels in the presence of the crystal

fields and spin-orbit coupling, perturbation theory must be used. Although
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the total angular momentum L for a free S-state ion is zero (‘quenched’), and

hence from (6.2) spin-orbit coupling might be expected to have no effect on

the splitting of the energy levels, it does appear as a non-zero second-order

term in the perturbation expansion [61, 62, 63].

6.1.1.3 Role of symmetry. The local symmetry of the Fe site plays a

crucial role in determining the relative energy and multiplicity of the energy

levels [34, 35, 61]. For a Fe3+ ion in an octahedral site (i.e. surrounded by

six oxygen ions - see Figure 6.1), the energy levels are split into a doublet

(dx2−y2 and dz2) and a triplet (dxy, dxz and dyz) with the doublet being

higher in energy. This pattern may be understood using the observation

that the electron clouds associated with the dxy, dxz and dyz orbitals are

directed ‘between’ the neigbouring oxygen ions, whereas the dx2−y2 and dz2

orbitals are directed towards neighbouring oxygen ions - the latter orbitals

will have a higher energy due to the greater electrostatic repulsion from the

oxygen ions. The relative positions of the doublet and triplet are reversed

if the site has tetrahedral symmetry (see Figure 6.2). In the case of the

trigonal bipyramidal site in BaM, the energy levels are similar to those for

the tetrahedral site, except that the dz2 orbital is lowered in energy relative

to the upper doublet due to the fact that the apical oxygen atoms (i.e. those

lying in the c-direction) are substantially further away from the ion than the

equatorial oxygen atoms [25, 64].

6.1.1.4 Concept of a spin Hamiltonian. Rather than write the full

Hamiltonian in terms of all of the five valence electron spins, because the
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Figure 6.1: Shapes of the 3d atomic orbitals [34]. The orbitals are shown for

a magnetic atom at an octahedral site in a crystal, surrounded by six oxygen

atoms (open circles).
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Figure 6.2: Energy level splittings associated with 3d ions in octahedral,

tetrahedral and trigonal bipyramidal sites.
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Fe ion is effectively in its ground state with all spins parallel and the energy

gap between the ground state and the first excited state is large compared

with the small splitting, we can assign an effective spin S ′ = 5/2 to the ion

as a whole. This allows us to use a much simpler spin Hamiltonian [65, 66]

to describe the ion energy levels. All of the following discussion uses this

effective spin, and in order to simplify the notation, the prime signifying the

effective nature of the spin will be dropped.

The single-ion part of the spin Hamiltonian used to describe the Fe ions

is given by

Hsi = DS2
z + . . . (6.4)

where only the term corresponding to uniaxial anisotropy has been shown,

D being a constant and S ′z being the projection of the effective spin in the

uniaxial direction. An alternative way to state the spin Hamiltonian is as an

expansion in so-called extended Stevens operators [67, 68]

H =
∑

kq

Bq
kO

q
k(Sx, Sy, Sz)

=
∑

kq

fkb
q
kO

q
k(Sx, Sy, Sz) (6.5)

where the Bq
k,b

q
k and fk are constants, Oq

k are operators as tabulated in [69],

and the fk take values of 1/3, 1/60 and 1/1260 for k = 2, 4, and 6 respectively.

It may therefore be seen from (6.4) and (6.5) that

D = 3B0
2 = b0

2. (6.6)

The history of the conventions and notations used to describe spin Hamil-

tonians (particularly with respect to their experimental determination using
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electron paramagnetic resonance experiments) has been very confused, a fact

which has greatly hindered the development of a single unified treatment

of the subject. A very comprehensive review article has been written by

Rudowicz [69] clarifying and correcting the misapprehensions and notational

inconsistencies prevalent in the existing (vast) body of published literature

on the subject. Rudowicz has also made substantial progress in the develop-

ment of a systematic scheme for tabulating spin Hamiltonian coefficients, a

consistent notation and a computer program for standardization of old ex-

perimental data [70, 71]. It is hoped that this formalism will become the

standard in future studies.

6.1.1.5 Calculation of the energy levels, the partition function,

and the single-ion anisotropy using the Wolf procedure Wolf [72]

expressed the general spin Hamiltonian for a spin S ≤ 5/2 on a site of

approximately cubic symmetry as

H = βH · g · S +
1

6
a(S4

x + S4
y + S4

z ) + DS2
α + fS4

α. (6.7)

where H is the effective magnetic field at the site, g is the gyromagnetic ratio,

β is the Bohr magneton and a and D are constants quantifying the cubic and

uniaxial components of the spin Hamiltonian respectively. The deviation

from cubic symmetry is assumed to be axial (along an arbitrary distortion

direction denoted by the subscript α) and quantified using the constant f .

This Hamiltonian, after diagonalization, gives the following energy levels for
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S = 5/2 [61]:

E±5/2 = ±5

2
gβHeff +

1

2
a(1− 5φ) +

5

3
D(3 cos2 θ − 1) (6.8)

± D2

4gβHeff

[
5 + 70 cos2 θ − 75 cos4 θ

]

E±3/2 = ±3

2
gβHeff − 3

2
a(1− 5φ)− 1

3
D(3 cos2 θ − 1) (6.9)

± D2

4gβHeff

[
9− 66 cos2 θ + 57 cos4 θ

]

E±1/2 = ±1

2
gβHeff + a(1− 5φ)− 4

3
D(3 cos2 θ − 1) (6.10)

± D2

4gβHeff

[
4− 40 cos2 θ + 36 cos4 θ

]

where the effective field Heff makes a direction (l,m, n) with the cubic axes

and an angle θ with the distortion direction α, and where φ = l2m2 +m2n2 +

n2l2. These expressions are only true provided a < D << gβHeff , as is true

in our case.

Once the expressions for the i energy levels Ei have been arrived at, one

can calculate the thermodynamic partition function Z, defined by

Z =
Nlevels∑

i=1

exp
( −Ei

kB T

)
. (6.11)

for a single ion, where kB is the Boltzmann constant and T is the temperature.

The partition function is related to the free energy F by the equation

F = −kBT ln Z. (6.12)

If we therefore expand Equation (6.12) using the definition of Z and the

expressions (6.8), (6.9), (6.10) for the energy levels containing the crystal field
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parameters, and retaining only leading terms, we arrive at the expression

F = F0(y) + D cos2 θp(y) + terms in cos4 θ (6.13)

where

y = exp(−gβHeff/kT ), (6.14)

p(y) = (1/Z0)(5− y − 4y2 − 4y3 − y4 + 5y5), (6.15)

Z0 = 1 + y + y2 + y3 + y4 + y5. (6.16)

Considering only anisotropic terms, Equation (6.13) may then be com-

pared directly with Equation (4.5). It may be seen that the first uniaxial

anisotropy constant of a structure containing Nsub sublattices can be written

as

K =
Nsub∑

i

NiDipi(yi) (6.17)

where the ith sublattice contains Ni ions. At T=0K, this simplifies to

K = 5
Nsub∑

i

NiDi (6.18)

6.1.1.6 The Superposition Model of the crystal field The Super-

position Model (SM) of the crystal field [73, 74] is based on four postulates:

1. The crystal field acting on the open-shell electrons of a paramagnetic

ion is the resultant of a sum of contributions coming from individual

ions in the crystal.
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2. Only contributions from the neighbouring ions (commonly referred to

as ligands ) are taken into account.

3. Each single-ion contribution in the sum is axially symmetric about the

line joining its centre to that of the paramagnetic ion.

4. Single-ligand contributions are dependent only on the nature of the

ligand and its distance from the paramagnetic ion, and do not depend

on other properties of the host crystal.

Using the superposition model, therefore, the parameters bm
n of the spin

Hamiltonian (6.5) may be written as a sum over contributions from N ligands

thus:

bm
n =

N∑

i=1

bn(ri)Z
m
n (ri) (6.19)

where ri ≡ (xi, yi, zi) is the position vector joining the magnetic ion to the

ith ligand ion, the bn are so-called intrinsic parameters which depend only

on the type of ligand and the ion-ligand distance ri, and the functions Zm
n

are functions only of the orientation of the ligand (which are tabulated in

[73]), e.g.

Z0
2 =

1

2

(
3z2

i

r2
i

− 1

)
(6.20)

Z2
2 =

3

2

(
x2

i

r2
i

− y2
i

r2
i

)
. (6.21)

By separating off the geometrical dependence in this way, the spin Hamil-

tonian parameters may be calculated for a site with arbitrary geometry. The

functions bn(r) are determined by comparing known values of the spin Hamil-

tonian parameters in different systems and/or by analysing their dependence
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on pressure. The values are assumed to decrease with increasing r, and are

usually fitted to a function of the form

bn(r) = bn(r0)
(

r0

r

)tn

(6.22)

where r0 and tn are used as the fitting parameters. Novak and Vosika [75]

measured and analysed the electron paramagnetic resonance spectra of Fe3+

ions in a number of garnets and found quantitatively different dependences for

octahedrally- and tetrahedrally-coordinated Fe3+ ions in these compounds,

although their results showed considerable scatter. A more recent study by

Yeung [76] used experimental results from a larger number of compounds, as

well as experiments made under hydrostatic pressure. In his analysis, Yeung

also made allowances for local deformation around the Fe3+ ions and pro-

posed a universal dependence for all types of sites, which has the form of

Equation (6.22) with the parameters given in Table 6.1. In a later paper [4]

Novak compared the parameters of Yeung’s universal dependence and those

obtained from his earlier paper [75] when applied to the determination of the

single-ion contribution to the uniaxial magnetic anisotropy of BaFe12O19. He

found that these two sets of parameters gave broadly similar dependences,

but neither could account for the single-ion contribution from the 2b bipyra-

midal site. Noticing that the Fe-O and O-O distances for the three equatorial

Fe-O ligands around the bipyramidal site were small compared with other

types of sites (and with the apical Fe-O distances on the same site), he sug-

gested a modified set of parameters (also given in Table 6.1) which specifically

apply to the equatorial Fe-O ligands on the bipyramidal site. The param-

eter values specified in Table 6.1 have therefore been adopted for all of the
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r0 b2(r0) t2

(Å) (cm−1)

Yeung’s ‘universal’ 2.0 -0.1552 14.4

dependance

Novak’s suggested

modified parameters 2.0 0.4600 14.4

for equatorial 2b

Fe-O ligands

Table 6.1: Fitting parameters for the distance dependance of the b0
2 spin

Hamiltonian parameter for BaFe12O19.

following single-ion anisotropy calculations described in this thesis.

Further details of the implementation and the algorithm used may be

found in Section 8.2.4, and the results of calculations may be found in Section

9.

6.1.2 The dipolar contribution to the anisotropy

The potential energy of a magnetic dipole mi in the magnetic field created

by another dipole mj separated from the first by a displacement rij = rij r̂ij,

where rij = |rij|, may be written [35] as

Uij =
1

4πµ0r3
ij

[mi ·mj − 3(mi · r̂ij)(mj · r̂ij)] . (6.23)

If mi and mj are colinear, then they may be written as mi = sim and

mj = sjm, where si, sj = ±1. By also writing m̂ = m/m, where m = |m|,
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Equation (6.23) can be further simplified to

Uij =
3sisjm

2

4πµ0r3
ij

[
1

3
− (m̂ · r̂ij)

2
]

(6.24)

Using the angles defined in Figure 6.3, we can write

m̂ = [sin θ cos φ, sin θ sin φ, cos θ], (6.25)

r̂ij = [sin θij cos φij, sin θij sin φij, cos θij], (6.26)

and hence

(m̂ · r̂ij)
2 = sin2 θ cos2 φ sin2 θij cos2 φij (6.27)

+ sin2 θ sin2 φ sin2 θij sin2 φij

+ cos2 θ cos2 θij

+ 2 sin2 θ sin φ cos φ sin2 θij sin φij cos φij

+ 2 sin θ cos θ cos φ sin θij cos θij cos φij

+ 2 sin θ cos θ sin φ sin θij cos θij sin φij.

The total dipolar energy associated with a system of N dipoles is given by:

U =
1

2

N∑

i,j

i 6=j

Uij (6.28)

where the factor of 1/2 is introduced to avoid counting the interaction

between dipoles i and j twice. If we consider that the N dipoles making up

the system are distributed throughout a sphere of material of radius R, then

the dipole anisotropy energy density E in the sphere may be written as:

E =
lim

R →∞
3U

4πR3
. (6.29)
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Figure 6.3: Geometrical definition of a system consisting of two interacting

magnetic dipoles.
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In order to make a ‘complete’ summation for E computationally feasible,

it is necessary to make some approximations. The first is to reduce the

number of arithmetic operations needed from O(N2) to O(N) by reducing

the first summation from a sum over all N dipoles to the product of a sum

over the n dipoles enclosed in the volume of a unit cell of the material Vu

and the number of unit cells in the sphere, thus

U ′ =
1

2
· 4πR3

3Vu

n∑

i

N∑

j

Uij (6.30)

with the added condition that

R À 3
√

Vu. (6.31)

Substituting (6.30) for U in (6.29),Equation (6.29) may then be approximated

as

E ′ =
lim

R →∞
1

2Vu

n∑

i

N∑

j

Uij. (6.32)

We chose to place our representative unit cell at the centre of the sphere,

while in reality it may be anywhere in the sphere. We can justify this choice

by observing that the error in Equation (6.30) is proportional to the ratio

of the number of unit cells lying on the surface of the sphere to the number

within the sphere, and this ratio drops off as 1/R as R → ∞. The second

approximation replaces the infinite limit of R with a finite cutoff radius Rc

which is chosen such that increasing Rc does not lead a significant change in

the calculated value of E ′′, where
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E ′′ =
1

2Vu

n∑

i,

i∈Vu

∑

j,

rij<Rc

Uij (6.33)

and rij is the distance between dipoles i and j.

Other work [77, 78, 79, 80] along these lines has also tended to introduce

another approximation, namely that of replacing the sum over the n dipoles in

the unit cell with a weighted sum of the contributions from one representative

dipole in each magnetic sublattice, the weighting factors being the number

of dipoles in each of the sublattices. It has been shown, however [81], that

the value of the dipolar anisotropy calculated using this method gives the

wrong value in M-type (and other) ferrites due to the fact that the calculated

anisotropy contribution kij from sublattice i due to sublattice j does not equal

kji. For this reason we will carry out the summation over all the dipoles in

the unit cell individually.

We can therefore calculate E ′′ by combining Equations (6.33),(6.24) and

(6.27) and performing the summations. If the system that we are considering

is an ideal crystal platelet, it may be seen that the centre and axial symmetry

will cause the contributions to the summation from the linear terms (odd

functions of angle) on the RHS of Equation (6.27) to vanish. These terms

will also vanish approximately in the case of a textured film with the c-axis

parallel or perpendicular to the film plane. Equation (6.27) then becomes

(m̂·̂rij)
2 = sin2 θ sin2 θij[cos2 φ cos2 φij+sin2 φ sin2 φij]+cos2 θ cos2 θij. (6.34)

The summation over j in Equation (6.33) also takes place over a large number
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of ions in a sphere of radius Rc, and hence φij can take any value between 0

and 2π. Therefore, for fixed values of θ, φ and θij, we may replace cos2 φij

and sin2 φij in Equation (6.34) with their average values, i.e. 1/2. Hence

(m̂ · r̂ij)
2 =

1

2
sin2 θ sin2 θij + cos2 θ cos2 θij (6.35)

which reduces to

(m̂ · r̂ij)
2 = cos2 θij − 1

2
(3 cos2 θij − 1) sin2 θ (6.36)

We may therefore now express the angular dependence of the dipolar

energy density by combining Equations (6.33), (6.24) and (6.36), thus

E ′′ = E0 +
3M2 sin2 θ

16πµ0Vc

n∑

i,

i∈Vu

∑

j,

rij<Rc

sisj

r3
ij

(3 cos2 θij − 1) (6.37)

where all the constant terms have been absorbed into the isotropic part of the

free energy density E0. Comparing this expression with the phenomenological

expression for the free energy given in Equation (4.5), we can finally express

the dipolar contribution to the uniaxial anisotropy constant Ku1 as

K ′′
u1,dip =

9M2

16πµ0Vc

n∑

i,

i∈Vu

si

∑

j,

rij<Rc

sj

r3
ij

(
cos2 θij − 1

3

)
. (6.38)

We will use this equation later in the computational evaluation of the

dipolar contribution to Ku1,dip. Further details of the implementation and the

algorithm used may be found in Section 8.2.5, and the results of calculations

may be found in Section 9.
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6.2 Extension of the magnetic theory for thin films

6.2.1 Macroscopic expression for magnetic shape anisotropy of a

thin film

The expression for the demagnetizing energy UD of a magnetized body of

volume V may be written [35] as an integral over the dot product of the

intensity of magnetization I and the demagnetizing field HD. In the case of

a homogeneously magnetized flat plane, in which the magnetization points

perpendicularly out of the plane (and hence the demagnetizing field points

perpendicularly into the plane) this becomes

UD = −1

2

∫

V
IHDdV

= −1

2
I

(
−N

µ0

)
IV

=
I2

2µ0

V (6.39)

since the demagnetizing factor N = 1 for an infinite flat plane. If the de-

magnetizing energy density is then written as

ED(θ) = UD(θ)/V = KD sin(θ) + E0 (6.40)

where θ is the angle between the normal to the plane and the direction of

the magnetization, it is seen that ED take its maximum value ( = I2/2µ0

) when the magnetization is perpendicular to the plane (θ = 0) and its

minimum value ( = 0) when the magnetization lies in the plane (θ = π/2 ).

Substituting these values into the previous equation gives the expression for

the anisotropy KD due to the demagnetizing field

KD = −E0 = − I2

2µ0

. (6.41)
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6.2.2 Definition and derivation of surface anisotropy

The total free energy associated with a flat ferrite platelet of surface area S

and thickness t (and hence volume V = St) is given [82, 83] by

E = KV V + 2KSS (6.42)

where KV and KS are the ‘volume’ and ‘surface’ contributions to the anisotropy,

and the factor 2 arises from the fact that we must count the contributions

from both the ‘upper’ and ‘lower’ surfaces, making the implicit assumption

that these two contributions are equal. We also assume that t ¿ √
S, i.e.

that the edges of the platelet do not contribute to the anisotropy. Dividing

this equation through by the volume of the platelet gives

Ktotal = E/V = KV + 2KS/t. (6.43)

The volume and surface anisotropies may then be extracted from the inter-

cept and gradient of a straight line fitted to the values of total anisotropy

plotted against (1/t).

6.2.3 Other necessary modifications of the bulk theory

The environments of magnetic ions at or near a material interface will be

different from those of ions in the bulk crystal due to the broken symmetry

and possible structural distortions associated with local relaxation and/or re-

construction. While it is possible within the framework of the Superposition

Model to take account of variations in the relative geometrical arrangement

of ligands around magnetic ions, this work has been carried out using the
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assumption that no such distortions take place. On the other hand, missing

ligands at surfaces and interfaces are accounted for by simply neglecting their

contribution to the single-ion anisotropy of the site in question.

Further details of the algorithms used to calculate the contributions to the

anisotropy can be found in Section 8.2, and the corresponding pseudocode is

given in Appendix D.

51



7 Deposition theory

7.1 Arrhenius law for surface diffusion

The rate at which a stochastic process occurs (in this case the thermally-

activated hopping of growth units on a surface ) may be thought of as being

governed by the probability of overcoming an energy barrier Ebarrier. Using

the Arrhenius formulation, this dependence may be written as

Rhop = ν0 exp
(−Ebarrier

kBT

)
(7.1)

where kB is the Boltzmann constant, T is the temperature of the substrate

in Kelvin, and ν0 is an ‘attempt frequency’. It is then common practice

[84] to consider that the energy barrier is made up of additive contributions

which depend on the local environment of the growth unit. In other solid-on-

solid (SOS) model simulations (see next Section) these contributions to the

barrier energy for a given growth unit have been taken as coming from the

layer under the growth unit, from each immediately neighbouring growth

unit in the same layer, and also, in the case of the growth of terraces on

semiconductor surfaces, from the edges of the terraces [84]. We have adopted

the first two types of barrier contribution in this study, with an additional

constant term which only applies to growth units in the first layer (as a simple

first approximation to the effect of film-substrate structure mismatch).

The expression used for the contributions to the energy barrier for a given

growth unit is therefore
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Ebarrier =





Ecc

Esub





+ nEaa (7.2)

where Ecc and Esub are the ‘surface’ contributions if the layer underneath

consists of film or substrate material respectively, Eaa is the contribution

from each immediately neighbouring growth unit in the same layer, and n is

the number of these neighbours. The use of the distinct energies Ecc and Esub

allows for the possibility that the interaction between the film material and

the substrate material may be different from that between growth units of the

film material, possibly due to interfacial strain caused by lattice mismatch

or irregularities on the substrate surface.
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8 Simulation Techniques and Programs

8.1 DEPOSIT - deposition modelling

The problem of simulating the deposition and growth of materials has tra-

ditionally been approached using one of two broad classes of methods. The

first class of methods [85] treats the growing system as a continuum, the

boundaries of the growing system being defined by continuous analytic func-

tions of some spatial variable(s) and of time. The time evolution of these

functions is determined by a stochastic differential equation. The second

class of methods (which we will use) regards the growing system as an as-

sembly of discrete growth units. The set of methods of interest to us are

concerned with the random sequential adsorption of new growth units onto

the surface of the growing system. The most widely-studied of these meth-

ods in the context of thin films are based on the solid-on-solid (SOS) model

([86, 87] and references within). In this model, growth units sit on a regular

(usually square) grid in the plane of the film, newly-deposited units stacking

on top of old such that the thickness of the growing film at any location on

the grid can simply be represented by the number of growth units making

up the ‘column’ sitting at that grid location. In such models growth units

may stick where they originally fall, or they may be allowed to ‘hop’ to a

neighbouring location by a random diffusion process, or even be allowed to

desorb completely from the surface again.

Although the approach taken in our simulations is based on the SOS

model, we have improved the model by adding important novel features.
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Each growth unit in our model is allowed to have not only a location but

also one of three possible orientations. This raises the difficulty that such a

scheme requires an irregular grid. We have solved this problem by defining

two interlocking grids, with half of each growth unit lying on each of the grids

(see Section 8.1.1). This allows us to keep all the computational benefits of

a regular grid while also allowing orientational disorder. Each growth unit is

also individually tracked, rather than considering the number of growth units

stacked at a particular location in the grid. This allows us to have voids in

the growing film, so mimicking more closely the structure of a real physical

film.

8.1.1 Geometrical definition

The fundamental growth unit in the simulation is a prism in the shape of a

crystallographically hexagonal unit cell. These growth units are introduced

into the simulation cell, which has the same shape as the growth units, and

which is divided into a regular (Na × Nb × Nc) grid, each grid cell being

the same size as a growth unit (see Figure 8.1). Growth units may stack

together side-by-side and one on top of the other, taking up one of three

possible orientations in the plane relative to the simulation cell axes (see

Figure 8.2), while the c-axis of the growth unit remaining always parallel

to the c-axis of the simulation cell. Periodic boundary conditions are also

applied, such that a growth unit leaving the simulation cell through one side

re-enters the simulation cell through the opposite side. Growth units in the

lowest layer of the simulation cell are taken to be sitting on the substrate,
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Figure 8.1: Model hierarchy
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Figure 8.2: The three allowed orientations of the growth units in the plane

1
2

3

Geometrical representation

3
3

2

2

1
1

‘Data structure’ representation

Growth unit

‘shear’

Figure 8.3: ‘Geometrical’ and ‘data structure’ representations of the simu-

lation grid. Three growth units, denoted 1,2 & 3 are shown, with different

locations and orientations in the simulation grid.
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which is assumed to be perfectly smooth, but nevertheless giving rise to the

contribution , Esub, to the energy barrier due to lattice mismatch.

Figure 8.3 illustrates how the geometrical model is represented as a data

structure in the simulation programs. Each growth unit is considered to be

composed of a ‘head’ and a ‘tail’ (shown in Figure 8.3 as open and filled

triangles)- these two parts are effectively triangular prisms which share a

common face to make a complete growth unit. The simulation cell can thus

be divided up into two interlocking triangular grids, one of which can only

contain ‘heads’ and the other ‘tails’. Every possible location and orientation

of a growth unit can be represented by the presence of a ‘head’ in one trian-

gular grid and the presence of a ‘tail’ in a neighbouring cell in the other tri-

angular grid (Figure 8.3 illustrates this concept, showing three growth units,

denoted 1,2 & 3, in different locations and orientations). The efficiency of

this approach is demonstrated when the ‘geometrical representation’ in Fig-

ure 8.3 is ‘skewed’ - the ‘head’ and ‘tail’ grids can be seen to be representable

by regular arrays in memory. The storage locations in these arrays can either

be empty or contain an integer ‘ID number’ which identifies the particular

growth unit to which the ‘head’ or ‘tail’ belongs. Using this data structure

incurs a small computational overhead, as the program must ensure that the

‘head’ and ‘tail’ of any particular growth unit stay in adjacent cells in each of

the grids as the growth unit migrates through the simulation cell or changes

orientation, but this overhead is very small when compared to the time taken

by other aspects of the growth model.
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8.1.2 Kinetic definition

The time evolution of the system is assumed to take place as a sequence of

discrete events. Two types of event can occur in the system - a new growth

unit can be deposited, or an existing unit in the system may change its

position and/or orientation. Re-evaporation of growth units from the surface,

whilst usually included in previous similar Monte-Carlo simulations of the

growth of metals, semiconductors etc., is not considered to be a significant

factor since the growth unit contains a relatively large number of atoms.

Both types of event included in the simulation are assumed to take place

instantaneously.

New growth units are added to the system at a chosen constant deposition

rate, starting at the top of the simulation cell at a random position and

dropping vertically until they reach the bottom or land on top of another

growth unit, hence modelling a constant spatially uniform flux of material

impinging on the substrate. In addition, a newly-arrived growth unit is

allowed a ‘transient’ mobility, such that it can immediately hop down into a

laterally adjacent vacant site in the layer below if such a site exists. If several

of such adjacent lower sites exists one is chosen randomly, each candidate site

being allocated equal probability.

Growth units can hop around and change their orientation on the surface

of the film, the hopping rate of any particular growth unit on the surface

being determined by the number of immediately adjacent growth units using

Equations (7.1) and (7.2). A growth unit can hop down into the underlying

layer if a viable site exists there, but cannot hop upwards into a higher
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layer. No additional (Ehrlich - Schwoebel type) energy barrier contribution,

associated with such a hop down over a ‘ledge’ is considered here (unlike that

which has been included in a number of similar MC studies of the growth of

vicinal surfaces of semiconductors - see [88] for examples). It is difficult to

justify the inclusion of such a barrier in our case, given the large number of

atoms in the growth unit - the exact mechanism would be a complicated one,

possibly even involving a substantial displacement of atoms in the underlying

layer.

The substrate-film system is considered to be kept at a constant uniform

temperature in order to simplify the simulation. This has the added benefit of

allowing all of the exponentials to be calculated once at the beginning of the

simulation, thus removing the need for a relatively time-intensive arithmetic

operation in the ‘inner loop’ of the simulation.

8.1.3 Determination of process parameters

The determination of the energy barriers to motion of the growth units is a

difficult issue. Ideally these energies would be determined from a detailed

experimental STM study of island growth at very low coverages on a per-

fect single-crystal ferrite substrate. To my knowledge, no such study has

yet been carried out. The computational cost of all-electron ab initio total

energy calculations using modern electronic structure codes would also be

prohibitive. In view of these difficulties, a calculation scheme involving sum-

mation of the Coulomb energy contributions from pairs of point charges has

been implemented (see Section 9.5.2 of this thesis).
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In the interests of establishing the behaviour of the film growth model,

both the attempt frequency ν0 and the temperature factor kBT in Equation

(7.1) are taken to be unity (the latter then effectively rendering the barrier

energy contributions dimensionless). The incoming flux of deposited growth

units F is also taken to have units of (number of growth units per unit area

per unit simulation time) and hence the overall deposition rate Rdep is given

by

Rdep = NaNbF (8.1)

where the unit of area is taken to be the area of the {001} face of a single

growth unit.

8.1.4 The deposition and growth algorithm

The algorithm used to model the evolution of the thin film belongs to the class

of variable-timestep Monte Carlo methods. It is based on the assumption

that the evolution takes place as a sequence of discrete events, each of which

occurs instantaneously, and that the system does not change in the time

between these events. In this work it is also assumed that only two types

of event are possible; the arrival on the film of a new growth unit, and

the ‘hopping’ of an existing growth unit from one site in the film to another,

possibly accompanied by a change in orientation of the growth unit. It is also

possible in this simulation that growth units may simply reorient themselves

‘in place’ - this is considered to be a hop of zero length. In addition, the

growth units are allowed to touch but not overlap.

We therefore define total rates of deposition and hopping by summations
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over all the eligible sites as

Rdep =
∑

i

di (8.2)

Rhop =
∑

i

hi (8.3)

where di and hi are respectively the probabilities per unit time of a deposition

or hopping event taking place at site i. One can define a total rate of events

for the whole system as

Rtot = Rdep + Rhop (8.4)

Elementary probability theory states that the distribution of time inter-

vals τ between events is given by

P (τ) = Rtot exp(−Rtotτ)dτ (8.5)

The variable u = exp(−Rtotτ) is randomly distributed between 0 and 1,

and hence the time between successive events may be chosen by solving the

equation

r = exp(−Rtotτ) (8.6)

where r is a random number uniformly distributed between 0 and 1. We now

know when the next event will occur, and the further task is to decide on

the type and location of the event. The method used to do this is shown in

schematic form in Figure 8.4, where the conditional probabilities are arranged

along a line segment, whose length is given by Rtot. A second random number

r2 is chosen from a uniform distribution between 0 and 1, and the type of

event is chosen to be a deposition if Rtotr2 < Rdep, or a hop if Rdep ≤ Rtotr2 <
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0 Rdep Rtot

r2 Rtot

d1 h1 h2 h3d2 d3 d4

Figure 8.4: Schematic of the algorithm for choosing the type and site of the

next event.

Rtot. The location of the event is decided in a similar way. For example, if

the event is a hop, then the site i affected is chosen by finding the largest i

such that

Rtotr2 −Rdep ≥
i−1∑

j=1

hi. (8.7)

The evolution of the system thus proceeds by examining the current state

of the system, calculating from this state the overall rates of the different

types of events, then using these rates to select the time, location and type

of the next event. The rates are then updated for the new configuration of

the system, and cumulative rate sums are computed for all the sites. The

whole process is repeated until the simulation is complete.

Reference [89] extended this technique (for which the time per event scales

as the total number of sites N) by dividing the sites into groups and main-

taining separate cumulative sums for the groups. For the optimal choice of

the size of a group, the time per event scales as
√

N . It is also then possible

to recursively divide these groups into sub-groups in such a way that the
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scaling approaches ln2 N [90].

In our simulations, the flux of incoming growth units is considered to be

constant and spatially uniform. Deposited growth units are dropped verti-

cally into the simulation cell at random positions. Rdep is therefore constant

during the course of a simulation run, and does not have to be computed

using Equation (8.2) at each step - Equation (8.1) is used instead. Similarly,

we maintain cumulative hopping rate tables for all growth units in the sys-

tem, not for all sites. This avoids the need to update hopping rates (and

hence cumulative hopping rates) for sites on which no growth unit yet exists.

8.1.5 The DEPOSIT program

The DEPOSIT program takes as input a film data file and a set of growth

conditions, and produces an output film data file corresponding to the pro-

cessed film, along with an output file summarizing some of the film statistics

(see Section 8.3). The program can also be set to produce ‘checkpoint’ film

data files periodically during the simulation run, representing the interim

state of the partially-completed simulation run. These checkpoint files can

be very useful in cases when the simulation runs are very time-intensive -

they can be used to ‘restart’ a simulation run if the calculations are termi-

nated prematurely by a system crash, or even by simply running up against

a per-job CPU time limit such as may be imposed by some job queueing

software. The process parameters specified at the beginning of a deposition

run remain in force for the duration of that simulation run. Multiple simu-

lation runs with different process parameters may be performed however, as
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the final output file from one deposition simulation run can be used as the

input file (starting conditions) for the next. The entire ‘processing history’

of every film data file is recorded (in the form of ‘comments’ describing the

process parameters used) at the beginning of the film data file (see Figure

8.5 for an example).

Pseudocode for the DEPOSIT program can be found in Appendix C.

8.2 KFILM - anisotropy simulation

The anisotropy program KFILM takes as input an ASCII file which contains

all the structural details of the simulated film, such as that produced by the

deposition program DEPOSIT described above. This section describes the

overall ‘mean-field’ approach taken to the anisotropy calculations, followed

by descriptions of the calculation of the single-ion and dipolar contributions.

8.2.1 The ‘mean-field’ model

In the growth model described earlier, the growth units stack together like

solid prisms, sharing edges and faces with other growth units. Bringing this

geometrical description of the simulated film together with the simulation of

the magnetic properties requires that the positions of the ions in each growth

unit be known. The easiest way to approach this task (and the approach

adopted in the remainder of this thesis unless stated otherwise) is to equate

one growth unit with one conventional unit cell.

An approach has been adopted where atoms which lie on any boundary

of the unit cell are duplicated and given partial occupancies which reflect the
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%

% Film created by MakeSlab

%

% Initial time = 0.000000000000000000E+00

% Simulation cell dimensions 10 10 25

% Total number of growth units = 1

%

% Interaction energies

% Eaa = 1.00000000000000000

% Ecc = 5.00000000000000000

% Ecs = 5.00000000000000000

%

% Number of groups = 1

% Initial orientation = 1

%

%

% PROCESS RECORD

% Process duration: 1.00000

% Deposition rate was: 100.00000

% Substrate temperature was: 1.00000

% No. of deposition events = 98

% No. of hopping events = 1

%

%

% PROCESS RECORD

% Process duration: 1.00000

% Deposition rate was: 100.00000

% Substrate temperature was: 1.00000

% No. of deposition events = 97

% No. of hopping events = 1

%

Figure 8.5: Excerpt from the initial section of a DEPOSIT film data file. Note

the lines recording the ‘process parameters’ for each successive deposition run

- these lines record the ‘processing history’ of a simulated deposited film.
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nature of their position on the boundary. The simplest example of this would

be an atom lying at the origin of the unit cell. In an infinite crystal, ‘copies’

of this atom lie at every corner of every unit cell due to the lattice periodicity.

A single atom on this site could then be considered to be ‘shared’ between

adjacent unit cells. In order, therefore, to avoid any ambiguity about which

boundary atom belongs to which unit cell (and hence growth unit), it is

convenient to regard the contents of every unit cell as independent entities

in the following way. Instead of considering each growth unit to have a

single site of occupancy x at the origin, the growth unit is taken to contain

8 distinct sites, each with occupancy x/8, situated at each of its corners.

In an analogous way, sites of occupancy x situated on the edges or corners

of the unit cell are replaced with multiple sites with occupancy x/4 and

x/8 respectively in each growth unit, preserving the ‘overall’ number of sites

of these types in the unit cell. Figure 8.6 illustrates this idea with a two-

dimensional lattice.

The main advantage of this approach is that the contents of every growth

unit can be considered to be unique to that unit. Any quantity which is

regarded as being the sum of contributions between pairs of sites must then

be constructed as the sum of terms which are the basic pair contribution

weighted by the product of the occupancies of each site making up the pair.

Both the single-ion and dipolar contributions to the anisotropy which are of

interest to us are the sum of pair contributions in this way: for the single-

ion anisotropy, each pair consists of an Fe site and an O site, and for the

dipolar anisotropy the interactions are between two Fe sites. In the case of
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1/4 1/4 1/4 1/4

1/2 1/21/2 1/2

1/4 1/4 1/4 1/4

Figure 8.6: An illustration of an alternative way of regarding the structure

of a 2-D infinite lattice. The lower picture shows the infinite lattice, each

site having unit occupancy (shown here as black filled circles). Alternatively

(upper pictures), the lattice can be regarded as an assembly of independent

cells, sites on the boundaries having partial occupancies as shown.
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the dipolar anisotropy, additional care must be taken to avoid calculating

the interaction between two partial Fe sites (possibly from different growth

units) which lie at exactly the same position in space, as the result would be

infinite: such pairs are ignored in the construction of the dipolar sum.

Using this ‘mean-field’ approach has several consequences, both favourable

and unfavourable. From a purely computational perspective, more work is

required, as there are now more ’effective’ sites to be considered than with

the conventional approach. On the positive side, however, no special pro-

vision needs to be made to preserve the overall stoichiometry of the system

at boundaries between a growth unit and the empty space in the simulation

cell. Such boundaries naturally generate sites with uncompensated partial

occupancies, e.g. at the surface of the film or at voids in the interior of the

film, which will have different single-ion and dipolar contributions to sites

deep in the film or in regions with perfect local crystalline order. In this way,

the effect of the presence of material interfaces in the system is transparently

taken into account.

8.2.2 Unit cell data file

Each growth unit in the simulation is taken to correspond to one unit cell

of the deposited material. After the file describing the hexaferrite structure

has been read in, the program reads in a user-specified file containing the

fractional coordinates of all of the Fe and O ions in the unit cell, using a

slightly modified (and greatly simplified) version of the file format used by

the crystallographic program SHELX [91]. This format was chosen because
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it consists of human-readable (and hence easily editable) ASCII data with

a very clear layout, and has provision for allocating each atom a fractional

occupancy. This latter facility is essential for the operation of the KFILM

code. In addition, many software packages designed to aid the visualization

and editing of crystal structures can import and export files in the SHELX

format, considerably simplifying the task of preparation of input files.

The unit cell data file starts with a header consisting of three lines. The

first line of the header consists of the SHELX keyword TITL, followed by

an alphanumeric string corresponding to a user-chosen title for the file. The

program KFILM only reads the first 80 characters of this line. The second

line of the header consists of the SHELX keyword CELL, followed by seven

numbers seperated by spaces. The first number is used in a conventional

SHELX file to represent the wavelength in Angstroms of the radiation (such

as X-rays) used in a diffraction experiment to discover the cell parameters

and atom positions. This quantity is not relevant in our case, so we set it

to zero. The remaining six numbers represent the values, in order, of the

lattice parameters ( the distances a, b, and c given in Angstroms, and the

cell angles α, β and γ given in degrees). The third line of the header consists

of the SHELX keyword LATT followed by the letter P to indicate that this

is the primitive unit cell.

Following the header there are a number of atom records, each record

consisting of a single line and corresponding to the data for a single atom in

the structure. There is no provision for symmetry operators in the file, as

in standard SHELX files: each individual atom in the whole unit cell has its
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own record, regardless of any symmetry present. The atom records have the

following format

Label NotUsed FracX FracY FracZ Occupancy Spin

where the fields are defined as follows

Label is an alphanumeric string of 5 characters, indicating the type of the

atom. In this application the label will start with the letters ‘BA’, ‘FE’

or ‘O’, indicating barium, iron and oxygen atoms respectively.

NotUsed This field is present in conventional SHELX files, and is only used

here for compatibility reasons. Always set to ‘0’.

FracX Fractional coordinate of atom in a-direction

FracY Fractional coordinate of atom in b-direction

FracZ Fractional coordinate of atom in c-direction

Occupancy Fractional occupancy of site

Spin This field is only non-zero (and hence significant) for Fe sites. It en-

codes two pieces of information. The sign is used to specify that the

net spin on the ion is ‘up’ or ‘down’ i.e. parallel or antiparallel to

the crystallographic c-axis. The magnitude denotes which of the five

crystallographic sublattices the site belongs to.

The unit cell data file is terminated by a line containing only the string

‘END’, again for SHELX compatibility. An example unit cell data file may

be found in Appendix A of this thesis.

71



8.2.3 Single-ion data file

After the unit cell data file, the program then requests the name of a single-

ion data file. This file consists of two lines, the first containing the values

of the r0, b2 and t2 superposition model parameters used to calculate the

contribution for every ligand in the structure except the equatorial oxygen

ligands associated with the 2b sites. The parameters for the latter ligands

are given on the second line (see Section 6.1.1.6 and Table 6.1 for numerical

values and descriptions of these parameters).

8.2.4 Evaluating the single-ion contributions

The calculation of the single-ion contributions require the evaluation of the

ligand-ion distances and the geometrical factor Z0
2 (using Equation (6.20) )for

every magnetic ion in the simulation cell. This requires a search for neigh-

bouring O ions around every Fe site in every growth unit, taking into account

the periodicity of the simulation cell. The intrinsic parameters (previously

read in from a data file) are then used to evaluate and sum the contributions

to the spin Hamiltonian parameter from each ligand of each ion.

8.2.5 Evaluating the dipolar contributions

The dipolar contribution is evaluated by summing the interactions between

every ion i and every other ion j (along with all of its periodic copies which

lie within the cutoff radius) in the simulation cell. A number of measures are

taken to avoid wherever possible evaluating the distance rij, which involves

the relatively computationally expensive evaluation of a square root. Firstly,
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if any component of rij exceeds the cutoff radius, the program immediately

moves on to consider the next (i, j) pair. The square of the magnitude of

rij is then compared with the square of the cutoff radius to accept or reject

the candidate (i, j) pair. The number of square root operations is therefore

minimized.

8.2.6 Effect of distorted sites and missing ligands

The model described and used in this work to calculate the magnetic prop-

erties of a ferrite thin film makes the assumption that the crystal structure

of growth units at interfaces between the growing film and its environment

(such as the substrate material or the near-vacuum in the growth chamber)

is the same as for the bulk crystal. For a real film, this is unlikely to be true,

as there will most likely be a degree of reconstruction associated with the

interfaces. The underlying physical model used to calculate the single-ion

contribution to the anisotropy, however, has the capability to accomodate

small local geometrical changes, although this has not been implemented in

the current version of the code. The other main difference between the struc-

ture at interfaces and in the bulk will be that Fe ions at the interfaces may

have ’missing’ oxygen ligands - these missing ligands should be fairly well

simulated by the uncompensated partial occupancies on oxygen sites permit-

ted by the ’mean-field’ model used by the code and described in Section 8.2.1

of this thesis.
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8.2.7 Summation of anisotropy contributions over all ions in film

The single-ion and dipolar contributions are added, and the result divided

by the overall volume of material in the simulation cell (i.e. neglecting the

volume of any voids) to give the total uniaxial anisotropy energy per unit

volume of the simulated film.

Pseudocode for the KFILM program may be found in Appendix D.

8.3 FILMSTAT - extraction of film statistics

The program FILMSTAT was written to extract some statistics from a sim-

ulated deposited film, and also produce some output allowing visualisation

of the grown film.

8.3.1 Film statistics

A number of statistical measures are calculated from each input structure.

These are:

• Average thickness, defined as

Average thickness =
1

NaNb

Na∑

i

Nb∑

j

hij (8.8)

where hij is the z-coordinate of the highest growth unit associated with

the grid location (i, j) in the plane of the film.

• Averages of deviation and absolute deviation from the average thickness

• Roughness, defined as the root mean square deviation from the average

thickness.
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• Percentage of voids by volume

• Average nearest-neighbour coordination. The quantity is calculated as

the average number of growth units surrounding a given growth unit

in the same layer. This gives a measure of the ‘clumpiness’ of the film.

8.3.2 Output files for visualisation

The FILMSTAT program can also optionally produce data files which may

be used to visualise the structure of the grown film. These files may be of

two different types, described in the next two sections.

8.3.2.1 Geomview output The first type consists of data describing a

set of polygons in 3D space, using an ordered list of the coordinates of the

vertices of each polygon. One polygon is produced for each side of every

growth unit making up the simulated film structure. The data is written in

the QUAD format, which is read by the free general geometry visualisation

program Geomview [92]. This program allows the resulting collection of

polygons to be viewed interactively from any angle and at any magnification.

An example of the output of the Geomview program is shown in Figure 8.7

- this is the Geomview representation of the structure of a film generated

using DEPOSIT.

This form of output suffers from the drawback that the file containing

the QUAD data is often tens of megabytes in size, even for small simula-

tion cells. Apart from the time needed to load and render such a a large

amount of polygon data, storage of large numbers of these files presents a
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Figure 8.7: Example output of Geomview. The structure is that of a simu-

lated grown film produced using DEPOSIT.
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problem due to their size. A number of steps may be taken to alleviate these

problems. Ordering the vertices of each polygon in a consistent manner al-

lows Geomview to distinguish between the ‘inside’ and the ‘outside’ of each

polygon making up the faces of each growth unit, and any polygon which is

presenting its ‘inside’ to the viewer can be removed from the list of polygons

to be drawn before any drawing is performed, a process known as back-face

culling. Data in the QUAD format can also be converted from an ASCII

format to the alternative binary OFF format, which gives a substantial re-

duction in file size. Furthermore, redundant and multiply-defined vertices,

lines and polygons can be eliminated from the OFF file, reducing the file size

even more. Auxiliary programs provided as part of the Geomview package

provide these capabilities to convert and eliminate redundancies in QUAD

and OFF files.

8.3.2.2 Heightfield output This is a simpler form of output, consist-

ing of the position coordinates of the centre of the uppermost face of the

uppermost growth unit (effectively the height of the column of material) at

every distinct lateral location in the plane of the film. An assembly of such

coordinates is known in computer graphics terms as a heightfield. These data

files, representing the ‘envelope’ of surface of the film, are of a much more

manageable size. A small script for the general-purpose mathematics pack-

age MATLAB was specially written to read and draw heightfields, allowing

the results of the deposition simulations to be qualitatively examined. The

graphical output from the MATLAB script may be seen in Section 9.6 in this
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thesis (Figures 9.18 and 9.19).

78



9 Results

Unless otherwise stated, all of the calculations described in this chapter were

performed on the 24-processor IBM SP2 computer ‘dirac’ in the Department

of Physics, University of Salford.

9.1 Magnetic anisotropy of the bulk crystal

The program KFILM was used to determine the dipolar and single-ion aniso-

tropies of an infinite 3-D crystal of BaM. Full use was made of the periodic

boundary conditions by specifying a (1 × 1 × 1) simulation cell which was

occupied by a single unit cell of BaM, whose environment was then effectively

identical to the bulk crystal. Two cases were considered: the first with the

bipyramidal sites being considered as 2b sites, and the second as 4e sites

where the bipyramidal Fe ions were taken to be ‘frozen’ in the ‘up’ position.

An additional calculation was performed where one site was ‘up’ and the

other ‘down’ - this yielded identical results to the ‘both up’ case. Similarly,

the summation algorithms were tested by using completely filled (2× 2× 2)

and (4 × 4 × 4) simulation cells - again these calculations yielded identical

results to the (1× 1× 1) case.

9.1.1 Single-ion contribution

This was calculated using the SM parameters given in Table 6.1 and [93] for

the case of T = 0K, and the results are shown in Table 9.1. As expected,

the largest contribution came from the bipyramidal sites. The two possible
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configurations of these sites (either as 2b or 4e) gave contributions which

differed by about 7 percent.

Sublattice No. of ions Di Single-ion contribution Sublattice

per unit cell parameter to K1 per one ion total

(cm−1) (×105 Jm−3) (×105 Jm−3)

12k 12 0.076414 -0.10877 -1.30646

4f2 4 0.043619 -0.06215 -0.24861

4f1 4 0.026871 -0.03828 -0.15315

2b(4e) 2 -2.02451 2.88477 5.76955

(-1.8921) (2.69611) (5.39222)

2a 2 -0.040597 0.05784 0.11569

Total single-ion 4.17701

contribution (3.79968)

Table 9.1: Single-ion contributions to the anisotropy from the five sublattices.

9.1.2 Dipolar contribution with convergence analysis

The calculated dipolar contribution showed slow convergence with increasing

cutoff radius, with large oscillations at small values of the cutoff radius. The

slow convergence is probably to be expected, since the dipolar interaction

energy between two dipoles drops off as r−3 but the number of dipoles in-

teracting with any given dipole also goes up as r3. The large oscillations at

small cutoff radii can be explained in terms of the partial cancellation of the
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relatively large contributions from successive ‘shells’ of dipoles contributing

to the sum. Figure 9.1 shows the convergence of the ‘central’ (2b) and the

‘both up’(4e) cases. Actual calculated values are shown in Figure 9.1, along

with corresponding values obtained by linear extrapolation from the previous

two values. The calculated value of the total dipolar anisotropy contribution

for the case that bipyramidal Fe cations are in 2b sites was determined to

be approximately 1.738 × 104Jm−3, while the value for the bipyramidal Fe

cations being in 4e sites was slightly higher (1.762× 104Jm−3).

9.1.3 Comparison with experimental values

The sum of the dipolar and single-ion contributions to the bulk anisotropy

shown in Table 9.2 is close to the experimental value, i.e. 4.4× 105Jm−3 at

T=0K [1].

Bipyramidal 2b Bipyramidal 4e

(×105 Jm−3) (×105 Jm−3)

Single-ion 4.17701 3.79968

Dipolar 0.17380 0.17620

TOTAL 4.35081 3.97588

Table 9.2: Calculated magnetic anisotropy contributions for bulk.

The total for the bipyramidal site being classified as a 2b site is closer to

the experimental value than for the 4e classification. This may indicate that

at 0K the correct classification for the site is 2b.
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Figure 9.1: Convergence of the total dipolar contribution to the anisotropy

with respect to the dipolar cutoff radius, plotted for the two cases of the Fe

cations being at the 2b and 4e positions. Extrapolated values for each of

these cases are also shown.
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9.2 Magnetic anisotropy of an infinite perfect film

This case corresponds to a perfect crystal which is infinite in two perpendic-

ular directions but finite in a third. For our purposes this third direction will

be the vertical axis, and the crystal is such that the crystallographic c-axis

also lies along this direction.

9.2.1 Estimate of the magnetic shape anisotropy of a thin film

Substituting the tabulated experimental value of I for BaFe12O19 into Equa-

tion (6.41) in Section 6.2.1 gives the value KD = −1.78 × 105Jm−3. This

serves as the phenomenological value for the shape anisotropy of a thin film

of BaFe12O19.

9.2.2 Estimating the dipolar contribution using a ‘tile’ model

9.2.2.1 Definition and theory for tile model. We can independently

make an estimate of the dipolar contribution to the anisotropy of a thin

film by considering a thin square platelet of magnetic material, of side a

and thickness t, divided into a regular square grid of (N ×N) ‘tiles’ of side

h = a/N , each labelled by a pair of integers (i, j) giving their position in

the grid (see Figure 9.2). The total magnetic moment of each element is

therefore M = Ih2t. We can then (using Equation (6.24)) treat, in the

first approximation, each element as being close to an elementary dipole,

with all the dipoles assumed to be parallel to each other (si = sj = 1) and

perpendicular to the plane of the platelet. This then gives the expression for

the interaction energy of the element at (i, j) with that at (k, l) as
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Figure 9.2: Diagram of the geometry for the case of a square homogeneously

magnetized platelet.
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U⊥
ijkl =

M2

4πµ0r3
ijkl

=
I2h4t2

4πµ0 [(kh− ih)2 + (lh− jh)2]3/2
. (9.1)

One can write a similar expression for the case when the magnetization lies

parallel to the plane in the x-direction. Using Equation (6.24) again, this

gives

U
‖
ijkl =

−3M2

4πµ0r3
ijkl

(
x2

ijkl

r2
ijkl

− 1

3

)

=
−3M2x2

ijkl

4πµ0r5
ijkl

+ U⊥
ijkl. (9.2)

This expression may be expanded as

U
‖
ijkl =

−3I2h4t2(kh− ih)2

4πµ0 [(kh− ih)2 + (lh− jh)2]5/2
+ U⊥

ijkl. (9.3)

Substituting t = h, this yields the expression

U
‖
ijkl =

−3I2h8(k − i)2

4πµ0h5 [(k − i)2 + (l − j)2]5/2
+ U⊥

ijkl. (9.4)

The total energy for the platelet may then be calculated by summing over

all i,j,k and l (i 6= k, j 6= l) thus:

U‖ =
1

2

N−1∑

i, j, k, l = 0

i 6= k, j 6= l

U
‖
ijkl

= −3I2h3

8πµ0

N−1∑

i, j, k, l = 0

i 6= k, j 6= l

(k − i)2

[(k − i)2 + (l − j)2]5/2
+ U⊥ (9.5)
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where

U⊥ =
1

2

N−1∑

i, j, k, l = 0

i 6= k, j 6= l

U⊥
ijkl (9.6)

and therefore the energy density may be obtained by dividing through by

the volume of the platelet V = a2t = N2h3 to give

E‖ = − 3I2

8πµ0

(
1

N2

) N−1∑

i, j, k, l = 0

i 6= k, j 6= l

(k − i)2

[(k − i)2 + (l − j)2]5/2

︸ ︷︷ ︸
W1

+ E⊥. (9.7)

From Equation (6.40) we see that

E‖ − E⊥ = E(π/2)− E(0) = K (9.8)

and hence we can write our final expression for K as

K = − 3I2

8πµ0

W1. (9.9)

where W1 is the term indicated in Equation (9.7).

9.2.2.2 Implementation, results and conclusion of tile model cal-

culation. The ratio of KD/K is given as

KD

K
=

I2

2µ0

· 8πµ0

3I2W1

=
4π

3W1

. (9.10)

Using a Fortran-77 program running on a Pentium 150 MHz PC under MS-

DOS 6.22 and Salford FTN77 to perform the explicit summations for W1

86



0.
94

0.
95

0.
96 0.

00
1

0.
00

3
0.

00
5

0.
00

7

y 
=

 +
4.

60
x1  +

0.
93

0,
 R

:2
.6

7E
-4

, m
ax

 d
ev

:3
.8

6E
-4

1 
/ N

um
be

r 
of

 ti
le

s

mmmm• mmmm•

KD/ K

Figure 9.3: Fitted values of KD/K vs. 1/(number of tiles N)

87



at a number of values of N over the range of values N=150 . . . 600, results

for KD/K are obtained and summarized in Figure 9.3. It may be seen from

Figure 9.3 that the asymptotic value as N → ∞ of KD/K is about 0.93,

corresponding to a value for K of−1.65×105Jm−3. This is a very satisfactory

result, since Equation (6.24), which is in general use in magnetism, is in fact

only the first term in an infinite series expansion of Uijkl for small but finite

dipoles, some of them touching each other [94].

9.2.3 Ion-by-ion calculation using KFILM

The program KFILM was used to calculate the dipolar and single-ion con-

tributions to the uniaxial magnetic anisotropy constant K1 using explicit

ion-by-ion summation for a perfect infinite single-crystal film. The compu-

tational effort involved was minimized by using a simulation cell which was

as small as possible in the plane of the film (na = nb = 1), thereby taking

maximum advantage of the periodic boundary conditions. The height of the

simulation cell was chosen to be large enough (nc = 40) to avoid interactions

between the film and its periodic copies in the c-direction by making this

height considerably larger than the maximum cutoff radius used in the sum-

mation for the dipolar contribution. All of the tests outlined in this section

were performed in this simulation cell.

9.2.3.1 Calculation of dipolar anisotropy. A set of explicit ion-by-

ion summation calculations were performed using the KFILM program for

films whose thickness was an integer number of unit cells, stacked on top
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of each other with c-axis perpendicular to the film plane (thickness of one

layer = c = 23.182 Å). As expected for a film of finite thickness, the calcu-

lated extrapolated value for the dipolar anisotropy does not vary with film

thickness as the cutoff radius tends to infinity (see Figure 9.4). The graph

shows that all of the curves are tending towards a value of K1 of about

−1.60 × 105Jm−3 as the cutoff radius tends to infinity. The rate of conver-

gence of the result with respect to the cutoff radius is much faster than in

the bulk case. The value itself, K1 = −1.60× 105Jm−3, is very close to the

value of K = −1.65× 105Jm−3 obtained from the ‘tile’ model.

While it may be argued that this calculation suffers from the same po-

tential problem with the validity of the approximation implicit in Equation

(6.23) as the ‘tile’ model, in this method the distance between the dipoles

is fixed by the crystal structure and hence cannot become arbitrarily small.

The explicit summation therefore provides a better estimate of the dipolar

contribution.

9.2.3.2 Calculation of surface anisotropy The single-ion contribu-

tion to the anisotropy of an infinite perfect film was calculated for a range

of film thickness (in a similar way to the dipolar calculations described in

the previous section). The results were then plotted as a function of (1/ film

thickness), along with the corresponding dipolar contribution and the total

anisotropy (Figure 9.5).

The values for the single-ion anisotropy fit a straight line very well over

the entire tested range of film thicknesses. The dipolar contributions showed
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a non-linear dependence on thickness. This may be understood by recognis-

ing that the calculated dipolar contribution of the anisotropy itself has two

contributions: that arising from the magnetostatic shape anisotropy of the

film (negative), and that arising from the intrinsic properties of the hexago-

nal crystal structure (positive). It may be seen from Figure 9.5 that for very

thin films, the magnetostatic shape anisotropy (−1.6×105Jm−3) is dominant

(marked on the graph by a dotted line). With increasing thickness of the film,

the hexagonal structure-based bulk anisotropy increasingly contributes, and

in the limit of infinite thickness should approach the bulk value (calculated

in Section 9.1.2 as +1.738× 104Jm−3). This is confirmed by a least-squares

straight-line fit to the leftmost five points on the dipolar curve in Figure 9.5,

which gives the extrapolated intercept to be +2.1× 104Jm−3, which broadly

in agreement with the expected value.

9.2.3.3 Investigation of the effect of cell cutting The dipolar and

single-ion contributions to the total anisotropy of a single layer of a perfect

film (effectively ‘cut’ from a larger crystal) were calculated and plotted as a

function of where in the structure the layer was cut. The strategy used was

to create a number of possible unit cells, each one differing from the next by

exactly where in the structure the origin of the unit cell was chosen to be.

In practice, this was achieved by shifting the contents of the conventional

unit cell (for which the origin lies on the 2a site) in the c-direction by vary-

ing amounts and ‘wrapping round’ those atoms which moved through the

{ 0001 } faces of the unit cell. The variation of the dipolar and single-ion
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contributions with the amount of shifting is shown in Figure 9.6.

Note that of the two types of contribution, the single-ion anisotropy shows

the most sensitive dependence on shift, with a shift corresponding to putting

the 2b and 12k sites on the surface giving the smallest and largest anisotropies

respectively. The dipolar anisotropy appears to show less variation with shift,

peaks appearing when the 2a and 12k sites are on the surface, with all other

possible shifts giving very similar values.

It was also observed that the calculated anisotropies showed less variation

with shift as the thickness of the slab was increased. This is expected, since

the surface to volume ratio decreases as the thickness increases.

9.2.3.3.1 Surface and volume anisotropies of shifted variants

This analysis was performed over a range of film thicknesses (using just the

single-ion contribution) for a number of different shifted variants of the unit

cell. The values of the surface anisotropy KS varied over quite a range (see

Figure 9.7), and were mostly negative, but one was found to be positive

(2b sites on surface). Also, all of the cases gave a value for the single-ion

contribution to the volume anisotropy of KV = 4.18× 105Jm−3, which is in

excellent agreement with the previous results calculated for the bulk.

9.3 Magnetic anisotropy of a finite perfect film

The effect of having a film which is finite in the plane of the substrate was

examined. This was achieved using the optional ability of KFILM to set

additional non-spherical cutoffs for the dipolar summation in the form of
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minimum and maximum values (in Å) of x, y and z (representing the position

of dipole j in the summation formula), where these coordinates form an

orthogonal Cartesian frame with the origin at the centre of the simulation

cell. In effect, this provides the ability to confine the dipolar summation

to a cuboidal volume centred on the simulation cell. Care must be taken,

however, that the outer (spherical) dipolar cutoff radius is set large enough

so as not to reject any candidate interactions within the cuboidal volume.

Cutoffs were chosen in the plane of the film so as to model a square

platelet of side 300 Å , and the film thickness was varied over the range

nlayers = 1 . . . 14, the simulation cell being of size (1 × 1 × 40). The outer

dipolar cutoff radius was also set to 1000 Å so as to include the whole of the

platelet in the dipolar summation sphere. The dipolar contributions to the

anisotropy are shown in Figure 9.8, and the variation of both contributions

and the total anisotropy with increasing slab thickness is shown in Figure

9.9.

It may be seen from Figure 9.9 that while the single-ion contribution

is always positive, the dipolar contribution starts off negative for thinner

layers and only becomes positive when the thickness of the slab is greater

than or equal to 14 layers. This corresponds to a square platelet which is as

thick as it is wide, i.e. a cube of material. This behaviour can be compared

with that of the infinite perfect film described earlier - in the limit of a

very thin film, the dipolar contribution tends towards the predicted value

for the magnetostatic shape anisotropy in the same way as for the infinite

perfect film. As the platelet gets thicker, the intrinsic component of the
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dipolar contribution associated with the hexagonal crystal structure begins

to dominate.

99



9.4 High-memory vs. low-memory: a comparison of

strategies for large-scale anisotropy simulations

The calculations of the single-ion and dipolar contributions to the uniaxial

anisotropy can require substantial computational resources in cases where

large systems (containing many magnetic ions) are simulated. It is therefore

useful to ascertain the maximum size of model system which can be practi-

cally considered, given the finite constraints of computer memory and CPU

time. Another issue which frequently arises when developing large computer

simulations is whether intermediate results which may be needed more than

once in a program run should be calculated once, stored and then recalled

when required, or re-evaluated from scratch (possibly many times over) when

necessary. Both of these strategies have benefits and drawbacks for the over-

all efficiency of the simulation, and the most efficient strategy will depend

critically on the exact nature of the calculation and the relative speeds and

capacities of the physical components of the computer on which the simula-

tion is run. In anticipation of the application of the anisotropy calculation

program KFILM to the results of large-scale thin film growth simulations

performed by DEPOSIT, investigations into how these issues affect the cal-

culation of the single-ion and dipolar anisotropy contributions were carried

out and are described below.

9.4.1 Discussion of memory issues

Two possible strategies for carrying out large-scale simulations (in which

there are a large number of magnetic ions in the simulation cell) suggest
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themselves. The first (here called the ‘high-memory’ strategy) is to precom-

pute and store in arrays the position coordinates and total occupancies of

every magnetic ion site in the simulation cell. These arrays can then be

handed over to the subroutines which compute the single-ion and dipolar

contributions, which use a single- and double (nested) loop over the sites re-

spectively in their summations, and thus requiring execution times of O(N)

and O(N2) respectively. For large systems, these arrays will require a lot of

memory to store, as there are four double-precision numbers associated with

each site. In this case, very large simulations will incur large time overheads

associated with ‘paging’ storage used by the program to a swap file once the

storage needed exceeds the physical RAM capacity of the computer.

The alternative ‘low-memory’ strategy is not to store these vast arrays

of site data all at once, but to only generate the details of the interacting

site(s) when required, by replacing the loops over sites with loops over growth

units plus small ‘inner’ subsidiary loops over all the sites in each growth unit.

This obviously adds complexity to the program but, used in conjuction with

the ‘mean-field’ model mentioned earlier, yields a calculation scheme which

is much more economical on memory, making very large scale simulations

feasible. The drawback with this strategy is that it requires more computer

time, which is undesirable when results need to be correlated from a large

number of different runs using many different sets of input data.
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9.4.2 Single-ion and dipolar strategy comparison

In order to investigate this trade-off between memory usage and run time,

‘high-memory’ and ‘low-memory’ versions of the KFILM program were con-

structed along the lines described above. The programs were compiled using

as many of the optimization features of the compiler as possible. The execu-

tion time of the programs were compared using a set of film structure input

files which contained known numbers of growth units. The results are shown

in Figure 9.10, along with fitted curves of quadratic form.

The results fit the expected quadratic form very well. It can be seen that

the run times for the ‘low-memory’ program are consistently a little under

twice as long as for the ‘high-memory’ program with the same input data. A

run-time limit of one CPU-week was chosen, which, when the fitted curves

shown in the graph are extrapolated, gave maximum practical system sizes

for the ‘high’ and ‘low’ memory strategies of around 2400 and 1500 growth

units respectively. Since the ‘high-memory’ version of the program used in

this test was dimensioned to allow a maximum of 2000 growth units to be

considered, it is clear that the memory usage is not a significant barrier on the

computer used for these calculations. The more scarce and critical resource is

simply CPU time. For this reason, the ’high-memory’ version of the program

was chosen for future use in calculating the total anisotropy.

9.4.3 Single-ion only strategy comparison

A similar test was carried out using high- and low-memory versions of the

program which evaluated only the single-ion part of the anisotropy. The
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Figure 9.10: Execution time vs. system size for two computation schemes

with differing memory requirements for the total anisotropy.
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results are shown in Figure 9.11. It may be seen from this figure that in this

case it is the ‘low-memory’ strategy which is the most efficient.
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9.5 Structural aspects of simulated deposited films

A number of investigations were undertaken to establish the dependence of

the structure of the simulated deposited film on the process parameters. The

process parameters fall into the two distinct categories outlined below.

9.5.1 Time-related parameters

The first class of simulation parameters is those related to the passage of

time in the deposition simulation. The simulations use an arbitrary unit of

time (the ‘tick’), and the duration of deposition runs is specified using this

unit. The prefactor ν0 in the Arrhenius rate equation (7.1) corresponds to

an attempt frequency for diffusion events. Experimental diffusion studies for

single atoms on metal thin films [95] have suggested a value for this attempt

frequency of around 1012 − 1013 Hz - so far no such measurement has been

performed for hexaferrite thin films. In light of the lack of experimental data,

and in the interests of keeping the simulation parameters dimensionless, we

have therefore set ν0 = 1 in all our simulations.

The deposition flux Fdep corresponds to the rate per unit area at which

new growth units are added to the simulation cell. The units used are the

Number of discrete growth units added per gridcell surface area per tick.

The overall deposition rate Rdep of new growth units is therefore calculated

in the simulation using the formula

Rdep = NaNbFdep (9.11)

where Na and Nb are the dimensions (in gridcells) of the simulation cell in
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Figure 9.12: Geometry for evaluation of barrier energies Eaa and Ecc.

the a- and b-directions respectively.

9.5.2 Energy-related parameters

The second class of simulation parameters is those related to the barrier

energies and the temperature of the system. The latter, which effectively

corresponds to the temperature at which the substrate material is held during

film growth, was assumed to be constant during each deposition run and

uniform throughout the system. In the Arrhenius equation (7.1), this factor

appears multiplied by the Boltzmann constant kB in the denominator of the

expression in the exponential. In all of the simulations considered, the value

of kBT was taken to be unity in the interests of simplicity.

Estimates of the magnitude of the energy barriers Eaa and Ecc were ob-

tained by taking the structural data for the hexagonal unit cell of the ferrite

and treating it as an assembly of point charges, each ion i being represented

by a location ri = (xi, yi, zi) in 3-D Cartesian coordinates and a correspond-

ing charge qi equal to the nominal charge state of that ion (i.e. for an Fe3+
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ion, q = +3e, and for an O2− ion, q = −2e, where e is the electronic charge).

The overall electrostatic energy of an assembly of Nions point charges was

therefore calculated from the conventional Coulomb expression

Eelectrostatic =
1

4πε0

Nions∑

i

Nions∑

j 6=i

qiqj

|ri − rj|2 . (9.12)

The following energies were calculated (see Figure 9.12):

E0 - the electrostatic energy of the contents of a single isolated unit cell,

E2a - the electrostatic energy of two immediately neighbouring unit cells

which are contiguous along the crystallographic a-direction (i.e. share

a common {100} face),

E2c - the electrostatic energy of two immediately neighbouring unit cells

which are contiguous along the crystallographic c-direction (i.e. share

a common {001} face).

The energy barrier parameters Eaa and Ecc were therefore evaluated as

Eaa = 2E0 − E2a (9.13)

Ecc = 2E0 − E2c. (9.14)

The values obtained from these calculations were Eaa = 116.45 eV and Ecc =

47.05 eV, giving a ratio Eaa/Ecc = 2.48. While these calculated energies

are probably not as accurate as those which could be provided by ab initio

electronic structure codes, and are about two orders of magnitude larger than

those measured for single metal atoms on perfect metal crystal surfaces (see,
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e.g. [96]), we are more interested in the ratio of these energies than their

absolute values, for reasons outlined below.

Allowance was made in the simulation program to substitute a different

value Esub for Ecc when the growth unit being considered is in the first

layer, i.e. sitting directly on the substrate material, since there is a strong

possibility that the diffusion rates for the first layer will be different from

those in succeeding layers. This will be particularly true when the film is

being grown on a different material to that being deposited. In all of the

simulations considered here, however, Esub was set equal to Ecc.

9.5.3 Choosing a realistic energy barrier ratio p

The energy barrier contributions Eaa and Ecc are effectively measures of the

‘stickiness’ of growth units when stacked on top of or beside each other.

The overall energy barrier to diffusion is defined additively in terms of these

values. The relative tendency of growth units to stick together in these two

ways was therefore quantified using the ratio p = Eaa/Ecc. A number of

tests were performed using various values of p and Ecc = 1.0, measuring the

overall number of hopping and reorientation events in the course of a test

simulation run. The deposition flux was set so that one new growth unit

was deposited into the simulation cell per unit time. The results are shown

in Figure 9.13. It can be seen from Figure 9.13 that the greatest part of

the variation of the amount of diffusion and reorientation which takes place

in the course of a simulation takes place in the range p = 0.1 . . . 10. This

therefore defines a region in the phase space of the process parameters which
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is likely to provide the richest variation in film structure. The approximate

Coulomb results mentioned in the previous section also lie in this range, and

other workers in the field [97, 98] have used growth parameters lying within

this range. Values of p < 0.1 also correspond to prohibitively long program

run times, while for p = 100 no hopping or reorientation events were observed

during the entire simulation run. Accordingly, values of p in the range p=0.1

. . . 10 were used in all of the growth simulations described in later sections.

9.5.4 Definition of the three test regimes for anisotropy simula-

tion

The variation of the magnetic properties with film structure (and hence with

the film growth parameters) was investigated by choosing three test cases

which were representative of three different growth regimes. The three test

cases were calculated in a (10 × 10 × 25) simulation cell, and the incoming

flux of deposited growth units was varied along with the deposition time

so that the product (flux × deposition time) was a constant, i.e. enough

material to grow a film 10 layers thick. The flux was held constant during

each deposition run, along with the energy barrier parameters which were

set to p = 0.2, Ecc = 5.0. Two realizations of each (deposited) test case were

used - more were not attempted due to the very heavy demands placed by

the anisotropy calculations on available computer processing time. The three

test cases used were:
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‘Granular’ case This case corresponded to a high input flux and short de-

position time, which yielded a ‘granular’ film, with many voids and

a rough surface, due to the evolving film not having enough time to

re-order itself by diffusion processes.

’Smoother’ case This case corresponded to a input flux 100 times lower

than for the ‘granular’ case, with the deposition time larger by the

same factor. This set of conditions permitted a much greater degree

of re-ordering by diffusion, yielding a film with significant fewer voids

and a less disordered surface.

‘Perfect’ case The test case was artifically constructed using a small sup-

plementary computer program, rather than generated using DEPOSIT.

In this case perfect crystalline layers of growth units with uniform ori-

entation were laid down one by one, yielding a perfect crystalline film.

Only one realization of this test case was necessary.

9.5.5 Time evolution of the growth of the simulated films

DEPOSIT runs were performed for the three test cases described above. For

each case, the deposition simulation was halted at intervals approximately

corresponding to the deposition of a monolayer. The program FILMSTAT

was then used to compute a number of instantaneous statistical properties

of the growing film before the deposition recommenced. The FILMSTAT

results are described below.
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9.5.5.1 Time evolution of average thickness and roughness A quan-

titative study was undertaken of the time dependence of average thickness

(the thickness being defined at each point on the film as the z-coordinate of

the highest growth unit) and average roughness (defined as the RMS devia-

tion from the average thickness). A simulation cell of size (30× 30× 30) was

used, and 15 layers deposited using a range of values for the deposition flux

(Fdep = 1.0 [‘granular’ test case] to Fdep = 10−5 [‘smoother’ test case]). The

other process parameters used were Ecc = 5.00 and p = 0.2. Thickness and

roughness values (averaged over the whole film) were calculated at mono-

layer intervals and the resulting values were averaged over a maximum of

300 simulation runs for each set of process parameters. Fewer runs were used

in cases where the computing time for 300 runs exceeded the available limit.

The results are shown in Figures 9.14 and 9.15. It can be seen from Figure

9.14 that as the incoming flux is reduced, the density of the growing film

increases due to increased diffusion. Figure 9.15 shows that there is a tran-

sition between growth regimes which takes place between Fdep = 10−3 and

Fdep = 10−5 - the greater importance of diffusion is reflected in a reduction

of surface roughness.

9.5.5.2 Time evolution of layer coverage Coverage data for each

layer in the film is shown in Figures 9.16 and 9.17 as a function of process

time for the ‘granular’ and ‘smoother’ test cases respectively. The figures

show that the ’granular’ films do not achieve total coverage on a layer-by-

layer basis, as the rate of diffusion of growth units is considerably smaller
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than the rate of deposition of new growth units. The ‘smoother’ film attains

much higher layer coverages due to diffusion processes becoming more im-

portant. At the end of the deposition run, it can be seen that the ‘granular’

film has an approximately uniform density profile.

9.6 Comparison of simulated film with AFM measure-

ments of a real film

9.6.1 Description of model system, the heightfield output from

FILMSTAT, and MATLAB script

A very large model system was set up, using a simulation cell of size (170×
170 × 25) (corresponding to a patch of film of side 0.1µm), and used as

input to the deposition simulation. Two different sets of growth parameters

were used, corresponding to the ‘granular’ and ‘smoother’ test cases defined

earlier. The resulting film structures were processed using the FILMSTAT

program to extract statistics and also create ‘height-field’ data sets. These

height-fields consist of a large number of records (one per line of the data

file), each record consisting of three numbers thus:

X-coordinate Y-coordinate Height

The X- and Y-coordinates correspond to a position in the plane of the film

(the values being sampled on a square grid), and the height is the vertical

coordinate of the uppermost growth unit at the corresponding position in

the film plane. The height-fields were then visualized in a three-dimensional

form using a specially-written MATLAB script.
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Figure 9.16: Time evolution of layer coverages for ‘granular’ test case
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Figure 9.17: Time evolution of layer coverages for ‘smoother’ test case
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9.6.2 Pictures and description of simulated films

The results are shown in Figures 9.18 & 9.19. The former, corresponding

to the ‘granular’ test case, clearly shows the highly disordered nature of the

film, with many voids and a surface which is rough on very small length

scales. The latter film, corresponding to the ‘smoother’ test case, consists of

almost exactly the same number of growth units and can be seen to have a

much more ‘compacted’ structure (compare the vertical length scales), with

clearly visible islands sitting on a much more even surface.

9.6.3 Picture of experimental AFM data and comparison with

simulations

It is interesting to compare these views of the simulated films with topogra-

phy data extracted from AFM (atomic force microscopy) measurements of a

real film of M-type hexaferrite deposited using PLD techniques (see Figure

9.20). While the experimental data corresponds to a length scale in the film

plane ten times larger ( 1µm) than could be achieved in the simulations, the

pictures are remarkably similar in character.

119



0
0.

02
0.

04
0.

06
0.

08
0.

1

0

0.
02

0.
04

0.
06

0.
08

0.
110203040

um
um

nm
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Figure 9.20: 3D view of heightfield data produced from AFM measurements

of an M-type hexaferrite film grown using PLD techniques.
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9.7 Application of the magnetic model to the simu-

lated deposited films

9.7.1 Methodology

The deposition program DEPOSIT produces a file which contains all the

structural details of the simulated film. This film is then read into the pro-

gram KFILM in order to calculate the magnetic properties of the simulated

film. The only other input required by KFILM is a value for the outer dipolar

cutoff radius in Å, optional minimum and maximum values of x, y and z is

additional plane cutoffs are to be used, and some parameters which determine

the verbosity of output in the results file.

9.7.2 Magnetic anisotropy of ‘patterned’ films

Test cases were created in which the films had a pattern, using a (2×2×40)

simulation cell. Two patterns were created, ‘stripe’ and ‘chessboard’, both

of which effectively corresponded to a film thickness of exactly 1.5 layers (see

Figure 9.21). Dipolar and single-ion contributions were calculated and the

results are summarised in Table 9.3. The difference between the calculated

total anisotropy values shows that surface patterning has a substantial effect

in determining the overall anisotropy associated with the film.
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(a) ‘Stripe’ pattern (b) ‘Chessboard’ pattern

Figure 9.21: Repeating units for ‘stripe’ and ‘chessboard’ patterns.

‘Stripe ’ ‘Chessboard’

Dipolar -1.35673 -1.26881

Single-ion 2.17709 2.47764

Total 0.82035 1.20883

Table 9.3: Anisotropy contributions and total anisotropy for two different

surface patterns for a simulated film of average thickness 1.5 monolayers.

The anisotropy values are given in units of 105 Jm−3 .
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Single-ion Dipolar Total

contribution contribution

Granular case 3.59 0.069 3.66

3.62 0.047 3.66

Smoother case 4.18 0.231 4.41

4.03 0.244 4.27

Perfect case 4.18 0.211 4.39

Table 9.4: Volume anisotropy for the three test cases in units of 105 Jm−3.

9.7.3 Results for volume and surface anisotropies for the three

regimes

For each test case, ten structure files were created, representing snapshots of

the growing films after 1/10, 2/10, 3/10 etc. of the total deposition time had

elapsed. Each of the film structure files created in this way were then used as

input for the KFILM program to yield values for the single-ion and dipolar

anisotropy contributions. The outer cutoff radius used in the calculation of

the dipolar contribution was 100 Å . The volume and surface anisotropies

were then determined for each test case using the methods described earlier.

The data for each test case are shown in Figures 9.22 – 9.26, and a summary

of the derived values of volume and surface anisotropies are given in Tables

9.4 and 9.5.
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Figure 9.23: Surface and volume anisotropies for ‘granular2’ test case

127



0
1e

+
08

2e
+

08
3e

+
08

4e
+

08
5e

+
08

1 
/ e

ffe
ct

iv
e 

th
ic

kn
es

s 
(m-1

 )

-2
e+

05

-1
e+

050

1e
+

05

2e
+

05

3e
+

05

4e
+

05

5e
+

05
Uniaxial magnetic anisotropy (Jm

-3
 )

S
in

gl
e-

io
n 

(y
=

4.
17

62
e+

5 
- 

2.
80

22
e-

4 
x)

D
ip

ol
ar

 (
y=

23
06

0 
- 

1.
30

76
e-

3 
x)

T
ot

al
 (

y=
4.

40
68

e+
5 

- 
1.

58
78

e-
3 

x)

`S
m

oo
th

er
’ t

es
t c

as
e

Figure 9.24: Surface and volume anisotropies for ‘smoother’ test case
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Figure 9.25: Surface and volume anisotropies for ‘smoother2’ test case
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Figure 9.26: Surface and volume anisotropies for ‘perfect’ test case
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Single-ion contribution

to surface anisotropy

Granular case -19.41

-22.23

Smoother case -14.01

-14.01

Perfect case -11.62

Table 9.5: Extrapolated values for 1/(thickness) → 0 of the single-ion con-

tribution to the surface anisotropy for the three test cases in units of 10−5

Jm−2
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10 Discussion of results

The main results of the calculations described in Section 9 have been sum-

marized in Table 10.1. The results of the preliminary investigation into the

effect of the detailed structure of the surface on the magnetic anisotropy car-

ried out for the ‘patterned’ films indicated that different surface structures

can be associated with substantially different magnetic anisotropies. This

conclusion is borne out in the investigation of the magnetic anisotropy of

the simulated grown thin films. It can be seen from Table 10.1 that the

single-ion contribution to the volume anisotropy decreases with increasing

disorder in the film - this can be attributed to the presence of voids in a

disordered growing film. As the number of voids increases, the number of

magnetic ions with missing ligands will also increase, so accounting for the

decreased single-ion contribution. Similarly, the dipolar contribution to the

anisotropy decreases dramatically with increasing disorder, as the perfect

hexagonal crystal symmetry is broken by the large number of voids and the

rough film surface.

The surface anisotropy associated with the single-ion contribution was

seen to increase by a factor of 50 - 100 % from a perfectly flat film to a film

with a rough surface. The significant effect of having different types of Fe ion

site on the film surface has also been demonstrated - the surface anisotropies

calculated for two situations of having 12k and 2b sites on the surface differ

not only by an order of magnitude, but also by a change of sign.

The novel film growth model described in this thesis, although unable

to replicate columnar growth so far, showed formations of monolayer-thick
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Single-ion Single-ion Dipolar Total: single-ion

volume surface anisotropy plus dipolar

anisotropy anisotropy (×105 Jm−3) anisotropy

(×105 Jm−3) (×10−5 Jm−2) (×105 Jm−3)

Bulk perfect 4.177 - 0.174 4.351

crystal 3.800 a - 0.176 3.976

Infinite perfect +1.893 b

film 4.180 -11.59 c -1.60 2.580

-17.50 d

Finite perfect 3.200 e - -1.410 1.790

crystal 4.180 f - +0.030 4.210

Simulated 3.586 -19.41 0.069 3.655

granular film 3.617 -22.23 0.047 3.664

Simulated 4.176 -14.01 0.231 4.407

smoother film 4.176 -14.01 0.231 4.407

Simulated 4.177 -11.62 0.211 4.388

perfect film

aBipyramidal Fe cations in 4e position
bFe cations in 2b positions on the film surface
cFe cations in 2a positions on the film surface
dFe cations in 12k positions on the film surface
eSingle layer thick film
f14-layer thick film

Table 10.1: Summary of ab initio calculated anisotropy contributions for

perfect and simulated grown films of BaFe12O19 at T=0K. Unless otherwise

indicated, the results are shown for the bipyramidal Fe cations being in the

2b positions and the 12k sites on the corners of the unit cell.
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‘platelets’ on a scale of nanometres. This is in reasonable agreement with

AFM pictures of experimentally grown barium hexaferrite thin films [27, 99].

In any case, [100] seems to suggest that polycrystalline and columnar growth

structures develop on longer length and time scales than the program is cur-

rently capable of handling in a reasonable time (the largest system which

could have been investigated was 0.1µm× 0.1µm). The model might possi-

bly exhibit these features if large enough systems and long enough timescales

could be investigated. A more detailed investigation of the statistical prop-

erties of the growth model might reveal regions in the phase space of process

parameters which can be identified as corresponding to known experimental

microstructures. A more detailed comparison with AFM experiments would

be useful, particularly with regard to determination of surface diffusion rates.

The model cannot fully replicate the observed microstructure, which is deter-

mined by the presence of screw dislocations (on more mismatched substrates)

[27] , but would perform better for substrates which give a smaller lattice

mismatch.

The magnetic model used in these studies has also been demonstrated to

provide excellent results. Uniaxial contributions of single-ion anisotropy to

the total anisotropy were obtained by ab initio calculations for bulk material

and various forms of thin films of barium hexaferrite. The results achieved

are in good agreement with values determined by experiment [1, 51]. An

expansion of the program to quantify cubic contributions might be possi-

ble. Modelling partial occupancies and missing ligands using the ‘mean-field’

model seems to give dependences of anisotropy on the presence of surfaces
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and vacancies that are broadly in line with physical intuition. The influ-

ence of surface roughness on both single-ion and dipolar contributions to the

anisotropy has been demonstrated, and we can supplement and confirm the

conclusions, of e.g. [101], that dipolar contributions are as important on

surfaces as contributions from other sources. Surface anisotropy contribu-

tions associated with different sublattices were quantified, and the unusual

surface behaviour of bipyramidal sites was demonstrated. Also, the feasi-

bility of performing an explicit dipolar summation to evaluate the dipolar

contribution to the total anisotropy was demonstrated, and the method was

demonstrated to give results consistent with experiment and macroscopic

theory both in the bulk material and for thin films. The method may not be

as good as Fourier- or Ewald summation-based methods for systems with pe-

riodicity e.g. [102], but it seems to be just as good as any other technique for

non-periodic systems (e.g. isolated clusters). Two different computational

strategies for the explicit summation were investigated and compared - the

‘high-memory’ strategy, in which the positions of all of the interacting ions

are computed once and stored until needed, was demonstrated to be more

efficient for calculating the dipolar contributions. This was in contrast to the

single-ion contributions, for which the alternative ‘low-memory’ strategy was

substantially more efficient.
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11 Conclusions

This work has demonstrated the ab initio calculation of the magnetic anisotropy

of the prototype M-type ferrite BaFe12O19 in its bulk form and also in the

form of thin films. The magnetic model has been applied both to perfect

crystalline thin films, and also simulated grown films created using a novel

growth model and an efficient Monte Carlo numerical technique. The effect of

processing conditions on the structure of the grown film has been quantified

and described, along with the resulting effects on the magnetic properties of

the simulated film.

The ‘tailoring’ of the magnetic properties of thin films in a precise and

reproducible manner is currently of great interest to the magnetic record-

ing industry, and will increase in importance as the quest for ever-higher

recording densities continues. Significant progress has recently been made

in decreasing the time taken to change the magnetic state of a recorded do-

main [103, 104], which will allow higher data transfer rates, but the ability

to accurately predict the effect of film structure on magnetic properties on

nanometre scales will also be crucial for the future of the industry. This work

contributes to that theoretical effort by demonstrating techniques for the cal-

culation of volume and surface contributions to the magnetic anisotropy of

simulated PLD deposited continuous thin films, but is also equally applicable

to calculations of the properties of ‘patterned’ recording media [105], which

show great potential for very high density magnetic recording.
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11.1 Original achievements and developments in this

thesis

• The development, implementation and partial characterisation of a

novel ‘off-lattice’ Monte-Carlo growth model for the simulation of de-

position of thin films of hexagonal materials, with provision for voids

and interfacial strain energies.

• The development of a computer program to calculate the single-ion and

dipolar contributions to the unixial anisotropy of an arbitary assembly

of identical magnetic ions in a variety of different local environments,

with provision for infinite systems (using 2-D and 3-D periodic bound-

ary conditions) and isolated clusters.

• The application of the above programs to the simulation of thin films

of M-type hexaferrites, in particular a quantitative ab initio study of

the relative magnitudes of the surface and volume contributions to the

overall uniaxial anistropy, and an investigation of the effects of film

microstructure and roughness on the former.

• Obtaining for the first time values of volume and surface anisotropies of

perfect and simulated barium hexaferrite films by ab initio calculations.
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11.2 Suggestions for further work

• The novel growth model described in this thesis requires further inves-

tigation and refinement. In particular, the model needs to be run for

larger systems and have more extensive study of ‘annealing’ behaviour,

along with a thorough mapping of the dependence of simulated film

structure on the model parameters.

• A theoretical determination of spin Hamiltonian parameters could be

accomplished by comparing the total energies produced by an ab ini-

tio electron-structure code (taking into account spin and the effects of

spin-orbit coupling) when the atomic moments are in turn parallel and

perpendicular to the c-axis, but a method of distinguishing between

contributions from different sublattices would be needed. The energy

difference calculated in this way would probably not be very accurate,

since it would represent a difference of two large and near-identical

numbers.

The QTAIM theory (Quantum theory of Atoms in Molecules) due to

Bader [106] might provide the answer to both of these difficulties. Based

on the topology of the electron density, QTAIM provides a quantum-

mechanically consistent scheme for defining the spatial boundaries of

an atom within a molecule or crystal, the boundary being defined as the

union of surfaces of zero electron flux surrounding each atom (so-called

‘interatomic surfaces’). The total energy of a single given atom or ion

can then be calculated as a volume integral, evaluated over the region
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enclosed by the boundaries. Given QTAIM and sufficiently good spin-

dependent wavefunctions from an electron-structure code, the above

scheme for evaluation on a site-by-site basis of the single-ion anisotropy

contributions may well be feasible.
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[97] Pavel Šmilauer, Mark R. Wilby, and Dimitri D. Vvedensky. Reentrant

layer-by-layer growth: A numerical study. Phys. Rev. B, 47(7):4119 –

4122, 1993.
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A Crystal structure data for BaM

The following is the crystal structure data for BaM used for the work carried

out in this thesis. The format of the file is described in Section 8.2.2.

TITLFerrite supercell (partial occupancy)

CELL 0.0000 5.8920 5.8920 23.1830 90.0000 90.0000 120.0000

LATT -1

BA1 0 0.66670 0.33330 0.25000 1.00000 0.00000

BA2 0 0.33330 0.66670 0.75000 1.00000 0.00000

FE1 0 0.00000 0.00000 0.00000 0.12500 5.00000

FE1 0 1.00000 0.00000 0.00000 0.12500 5.00000

FE1 0 0.00000 1.00000 0.00000 0.12500 5.00000

FE1 0 0.00000 0.00000 1.00000 0.12500 5.00000

FE1 0 1.00000 1.00000 0.00000 0.12500 5.00000

FE1 0 1.00000 0.00000 1.00000 0.12500 5.00000

FE1 0 0.00000 1.00000 1.00000 0.12500 5.00000

FE1 0 1.00000 1.00000 1.00000 0.12500 5.00000

FE2 0 0.00000 0.00000 0.25000 0.25000 4.00000

FE2 0 0.00000 1.00000 0.25000 0.25000 4.00000

FE2 0 1.00000 0.00000 0.25000 0.25000 4.00000

FE2 0 1.00000 1.00000 0.25000 0.25000 4.00000

FE3 0 0.00000 0.00000 0.75000 0.25000 4.00000

FE3 0 0.00000 1.00000 0.75000 0.25000 4.00000

FE3 0 1.00000 0.00000 0.75000 0.25000 4.00000

FE3 0 1.00000 1.00000 0.75000 0.25000 4.00000

FE9 0 0.00000 0.00000 0.50000 0.25000 5.00000

FE9 0 0.00000 1.00000 0.50000 0.25000 5.00000

FE9 0 1.00000 0.00000 0.50000 0.25000 5.00000

FE9 0 1.00000 1.00000 0.50000 0.25000 5.00000

FE4 0 0.33330 0.66670 0.02713 1.00000 -3.00000

FE5 0 0.33330 0.66670 0.19030 1.00000 -2.00000

FE6 0 0.16868 0.33734 0.89175 1.00000 1.00000

FE7 0 0.66266 0.83134 0.89175 1.00000 1.00000

FE8 0 0.16866 0.83132 0.89175 1.00000 1.00000

FE10 0 0.66670 0.33330 0.52713 1.00000 -3.00000

FE11 0 0.66670 0.33330 0.69030 1.00000 -2.00000

FE12 0 0.83132 0.66266 0.39175 1.00000 1.00000

FE13 0 0.33734 0.16866 0.39175 1.00000 1.00000

FE14 0 0.83134 0.16868 0.39175 1.00000 1.00000
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FE15 0 0.66670 0.33330 0.97287 1.00000 -3.00000

FE16 0 0.66670 0.33330 0.80970 1.00000 -2.00000

FE17 0 0.33734 0.16868 0.10825 1.00000 1.00000

FE18 0 0.83134 0.66266 0.10825 1.00000 1.00000

FE19 0 0.83132 0.16866 0.10825 1.00000 1.00000

FE20 0 0.33330 0.66670 0.47287 1.00000 -3.00000

FE21 0 0.33330 0.66670 0.30970 1.00000 -2.00000

FE22 0 0.66266 0.83132 0.60825 1.00000 1.00000

FE23 0 0.16866 0.33734 0.60825 1.00000 1.00000

FE24 0 0.16868 0.83134 0.60825 1.00000 1.00000

O1 0 0.00000 0.00000 0.15094 0.25000 0.00000

O1 0 0.00000 1.00000 0.15094 0.25000 0.00000

O1 0 1.00000 0.00000 0.15094 0.25000 0.00000

O1 0 1.00000 1.00000 0.15094 0.25000 0.00000

O12 0 0.00000 0.00000 0.65094 0.25000 0.00000

O12 0 0.00000 1.00000 0.65094 0.25000 0.00000

O12 0 1.00000 0.00000 0.65094 0.25000 0.00000

O12 0 1.00000 1.00000 0.65094 0.25000 0.00000

O23 0 0.00000 0.00000 0.84906 0.25000 0.00000

O23 0 0.00000 1.00000 0.84906 0.25000 0.00000

O23 0 1.00000 0.00000 0.84906 0.25000 0.00000

O23 0 1.00000 1.00000 0.84906 0.25000 0.00000

O31 0 0.00000 0.00000 0.34906 0.25000 0.00000

O31 0 0.00000 1.00000 0.34906 0.25000 0.00000

O31 0 1.00000 0.00000 0.34906 0.25000 0.00000

O31 0 1.00000 1.00000 0.34906 0.25000 0.00000

O2 0 0.33330 0.66670 0.94546 1.00000 0.00000

O3 0 0.18213 0.36426 0.25000 1.00000 0.00000

O4 0 0.15647 0.31294 0.05192 1.00000 0.00000

O5 0 0.50260 0.00520 0.14957 1.00000 0.00000

O6 0 0.63574 0.81787 0.25000 1.00000 0.00000

O7 0 0.68706 0.84353 0.05192 1.00000 0.00000

O8 0 -0.00520 0.49740 0.14957 1.00000 0.00000

O9 0 0.18213 0.81787 0.25000 1.00000 0.00000

O10 0 0.15647 0.84353 0.05192 1.00000 0.00000

O11 0 0.50260 0.49740 0.14957 1.00000 0.00000

O13 0 0.66670 0.33330 0.44546 1.00000 0.00000

O14 0 0.81787 0.63574 0.75000 1.00000 0.00000

O15 0 0.84353 0.68706 0.55192 1.00000 0.00000

O16 0 0.49740 -0.00520 0.64957 1.00000 0.00000

O17 0 0.36426 0.18213 0.75000 1.00000 0.00000
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O18 0 0.31294 0.15647 0.55192 1.00000 0.00000

O19 0 0.00520 0.50260 0.64957 1.00000 0.00000

O20 0 0.81787 0.18213 0.75000 1.00000 0.00000

O21 0 0.84353 0.15647 0.55192 1.00000 0.00000

O22 0 0.49740 0.50260 0.64957 1.00000 0.00000

O24 0 0.66670 0.33330 0.05454 1.00000 0.00000

O25 0 0.31294 0.15647 0.94808 1.00000 0.00000

O26 0 0.00520 0.50260 0.85043 1.00000 0.00000

O27 0 0.84353 0.68706 0.94808 1.00000 0.00000

O28 0 0.49740 -0.00520 0.85043 1.00000 0.00000

O29 0 0.84353 0.15647 0.94808 1.00000 0.00000

O30 0 0.49740 0.50260 0.85043 1.00000 0.00000

O32 0 0.33330 0.66670 0.55454 1.00000 0.00000

O33 0 0.68706 0.84353 0.44808 1.00000 0.00000

O34 0 -0.00520 0.49740 0.35043 1.00000 0.00000

O35 0 0.15647 0.31294 0.44808 1.00000 0.00000

O36 0 0.50260 0.00520 0.35043 1.00000 0.00000

O37 0 0.15647 0.84353 0.44808 1.00000 0.00000

O38 0 0.50260 0.49740 0.35043 1.00000 0.00000

END
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B Presentations and publications arising from

this work

• Poster at Condensed Matter and Materials Physics conference, Exeter,

Dec 1997

• Presentation at visit of the Chair of the Magnetism Committee, Physics

Department, Salford University

• A paper describing the novel growth model, and another on the inves-

tigation of the magnetic properties of the simulated grown films, are in

preparation.
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C Pseudocode for DEPOSIT program

PROGRAM Deposit
{
Declare variables.
Initialize variables.
Show introductory screen.
Ask user for input and output film files, and
open them for processing.
Read input film file (RFILM).
Ask user for process parameters.
Build data structures for input data
{
Build group membership tables.
Build black/red grid arrays.

}
Precalculate exponentials for efficiency.
Build neighbour and hop rate arrays.
Initialize process clock and set process start
and end times.
Initialize the PRNG (user choice of options).

MAIN EVENT LOOP (until process end time reached)
{
Update cumulative hopping frequency tables.
Build total cumulative process rate table.
Advance clock and choose next event.
If event chosen is a deposition
{
Increment deposition event counter.
Add new unit to randomly-chosen group.
Choose location (x,y) of landing point.
Drop unit into simulation cell to give
temporary landing point.
Implement transient mobility.
{
Find adjacent unoccupied sites in
this layer.
Of these, find which have an unoccupied
site underneath.
Choose between these lower sites,
exponentially favouring those with larger
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numbers of neighbouring units.
}

}
otherwise event is a hop
{
Increment hop event counter.
Choose which group and unit are affected.
Make a list of chosen unit’s neighbours.
Wipe current grid location of unit.
Make a list of available adjacent positions.
If any positions on this list have unoccupied
sites underneath, make a list of those instead.
Choose between sites on the current list,
exponentially favouring those with larger
numbers of neighbouring units.

}
Choose a tail position for the current unit.
Place unit in black/red grid arrays.
Update hopping probabilities for all units
in film.
If backup interval has been reached, write
checkpoint file and output current
film statistics.

}
END OF MAIN EVENT LOOP
Calculate film statistics.
Write out output film file and show
run-time statistics.

END OF PROGRAM
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D Pseudocode for KFILM program

PROGRAM Kfilm
{
Declare variables
Initialize variables
Create intro screen
Ask user for input film data file and read it
Build film data structures
Ask user for input unit cell data file and read it
Show summary of unit cell data

If this is a high-memory version of the program
{
Build master Fe and O position and occupation number arrays
for entire film.

}

CALCULATE THE SINGLE-ION ANISOTROPY CONTRIBUTION
{
If this is the high-memory version of the program
{
Declare and initialize local variables
Ask user for single-ion parameter file and open it
Ask user to choose verbosity of output
Loop over all the Fe ions in the simulation cell, whose
positions and occupancies have been precalculated
{
Find this ion’s closest O neighbours (i.e. ligands)
Loop over this ion’s ligands
{
Calculate the geometric term for this ligand
Depending on the type of ligand, calculate the
intrinsic term.
Calculate the overall SI contribution of this
ligand, weighted by the occupancies of both the Fe
and O ions and add this to the ion’s total SI
contribution.

}
Add this ion’s overall SI contribution to the running
total for the film.
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}
Write out the total single-ion anisotropy for the whole
film, along with a breakdown of the total by site type.

}
OTHERWISE this is the LOW-MEMORY version of the program
{
Declare and initialize local variables
Ask user for single-ion parameter file and open it
Ask user to choose verbosity of output
Loop over all the growth units in the simulation cell
{
Loop over all the Fe ions in this simulation cell
{
Work out this ion’s position and occupation number
Work out the positions and occupation numbers of all
possible O neighbours
Find this ion’s closest O neighbours (i.e. ligands)
Loop over this ion’s ligands
{
Calculate the geometric term for this ligand
Depending on the type of ligand, calculate the
intrinsic term
Calculate the overall SI contribution of this
ligand, weighted by the occupancies of both the
Fe and O ions and add this to the ion’s total SI
contribution.

}
Add this ion’s overall SI contribution to the
running total for the film.

}
}

Write out the total single-ion anisotropy for the whole
film, along with a breakdown of the total by site type.

}
}

CALCULATE THE DIPOLAR ANISOTROPY CONTRIBUTION
{
If this is the high-memory version of the program
{
Declare and initialize local variables.
Ask user for cutoff radius.
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If user wants to impose additional x,y,or z cutoffs, ask
for numerical maximum and minimum values.
Loop over all Fe ions in the film
{
Loop over all other Fe ions in the film
{
Find all the periodic copies of this second Fe ion
which lie within the cutoff radius and the
additional x,y,z cutoffs (if any).
Calculate the dipolar contribution from this second
Fe ion AND all of its periodic copies, weighted by
the occupancies of each ion.

}
Calculate the overall dipolar contribution from
this Fe ion.
}

Calculate and display the total dipolar anisotropy for the
whole film, and also a breakdown by fractions of the
requested cutoff radius.

}
OTHERWISE this is the LOW-MEMORY version of the program
{
Declare and initialize local variables
Ask user for cutoff radius
If user wants to impose additional x,y,or z cutoffs,
ask for numerical maximum and minimum values.
Loop over all the growth units in the simulation cell
{
Loop over all the Fe ions in this simulation cell
{
Work out this Fe ion’s position and occupation
number.
Loop over all the growth units in the
simulation cell.
{
Loop over all the Fe ions in this simulation cell
{
Work out this second Fe ion’s position and
occupancy.
Find all the periodic copies of this second Fe
ion which lie within the cutoff radius and the
additional x,y,z cutoffs (if any).
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Calculate the dipolar contribution from this
second Fe ion AND all of its periodic copies,
weighted by the occupancies of each ion.
}

}
Calculate the overall dipolar contribution from
this Fe ion.

}
}

Calculate and display the total dipolar anisotropy for the
whole film, and also a breakdown by fractions of the
requested cutoff radius.
}

}
Write out total calculated anisotropy for this film.
}

END OF PROGRAM
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