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Abstract: The International Virus Bioinformatics Meeting 2022 took place online, on 23–25 March 2022,
and has attracted about 380 participants from all over the world. The goal of the meeting was to

Viruses 2022, 14, 973. https://doi.org/10.3390/v14050973 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v14050973
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-9489-3182
https://orcid.org/0000-0001-6346-7896
https://orcid.org/0000-0002-7668-2840
https://orcid.org/0000-0002-2863-0907
https://orcid.org/0000-0001-8934-6822
https://orcid.org/0000-0001-7664-4257
https://orcid.org/0000-0002-6903-5418
https://orcid.org/0000-0003-4612-6891
https://orcid.org/0000-0002-1481-5337
https://orcid.org/0000-0003-1270-1210
https://orcid.org/0000-0002-5817-4914
https://orcid.org/0000-0002-8368-0667
https://orcid.org/0000-0003-2144-7867
https://orcid.org/0000-0001-5671-174X
https://orcid.org/0000-0002-0573-1676
https://orcid.org/0000-0002-0078-2212
https://orcid.org/0000-0003-2826-5353
https://orcid.org/0000-0001-8398-8234
https://orcid.org/0000-0001-9737-337X
https://orcid.org/0000-0002-0879-5798
https://orcid.org/0000-0003-0267-4992
https://orcid.org/0000-0002-4784-8346
https://orcid.org/0000-0002-7433-149X
https://orcid.org/0000-0001-7022-661X
https://orcid.org/0000-0003-4783-8823
https://doi.org/10.3390/v14050973
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v14050973?type=check_update&version=2


Viruses 2022, 14, 973 2 of 23

provide a meaningful and interactive scientific environment to promote discussion and collaboration
and to inspire and suggest new research directions and questions. The participants created a highly
interactive scientific environment even without physical face-to-face interactions. This meeting is a
focal point to gain an insight into the state-of-the-art of the virus bioinformatics research landscape
and to interact with researchers in the forefront as well as aspiring young scientists. The meeting
featured eight invited and 18 contributed talks in eight sessions on three days, as well as 52 posters,
which were presented during three virtual poster sessions. The main topics were: SARS-CoV-2, viral
emergence and surveillance, virus–host interactions, viral sequence analysis, virus identification
and annotation, phages, and viral diversity. This report summarizes the main research findings and
highlights presented at the meeting.

Keywords: bioinformatics; tools; SARS-CoV-2; viral emergence and surveillance; virus–host interactions;
viral sequence analysis; virus identification and annotations; phages; viral diversity

1. Introduction

The International Virus Bioinformatics Meeting (ViBioM) was the fifth edition of the
virus bioinformatics meeting organized by the European Virus Bioinformatics Center (EVBC).
The EVBC was founded in 2017 to bring together experts in virology and virus bioinfor-
matics in Europe [1,2]. The EVBC is constantly growing, having currently 245 members
(∼30% increase since the last meeting in 2020 [3]) from 140 research institutes distributed
over 36 countries worldwide.

ViBioM 2022 (please note that we had to change the abbreviation of the event from
IVBM to ViBioM to not be confused with the International Vascular Biology Meeting)
was planned to take place in Valencia, Spain in March 2022. As the number of Omicron
cases in Europe were rapidly increasing in January 2022, we decided to again switch to an
online format to avoid creating a transimission hotspot for SARS-CoV-2 and to make the
conference planning less complicated (in terms of safety regulations and travel restrictions).

Virtual meetings have several advantages and disadvantages. The flexibility of listen-
ing to selected talks and not being compelled to travel (in particular, long distance) makes
online meetings accessible to a broader range of scientists. Therefore, we had an incredibly
high amount of registered participants. Even during the ongoing conference there were
registrations up to the last day. There was a lot of fluctuation among the 380 registered
participants and not everyone attended all talks. However, we had a solid base between
100–150 participants during each of the talks. From all registered participants, ∼19% are
EVBC members; thus, ViBioM is attracting scientists far beyond the EVBC community. As
in 2020, the participants made it possible to create a highly interactive scientific environ-
ment even without physical face-to-face interactions. Breakout rooms of the speakers for
continued discussion during the coffee breaks were extensively used.

Another benefit of the virtual format was the flexibility we had when putting the
program together. Due to the high amount of submissions on SARS-CoV-2-related research,
we decided to add an additional conference day solely focusing on SARS-CoV-2. The
extended meeting took place 23–25 March 2022. In total, the meeting featured eight invited
and 18 contributed talks in eight sessions on three days, as well as 52 posters, which were
presented during three virtual poster sessions.

2. Scientific Program

A number of high-quality presentations were given by leading experts and junior
scientists on several different topics in virus bioinformatics. From over 50 submissions (a
∼25% increase compared to 2020 [3]), we selected 18 talks (acceptance rate: ∼35%). Due to
the high amount of submissions on SARS-CoV-2-related research, we decided to add an
additional conference day. On the first day, we were solely focusing on SARS-CoV-2-related
research (see Section 2.1). On day two, we had three sessions on viral emergence and
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surveillance (see Section 2.2), virus-host interactions (see Section 2.3), and viral sequence
analysis (see Section 2.4). On day three, we had three sessions on virus identification and
annotation (see Section 2.5), phages (see Section 2.6), and viral diversity (see Section 2.7).
Spyros Lytras (Exploring the dinucleotide composition of the Flaviviridae with DinuQ)
was selected for Best ECR Talk Award.

During three virtual poster sessions, 52 posters were presented. In order to imitate
onsite poster sessions, we set up a breakout room for each poster. Participants were free
to visit and switch between the breakout rooms at all times during the poster session.
The posters were made available beforehand. Three presenters were selected for the Best
Poster Award: Gabriel Lencioni Lovate (Reproducible RNA–RNA interaction probing for
RNA proximity ligation data with RNAswarm; see Section 2.4.3), Célia Pas (A blueprint
of tail fiber modularity and its relationship with host specificity for STEC serovars; see
Section 2.6.3), and Luca Nishimura (Virome analyses of the ancient individuals who lived
in the Japanese archipelago 3000 years ago; see Section 2.7.3).

2.1. Satellite Meeting on SARS-CoV-2

Due to the high number of submissions on SARS-CoV-2, we decided to add a confer-
ence day with two additional sessions focusing on this virus. The sessions were hosted
by EVBC member Martin Hölzer (Robert Koch Institute, Berlin, Germany) and Fernando
González-Candelas (University of Valencia, Valencia, Spain), one of the ViBioM 2022 or-
ganizers. Two keynote speakers were invited on this topic: Francois Balloux (University
College London, UK) opened the conference with a talk about the changing landscape of
SARS-CoV-2 genetic diversity; and Philippe Lemey (KU Leuven, Belgium) opened the after-
noon session and spoke about SARS-CoV-2 genomic epidemiology (see Section 2.1.1). From
the submitted abstracts, we selected talks by Alice Wittig (Hasso Plattner Institute/Robert
Koch Institute, Germany) about efficient and rapid genome profiling of SARS-CoV-2 se-
quences; Sebastian Duchene (University of Melbourne, Australia) about the emergence
of SARS-CoV-2 variants of concern (see Section 2.1.2); Kunaphas Kongkitimanon (Robert
Koch Institute, Germany) about an early warning system to detect concerning new SARS-
CoV-2 variants from sequencing data (see Section 2.1.3); Francisco Ortuño (Fundación
Progreso y Salud, Spain) about a new tool for the whole-genome imputation of SARS-CoV-
2; Fabian Amman (CeMM—Forschungszentrum für Molekulare Medizin, Austria) about
a national-scale surveillance of emerging SARS-CoV-2 variants in wastewater; and Denis
Beslic (Robert Koch Institute, Germany) about the power of SARS-CoV-2 genotyping and
SNP-based clustering for contextual outbreak assessment (see Section 2.1.4).

2.1.1. SARS-CoV-2 Genomic Epidemiology: Bayesian Phylodynamic Reconstruction,
Vaccine Design, and Characterization of Antigenic Evolution (by Philippe Lemey)

As the COVID-19 pandemic unfolded, viral genomic data was produced at an un-
precedented scale, allowing us to track the SARS-CoV-2 evolutionary and epidemiolog-
ical dynamics and providing important insights for intervention strategies. Here, I will
highlight a number of developments in a Bayesian statistical framework in support of
SARS-CoV-2 phylodynamic reconstructions, including the integration of individual travel
history and mobility data [4] and its application to track the early introduction and spread
of the virus [5]. The data integration concept has also been applied to the fullest when
assessing the contribution of persistence and introductions in the second COVID-19 wave in
Europe [6]. Finally, I will illustrate how genomic epidemiology has contributed to vaccine
development at the Rega Institute. This involves the development of a COVID-19 vaccine
using the yellow fever vaccine YF17D as a vector [7] that was updated based on evolu-
tionary analyses of SARS-CoV-2 variants of concerns (VoC) [8]. While the original vaccine
was able to bring down infectious virus loads to undetectable levels for both the prototype
virus from early 2020 as well as for VoC alpha in a hamster model, the immunity elicited
against VoC beta was insufficient to provide optimal protection. An updated vaccine using
the gamma spike protein offers efficient protection against lower respiratory tract infection
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and COVID-19-like pathology for VOC alpha, beta, gamma and delta [9]. We demonstrate
how antigenic cartography based on seroneutralization assays is able to map the antigenic
divergence for these VoCs. Moreover, for the recent omicron VoC, the updated vaccine
resulted in a considerably higher degree of seroneutralization. Antigenic mapping indicates
a far more pronounced antigenic divergence for this VoC.

2.1.2. The Emergence of SARS-CoV-2 Variants of Concern Is Driven by Acceleration of the
Substitution Rate (by Sebastian Duchene)

The ongoing SARS-CoV-2 pandemic has observed an unprecedented amount of rapidly
generated genome data. These data have revealed the emergence of lineages with mutations
associated to transmissibility and antigenicity, known as variants of concern (VOCs). A
striking aspect of VOCs is that many of them involve an unusually large number of defining
mutations. Current phylogenetic estimates of the substitution rate of SARS-CoV-2 suggest
that its genome accrues around 2 mutations per month. However, VOCs can have 15 or
more defining mutations, and it is hypothesised that they emerged over the course of a few
months, implying that they must have evolved faster for a period of time.

In this talk I will present detailed molecular clock analyses of genome sequence data
from the GISAID database to assess whether the emergence of VOCs can be attributed to
changes in the substitution rate of the virus.

Our results indicate that the emergence of VOCs is driven by an episodic increase in
the substitution rate of around 4-fold of the background phylogenetic rate estimate that
may have lasted several weeks or months. This outcome stands in contrast with the notion
that the virus has overall increased its mutation rate. In sum, this study underscores the
importance of monitoring the molecular evolution of the virus as a means of understanding
the circumstances under which VOCs may emerge.

2.1.3. VOCAL: An Early Warning System to Detect Concerning New SARS-CoV-2 Variants
from Sequencing Data (by Kunaphas Kongkitimanon)

Kunaphas Kongkitimanon, Martin Hölzer, and Hugues Richard contributed to this work.
The evolution of the SARS-CoV-2 virus has demonstrated the emergence of waves of

variants that reveal more worrying phenotypes, e.g., resulting in higher antibody escape
or transmissibility [10]. Many new variants are observed and annotated as variants of
interest or concern (VOI/C), e.g., by the WHO. However, delays in sequencing and case
reporting and limited sampling capacity can make their identification lag weeks behind
their emergence in the population. Hence, automated systems that could score concerning
samples based on their sequence information and independently of their lineage assignment
are highly needed. Furthermore, based on the extent of the convergent evolution observed
in SARS-CoV-2, automated systems could generalize from previous examples to rank and
identify potential concerning samples based on their amino acid (AA) profile.

Here, we present VOCAL, the Variant Of Concern ALert system, that can detect new
emerging variants of SARS-CoV-2 and assign each variant to an alert level. VOCAL starts
from complete genome sequences and categorizes the AA changes appearing in the spike
protein depending on the type of non-synonymous mutations present and their overlap
with known antibody binding sites, epitope regions, and correlation with antibody escape
scores from deep mutational screens [11]. In addition, the tool provides an option to skip
the alignment step and directly work on already pre-computed mutation profiles derived
from covSonar developed at the RKI (https://github.com/rki-mf1/covsonar (accessed
on 1 May 2022)). Based on the mutation profiles, VOCAL then detects the potentially
concerning samples and ranks them according to three tiers of alert level: high, moderate,
and low impact. Finally, VOCAL combines and summarizes all results in an HTML report
to help users to investigate the raised alerts quickly (see Figure 1).

https://github.com/rki-mf1/covsonar
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Figure 1. Main steps of the VOCAL pipeline. To generate mutation profiles for the spike gene for
each input sequence, VOCAL can preprocess raw genome sequences or can directly receive this
information from the covSonar.

We retrospectively assessed the prediction power of VOCAL by considering all Ger-
man sequences (https://zenodo.org/record/6409154 (accessed on 1 May 2022)) during
two scenarios of emerging VOCs in 2021: the Delta variant (April) and the recent Omicron
(December). Our testing set demonstrated that all of the VOC samples were correctly
detected as a high concern (Delta: 30/30 (100%); Omicron: 3372/3446 (97%)). For Delta, we
detected an additional set of 21 samples, which were mainly assigned to lineages B.1.617.1
and B.1.617.3 and have also been reported as concerning during that time. In conclusion,
VOCAL is a specialized tool for the early detection of potentially concerning variants from
enormous collections of SARS-CoV-2 genomes. The tool is freely available as stand-alone
annotation and visualization or as a comprehensive workflow for molecular surveillance
(https://github.com/rki-mf1/vocal (accessed on 3 May 2022)).

2.1.4. The Power of SARS-CoV-2 Genotyping and SNP-Based Clustering for Contextual
Outbreak Assessment (by Denis Beslic)

Denis Beslic, Matthew Huska, Martin Hölzer, Sandra Kaiser, Hugues Richard, and Stephan
Fuchs contributed to this work.

The COVID-19 pandemic has triggered an unprecedented increase in viral genome se-
quencing for molecular surveillance. Between January 2021 and April 2022, over 800,000 SARS-
CoV-2 genomes have been sequenced in Germany and over 10 million genomes have been
uploaded to the international GISAID EpiCov database [12]. These datasets are ideally
suited for potential outbreak identification but also to enrich and better understand local
outbreak events with the additional associated sequences. Using the genetic distance of dif-
ferent samples to analyze their epidemiological relatedness has become an essential method
for monitoring transmissions of various pathogens [13,14]. However, existing approaches
are computationally costly and impractical given the current amount of data [15].

To quickly identify putative outbreaks and transmission clusters, we developed
BREAKFAST, a tool for rapid sequence clustering in the specific context of SARS-CoV-2,
and applied it to German and international sequences. Our approach, which derives
transmission clusters from SNP occurrences, is motivated by the low mutation rate of
SARS-CoV-2 [16]. Here, the pairwise genetic distance between multiple sequences is com-
puted via a constructed sparse matrix of alignment-based genomic profiles. Clusters are
defined by identifying chains of sequences whose pairwise distance is below a user-defined
threshold (see Figure 2).

https://zenodo.org/record/6409154
https://github.com/rki-mf1/vocal
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Figure 2. The power of SARS-CoV-2 genotyping and SNP-based clustering for contextual outbreak
assessment. (A) We expect the viral genomes to accumulate mutations, as they are transmitted from
one individual to the next. An efficient method to identify chains of genetically similar sequences
would therefore be useful to identify putative outbreaks. (B) Diagram illustrating the steps of the
clustering algorithm using a maximum SNP distance of 1. The mutation profiles are obtained by a
reference-based alignment with Nextclade [17] or covSonar (https://github.com/rki-mf1/covsonar
(accessed on 3 May 2022)). The pairwise distances between different sequences are derived from the
constructed distance matrix of genomic profiles. Two sequences are part of the same transmission
cluster if the pairwise distance between them is below the user-specified threshold, max-dist. The
final transmission clusters can be further analyzed with phylogenetic software.

Using pre-computed mutation profiles, we clustered 120,000 sequences in 65 s using
100 cores and a peak of 1.3 GB of RAM. Its efficiency and intuitive parameters make BREAK-
FAST suitable for monitoring fast-growing clusters and analyzing potential outbreaks on a
daily basis. Subsequently, computationally intensive phylogenetic tools can be applied to a
smaller set of sequences of interest based on the clustering results.

We demonstrate that targeted methods, which leverage a pathogen’s specific proper-
ties, can be used in conjunction with large datasets to provide key insights into the ongoing
COVID-19 pandemic. Our approach was applied to add individuals to already known
outbreaks and triggered follow-up epidemiological investigations of transmission clusters.

BREAKFAST is freely available at https://github.com/rki-mf1/breakfast (accessed
on 1 May 2022).

2.2. Viral Emergence and Surveillance

This session was chaired by EVBC member Magda Bletsa (National and Kapodistrian
University of Athens, Greece) Two keynote speakers were invited on this topic: Emma
Hodcroft (University of Bern, Switzerland) opened the session with a talk on phylogenetics,
pandemics, and what comes next (see Section 2.2.1); followed by a talk by Daniel Streicker
(University of Glasgow, UK), about whether genomics can help prevent viral emergence.
From the submitted abstracts, we selected a talk by John Juma (University of Western Cape,
Kenya) on the genomic surveillance of Rift Valley fever (see Section 2.2.2).

2.2.1. Real-Time to Real-Life: Phylogenetics, Pandemics, and What Comes Next
(by Emma Hodcroft)

Since the announcement of the first variant of concern (VoC) in December 2020, the
COVID-19 pandemic has been increasingly shaped not only by viral spread, restrictions,
and immunity, but also by variants with increased transmission and immune evasion.
Detecting and tracking these emerging variants—and deciding how to react to them—has
been no small challenge. With over 7 million publicly available sequences, and millions of
unique clusters of sequences, identifying those with mutations of interest and determining
if they might be the next VoC is far from straightforward. As the pandemic progresses,
heterogeneity in immune history, through infections, vaccinations, and boosters, also means
increasing heterogeneity in how ‘concerning’ a VoC may be: the impact of Omicron varied

https://github.com/rki-mf1/covsonar
https://github.com/rki-mf1/breakfast
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widely across countries. In turn, future variants on the ‘road to endemicity’ may pose
different risks to different populations.

Though it is impossible to predict what future variants may mean for how much
SARS-CoV-2 continues to impact society, the return of pathogens that were suppressed
during the restrictions of 2020 and early 2021 are a reminder of the common disparity in
data and understanding between SARS-CoV-2 and the world of viruses we live in. How do
we pivot our real-time test of the role that sequencing, modeling, and immunity panels can
play in public health to a sustainable real-life integration of research and healthcare for a
better understanding of human viruses overall?

2.2.2. Genomic Surveillance of the Rift Valley Fever: From Sequencing to Lineage
Assignment (by John Juma)

John Juma, Vagner Fonseca, Samson Limbaso, Peter van Heusden, Kristina Roesel, Rosemary
Sang, Bernard Bett, Alan Christoffels, Tulio de Oliveira, and Samuel Oyola contributed to this work.

Genetic evolution of the Rift Valley fever virus (RVFV) in Africa has been shaped
mainly by the environmental changes such as abnormal rainfall patterns, climate change,
and land subsidence that occurred over the last few decades. These gradual environmen-
tal changes are believed to have effected gene migration from macro (geographical) to
micro (reassortment) levels. Presently, 15 lineages of RVFV have been identified to be
circulating within the sub-Saharan Africa (see Figure 3). International trade in livestock
and movement of mosquitoes are thought to be responsible for outbreaks outside endemic
regions. Virus spillover events contribute to outbreaks, as was demonstrated by the largest
epidemic of 1977 in Egypt. On numerous occasions, viruses from these lineages have been
detected outside enzootic regions through probable movement of infected animals and/or
mosquitoes. This has led to large outbreaks in countries where the disease had not been
previously reported. Genomic surveillance of the virus diversity is crucial in develop-
ing intervention strategies. Therefore, we have developed a user-friendly computational
tool for rapidly classifying and assigning lineages of partial or whole genome sequences
of the virus using the glycoprotein Gn/G2 gene within the M-segment. The computa-
tional method is presented both as a command line tool and a web application hosted
at https://www.genomedetective.com/app/typingtool/rvfv/ (accessed on 1 May 2022).
A user can provide up to 4000 multi-FASTA sequences. Validation of the tool has been
performed on a large dataset comprising of partial and whole genome sequences obtained
from public database. The Rift Valley Virus typing tool was able to correctly classify all
129 RVFV sequences at species level with 100% specificity, sensitivity and accuracy. All
the sequences in lineages A (n = 13), B (n = 1), C (n = 44), D (n = 1), E (n = 7), F (n = 1),
I (n = 2), J (n = 1), M (n = 2), N (n = 13) and O (n = 2) were correctly classified at
phylogenetic level, with accuracy, sensitivity, and specificity of 100%. We further validated
our tool using genomic data we obtained through sequencing following RVF outbreaks.
The tool is useful in tracing the origin of outbreaks and supporting surveillance efforts.

2.3. Virus–Host Interactions

This session was chaired by EVBC member Kevin Lamkiewicz (Friedrich Schiller
University, Germany). Friedemann Weber (Justus-Liebig University Gießen, Germany) was
invited for a keynote talk to speak about diverse anti-interferon strategies by members of
the genus phlebovirus (see Section 2.3.1). From the submitted abstracts, we selected talks
by Andreas Gruber (University of Konstanz, Germany) about a toolbox for studying RNA
virus–host factor interactions (see Section 2.3.2) and by Christopher Jürges (University of
Würzburg, Germany) on multi-omics revealing principles of gene regulation and pervasive
non-productive transcription in the human cytomegalovirus genome.

https://www.genomedetective.com/app/typingtool/rvfv/
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Figure 3. Maximum likelihood phylogenetic tree. Maximum likelihood phylogenetic tree indicating
the different clades corresponding to the fifteen major lineages and showing where the query sequence
(DVS-321) clusters in the tree. Pairwise distance measure for the different lineages and query samples
indicate a genetic diversity, which indicates a maximum diversity of 5% at the nucleotide level.

2.3.1. Diverse Anti-Interferon Strategies by Members of the Genus Phlebovirus (by
Friedemann Weber)

The genus Phlebovirus (order Bunyavirales, tri-segmented negative strand RNA
genome) contains species covering a wide spectrum of virulence. Rift Valley fever virus
(RVFV), for example, is highly pathogenic, whereas the Sandfly fever Sicilian virus (SFSV)
displays an intermediate level of virulence. Although the importance of the mosquito-
borne phleboviruses is increasingly recognized, we are only beginning to understand their
mechanisms of pathogenicity. A key virulence factor of phleboviruses is the non-structural
protein NSs, an inhibitor of the antiviral type I interferon (IFN) system [18]. Our group has
identified the mechanisms by which the NSs proteins of both RVFV and SFSV (i) inhibit
the transactivation of the IFN genes and (ii) abrogate the antiviral protein kinase R (PKR)
pathway. For RVFV, the NSs was found to recruit several E3 ubiquitin ligases of the F-
Box type in order to destroy the general host cell transcription factor TF-IIH [19] as well
as PKR [20], an antiviral mRNA translation inhibitor. For SFSV, by contrast, the NSs is
occluding the DNA-binding domain of the IFN transcription factor IRF-3 to inhibit IFN
induction [21,22], and NSs also binds and reprograms the translation initiation factor eIF2B
to immunize the ribosomal machinery against PKR signaling [23,24].

Thus, our investigations have demonstrated two surprisingly different IFN escape
strategies by these related phleboviruses. While the highly virulent RVFV destroys key
host factors of innate immunity, the more benign SFSV only sequesters them.
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2.3.2. Staying below the Radar and Exploiting the Host—A Toolbox for Studying RNA
Virus—Host Factor Interactions (by Andreas J. Gruber)

Because viruses require their host cell to reproduce, they have evolved various mecha-
nisms to interact with host factors, such as RNA binding proteins (RBPs). Previous studies
have demonstrated that virus–host RBP interactions can have pro- or antiviral effects. More-
over, the sequestration of host RBPs by viral RNA was reported to cause changes in host
cell pre-mRNA splicing and polyadenylation as well as mRNA stability, which suggests
that virus–host factor interactions can impact the gene expression of the host cell in various
ways [25] (see Figure 4). However, the incidence of such virus–host interactions and the
host RBP interactomes are, for many viruses, largely unknown. To facilitate the study of
RNA virus–host factor interactions, we have developed SMEAGOL, which enables us to
identify RBP binding motifs that are enriched or depleted in RNA viral genome sequences.
SMEAGOL is available via GitHub (https://github.com/gruber-sciencelab/SMEAGOL
(accessed on 1 May 2022)). In order to provide the community with a comprehensive
overview of potential single-stranded RNA (ssRNA) virus-RBP interactions, we have
applied SMEAGOL to 197 ssRNA virus genomes [26].

3'-end 
processing

complex

Spliceosome

    AAAAAA

RBPs

intronic RNA
exonic RNA
DNA

ssRNA virus

viral RNA

Nucleus

Cytoplasm

Figure 4. Virus–host factor interactions impact the gene expression of the host cell. Single-stranded
RNA (ssRNA) viruses enter the cell and release their RNA genomes into the cytoplasm of the host
cell. Viral RNAs can contain binding sequences for host RNA binding proteins (RBPs). The binding
of host RBPs to the viral RNA can have proviral or antiviral effects. The sequestration of RBPs by
cytoplasmic viral RNA was reported to cause changes in host cell RNA splicing, polyadenylation,
and stability [25].

To infer RBP binding motifs that can explain global changes in cellular splicing and
polyadenylation, we have developed a computational approach called MAPP, standing for
Motif Activity on Pre-mRNA Processing [27]. Besides many other applications, in future,
the MAPP will support studies that aim to identify RBPs that cause changes in cellular
splicing and/or polyadenylation due to their sequestration by viral RNAs. Moreover, as
SMEAGOL, MAPP is available via GitHub (https://github.com/gruber-sciencelab/MAPP
(accessed on 1 May 2022)). Our tools and analyses provide insights into the RNA virus–
host RBP interaction landscape and aim to support future studies that explore virus–
host interactions and their potential impact on host RNA splicing and polyadenylation,
ultimately feeding into the development of better treatments.

https://github.com/gruber-sciencelab/SMEAGOL
https://github.com/gruber-sciencelab/MAPP
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2.4. Viral Sequence Analysis

This session was chaired by EVBC member Daniel Todt (Ruhr University Bochum,
Germany). Esteban Domingo (Centro de Biología Molecular “Severo Ochoa”, Spain) was
invited for a keynote talk and gave a retrospective on the origins and implications of the
quasispecies concept (see Section 2.4.1). From the submitted abstracts, we selected talks
by Muriel Ritsch (Friedrich Schiller University Jena, Germany), presenting a guidance to
store virus sequence and knowledge (see Section 2.4.2); Spyros Lytras (MRC—University
of Glasgow Centre for Virus Research, UK), speaking about the dinucleotide composition
of the Flaviviridae explored with DinuQ [28]; and Alexander Henoch (Friedrich Schiller
University Jena, Germany), speaking about genotype-based classification of IAV to unravel
reassortment candidates.

Spyros Lytras was selected for the Best ECR Talk Award. Gabriel Lencioni Lovate
(Friedrich Schiller University Jena, Germany) was selected for Best Poster Award, present-
ing reproducible RNA–RNA interaction probing for RNA proximity ligation data with
RNAswarm (see Section 2.4.3).

2.4.1. Origins and Implications of the Quasispecies Concept (by Esteban Domingo)

Esteban Domingo, Carlos García-Crespo, and Celia Perales contributed to this work.
Viral quasispecies refers to the complex and dynamic collections of mutants present

in individual samples of RNA (and many DNA) viruses [29]. Mutant input is fueled by
error rates during template copying that are nearly one million-fold larger than those
exhibited by the replicative DNA polymerases of their host organisms. Discovered in
the pre-nucleotide sequencing times, the extent of the complexity of mutant swarms in
viral populations has been fully appreciated with the application of deep sequencing
methodologies. Mutant spectra are generated within individual infected cells, and then
they become the substrate for further evolutionary events within each individual host,
and then in successive individuals during outbreaks and epidemic expansion. Mutant
ensembles may behave as units of selection, and virus adaptation is presently viewed
as the replacement of mutant subpopulations by others that are better fit to respond to
an environmental change. Positive and negative selection are integrated with random
drift prompted by bottleneck events within infected cells, organisms, and during viral
transmission. Quasispecies dynamics can be regarded as a paradigm of the pervasive
diversity and complexity of the biosphere increasingly evidenced by meta-genome and
single cell analyses.

Quasispecies had two independent origins. One was the development of quasispecies
theory by Manfred Eigen and Peter Schuster in Göttingen in the 1970s as a model for the
origin of life [30]. The second was the experimental calculation of the mutation rate of
bacteriophage Qβ and evidence that its populations consisted in mutant clouds, that took
place in the laboratory of Charles Weissmann in Zürich at about the same time [31,32].
The results were possible thanks to a pioneer method of site-directed mutagenesis [33]
that produced a viable Qβ mutant [34], whose reversion rate was calculated [31], in a
very early precedent of the fitness assays that we now perform routinely in experimental
evolution (images of that time reproduced in Figure 5). The historical developments and the
implications of quasispecies dynamics for our understanding of RNA viruses and disease
mechanisms have been recently reviewed [35].

2.4.2. A Guidance to Store Your Virus Sequence and Knowledge (by Muriel Ritsch)

Currently, virus genome sequences are stored either in NCBI or specific databases, such
as ViPR, the HIV database, or GISAID [36,37]. These databases contain a fraction of errors,
which can appear before submission (sample contamination or assembly mistakes), during
submission (misclassification), or even years after submission (taxonomy adjustment).
NCBI and many other general databases do not reliably check whether all uploaded data
are correct. Most new entries in these databases are compared by sequence similarity to
existing ones, and the mistakes in the databases can cascade. Large-scale, downstream,
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and evolutionary analysis are hardly possible. Even with much effort and time, filtering
true from false entries is not always possible. Good scientific research using these public
virus genome databases is further complicated when the metadata or sequences are only
partially correct, especially if one extrapolates the growth of viral data [38,39]. To prevent
the problem of false-positive sequences in the databases, we propose a guideline for
uploading sequences.

Figure 5. Origins and implications of the quasispecies concept. Images of the work in Charles
Weissmann’s laboratory in Zürich in the 1970s. (Left): a slide drawn by Weissmann outlining a
reversion experiment by site-directed mutagenesis [33]; it is interesting that the N4-hydroxy-CTP
used as mutagenic nucleotide is the active component of molnupiravir, presently used as lethal
mutagen for SARS-CoV-2. (Right): a page of the notebook of Domingo with the experimental data
and mathematical predictions of competition between the wild type Qβ phage and the infectious
extracistronic mutant (top of page), and reversion of the mutant upon multiplication in E. coli (bottom
of page) [31,32]; explained also in reference [35].

Out of this knowledge, here are four main and several side steps that should be
followed during uploading sequences: (1) it seems trivial, but appears as a major source
of mistakes: naming your virus sequence (existence of the virus, spelling, following the
ICTV, and connecting to renamings in the past), (2) assignment of the correct taxa (ICTV as
ground truth), (3) supply of necessary metadata, and (4) control sequence. The last step,
especially, is essential because there are many viral sequences with non-viral dangling ends.
Database entries that do not follow these steps can lead to incorrect conclusions and even
jeopardize entire studies.

For future sequence uploads, alignments and quality checks should be conducted
(ideally performed by the database) to predict whether the entire sequence is correct. Such
alignments should be built with other known viruses of the same taxon. Additionally, the
problem of legal issues related to virus databases should be tackled. We envision a future
database containing an easy-to-use interface, quality check, a private workspace, and tools
for assembly, alignment, and phylogeny analysis with SOPs in the field.
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2.4.3. Reproducible RNA–RNA Interaction Probing for RNA Proximity Ligation Data with
RNAswarm (by Gabriel Lencioni Lovate)

Gabriel Lencioni Lovate, Celia Jakob, Hardin Bolte, Kevin Lamkiewicz, Martin Schwemmle,
and Manja Marz contributed to this work. Gabriel Lencioni Lovate was selected for Best Poster Award.

Influenza A viruses (IAVs) have a segmented RNA genome that has to be correctly
packaged to produce infective viral particles. Each of IAV’s genome segments are organized
as discrete RNA–protein complexes, called viral ribonucleoproteins (vRNP). The genome
packaging process is selective and depends on interactions between individual vRNPs,
potentially mediated by their RNA portion. These RNA–RNA interactions can be probed
on a large scale through RNA proximity ligation methods. The approach consists of
linking interacting RNA molecules via chemical cross-linking, followed by high-throughput
sequencing (HTS) of the interacting RNAs. The HTS reads have to be then split-mapped to
the viral genome to identify interacting regions.

To improve the understanding of the RNA–RNA interactions that might play a role in
IAV’s genome packaging, we present RNAswarm, a novel bioinformatics pipeline that is
expanding the scope of high-throughput analyzes of RNA–RNA interactions. In particular,
RNAswarm allows for statistically comparing the frequency of RNA interactions among
different strains or experimental settings. Thus, RNAswarm offers virologists an automated
and reproductive method for prioritizing and comparing the RNA–RNA interactions, a
time-consuming job prone to individual biases when performed manually.

2.5. Virus Identification and Annotation

This session was chaired by EVBC member Alba Pérez-Cataluña (Instituto de Agro-
química y Tecnología de Alimentos, Spain), one of the ViBioM 2022 organizers. From the
submitted abstracts, we selected talks by Jiarong Guo (Ohio State University, United States),
presenting a multi-classifier, expert-guided approach to detect diverse DNA and RNA
viruses (see Section 2.5.1); and Enrique González-Tortuero (University of Salford, UK),
speaking about the evaluation of gene-calling programs for viral genome annotation (see
Section 2.5.2).

2.5.1. VirSorter2: A Multi-Classifier, Expert-Guided Approach to Detect Diverse DNA and
RNA Viruses (by Jiarong Guo)

Viruses have been demonstrated to play an important role in many biospheres, ranging
from ocean, soil, to human ecosystems with the advent of meta-omics; however, identifying
viral sequences from large sequencing data mixed with host sequences is still a challenging
task, as viruses do not have universal marker genes and also lack representatives in existing
reference databases. Most existing tools also lack the capability to detect viruses other
than bacteriophage. Here, we introduce VirSorter2 [40] (see Figure 6), with major updates
to the original VirSorter [41] including (1) integrating machine learning techniques and
expanding the predicting features from 6 in the original VirSorter to 27; (2) dividing
the global viral sequence spaces into five major groups (dsDNA phage, ssDNA, RNA
virus, giant virus [NCLDV, Nucleocytoviricota], and lavidaviridae) and building a distinct
classifier for each group; (3) leveraging large viral protein hidden markov model (HMM)
profile databases from diverse ecosystems [38,42] and also expert curated high quality viral
genomes sequences collected from isolates and environmental metagenomes to improve the
ability to detect diverse and novel viruses; (4) incorporating modern workflow management
tool (snakemake) [43] for improved scalability in high performance computing clusters and
also overall usability. In the benchmark with genomes from both isolated and uncultivated
(from metagenome) viruses, VirSorter2 uniquely demonstrated consistent high accuracy
(F1-score > 0.8) in all five viral groups, while other tools performed poorly with viral
groups other than dsDNA phage, which is best represented in the reference databases.
VirSorter2 can also uniquely minimize false detection of eukaryotic and plasmid sequences
as viral. Further, VirSorter2 has a modular design and provides functions to add more
classifiers to keep high accuracy, as we discover more diversity of viral sequence space.
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In conclusion, VirSorter2 demonstrates that its multi-classifier and modular design can
enable high performance to detect diverse viruses, and will be a useful tool to advance
our knowledge of virus ecology and evolution. To best serve the research community, we
maintain a “live protocol” (https://dx.doi.org/10.17504/protocols.io.bwm5pc86 (accessed
on 1 May 2022)) for best practices on using VirSorter2 for virus sequence identification,
including curating less well-studied viruses and mobile genetic elements, and establishing
bona fide virus-encoded auxiliary metabolic genes.

Figure 6. Overview of the viral sequence prediction pipeline used in VirSorter2 [40]. The “hmmDB”
includes viral protein HMMs from two of the largest databases, VPF and Efam [38,42]. Distinct
classifiers (random forest) are built for each of five major viral groups to improve accuracy on
diverse viruses. Adapted with permission from [40] (https://creativecommons.org/licenses/by/4.
0/). Copyright 2021, Guo et al.

2.5.2. Evaluation of Gene-Calling Programs for Viral Genome Annotation (by
Enrique González-Tortuero)

Due to the development of the next-generation sequencing platforms and genome
analysis tools, newly available viral genomes and metagenomes have increased expo-
nentially. Genome annotation pipelines rely primarily on gene-calling software, which
identifies genes regardless of the sequence taxonomic background. Although gene-calling
programs provide a rapid genome annotation, they can misidentify genes and start codons,
propagating and perpetuating errors over time. This study assessed the performance of
multiple gene-calling programs for viral genome annotation against the entire RefSeq viral
database. MetaProdigal [44] and FragGeneScan [45] were the most accurate programs for
DNA and RNA viruses (101.01% and 99.62%, respectively) according to the number of
coding genes. By considering the coordinates of the coding genes, Prodigal [46] scored high
for DNA viruses (83.92%), while GeneMarkS [47] generated the most reliable results for
RNA viruses (60.84%). The quality of the coordinates predicted for RNA viruses was poorer
than for DNA viruses, suggesting the need to develop gene-calling programs to deal with
RNA viruses. Additionally, none of the gene-calling programs reached 90% accuracy for
gene prediction of DNA viruses. The use of Prokka [48] for the genome annotation of giant
viruses, bacteriophages, and viruses of Archaea might explain the highest score of Prodigal
when predicting genes in DNA viruses. Manual curation should improve any automatic
annotation, especially by validating the presence of these genes with wet-lab experiments.
This evaluation of the current gene-calling programs might help improve viral genome
annotation pipelines and highlight the need for more expression data to improve the rigour
of reference genomes.

https://dx.doi.org/10.17504/protocols.io.bwm5pc86
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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2.6. Phages

This session was chaired by EVBC member Noriko Cassman (Friedrich Schiller Uni-
versity, Germany). Evelien Adriaenssens (Quadram Institute Bioscience, UK) was invited
as keynote speaker to talk about phages in the human gut: a taxonomist’s perspective.
From the submitted abstracts, we selected talks by Dimitri Boeckaerts (Ghent University,
Belgium) about dual identification of novel phage receptor-binding proteins based on
protein domains and machine learning (see Section 2.6.1); and Antoni Luque (San Diego
State University, United States) about the prediction of viral capsid architectures from
metagenomes (see Section 2.6.2). Célia Pas (Ghent University, Germany) was selected for
Best Poster Award presenting a blueprint of tail fiber modularity and its relationship with
host specificity for STEC serovars (see Section 2.6.3).

2.6.1. Dual Identification of Novel Phage Receptor-Binding Proteins Based on Protein
Domains and Machine Learning (by Dimitri Boeckaerts)

Dimitri Boeckaerts, Michiel Stock, Bernard De Baets, and Yves Briers contributed to this work.
Bacteriophages (phages for short) are an emerging alternative treatment against multi-

drug resistant bacteria. Their often-narrow host specificity is an additional benefit with
regards to side-effects on healthy microbiota, but often necessitates a labor- and time-
intensive search of phages that match a specific pathogen. To circumvent this problem,
synthetic biology methods can be applied to precisely engineer the specificity of phages
towards their bacterial hosts. For example, receptor-binding proteins (RBPs) can be mod-
ified or swapped between phages to adjust or broaden the narrow host specificity [49].
Today, the amount of publicly available phage genome data is steadily increasing, present-
ing opportunities to study phages in new ways, including their RBPs. However, many
different annotations exist for RBPs, and many phage proteins are not even annotated at
all. PhANNs, a recently developed machine-learning-based tool, has started to bridge
this gap by predicting ten major classes of phage proteins [50]. From their research, tail
fiber proteins (a subset of RBPs) appear among the most difficult classes to predict. To
further address this lacking or inconsistent annotation, we have developed two paral-
lel approaches specifically for the complex identification of RBP sequences in publicly
available phage genome data (see Figure 7). Our first approach consists of a collection
of RBP-related hidden Markov models (HMMs) that were both collected from the Pfam
database as well as custom-developed [51]. These HMMs represent RBP-related conserved
protein domains that can be used to detect RBPs. Secondly, we have trained an Extreme
Gradient Boosting model that classifies sequences into two categories: phage RBPs and
other phage proteins [52]. Both methods start from a comprehensive data processing that
identifies the different annotation keywords associated with RBPs. We show that both
approaches can be complementary to one another and can be used together to identify RBP
sequences in genomic data. Finally, we have benchmarked our methods against PhANNs.
Our best-performing model reached a precision-recall area-under-the-curve of 93.8% and
outperforms PhANNs on an independent test set, reaching an F1-score of 84.0% compared
to 69.8%. We aim to publish this work and open source the code and database for the
research community to freely use and build upon.

2.6.2. Predicting Viral Capsid Architectures from Metagenomes (by Antoni Luque)

Antoni Luque, Diana Y. Lee, Sean Benler, Colin Brown, Caitlin Bartels, Katelyn McNair,
Stephen Nayfach, Simon Roux, Manal A. Swairjo, Robert A. Edwards, and Simon White have
contributed to this work.

Viruses protect their genome in protein shells called capsids assembled from multiple
copies of the same protein. However, it is unclear what molecular protein adaptations have
promoted the stability of viral capsids across environments. 1031 viral particles are evolving
on the planet at a given time. This number dwarfs the few thousand cultured and uncul-
tured viruses observed under the microscope [53,54] and the few hundred high-resolution
capsids reconstructed molecularly [55]. To tackle the challenge of investigating the adapta-
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tion of capsids to different environments, the Luque lab is developing biophysical-based
models to predict the physical architecture of viral capsids directly from cultured and
uncultured viral sequence data (see Figure 8). The approach builds on the conserved
genomic and architectural properties of viruses that assemble their capsid from proteins
sharing the same capsid protein fold [56,57].

Figure 7. Dual identification of novel phage receptor-binding proteins. Graphical abstract of the
collected phage genome data, the developed RBP detection tools and the benchmark against the
recently developed PhANNs tool [50].

Our initial models focused on tailed phages, which infect bacteria and are the most
abundant viruses. Tailed phages assemble their icosahedral capsids from proteins adopting
the HK97-fold and pack their double-stranded DNA genome at high densities [58,59].
These conserved properties predict an allometric law for the viral genome length and the
capsid architecture (size and T-number) [60]. The analysis of 23 high-resolution capsid
structures confirmed the theoretical relationship and led to the genome to capsid (G2C)
model with 90% accuracy (see Figure 8A). The model was applied to 3348 isolated tailed
phage genomes from NCBI RefSeq, and 1496 metagenomically assembled (putatively)
complete genomes from the human gut [60,61]. The G2C model identified tailed phage
candidates adopting small capsids (T ≤ 3) that have not been previously reconstructed but
may hold the key to elucidating the origin of tailed phage capsids.

The G2C model relies on the genome length to make predictions. However, most
assembled viral genomes in metagenomes are incomplete [62]. To circumvent this issue, we
developed a model predicting the capsid architecture directly from the protein sequence of
the major capsid protein, the MCP2C model (see Figure 8B). The application of the G2C
model to 635 isolated phage genomes–containing a validated HK97-fold MCP–built a suffi-
ciently large library of MCP sequences and capsid architectures for statistical training [63].
The MCP’s amino-acid frequency was used to train the statistical learning method random
forest. MCP2C yielded a 74% accuracy in predicting the capsid architecture, and our projec-
tions indicate that a library with 2500 entries would deliver a 90% accuracy. The application
of the MCP2C model to 1479 HK97-fold MCPs predicted a significantly large amount
(~15%) of jumbo phage capsid architectures (T ≥ 25) in human gut metagenomes [63].
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Figure 8. Models predicting capsid architecture. (A) The genome to capsid (G2C) model relies on
the conserved properties of tailed bacteriophages. The model uses the genome length to predict the
capsid architecture (diameter and icosahedral T-number). (B) The major capsid protein to capsid
(MCP2C) relies on the G2C model to build a library of putative capsid architectures and MCPs from
isolated tailed phage genomes. It predicts the capsid architecture of tailed phages directly from the
major capsid protein sequence. The current G2C and MCP2C python versions are accessible at https:
//github.com/luquelab/Lee_etal_CSBJ_2022/tree/main/3_executables (accessed on 1 May 2022).

Both models (G2C and MCP2C) could be used for other HK97-fold-based viruses that
pack the genome at high densities, such as Herpesvirales [56]. However, predicting capsid
architectures for non-HK97-fold based viruses would require applying the analogous
approach described above for each capsid protein fold’s viral lineage [64].

2.6.3. A Blueprint of Tail Fiber Modularity and Its Relationship with Host Specificity for
STEC Serovars (by Célia Pas)

Célia Pas, Lars Fieseler, and Yves Briers contributed to this work. Célia Pas was selected for
Best Poster Award.

Shiga toxin-producing E. coli (STEC) is a severe foodborne pathogen belonging to
the critical priority pathogen list defined by the World Health Organization. The use of
broad-spectrum antibiotics does not only contribute to the spread of antibiotic resistance,
but in the case of this specific pathogen also induces the release of the Shiga toxin. Phages,
as the natural predator of bacteria, therefore offer great potential in STEC treatment. The
phage–host relationship is very specific and complex, where tail fibers or tailspikes of the
phages are the first phage proteins initiating the infection process. These proteins bind to
various outer membrane structures including O-antigen, a serovar specific component on
the lipopolysaccharide layer of the bacterial cell wall. Tail fibers with O-antigen binding
properties were identified in multiple phage species such as Kutter-, Uetake-, Lederberg-,
Gamaleya-, and Kagunaviruses. Moreover, we confirmed that tail fibers are occasionally
passed on to entirely different phage families by horizontal gene transfer, allowing the
phages to infect specific STEC serovars. This method of screening for new O-antigen-specific
tail fibers is highly interesting to develop serotype-targeting microbials, especially in current
times, where antimicrobial resistance is a serious threat to global health and development.

https://github.com/luquelab/Lee_etal_CSBJ_2022/tree/main/3_executables
https://github.com/luquelab/Lee_etal_CSBJ_2022/tree/main/3_executables
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2.7. Viral Diversity

This session was chaired by EVBC director and ViBioM 2022 organizer Manja Marz
(Friedrich Schiller University, Germany). Matthew Sullivan (Ohio State University, United
States) was invited as a keynote speaker to talk about ocean viruses: patterns, processes, and
paradigms on a planetary scale (see Section 2.7.1). From the submitted abstracts, we selected
talks by Daan Jansen (KU Leuven, Belgium) about community-typing as a way to explore
virome compositional changes in IBD patients (see Section 2.7.2); and Alex Veglia (Rice
University, United States) about an automated virus amplicon sequence analysis program
to support investigations of viral community ecology. Luca Nishimura (SOKENDAI, Japan)
was selected for Best Poster Award, presenting a virome analyses of the ancient individuals
who lived in the Japanese archipelago 3000 years ago (see Section 2.7.3).

2.7.1. Ocean Viruses: Patterns, Processes, and Paradigms on a Planetary Scale
(by Matthew Sullivan)

Microbes are recently recognized as driving the energy and nutrient transformations
that fuel Earth’s ecosystems in soils, oceans, and humans. Where studied, viruses appear to
modulate these microbial impacts in ways ranging from mortality and nutrient recycling to
extensive metabolic reprogramming during infection. As environmental virology strives to
get a handle on the global virosphere (the diversity of viruses in nature), we face challenges
to organize this ‘sequence space’ (create a sequence-based viral taxonomy), link these
viruses to their natural hosts (who infects whom), and establish how virus populations
are structured (ecological drivers) and impact natural ecosystems (their impacts). Here,
I will share current thinking on how to study viruses in complex communities and how
these efforts are revealing new biology, with a particular focus on the patterns, processes,
and paradigms emergent from studying the Tara Oceans global datasets. These advances
in viral ecogenomics provide fundamental information critical for bringing viruses into
ecosystem models, and the new capabilities are empowering a new generation of eco-
systems biologists.

2.7.2. Community-Typing as a Way to Explore Virome Compositional Changes in IBD
Patients (by Daan Jansen)

Daan Jansen, Gwen Falony, Sara Vieira-Silva, Kathleen Machiels, Clara Caenepeel, Séverine
Vermeire, and Jelle Matthijnssens contributed to this work.

Inflammatory bowel diseases (IBD) are a group of chronic inflammatory diseases
of the gut. It is commonly divided into two major variants, ulcerative colitis (UC) and
Crohn’s disease (CD). The pathophysiology is unknown; however, it is thought to result
from an aberrant immune reaction to the commensal gut microbiota. Community-typing
is a common practice in bacteriome analysis allowing for the stratification of individuals
based on their gut microbiome (e.g., ‘enterotyping’) [65,66]. Similarly, the viral counterpart
of these enterotypes might allow the stratification of individuals based on their gut vi-
rome. The aim of the present study is to use community-typing as a tool to explore virome
compositional changes in IBD patients. Fecal samples were selected from 181 patients
undergoing immunomodulatory therapy, and a baseline (pre-intervention) and primary
endpoint (post-intervention) sample was collected for each patient. Viral metagenomics
and deep sequencing were performed following viral enrichment with the NetoVIR pro-
tocol [67]. Briefly, quality-controlled reads were de novo assembled into contigs using
MetaSPAdes [68]. Clustering of the contigs was performed to remove redundancy and
obtain a set of non-redundant (NR) contig at 95% average nucleotide identity and 80%
coverage [62]. Abundances were calculated per sample by mapping quality-controlled
reads to the set of NR contigs using bwa-mem2 [69]. Next, bacteriophages identified
with VirSorter2 (see Section 2.5.1) and an adequate quality tier (>50%; as determined by
CheckV) were selected for further analyses [40,62]. To obtain higher viral taxonomies,
phage genomes were clustered into genus-level groups based on pairwise average amino
acid identity and gene sharing, yielding 874 genus-level vOTUs [70]. Community-typing
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of the genus-level (rarefied) abundances with logarithmic transformation was performed
based on Dirichlet multinomial mixtures [66]. We were able to condense the gut virota
into two community-types, CA and CrM (see Figure 9A, n = 363, genus-level, Bray-
Curtis dissimilarity). Community-type CA demonstrated a low alpha-diversity and a high
relative abundance of Caudoviricetes [non-CrAss] phages. Community-type CrM demon-
strated a high alpha-diversity and a high relative abundance of Caudoviricetes [CrAss] and
Malgrandaviricetes phages. Distance-based redundancy analysis (dbRDA) allowed us to
determine the metadata affecting the virome composition (Figure 9B, left). The composition
was explained by several factors: patients’ individuality (multivariate dbRDA, R2 = 75.8%,
p = 0.001), disease location (multivariate dbRDA, R2 = 1.40%, p = 0.001), age (multi-
variate dbRDA, R2 = 0.50%, p = 0.001), and moisture (multivariate dbRDA, R2 = 0.30%,
p = 0.007). Interestingly, the virome composition was better explained by disease location
than by diagnosis, as shown in previous bacterial research. Moreover, the virome composi-
tion was associated to therapeutic response (multivariate dbRDA, R2 = 0.46%, p = 0.032)
in post-intervention samples (Figure 9B, right). Next, we associated community-types with
explanatory metadata (univariate logistic regression, n = 166, R2 = 3.91%, Adjp = 0.0280)
in post-intervention samples and found disease activity (endoscopic remission relative
risk = 2.65) to be linked with an increased risk of hosting community-type CrM (Figure 9C).
We confirmed that responding IBD patients had a higher percentage of community-type
CrM compared to non-responding IBD patients (Figure 9D, n = 166, endoscopic remission,
21.2% vs. endoscopic non-remission, 41.7%, X2 = 6.30, Adjp = 0.0300). This increase
seemed to be majorly driven by UC patients, but not CD patients (Figure 9E, n = 51,
endoscopic remission UC, 25.0% vs. endoscopic non-remission UC, 54.8%, X2 = 4.41,
Adjp = 0.0357). These findings suggest that viral community-typing allows for stratifica-
tion of IBD patients based on their gut virome composition and might be a valuable tool to
better understand IBD subtypes or as a potential future biomarker.

2.7.3. Virome Analyses of the Ancient Individuals Who Lived in the Japanese Archipelago
3000 Years Ago (by Luca Nishimura)

Luca Nishimura was selected for Best Poster Award.
Ancient DNA has been extracted from historical samples such as bones and teeth.

Recently, ancient DNA studies have shed light on ancient people’s genomes and have
elucidated the population structures and migration histories at ancient times. Additionally,
we can discover the ancient microbial or viral genomic information from the ancient DNA of
human remains. Some viruses that existed in ancient people were pathogenic and valuable
to understanding the pandemic in ancient times. On the other hand, most were non-
pathogenic and related to ancient people’s health. Therefore, it is crucial to analyze those
ancient viruses to comprehend viral evolutions and ancient people’s health conditions.

Here, we utilized whole genomic sequencing data of the “Jomon” people, who lived
in the Japanese archipelago more than 3000 years ago, to analyze the ancient viral genomes.
As a result, we obtained several ancient viral genomic information related to oral commen-
sal bacteria and marine habitats. They might be related to ancient Jomon people’s diet.
Moreover, we successfully reconstructed an ancient Siphovirus contig89 phage genome
from 3800-year-old specimens and utilized it to construct phylogenetic trees [71]. Our re-
sults indicate that the ancient viral genomes are helpful to understand the ancient people’s
diet and viral evolution.
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Figure 9. (A) Principal coordinates analysis of inter-individual differences of the gut virome (genus
level Bray-Curtis dissimilarity) in the IBD cohort (circles colored by viral community-type, n = 366).
(B) Metadata variables significantly correlating to virome compositional variation in both the IBD
cohort (left) and post-intervention samples (right) (dbRDA, genus-level Bray-Curtis dissimilarity),
as determined by a multivariate linear regression model. (C–E) Modeling the association between
the metadata drivers of post-intervention samples and the prevalence of viral community-type
CrM (logistic regression, n = 166, only significant associations shown). (C) Relative risk ratio of
prevalence of viral community-type CrM with the significant driver (endoscopic remission) of virome
variation. (D) Representation of viral community-type prevalence in post-intervention samples
(n = 166) stratified according to the endoscopic outcome (non-remission, remission, unknown).
(E) Representation of viral community-type prevalence in post-intervention samples per IBD subtype,
CD (left, n = 115) and UC (right, n = 51) stratified according to the endoscopic outcome (non-
remission, remission, or unknown). * p < 0.05 (adjustment for multiple testing was performed using
the Benjamini-Hochberg methods).

3. EVBC Annual Meeting

The EVBC was founded in 2017 to bring together experts in virology and virus bioin-
formatics [1,2] and is constantly growing. Since the last annual meeting in October 2020 [3],
66 new members from 18 different countries joined the EVBC. About 28% of our members
are females. After the conference, all speakers were invited to join the EVBC.

EVBC is offering several services to our members and the virus bioinformatics com-
munity. We are publishing a monthly newsletter, informing about recent research results,
upcoming events, job vacancies and further announcements. Moreover, we are curating a
list of specific bioinformatics tools to be applied in virology.

At the last meeting in 2020, we experienced an increase in registrations after announc-
ing the online event. This has made the meeting accessible to a broader range of scientists,
in particular younger researchers and researchers newly entering the field. This brought
us to the idea to set up a monthly online lecture series ‘viruses in silico’ to keep scientists
up to date with the latest developments in virus bioinformatics, especially new tools. This
lectures is attended by 20–80 participants each month. In addition, we are organising a
monthly ‘Viromics Webinar Series’ for early career researchers studying viruses in complex
communities (together with the Center of Microbiome Science at OSU and EMERGE). For
the future, we are also planning to set up a workshop program.

In a survey among EVBC members, we were asked to introduce our members. We are
now posting two member profiles each month to help you to get to know each other and
possibly find interesting collaboration opportunities.

To learn more about our work or to become an EVBC member, please have a look at
our website http://evbc.uni-jena.de/ (accessed on 1 May 2022).

http://evbc.uni-jena.de/
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4. Conclusions

As in previous years, in 2022 members of the community met at the International Virus
Bioinformatics Meeting to discuss current research of the field. This report summarizes
the presented work and we hope that it will allow the wider community to profit from the
meeting by gaining interesting insights into the field of virus bioinformatics and its current
state-of-the-art research.

We encourage interested researchers to join us at the next International Virus Bioin-
formatics Meeting to be held in 2023 in Valencia. For more information, do not hesitate to
contact us via evbc@uni-jena.de.
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