
AGENT-BASED ETHICAL DECISION-MAKING

CONTROL OPTIMIZATION FRAMEWORK FOR

SELF-DRIVING VEHICLES

SHEHU YUSHA’U

Ph.D. THESIS 2022

Agent-Based Ethical Decision-Making Control
Optimization Framework for Self-driving Vehicles

SHEHU YUSHA’U

A Thesis Submitted in Partial Fulfilment of the Requirements for the

Degree of Doctor of Philosophy

School of Science, Engineering, & Environment

Autonomous Systems and Robotics Research Centre,

University of Salford, Manchester, UK

June 2022

i

Contents

List of Figures ... v

List of Tables .. viii

List of Acronyms ... ix

Acknowledgments .. x

Dedication .. xi

Abstract ... xii

Chapter 1: General Introduction ... 1

1.1 Main Overview .. 1

1.2 Rationale .. 3

1.3 Thesis Contributions .. 3

1.4 Thesis Organization ... 4

Chapter 2: Literature Review ... 5

2.1 Introduction .. 5

2.2 Self-driving Vehicle Architecture .. 6

2.2.1 Self-driven Vehicle Motion Planning ... 7

2.2.2 Self-driving Vehicle Behavioural Motion Planning ... 12

2.2.3 Decision-making for Self-driving Vehicles .. 12

2.2.4 Control Framework for Self-driving Vehicles .. 13

2.2.5 Learning-Based Approaches ... 15

2.3 Philosophical Principles ... 16

2.3.1 Deontological Constraints ... 20

2.3.2 Consequential Cost ... 22

2.3.3 Ethics and Self-driven Vehicles .. 23

2.3.4 Ethical Issues .. 25

2.3.5 Ethics of Crashing ... 26

ii

2.4 Vehicle Model Design ... 27

2.4.1 Vehicle Models ... 27

2.4.2 Ethical Vehicle Design ... 30

Chapter 3: Mechanic Formulations Governing the Response of Self-driving Vehicles .. 33

3.1 Introduction .. 33

3.2 Code Generation .. 34

3.3 Model Predictive Control ... 35

3.3.1 Formulation of the Problem .. 35

3.4 Pure Delay Modelling .. 38

3.4.1 Problem Formulation .. 38

3.4.2 Simulation Results .. 40

3.5 Dynamic Lag Modelling .. 41

3.5.1 First-Order Lag ... 41

3.5.2 Second Order Lag ... 41

3.5.3 Simulation Results .. 42

3.6 New Optimization Framework Formulation .. 47

3.6.1 Scenario Creation .. 47

3.6.2 Design Alternatives ... 49

3.6.3 Model Predictive Control Formulation ... 55

3.7 Simulation Results ... 57

3.7.1 Driving Scenarios.. 58

3.7.2 Consequentialist Costs of Traffic Regulations ... 62

3.7.3 Deontological Constraints in Traffic Regulations .. 64

3.7.4 Costs, Constraints, and Weights ... 66

3.8 Vehicle Behaviour ... 66

3.9 Conclusion ... 70

Chapter 4: Human-centred Decision Making ... 71

iii

4.1 Introduction .. 71

4.2 Value-Sensitive Design .. 73

4.3 First Iteration .. 74

4.3.1 Conceptualization ... 74

4.3.2 Technical Implementation of Technology .. 77

4.3.3 Empirical Research ... 80

4.3.4 Observation ... 85

4.4 Second Iteration ... 86

4.4.1 Conceptualization ... 87

4.4.2 Technical Implementation of Technology .. 88

4.4.3 Empirical Research ... 91

4.4.4 Observation ... 99

4.5 Bridging the Gap on Human Values .. 101

4.6 Summary .. 103

Chapter 5: Ethical Valence ... 104

5.1 Introduction .. 104

5.2 Risk Mitigation in Self-Driving vehicles ... 105

5.3 The Ethical Valence Concept's Claims and Foundations .. 107

5.3.1 Valence as a Concept .. 111

5.3.2 An Ethical Profile ... 113

5.4 Ethical Valence Theory Computational Implementation .. 116

5.4.1 The MDP Algorithms ... 116

5.4.2 Dilemma Situations classifications ... 118

5.4.3 An Algorithm for Ethical Deliberation ... 120

5.5 Summary .. 134

Chapter 6: Conclusion and Further work ... 135

6.1 Conclusion ... 135

iv

6.1.1 Contributions... 136

6.2 Further work... 137

6.2.1 Generalizability ... 137

6.2.2 Utilizing VSD to Quantify Engineering Improvements 138

6.2.3 VSD and Philosophical Principles .. 138

6.2.4 Strategy ... 138

6.2.5 Prospects ... 139

Reference .. 140

Appendixes.. 158

v

List of Figures

Figure 2.1: Architecture of Self-driving Vehicles ... 7

Figure 3.1: System Block Diagram .. 33

Figure 3.2: Baseline trajectory overhead, diamond indicates start of manoeuvre at the top,

command and measuring hand wheel angle with open-loop prediction at one time step in the

middle, and yaw rate at the bottom due to lateral perturbation from the nominal path. 38

Figure 3.3: Pure time delay trajectory overhead, diamond indicates start of manoeuvre at the

top, command and measuring hand wheel angle with open-loop prediction at one time step in

the middle, and yaw rate at the bottom due to lateral perturbation from the nominal path. 40

Figure 3.4: First- and Second-order models on median step response data. 42

Figure 3.5: Pure time delay with first-order dynamics trajectory overhead, diamond indicates

start of manoeuvre at the top, command and measuring hand wheel angle with open-loop

prediction at one time step in the middle, and yaw rate at the bottom due to lateral perturbation

from the nominal path. ... 44

Figure 3.6: Lumped first-order lag trajectory overhead, diamond indicates start of manoeuvre

at the top, command and measuring hand wheel angle with open-loop prediction at one time

step in the middle, and yaw rate at the bottom due to lateral perturbation from the nominal path.

.. 45

Figure 3.7:Lumped Second-order lag trajectory overhead, diamond indicates start of

manoeuvre at the top, command and measuring hand wheel angle with open-loop prediction at

one time step in the middle, and yaw rate at the bottom due to lateral perturbation from the

nominal path... 46

Figure 3.8: The shaded areas denote driving zones. The most secure sector is the vehicle's

present lane, free of obstructions. As the car leaves the lane, the safety of the driving zone

decreases. ... 47

Figure 3.9: Calculating the cost based on the difference between the desired path (black) and

the vehicle's actual path (blue with dots). .. 50

Figure 3.10: Environmental envelope generation using two tubes examples. (a) starting with a

set of obstacles along the nominal path, (b) discretization along the s direction, (c) extension

of objects along that same s direction, which creates alignment with the discretization and from

which feasible gaps between objects are identified, and (d) connecting adjacent gaps into tubes

which define maximum (e (k) max) and minimum (e (k) min) lateral deviation from the

nominal path at each time step (k). .. 53

vi

Figure 3.11: The three tubes define the generic manoeuvre options to avoid an obstacle. The

left and right tubes are depicted in blue while stopping is depicted in red 55

Figure 3.12: Single-lane Curve .. 59

Figure 3.13: Dual-lane Merge .. 59

Figure 3.14: Dual-lane Switch ... 60

Figure 3.15: Three-lane Merge & Switch .. 60

Figure 3.16: Three-lane Curve & Switch ... 61

Figure 3.17: Three-lane Curve & Switch ... 61

Figure 3.18: Vehicle manoeuvres to the left of the obstacle and crosses the divider (The left

tube is chosen because the traffic lane divider is considered safe to cross). 63

Figure 3.19: Vehicle manoeuvres to the right of the obstacle (The right tube is chosen because

evaluation of the scenario determined it is safer to pass around the obstacle via the road

shoulder). ... 64

Figure 3.20: Vehicle remain in the tube corresponding to the lane (Since left and right path

options are weighted equivalently, the tube is blocked and the vehicle brakes to a complete

stop).. 65

Figure 3.21: The relatively lower costs on lateral and heading error allow the vehicle more

freedom to deviate from the path (Reduction of the cost on path following allows the vehicle

behaviour to model emergency response vehicle character). .. 69

Figure 3.22: The relatively lower costs on lateral and heading error allow the vehicle more

freedom to deviate from the path (Reduction of the cost on path following allows the vehicle

behaviour to model emergency response vehicle character). .. 69

Figure 4.1: Scenario for an occluded pedestrian crosswalk ... 74

Figure 4.2: Baseline closed-loop policy mapping each state to an action. 82

Figure 4.3: Closed-loop policy depicting optimal action at that state assuming perfect state

information. .. 83

Figure 4.4: Baseline trajectory overhead, acceleration command, and speed profile using

deterministic speed control (circle indicates when the pedestrian was detected). The vehicle

decelerates upon detection of the pedestrian but does not yield. ... 84

Figure 4.5: POMDP trajectory overhead, acceleration command, and speed profile using belief

about pedestrian detection (circle indicates when the pedestrian was detected). 85

Figure 4.6:The scenario of the pedestrian crosswalk with occlusion is eliminated. 87

vii

Figure 4.7: Deterministic speed control is used to provide an aggressive baseline trajectory

overhead, acceleration command, and speed profile. The pedestrian does not enter the

crosswalk, thus there is no red circle. .. 93

Figure 4.8: Overhead trajectory with a conservative baseline, acceleration instruction, and

speed profile with deterministic speed control (circle shows when the pedestrian was spotted).

.. 93

Figure 4.9: Overhead POMDP trajectory of a distracted pedestrian, acceleration command, and

speed profile based on pedestrian crossing belief (circle indicates when the pedestrian was

detected). .. 95

Figure 4.10: Overhead walking pedestrian POMDP trajectory, acceleration command, and

speed profile based on pedestrian crossing belief (circle shows when the pedestrian was

spotted). .. 96

Figure 4.11: Stopped pedestrian POMDP trajectory overhead, acceleration command, and

speed profile utilising pedestrian crossing belief. There is no red circle since the pedestrian

does not enter the crosswalk. ... 97

Figure 4.12: Stopped pedestrian POMDP trajectory overhead, acceleration command, and

speed profile utilising pedestrian crossing belief (circle shows when the pedestrian was

spotted). Pedestrians have the right of way. .. 98

Figure 4.13: POMDP's Pareto frontier with different weights linked to evaluation criteria. 102

Figure 5.1: Self-driving vehicle’s state representation .. 117

Figure 5.2: State transition uncertainty for 𝑎0 and 𝑎3... 128

Figure 5.3: Potential dilemma situation ... 130

Figure 5.4: Simulation of a collision in scenario 1. ... 130

Figure 5.5: Simulation of a collision for scenario 2... 133

Figure 18.1: The bicycle model's schematic illustration .. 223

viii

List of Tables

Table 3.1: RMS of hand wheel angle (HWA) along prediction horizon, RMS of yaw rate, and

maximum absolute yaw rate .. 43

Table 3.2: weights resulting in a pass on the left ... 63

Table 3.3: weights resulting in a pass on the right ... 64

Table 3.4: weights resulting in a pass on the left ... 65

Table 3.5: weights resulting in a pass on the left ... 68

Table 3.6: weights resulting in a pass on the left .. 69

Table 4.1: Human values mapping to engineering specifications for the first VSD iteration. 76

Table 4.2: Weights of the reward function .. 83

Table 4.3: A summary of human values mapped to engineering specifications for the second

VSD iteration. .. 89

Table 4.4: The pedestrian transition model for the second VSD iteration............................... 90

Table 4.5: The reward function's weights in relation to pedestrian posture (𝑝𝑡) 94

Table 5.1: The collision threshold that is utilised in fatality collisions (∆𝑣) 121

Table 5.2: Potential valence hierarchical structure .. 124

Table 5.3: Potential moral profiles for a self-driving vehicle .. 125

Table 5.4: Technique for optimization depending on the selected moral profile. 126

Table 5.5: Valence Classification .. 131

Table 5.6: The harm to self-driving vehicle for each potential collision in scenario 1 131

Table 5.7: The harm to road users for each potential collision in scenario -1 132

Table 5.8: Quantification of collisions for scenario -2 .. 132

Table 5.9: Quantification of collisions for other road users in scenario-2 133

Table 5.10: The initial state of road users .. 133

ix

List of Acronyms

AIA : Artificial Intelligence Approach

AIS : Abbreviated Injury Scale

AVs : Autonomous Vehicles

DLM : Dynamic Lag Modelling

EP : Ethical Profile

EPAS : Electric Power Assisted Steering

EV : Ethical Valence

EVD : Ethical Vehicle Design

EVT : Ethical Valence Theory

FOL : First Order Lag

GPS : Global Positioning System

HCD : Human-Centred Design

IRL : Inverse Reinforcement Learning

LBD : Life-Based Design

LBM : Linear Bicycle Model

LTL : Linear Temporal Logic

MDP : Markov Decision Process

MPC : Model Predictive Control

NHTSA : National Highway Traffic Safety Administration

PID : Proportional Integral Derivative

PMM : Point Mass Model

POMDP : Partially Observable Markov Decision Process

PTD : Pure Time Delay

QMDP : is the fully observable approximation of a POMDP policy and relies on

the Q-values to determine actions.

QPs : Quadratic Programs

RMS : Root Mean Square

RRT : Rapid Random Tree

SOL : Second Order Lag

VB : Vehicle Behaviour

VM : Vehicle Model

VSD : Value Sensitive Design

x

Acknowledgments

Firstly, I am extremely grateful to my supervisor, Prof. Samia Nefti-Meziani, for her invaluable

advice, continuous support, and patience during my PhD study. Her patience, motivation,

immense knowledge, and plentiful experience have encouraged me in all the research and

writing of this thesis. The meetings and conversations were vital in inspiring me to think

outside the box and from multiple perspectives to form a comprehensive and objective critique.

Besides my supervisor, I would like to thank Prof. Steve Davis and Dr. Theodoros Theodoridis

for their insightful comments and encouragement, but also for the hard questions that inspired

me to widen my research from various perspectives.

I had the pleasure of working with many colleagues, lab mates, and friends whom I hold in

high regard, and I would like to express my heartfelt gratitude to everyone who has assisted

me for the stimulating discussions, the sleepless nights we spent working together before

deadlines, and all the fun we have had over the last four years. I am grateful to all the technical

staff for their assistance and support, especially Mr. Andrew Baker.

I owe a lot to my parents, whose constant love and support keep me motivated and confident.

My accomplishments and success are because they believed in me. Deepest thanks to my

siblings, who keep me grounded, remind me of what is important in life, and are always

supportive of my adventures, and this was no exception. To my loving wife, Mrs. Z. A Shehu,

for unconditional, unequivocal, and loving support and to my kids (Ilham, Aysar, Affan, Noor,

and Nadia), I'm sorry for being even grumpier than normal whilst I wrote this thesis! You have

been amazing, and I will now clear all the papers as I promised!

I acknowledge the generous financial support from the Nigerian government through PTDF (as

a sponsor) during the research period. I will forever remain grateful for this rare opportunity.

Saving the best for last, I am most indebted to Dr. A. J. Abbas for his support and guidance.

You taught me the multiple, complex, and rewarding aspects of research.

xi

Dedication

All praise be to Almighty Allah, my creator, my strong pillar, my source of inspiration,

wisdom, knowledge and understanding. He has been the source of my strength throughout this

journey, and on his wings alone have I soared.

This thesis is dedicated to my loving parents and beloved wife, without whose constant support

it wouldn’t have been possible. Also, to my little angels, Fatima (Ilham), Ahmad (Aysar),

Abdallah (Affan), Aslamiy (Noor) and Zainab (Nadia), who have been affected in every way

possible by this quest. Thanks to my caring siblings, whose prayers go beyond measure. My

love for you all can never be quantified.

To my late friend Nasiru Lawal Esha, who left a void never to be filled in our lives, though

your life was cut short, your memory will live on as long as I do. May Allah (SWT) grant you

Jannah Firdaus. Ameen.

xii

Abstract

When driving, humans balance values like safety, legality, and mobility. When sharing the road

with humans, an autonomous vehicle will likely use the same values. Incorporating human

values into algorithm design is tough for self-driving vehicle engineers. To address this

problem, a decision-making algorithm is designed using philosophical concepts translated into

mathematical frameworks. Deontological ethics parallels rule-based mathematical concepts,

whereas consequentialism parallels cost-based mathematical concepts. The virtue ethics

philosophical principle is also used to motivate the different weightings of path tracking,

obstacle avoidance, and traffic regulation compliance. The consequences of different design

decisions made in a model predictive steering controller are highlighted by simulation results

of a self-driven vehicle negotiating an obstructed two-lane route with a double yellow line.

The value-sensitive design (VSD) iterative process is used to formalise the link between human

values and technological needs. A modified VSD technique was used to develop a self-driven

vehicle speed control algorithm for pedestrian crossings. The VSD iterations model the

problem as a partially observable Markov decision process that was used to generate an

effective approach for controlling the vehicle's longitudinal acceleration based on the belief of

a pedestrian crossing.

An ethical valence that characterises self-driven vehicle decision-making as a mechanism for

claim mitigation, in which various road users make varying moral claims on the vehicle's

behaviour, and the vehicle must neutralise these claims while making assessments about its

surroundings. With self-driving vehicles, the harm produced by an action and the uncertainties

connected with it are assessed and accounted for, leading to an ethical implementation that is

realistic. Instead of describing how moral concepts need self-driving vehicles to behave, this

approach provides a computational approach that may accommodate a variety of moral

positions about what morality demands and what road users could expect.

1

Chapter 1: General Introduction

1.1 Main Overview

Despite the major success of self-driving vehicles in increasing safety, eliminating various

sources of errors, especially due to human cognition, and reducing car crashes, there is still no

guarantee that accidents will be completely avoided. A self-driving vehicle is expected to

behave properly in such situations to make appropriate moral and ethical choices that reduce

the cost of human life, possible injury, or damage, and avoid the obstacles with the highest

priority. It is generally believed that they will be more secure than human-driven vehicles,

which are more likely to detect and stay away from the dangers and impacts of various drivers

and pedestrians. Since 94% of accidents are attributed to driver errors, with 31% attributed to

drunk drivers and 10% attributed to occupied drivers (Tanelli, Toledo-Moreo et al. 2018), the

case for self-driving vehicles for increased security and lives saved is very compelling. Indeed,

even the most optimistic expectations concerning self-driving vehicles demonstrate that they

can bring significant benefits regarding social expenses of death or damage, as well as

expanded comfort and profitability for the individual consumer.

As experts travelling in an area that includes many road users, from pedestrians to cyclists to

other drivers, both self-driving and manned vehicles, computer-controlled vehicles consistently

interact with those around them. The idea of these communications is a consequence of the

programming in the vehicle and the requirements defined by the software engineers. Similarly,

as human drivers show the scope of driving styles, self-driving vehicles offer a large screen on

which designers can create responses to different driving situations. In any case, the conduct

of the vehicle and its control algorithms will eventually be judged not by measurements or test

track execution, but rather by the standards and morals of the public in which they operate.

Humans can go from one location to another in a quick and pleasant manner by driving. People

have places to go, people they want to see, and activities they want to do. Automobile mobility

gives ease, efficiency, and flexibility to people who drive. This urge to travel demonstrates how

essential mobility is in the lives of those who drive. However, drivers are not the only ones

who desire mobility. The need for mobility of one road user may collide with that of another

road user. A pedestrian, for example, could wish to cross the street in a crosswalk while a

motorist is driving down the road. This reveals a disagreement over mobility's worth. The term

"value" is defined by (Enke 2020), (Miller and Cushman 2018), as "what a person or group of

people considers valuable in life". As a result, mobility might be considered a human virtue.

2

While driving, another issue is safety. Consider driving along a street when a toy ball

unexpectedly rolls into the roadway from behind a huge family vehicle parked nearby. The

human driver has no way of knowing whether someone will run out to chase the ball. Human

drivers, on the other hand, recognise that they just need to stop or slow down to maintain the

situation's safety since that person may be someone's child. Drivers who value safety can

safeguard other people and property from a two-ton moving car (Ploeg 2017) (Riaz, Jabbar et

al. 2018).

Legality is a third value. Thanks to traffic regulations, humans can safely use the road with

other drivers and vulnerable road users. Although traffic regulations are defined as rigid

restrictions, human drivers frequently test the limits of these restrictions or completely

disregard them. Traffic regulations, however, are rarely severely enforced, according to

(Krotov and Silva 2018), (Gogarty and Hagger 2008). and can operate a vehicle in the face of

legal issues.

As seen by how they manage the circumstances, human drivers traverse the roads by balancing

values such as mobility, safety, and legality. Many other values, such as care and respect for

others, fairness and reciprocity, respect for authority, trust, and transparency, are also

implicated while driving. One value may take precedence over another, or the values may even

clash, depending on the situation (Plyley 2018). Human drivers, luckily, have a means of

evaluating which values are most important at any given time (Zachko, Golovatyi et al. 2019).

In the history of the ethics of robots, we still must decide whether artificial agents can truly

behave morally without free will (Krotov and Silva 2018). In any case, it appears that other

road users and society will interpret self-driving vehicles' activities and the needs put forth by

their software engineers from a moral standpoint. The control framework that decides the

activities of self-driving vehicles is thoroughly investigated if it causes damage, and social

acceptance is greatly influenced by the social interactions that shape daily traffic.

Unexpectedly, the interpretation of philosophical developments and ideas and their

mathematical counterparts in the control hypothesis is simple. Thus, similarities can be

established between the philosophical theory and the use of costs or constraint functions in the

control hypothesis. These enable the execution of ethical principles as either a cost or rules for

controlling systems with other objectives. Looking at the issue from the mathematical

perspective of determining control laws for a vehicle leads to the conclusion of both (Goodall

2014), and (Qian, Fortelle et al. 2016) that a single philosophical concept is unlikely to be

sufficient for programming self-driving vehicles. However, in this research work, the idea of

3

several moral frameworks, as well as parallels between ethics, consequentialism, and a

constrained optimization problem as a starting point, will be addressed.

1.2 Rationale

The research problems are formulated as follows:

1) How can decision-making behaviour be adopted to better respond to risks in navigation

and exploration?

2) From a consequentialist perspective, how can these principles best be described as a

weighting of costs, which form the more absolute rules of deontological ethics?

3) How do vehicles decide where to go next, and how do interactions with other vehicles

affect what needs to be done?

4) How do vehicles use the data provided by their sensors to make short-term and long-

term decisions?

1.3 Thesis Contributions

This thesis bridges the gap between decision-making and ethics by accounting for actuation

delays in a steering controller, incorporating traffic regulations relating to lane dividers and

crosswalks into problem formulations, mapping normative theories to mathematical concepts

found in decision-making algorithms, and connecting human values to engineering

specifications using a modified form of a generic design technique.

To achieve the aim of the research work, the following objectives are set:

1) To account for steering actuation delay compensation in model predictive control

2) To integrate lane dividers in model predictive steering control and crosswalks in

partially observable speed control

3) To Integrate philosophical principles as mathematical frameworks in self-driven

vehicle decision-making planning

4) To develop a modified value sensitive design technique for self-driven vehicle decision-

making algorithms.

5) To develop an ethical valence algorithm for a self-driven vehicle

4

1.4 Thesis Organization

The contributions are spread over the chapters and include ethical considerations for self-

driving vehicle decision-making. This thesis is structured into six chapters and summarised as

follows.

Chapter One: Provides the main overview and highlights issues related to the thesis,

challenges, objectives, contributions to knowledge, and summary of the report.

Chapter Two: It examines some of the fundamental concepts and similar works to demonstrate

the motivation and headlines for this research work. Including the theoretical background and

how the philosophical concepts of deontology and consequentialism relate to technical design

decisions.

Chapter Three: It provides a mechanical formulation governing the response of self-driving

vehicles that includes the stages taken for the development of the ethical optimization

framework and how a model-based design technique was utilised to achieve the research

objectives.

Chapter Four: It employs a modified version of the value-sensitive design (VSD) approach to

directly relate human values to engineering specifications through iteration over

conceptualization, technical implementation, and empirical analysis. In this case, the revised

VSD is utilised to create an ethical decision-making algorithm for safe pedestrian crossing

navigation. During the conceptualization phase, the ethical values and stakeholders in the

situation are identified. In a closed-loop planning technique, the control algorithm takes the

form of a POMDP to account for the scenario's uncertainty.

Chapter Five: It offers an ethical valence technique that provides a computational method

that is flexible enough to support a variety of "moral perspectives" on what morality demands

and what road users could anticipate, as well as an evaluation tool for the social acceptability

of an autonomous vehicle's ethical decision-making.

Chapter Six: It summarises the contributions of the thesis, including preliminary work that

explicitly accounts for ethical issues in self-driving vehicle decision-making algorithms. There

is more work to be done. As part of the recommendation, emphasis was placed on describing

how some of the future work may be implemented. As a result, the findings emphasize that

ethical considerations are present throughout the self-driven vehicle stack, not just at the

decision-making layer, but also in all aspects of vehicle and system design, such as sensor

selection, perception layer design, and even how vehicles are tested and deployed.

5

Chapter 2: Literature Review

2.1 Introduction

Self-driving vehicles are designed with the expectation of decreasing the rate of accidents by

eliminating the root cause: the driver. However, there are circumstances in which an accident

is probably imminent, if not inevitable, even for a self-driving vehicle. In such circumstances,

a self-driving vehicle is supposed to react appropriately. By colliding with different obstacles,

different costs will be incurred depending on the damage and the injury. A self-driving vehicle

in an impending accident situation should consider these costs and provide a manoeuvre to

avoid the highest priority obstacles. In cases when value conflicts develop, autonomous vehicle

motion planning necessitates ethical concerns. However, certain technical issues in motion

planning do not include value conflicts since they are concerned with the system's functionality.

This chapter focuses on ensuring that the proposed trajectories can be performed by accounting

for the actuation level in the decision-layer in a computationally efficient manner.

Because it can account for system restrictions while maximising numerous objectives, model

predictive control (MPC) has been demonstrated to perform well in autonomous driving

applications. MPC also uses a system model to anticipate how control inputs will affect the

plant's future trajectory. MPC also uses a system model to forecast how control inputs will

affect the plant's future trajectory. Tracking the reference trajectory by reducing lateral

deviation in the cost function and specifying obstacle avoidance as a constraint for the motion

planning issue established in the previous chapter is one approach to designing an MPC

problem. To execute the specified trajectories, however, an autonomous vehicle must steer

effectively.

Today's automated cars are modified production cars. A simple external interface to the

steering actuation is provided by an electric power assisted steering (EPAS) system

incorporating a motor attached to the steering column. On the other hand, EPAS might cause

severe delays and compliance issues in the production steering system. It is critical to model

and integrate the delay in the MPC formulation if a system has a non-trivial time delay between

actuation requests and fulfilment. Path tracking and passenger comfort might be jeopardised if

this isn't done correctly.

Actuation modelling in MPC has been extensively studied in the literature, with state

propagation or extra delay states in the model being the most common approaches. (Grüne and

Pannek 2017) demonstrate state propagation in simulation for systems with well-known signal

6

delays, and (Bayerlein, De Kerret et al. 2018) address a 20𝑚𝑠 signal delay with state

propagation using a second order Runge Kutta method with validation on 1:43 scale electric

cars. As established by (Tjolleng, Jung et al. 2017), an alternate technique to state propagation

for pure time delays involves explicitly modelling the signal delay in the model by appending

the system dynamics with delay states. In simulation and on small-scale electric automobiles,

these methods show state propagation to be a suitable tool for actuation dynamics with known

signal delays.

Although actuation modelling is not a new addition to MPC, I am unaware of any comparisons

of different techniques using MPC on a full-scale. In addition to pure time delays, the actuation

modelling approaches do not consider actuation dynamics. Various actuation modelling

problems formulations are assessed using low-fidelity models as part of the research reported

in this thesis. Using first- and second-order identifiable system models, the actuation dynamics

are integrated into the system dynamics. All the models improve the system's behaviour.

2.2 Self-driving Vehicle Architecture

In this section, the relationships between the motion planning module and different modules of

a self-driving vehicle are described. Figure 2.1 illustrates the relationships through the design

of a self-driving vehicle (Rasouli, Tsotsos et al. 2018). The motion planning module determines

the direction of the vehicle to avoid obstacles, comply with traffic rules, follow the desired

instructions, and allow passengers a smooth ride (Xu, Zhao et al. 2019). It is believed that the

module gets data about the obstacles, roads, vehicles, and directions from alternate modules

(Sadat, Casas et al. 2020).

The information on the obstacles incorporates the position, speed, size, and classification of

every obstacle. The road data comprises the road profile, the number of paths, and the size of

the paths. The vehicle data incorporates the vehicle's position, heading angle, longitudinal

speed, lateral speed, yaw rate, and typical tyre force. The obstacles, road, and vehicle data are

provided to the motion planning module from the perception and estimation module (Joa, Yi

et al. 2019). Additionally, the desired instructions, including the ideal path and speed, are

produced in the behavioural module (Schwarting, Alonso-Mora et al. 2018). To estimate its

condition in model predictive control, it is assumed that every obstacle travel at the same

longitudinal and lateral speeds as its present speeds. The danger connected with the

unpredictable behaviour of the obstacles, as well as the estimated inaccuracy of the vehicle and

7

obstacle circumstances, are considered while establishing the safety margin of the various

potential functions.

(Joa, Yi et al. 2019) predicted the MPC using a linear vehicle model that was built to reflect

the vehicle's longitudinal, lateral, and yaw movements but not the roll, pitch, or bounce

motions. The vehicle's roll, pitch, and bounce motions do not correspond to the vehicle's

movement on the path, but rather to the vertical tyre forces (Cheng, Li et al. 2019), which are

thought to be accessible for the estimate module's motion planning module. The vehicle's

parameters are also thought to be stable. In any event, if their values vary and the estimation

module evaluates the parameters, the vehicle model may be adequately updated by the

estimated parameters in all circumstances (Gallardo, Romeo et al. 2017).

Figure 2.1: Architecture of Self-driving Vehicles

2.2.1 Self-driven Vehicle Motion Planning

Self-driven cars accessing the streets are likely to face comparable circumstances as human

drivers, such as sharing the road with other humans and vulnerable road users, transporting

human passengers, and unexpectedly confronting objects or people from behind occlusions. A

self-driving car will have to traverse the roads while balancing priorities like mobility, safety,

8

and legality. The issue for autonomous vehicle developers is to build motion planning

algorithms that balance these opposing human values.

There are several definitions of motion planning in the literature. Motion planning is defined

in this thesis as an algorithm that plans lateral and longitudinal motion in terms of a specified

reference trajectory using a mix of steering and acceleration instructions. The reference is a

hypothetical path that defines the autonomous vehicle's planned locations and speeds, but it is

not guaranteed to be obstacle-free. If an autonomous car is navigating a two-lane highway and

encounters a barrier or a pedestrian, the car will need to use a motion planner to decide whether

to follow the reference or prevent crashes. Motion planning is appropriate for motion planning

in situations like these. Model predictive control (MPC) is an excellent choice for a motion

planner because it solves for a series of control inputs by maximising a cost function according

to a set of constraints in a receding way along a prediction horizon (Berntorp, Hoang et al.

2019). The cost function, restrictions, and weights must all be determined by the MPC

optimization problem designer for the vehicle to achieve goals such as mobility, safety, and

legality. Other motion planning approaches could be a suitable fit, and the designers of such

algorithms will have to think about the same things.

The most recent studies (Yurtsever, Lambert et al. 2020); (Claussmann, Revilloud et al. 2019))

give a comprehensive summary of self-driving vehicle motion planning. In summary, most

conventional methods for determining the are based on one of the principles below. Grid

planners (Ghazal, Said et al. 2021), fundamental elements directed to the street, whose major

benefit is their simplicity and efficiency, especially in road scenarios, are examples of the

discretization of the entrance space with collision verification. The major benefit of random

planning, such as quick search in random trees (Cai, Luo et al. 2018), is the probabilistic

exploration of huge state spaces while retaining a high degree of calculation. Finally, the

limited optimization and control of the receding horizon (Deori, Garatti et al. 2018), which is

primarily used for trajectory tracking but can now also calculate trajectories without colliding

with other road users, as described by (Brown and Gerdes 2019), who developed a nonlinear

predictive control model and applied it to safe navigation in an intelligent vehicle, this was

made feasible by recent improvements in nonlinear forced optimization solvers. The major

benefits of forced optimization are the path regularity and the direct coding of the vehicle model

in the trajectory planning. Constrained optimization only converges to an optimal local path

for the vehicle if the problem is not convex.

A set of regulations apply to self-driving cars. These guidelines put constraints on the motion

planner, which must always be adhered to. They must, nevertheless, be broken in specific

9

instances. Like Traditional motion planning methods may be utilised to identify the route with

the lowest cost if the traffic regulations are incorporated into the cost function (Althoff, Koschi

et al. 2017). It may also describe the rules as logical functions and utilise automated control

synthesis to implement them. To generate a discrete model of a robot system and arrive at an

objective state, (Singh, Chen et al. 2018), and (Li, Zhang et al. 2017) have developed a

technique of movement synthesis that only breaks the rules with the lowest priority for the

shortest time feasible. Despite its promise, automated control synthesis has problems when

applied to non-deterministic systems and settings, as well as continuous dynamic models like

self-driving cars. Similarly, (Vasile, Tumova et al. 2017) looked at the issue of road network

violations of minimal limits related to integrated planning and routing. They used syntactically

safe linear time logic formulae to define the expected behaviour of the vehicle, as well as a

motion planner based on RRT formulae to find the shortest route with the fewest trajectory

violations for a single vehicle and trip. Routing for a minimum violation linked to fleet

management and vehicle pooling is still an outstanding issue that must be addressed to ensure

effective transportation with the least delays.

2.2.1.1 Safety and Mobility

Engineers already make judgments that affect the values of mobility and safety while

developing autonomous vehicle motion planning algorithms. (Mohseni, Frisk et al. 2020)

investigates the creation of two MPC optimization problems for conducting a constant speed

double-lane change manoeuvre along a collision-free reference trajectory at the vehicle's

handling limitations. According to Falcone et al., the cost function includes heading deviation,

lateral deviation, yaw rate deviation, and steering effort, whereas the constraints include the

vehicle model and actuator restrictions. In most systems, the weight placed on heading

deviation is higher than in other states. The weight on steering effort is smaller than the weight

on heading deviation in the nonlinear MPC formulation, but it is higher than the weight on

lateral deviation. The steering effort penalty is two orders of magnitude larger than heading

deviation in the linear time-varying formulation, which also includes a limitation on slip angle.

Since the authors do not specify how mobility and safety are captured in their algorithms, I

interpret the formulations to mean that mobility is achieved by following the desired speed,

while safety is achieved by vehicle models and system constraints since the reference trajectory

is obstacle-free. (Demirel, Ghadimi et al. 2017) build a limited optimization problem and solve

it in a receding manner. Following the speed limit, smoothing acceleration, jerking, and

10

attenuating extreme yaw rates are all part of the cost function. The driving corridor, as well as

the steering geometry and tyre friction restrictions, are all limitations. The publication does not

provide the weights used in the tests. The authors also didn't explain how their algorithm

incorporates mobility and safety clearly. These formulations lead me to believe that, in addition

to occupant comfort, mobility is achieved by adhering to the speed limit wherever feasible,

while safety is achieved by avoiding obstructions and road edges.

Instead of solving a limited optimization problem, (Tuncali and Fainekos 2019) construct

reference trajectories using rapidly exploring random trees (RRT) and samples from the control

space. To randomly sample viable, smooth paths in a congested environment, a generative

closed-loop vehicle model with limitations is employed. (Li, Xiong et al. 2019) employ the

closed-loop RRT to avoid using a motion planner since the reference trajectory it provides

accounts for obstructions as well as the closed-loop speed and steering controllers. Acceleration

and steering restrictions are some of the constraints. The closed-loop controllers have gains to

choose from, even if there is no cost function. Using various safety systems to overrule the

planned trajectory, (Li, Xiong et al. 2019) emphasise safety over mobility considerations, in

my opinion. (Meghjani, Luo et al. 2019) explicitly account for mobility as well as safety by

penalising collisions and rewarding the vehicle for completing manoeuvres. Although

restrictions are not explicitly considered while optimising a POMDP model's policy, Bouton et

al. employ a discrete state space to restrict the maximum speed of the manoeuvres and a discrete

action space to restrict the change in acceleration instructions. Engineers have included ideals

of safety and mobility into the design of motion planning algorithms in several other instances.

2.2.1.2 Legality, Mobility, and Safety

Most autonomous vehicle decision-making algorithms include mobility and safety, but legality

is rarely mentioned, if at all (Taeihagh and Lim 2019) and (Lǎzǎroiu, Machová et al. 2020). To

create viable pathways that maintained inside lane markers and considered halting positions at

traffic lights and stop signs, all competitors used some variation of a finite state machine. The

motion planners were subjected to a speed constraint. The implicit value conflict between

mobility, safety, and legality was mitigated by partitioning the decision problem into

hierarchical decision structures, where the top-level algorithms considered only the legal rules

and bounded the feasible paths for the motion planners to consider only mobility and safety.

Only during error recovery, such as when a sensor fails, would there be value conflicts with

legality. If the legal criteria were too stringent to provide a viable path, they were trimmed until

11

an obstacle-free viable path was found. Essentially, unless a fail-safe mode was activated to

follow the vehicle code first the hybrid decision architecture proposed by (Schwarting, Alonso-

Mora et al. 2018), which considers traffic rules in the mission and reference planners and safety,

smoothness, and efficiency in the lower-level behavioural planner (Ahrens 2020), demonstrates

that this paradigm of "trying to be legal first".

Another option is to create a controller that enforces adherence to a rule set, such as the traffic

code, rather than separating the value dispute in the decision architecture. To create an obedient

controller, (Bharadwaj, Carr et al. 2021) use linear temporal logic (LTL) to describe the traffic

code. The autonomous car can drive around an impediment on the road and a double yellow

line in simulations since the logic rules enable passing a double yellow after the vehicle has

come to a complete stop first. (Datta 2019) extend this work by constructing dynamically viable

trajectories that follow the rule set using a sampling-based technique known as optimum

rapidly exploring random trees (RRT). It is difficult to define a rule set that is accessible, that

is, one that does not excessively confine the vehicle's movements. To address this issue, Reyes

Castro et al. allowed and chose rule prioritization.

On the other hand, learning techniques that learn from human drivers to balance mobility,

safety, and legality are on the other end of the spectrum. Cost function learning using expert

demonstrations is used by (Morris, Zhou et al. 2020). The planning issue is expressed as a

Markov decision process (MDP), which develops a "perception-to-cost" mapping without

explicitly providing any attributes. This strategy obscures the decision-making process and

lacks the openness required to comprehend the consequences of mobility, safety, and legality.

(Wulfmeier, Wang et al. 2016) use a similar strategy to develop a "perception-to-cost" map,

but they describe the characteristics explicitly. Using maximum entropy inverse reinforcement

learning, driving style is parameterized in a cost function. To understand how drivers negotiate

a blocked route with a double yellow line (Morris, Zhou et al. 2020), specify the characteristics.

The autonomous car, with these implementations, represents the demonstrator's mobility,

safety, and legality values. As evidenced by the literature cited above, there are several

approaches to creating a decision-making algorithm. Some strategies are based on limitations,

while others are based on costs, and still others allow for a mixture of the two. The choice of a

cost, a constraint, or a weight may appear arbitrary in the general formulation of a motion

planning algorithm. How these decisions relate to human values is even less obvious. When

constructing motion planning algorithms, an analysis of ethics and human values may help

engineers choose what should be a cost or restriction, as well as the weights.

12

2.2.2 Self-driving Vehicle Behavioural Motion Planning

Most of the above-mentioned work presupposes that a prediction of other road users' future

routes is available. Real-life traffic scenarios, on the other hand, entail complicated interactions

among several road users (Xu, Zhao et al. 2019) and (Schwarting, Pierson et al. 2019). Dealing

with complicated disturbances and modelling interactions with other road users is an issue for

self-driving cars that has yet to be overcome(Sadat, Casas et al. 2020). To achieve human-level

dependability and react safely even in complicated urban circumstances, self-driving vehicles

that operate in complex, dynamic environments require techniques that generalise to

unforeseen situations and reason quickly. Accurate perception is necessary for well-informed

judgments.

Even though most of the approaches mentioned above summarise perception outside of

planning, perception is crucial for self-driving cars. As a result, a brief explanation of the

current state of perception is given, followed by a discussion of the end-to-end methods for

integrated perception and planning, which produce command inputs for the vehicle directly

from sensory data and are typically based on machine learning (Stower 2019). Self-driven

Collaboration and supporting choices are required in vehicles with human driving behaviour.

Other drivers' intentions must be deduced and included in a planning framework that allows

for smart and helpful decision-making without the requirement for vehicle-to-vehicle contact.

If self-driving cars must be able to discern the intentions of other road users, they must also

allow others to do so. Without the necessity for explicit communication, this results in

dependencies and interactions depending on the scene and the behaviour exhibited.

2.2.3 Decision-making for Self-driving Vehicles

Radar, computer vision, Lidar, sonar, GPS, odometry, and inertial measurement units are all

used in a self-driven decision-making system to manage the vehicle, destination, and

knowledge of its surroundings (Arslan, Berntorp et al. 2017). Sensory data is interpreted by the

control systems module to determine the best navigation pathways, obstructions, and signs.

These perceptions, along with previous knowledge about the road, traffic regulations, vehicle

statuses, and sensor models, are used to select values for the vehicle's regulated inputs that

guide its movement (Huang, Ding et al. 2019). The perception module uses the previously

collected data to acquire a sense of the vehicle's and its environment's dynamic circumstances;

the estimations are then used by the decision module to manage the vehicle to meet the driving

13

goals. As shown in the decision module of figure 2.1 above, the decision-making system of a

self-driving automobile is divided into three components. A path via the road network is

designed during the planning stage. After that, a behavioural layer calculates a local driving

task that will get the automobile to its destination while adhering to the laws of the road (Luo,

Cao et al. 2019). After that, a motion planning layer chooses a continuous path in the

environment to carry out a local navigation job. The faults in the scheduled motion execution

in the control module are then reactively corrected by the control system.

Self-driving decision-making is also classified as deterministic or stochastic (Sakib 2020).

When there is confined or restricted access to the information that is anticipated to determine

the probable outcome, this is referred to as a stochastic event. In this case, some outcomes are

more likely than others, and the probability of a particular outcome may not be known due to

constraints on the best way to determine the likelihood of a particular outcome while decisions

are made based on known data, and genuine issues frequently include some obscure

parameters.

2.2.4 Control Framework for Self-driving Vehicles

Various control algorithms, ranging from classical control (PID) (Yoon, Shin et al. 2009) to

advanced controllers, including back-stepping control, sliding mode control (Manenti 2011),

fuzzy logic, and model-based predictive control, have been proposed in the literature for such

unpredictable systems (Gray, Gao et al. 2013) and (Goodall 2014). Also, it can systematically

manage the system's nonlinearities, uncertainties, and systematic constraints and can optimise

the current stage by considering the future stages and trajectories. Predictability distinguishes

model-based control from other control systems. The main issue with using MPC is the

computational burden of dealing with real optimization, especially for nonlinear models. Since

the optimization in non-linear models is no longer convex, it is necessary to meet the

requirements of stability and numerical solution. Non-linear models are linearized around an

operating point to best meet computer demand (Carvalho, Lefévre et al. 2015). At this point,

the linearized MPC problem is converted into specific formats to implement some fast and

well-developed convex optimization solvers.

Most reviews suggest using hierarchical control structures (Cunningham, Galceran et al. 2015)

and (Du and Tan 2015) with a high-level path planner to create dynamically accessible

trajectories that evade all obstacles and a low-level tracking controller to control the vehicle to

follow the reference trajectories. Control strategies based on Model Predictive Control (MPC)

14

(Kong, Pfeiffer et al. 2015) have received increased consideration because of their capacity to

explore the state space utilising gradient information. MPC starts iteratively to formulate and

solve problems of optimal control with a limited horizon, which are generally solved by

nonlinear optimization techniques. MPC begins by iteratively formulating and solving

optimum control problems with a restricted horizon, which are often addressed using nonlinear

optimization techniques. Each optimization offers an optimal control route for the specified

prediction horizon, as well as an optimal system trajectory thanks to the MPC's predictive

capacity. This unique characteristic of MPC is ideal for decision-making planning as well as

self-driving vehicle tracking control (Zhang, Sprinkle et al. 2015).

The continuous component is handled by MPC-based non-linear motion planners presented in

previous work (Paden, Čáp et al. 2016), but the discrete component is not. The major issue is

that MPC-based non-linear optimization methods are reliant on continuous, gradient-based

optimization methods, which are incapable of dealing with logical restrictions (Houjie,

Zhuping et al. 2016). Furthermore, gradient-based optimization may be represented as a local

optimum, corresponding to a single manoeuvre option, whereas the global optimum requires

the exploration of many manoeuvre alternatives. Some approaches for estimating non-

differentiable constraints using differentiable non-linear functions have been developed to

address these difficulties (Nilsson, Brännström et al. 2016). Approximations like this, on the

other hand, add to the computing load. To adjust to diverse local optima, researchers (Qian,

Fortelle et al. 2016), (Yi, Gottschling et al. 2016) and (Garip, Karayel et al. 2017) recommend

picking the optimal manoeuvre choice. They do not, however, guarantee global optimality, and

designing efficient heuristics in a complicated driving environment is a significant issue.

A kinematic model of the car can be used to control the vehicle at low speeds. Proportional

integral derivative control (PID), feedback linearization, or predictive control of the model can

all be used to monitor a specified reference path (Wang, Ayalew et al. 2018). For high-speed

operation or forceful manoeuvres, however, the entire dynamic model of the vehicle, including

tyre forces, must be employed. Forward control, also known as non-linear control, model

predictive control, or feedback, stabilises the vehicle's behaviour while it travels the set route.

Even in autonomous races, good tracking performance was achieved using these models and

car controls. These control techniques are based on a vehicle model that must be predictable

(Joa, Yi et al. 2019). For framework identification, there are strategies based on optimization

and learning-based approaches (Brazell, Bayeh et al. 2019). The technology used is determined

by the amount and type of data available, as well as an understanding of the system's dynamics

and control technique. Identifying the online model (Chen, Fang et al. 2019) will enhance the

15

performance of autonomous cars when road and vehicle conditions change over time. Machine

learning technologies have a lot of potential for generating models out of massive amounts of

data (Rahman, Xie et al. 2019).

According to (Faulhaber, Dittmer et al. 2019), who suggested threat measures based on

dynamic vehicle limitations, the most reasonable method to incorporate human input into the

output of the safety system is to linearly mix the two. There, human input was blended with a

calculated path depending on the threat's intensity. For example, feedback can be used to

achieve shared control (Huang, Ding et al. 2019). Human input may also be directly integrated

into an optimization framework in a slightly aggressive manner. The goal is to close the gap

between the self-driving system's strategy and the objectives of the driver. The present steering

and acceleration inputs, in their most basic form, reveal the driver's purpose. To compute the

safe inputs for the common control, (Pan, Xiang et al. 2020) devised a restricted convex

optimization. The method, however, was confined to a one-step viewpoint. One of the most

common assumptions for intelligent cars is to consider the vehicle's set speed and simply

improve it using the steering angle, which simplifies the optimization issue. For example, (Son,

Oh et al. 2020) reduced the angular difference between the steering wheel and the artificial

control input necessary to maintain safe trajectories. On the other hand, (Yurtsever, Lambert et

al. 2020), specified vehicle stability and environmental circumstances to offer safe steering

controls in a discrete environment, taking into consideration the vehicle's constant speed and

resolving a convex optimization. It is now feasible to optimise concurrently via the steering

angle and the speed or the accelerator pedal input (Di and Shi 2021) to achieve minimum

intervention thanks to the advancement of rapid nonlinear optimizers.

2.2.5 Learning-Based Approaches

Game-theoretic methods, probabilistic approaches, and partially observable Markov decision

processes, such socially compliant driving, are all focused on the framework and model for

human-driven vehicle interactions. Consequently, interactions may be exhibited by indirect

control of the other vehicle, like an untrained framework, using the data-driven techniques

described in (Nar, Ratliff et al. 2017). Based on the features of expert demonstrations, the

suggested method learns the reward function from the IRL. Staying on course, preventing

accidents, monitoring progress, and limiting effort costs are some of the goals of manually

created functions such as cost conditions. Other cars' behaviour is based on a two-player game

in which the other vehicle optimises its own reward in response to the self-driven vehicle's

16

control route. In such situation, the human driver has no choice but to be selfish. The impacts

of self-driving car behaviour on human activities can be exploited using this method. The belief

status code is associated with one of two discrete cost functions that describe the driver's

behaviour, such as attentive or distracted driving. Exploration-exploitation compensation

(Peysakhovich and Naecker 2017), unlike comparable POMDP formulations, is not yet

processed and is merely coded by a linear combination of goals in the reward function. The

weights of the incentive function, on the other hand, can be determined by a human driver

iteratively picking a favourite route from a collection of two entrant pathways (Jie, P. L et al.

2018). Without a set of expert routes and predetermined labels, the vehicle may learn the

reward function in this way. (Zhang, Chen et al. 2018) demonstrated an enhanced type of

algorithm and its effectiveness by constructing pathways that resemble those of humans in

parking lots, with less demonstration necessary during learning.

Finally, (Del Giudice and Crespi 2018) and (Terziyan, Gryshko et al. 2018) shown the efficacy

of generative learning through conflicting imitation, which has been used to the optimization

of recurrent methods. As previously mentioned, a method to learning guidelines based on

expert demonstrations is reconstructing the expert's cost function using IRL, then deriving a

model of this cost function with better learning (Xu, Dherbomez et al. 2018). Because this

method is inherently sluggish, problematic generative learning offers a framework for deriving

models from data directly. The method replicates developing human driver behaviour, such as

path-changing, while remaining valid over time (Son, Oh et al. 2020).

2.3 Philosophical Principles

Academics, researchers, journalists, and philosophers have been debating moral norms for

decades. This section examines these criteria as they pertain to vehicle behaviour. A specialist

programmes a self-driving car, and the programming follows a set of decision-making and

control logic. While morality and control logic cannot be compared, there are ethical

frameworks that are suited for mathematical systems.

The importance of safety in autonomous vehicle motion planning extends beyond the steering

actuation system's predictable control. Engineers face new problems while designing control

algorithms for driverless cars. Control systems have always had desired requirements and

performance criteria for which programmers created control algorithms. The capacity to drive

safely and seamlessly in traffic is the ultimate anticipated performance outcome for fully

autonomous cars. Because traffic conditions involving people are difficult to quantify, setting

17

criteria for obtaining this desired outcome is difficult as well. Driving in traffic necessitates

that the vehicle adheres to social road-behaviour norms. Expectations such as avoiding

collisions and obeying traffic regulations go beyond technological specifications to touch on

long-standing and formally defined moral concerns in philosophy. The link between

philosophical frameworks and mathematical frameworks used in programming autonomous

cars is explored in this chapter to resolve value conflicts.

Accident prevention is essentially driven by the notion of protecting life and preventing harm.

(Wang, Vasilakos et al. 2012) defined care (and its opposite, damage) as one of the basic

concepts for moral reasoning. Another moral underpinning for a vehicle's compliance with

traffic regulations is its level of respect for authority. In addition, interactions with other road

users should be based on fairness and reciprocity, which is another of moral foundations

(Wang, Vasilakos et al. 2012). The fact that these social expectations for autonomous cars are

so well aligned with ethical standards in philosophy implies that philosophy might be a

valuable tool for translating such expectations into specifications. (Purves, Jenkins et al. 2015)

use social justice in the design of a traffic control framework for automated cars, which is in

the same domain as engineering ethics but with distinct applications. (Arkin 2016), as well as

(Lin 2016), argue that ethics should be considered throughout the engineering process. (Miller,

Wolf et al. 2017) synthesise operations research ethics theories and apply them to ethical

decision-making robots. (Shaoshan, Li et al. 2017) also argues that ethical considerations are

crucial in the development of autonomous cars.

Both (Guanetti, Kim et al. 2018) and (Merat, Louw et al. 2018) point out that a single

conceptual paradigm is unlikely to suffice for programming autonomous systems. As a result,

academics have developed solutions that include many philosophical notions. The organised

standards for vehicle behaviour are influenced by deontology, a rule-based ethical framework,

and consequentialism, a cost-based ethical framework. (Pakusch, Stevens et al. 2018) propose

a three-tiered method for determining ethical decisions in autonomous vehicles. The first layer

is a rational approach in which the vehicle respects deontological and consequentialist ethical

standards. Artificial intelligence and a combined rational-artificial intelligence method are used

in the second and third layers, respectively. In an optimum control problem, (Urooj, Feroz et

al. 2018) offer the two ethical frameworks of deontology and consequentialism as parallels to

constraints and cost, respectively. Many semi-autonomous and autonomous vehicles (Chen,

Pei et al. 2019) are already designed using this sort of control formulation. As a result, the work

described here employs several ethical frameworks, deontology, and consequentialism as a

starting point and applies the principles to a controlled optimization problem.

18

This chapter has two objectives. To begin with, engineers will be introduced to ethical theories

that mirror engineering paradigms to better understand how such frameworks may involve a

specific ethical theory. The second objective is to apply these ethical standards to technical

decisions that result in acceptable, justified autonomous vehicle behaviour. To reason about

driving objectives as norms or costs as suitable, normative ethical theories, such as deontology

and consequentialism, are employed. These objectives may be converted into constraints and

cost functions that can be used in motion planning algorithms such as the MPC formulation.

This allows for morally driven design decisions to be presented and evaluated in a basic traffic

situation. Given the formulation of an optimization problem, selecting suitable weights for

various purposes might be difficult. Therefore, an ethical theory known as virtue ethics in the

form of role morality can help. Role morality and virtue ethics are founded on character

alignment (Martinho, Herber et al. 2021). This paradigm, when applied to self-driven systems,

directs algorithm development to accomplish desired behaviour for various vehicle kinds. To

include ethical reasoning into the design of autonomous vehicle control, an MPC problem is

applied to illustrate the influence of various traffic rule formulations. This highlights a broader

issue of virtue ethics and the role of morality in self-driven cars, which is addressed in Section

3.7 further.

One of the most important ethical ideas is deontology. According to a set of norms,

deontological ethics assesses the morality of one's acts. To be moral, one must, in essence,

follow a set of principles that define the appropriate ethical behaviour, and these norms must

be followed without exception. Deontological ethics is exemplified by Isaac Asimov's Three

Laws of Robotics (Asimov, 1941), which state:

 A robot may not injure a human being or, through inaction, allow a human being to

come to harm.

 A robot must obey the orders given to it by human beings, except where such orders

would conflict with the First Law.

 A robot must protect its own existence if such protection does not conflict with the First

or Second Laws.

The Three Laws of Robotics provide a clear set of behavioural norms for the robots in Asimov's

novels to obey, essentially acting as behavioural restrictions. A robot is free to operate as

needed if it follows the three laws. Certainly, Asimov's robot novels frequently contain odd

behaviour caused by opposing interpretations of these principles, highlighting the limitations

of such an approach.

19

For the development of automated vehicle systems, deontology provides one form of

motivating structure: rules that may be created and obeyed on the road. Conditionals and

constraints, which are employed in decision-making and control algorithms to restrict and

influence system behaviour, are comparable to these principles (for example, a conditional for

actuation saturation or a constraint in an optimization problem). Constraints meant to prevent

an autonomous vehicle from harming humans, inflicting property damage on itself or other

things, or breaking traffic regulations are examples of such restrictions for an autonomous

vehicle. The ability of rules to be hierarchical in a deontological framework is a significant

characteristic since it establishes clear priorities. From a programming position, the ability to

weave dependencies and hierarchies together gives a benefit of clarity in thinking for the

algorithm's development. However, if an algorithm is designed strictly deontologically, it may

create too restricted driving goals.

Consequentialism is a major normative ethical theory that examines the moral acceptability of

actions exclusively because of their effects. To overcome the limits of deontology,

consequentialism is sometimes presented as the opposite of deontological ethics. There are

numerous varieties of consequentialism, but the focus here is on utilitarianism, which is a kind

of consequentialism. Utilitarianism examines a scenario's expected utility and assesses the

implications of actions depending on which provides the greatest outcomes (Enke 2020).

Consider Santa Claus being hurt and needing to be rushed to the hospital since he gives so

much good to the world via his numerous gifts. By using consequentialism, the ambulance

driver may justify breaching traffic regulations and taking additional measures as needed to

speed up Santa's recovery. Consequentialism has drawbacks as well, since defining what is

"good" may be difficult.

Consequentialism, as a more precise form of utilitarianism, provides a foundation for thinking

about ethical behaviour in an optimization problem. In control theory, optimum control

employs a mathematical solution to identify the best control action. The viable option that

minimises the cost function is the optimal control action (i.e., the morally correct decision)

(i.e., the desired outcome toward which one strives). Minimizing damage to vehicle occupants

might be one example of such a cost function for autonomous cars. In consequentialist form,

the best option would be to manoeuvre the car to fulfil the aim of minimising injury to the

occupants at all costs. This method has several drawbacks, such as the difficulty in creating or

assessing the cost function (as with concepts like "damage" (Sadat, Casas et al. 2020) or making

that cost function comprehensive (by, for instance, considering road users other than the

occupants in this case).

20

2.3.1 Deontological Constraints

Cost functions examine the impact of various measures on several conflicting goals. To

prioritise objectives, optimal controllers pay greater attention to higher cost or weight targets,

placing the related costs considerably above those of the other objectives (Arkin 2016). This,

however, only works if certain conditions are met. If some costs are orders of magnitude higher

than others, the problem's mathematics may become unconditioned, resulting in rapid changes

in inputs or extreme actions. These problems can be encountered in both mathematics and

philosophy. Furthermore, hidden concessions in a cost function for some reasons may have an

impact on the real meaning or priority of specific goals. While it may appear rational to punish

both steering adjustments and pedestrian accidents, these goals are clearly prioritised. Rather

than attempting to make an accident a thousand or a million times more expensive than a

change in steering angle, it's better to define optimal behaviour in more absolute terms: the

vehicle must maintain a strategic distance from hits, regardless of steering direction strength.

As a result, the objective shifts from a consistent cost-cutting strategy to an ethical application

of certain standards. These objectives can be defined numerically by imposing constraints on

the optimization problems. Limitations may take on some forms that mirror the practises

enforced by scientific rules or the framework's stated constraints. They might also indicate

system limitations that should not be exceeded.

Restrictions on an optimal control problem can be used to model the control law by restricting

vehicle traffic to paths that avoid pedestrians, cars, cyclists, and other obstacles, and can be

used to capture ethical rules associated with an ethical manner, such as the goal of avoiding

collisions with other road users. If there were a set of actions or control entries that could be

performed to avoid a collision, the vehicle would never have one, and no other goals could

alter or replace it. Some road codes may be coded simply as restrictions. As a result, the

mobility of the chosen vehicle may be limited, either physically or ethically. In most cases, it

is possible to drive comfortably while still adhering to all traffic regulations and keeping a safe

distance from other road users. However, in certain circumstances, dealing with the restrictions

put on the problem is beyond the range of possibility. These might be situations where death is

inescapable from a moral standpoint. However, far more benign confrontations are both

conceivable and prevalent.

These scenarios, in numerical terms, describe possibilities that are scientifically impossible to

realise. As a result, there is no control input that can meet all the vehicle's movement

restrictions. The more limitations are put on the vehicle's mobility, the more likely it is to

21

encounter a dilemma in which a constraint must be broken. Beyond the mere assertion that

there is no ideal action, a vehicle must be selected to accomplish anything under these

circumstances. When dealing with constraints in optimization problems, it's common to treat

the constraint as a "soft constraint" or slack variable. The restrictions are typically valid, but if

the issue becomes unsolvable, the solution will change it at an exorbitant cost. In this way, the

framework may be certain that it will discover a solution to the problem and will make every

effort to minimise constraint violations. A hierarchy of constraints would surely be enforced

by giving the cost of certain constraint breaches a larger weight than the cost of others. When

the vehicle reaches a dilemma scenario, it functions according to rules or ethical constraints

until it confronts a dilemma, at which time the hierarchy or weight put on various constraints

resolves the problem using a consequentialist method. In the presence of practicality, this

becomes a dual system of ethics, in line with the philosophy offered by (Miller, Wolf et al.

2017) and (Urooj, Feroz et al. 2018), which addresses some of the difficulties with adopting a

single ethical framework stated by (Arkin 2016).

The Three Laws of Robotics, proposed by science fiction author Isaac Asimov, are the most

well-known hierarchical framework of ethical standards for self-driving cars. These guidelines

do not provide a comprehensive ethical framework and would not be sufficient for moral

behaviour in a self-driving car. When these principles were applied to real-life circumstances,

Asimov's actions caused conflict. Nonetheless, beginning with the First Law, this fundamental

framework is well adapted to addressing some of the moral issues that might arise. This law

emphasises the value of human life and the responsibility of a self-driving car to protect it. The

ability to reduce the number of accidents and fatalities is a key driver for the development and

implementation of self-driving cars. As a result, it appears acceptable to position human life

protection at the top of the hierarchy of rules for self-driving cars, which is essentially identical

to the scenario in Asimov's laws.

Could it be enough for the car to just avoid a collision rather than aim to reduce human injury?

The most common way for a human to be injured in a self-driving car is through direct contact

during a collision. Limiting the responsibility to avoid collisions would mean that the vehicle

would not need to be modified to sacrifice itself to save human life in an accident in which it

was not involved. In theory, the moral responsibility is to avoid causing damage rather than to

initiate a collision. Incidents with defenceless road users such as pedestrians or bicycles may

be prioritised over collisions that just result in property damage.

In a strictly logical calculation, such an approach would not produce the optimal results. A

small pedestrian injury may be less expensive than material damage. Collisions, in any event,

22

must be extremely uncommon. Due to restrictions imposed by scientific laws, careful design

of the control system configuration would allow self-driving cars to avoid any collisions that

are preventable. In exceptional instances where collisions are unavoidable, society can tolerate

inferior results in self-driving vehicles that explicitly weigh human life in relation to other

objectives to gain clarity and comfort. These are clear rules that can be actualized in a self-

driving vehicle and organised by the correct decision about the violation of slack variables of

the constraints. Prioritizing human life and the most vulnerable road users and expressing the

resulting hierarchy in Asimov's laws, these are clear rules that can be actualized in a self-

driving vehicle and organised by the correct decision about the violation of slack variables of

the constraints. Such moral standards would just necessitate object categorization rather than

attempts to improve harm estimates. This might be accomplished by utilising current

recognition and perception systems, which do not always classify objects properly.

2.3.2 Consequential Cost

The basic strategy of ideal control - the selection of information sources that improve a cost

function - is like the consequentialist rationality approach. Alternative utilitarianism aims to

discover if the control inputs of this expanded model offer the ideal outcome in the moral sense

when the moral implications of an action may be a cost function. The ideal controller follows

the consequentialist approach to rationality since the vehicle may re-examine or act on its

control data sources to reach the optimal result in a random scenario. We assume, as a

theoretical model, that all elements of the ground may be weighted according to the degree of

risk they pose to the vehicle. (Van den Hoven, Lokhorst et al. 2012) presented such a structure

as a model of human driving that is dependent on Earth's values, and it has led to various ideas

for the management of autonomous driving or driving assistance. These include (Lin 2016),

the mechanical field approach potential (Wintersberger, Frison et al. 2017), the virtual guards

of Donath and its partners (Binns 2018) and the work of self-driving vehicle control according

to the risk possibilities by (Goodall 2014). The control calculation at that point begins with a

critical direction for the engine, brakes, and controls that move the vehicle along that lane.

The construction of an acceptable cost function is the most important test of these approaches

in terms of design and logic. The fundamental example offers a cost function for a single

vehicle's danger. A more comprehensive societal stance would be reflected by a holistic

technique. One possible solution is to calculate the cost of injury to various road users and

consider it as a cost that may be reduced. Depending on the circumstances, the expenses may

23

include property damage or even death. Such consideration would need a large amount of

measurement data on environmental obstacles as well as ways for assessing the possible effects

of impact scenarios, potentially by overcoming the facts emerging from previous incidents.

Aside from the applications that this consistent technique employs with the data, the behaviour

of such cost functions as a result offers certain challenges. If it is anticipated that such an

endeavour will be considerably described or addressed, the vehicle will attempt to minimise

damage in the case of a worldwide problem and, as a result, decrease the societal effect of

accidents. However, in such circumstances, the car may make a movement that further harms

the occupant or the vehicle owner to prevent harm to others. Such benevolent tendencies may

be good for business, but they are unlikely to be appreciated by the vehicle's owners or tenants.

Take, for example, a vehicle that is primarily concerned with the residents' safety. With a few

exceptions, the world perspective triumphed in the vehicle structure. Wax models, for example,

and the resemblance to pedestrian accidents. Because a collision with a stroller would not

threaten the car's rental of another vehicle, a vehicle that endangers the safety of its occupants

cannot endangers the safety of pedestrians. Such cars are unlikely to result in a significant

reduction in the frequency of traffic accidents during rush hour, and they are unlikely to

improve social recognition.

With all these challenges in defining an acceptable cost function and getting the necessary data

to accurately calculate the cost of actions, a straightforward consequentialist method that

employs cost function capabilities to code the morale of robotic vehicles looks unfeasible. In

any case, the primary notion of lowering the costs of punishing undesired actions or

encouraging desired activities might be a beneficial and important aspect of the control

calculation, both for physical observation, such as motion planning, and moral issues. The

morality of friendliness described in this framework by (Krotov and Silva 2018) and (Pimentel

and Bastiaan 2018) for computerised cars, for example, may be integrated since delays can be

viewed as a cost function.

2.3.3 Ethics and Self-driven Vehicles

The iconic trolley dilemma may come to mind when the subject of autonomous cars and ethics

comes up. The trolley issue depicts an unstable trolley that has broken brakes and has become

free on a set of railway rails. Five people will be killed if the trolley continues its path. As a

bystander, you have the option of intervening and diverting the trolley to another set of rails

where an unsuspecting victim will undoubtedly die (Rehman and Dzionek‑Kozłowska 2018).

24

If an autonomous vehicle takes the place of the trolley, an algorithm will have to decide whether

to continue a collision path with five people or swerve and kill a random pedestrian. This would

be a bad situation for an autonomous car (or anybody else) to find itself in on the road. As a

result, there is a lot of research being done to try to figure out what the problem is and how to

solve it.

Along the same lines as figuring out how to solve the trolley problem, some attention has been

paid to the public's preferences for what an autonomous car should behave in a crash scenario

when it must choose between striking one thing and striking another. In these preference

surveys and trials, it is anticipated that an autonomous vehicle would be able to target a specific

entity positively. Most of the participants wanted the vehicle to follow a utilitarian approach,

sacrificing the few for the many (Rehman and Dzionek‑Kozłowska 2018), (Faulhaber, Dittmer

et al. 2019) and (Gupta, Vasardani et al. 2019). The societal conundrum emerges when

considering whether an autonomous vehicle should be designed to follow utilitarian principles.

The authors conclude that the participants do not want the autonomous car to be utilitarian or

to follow their own preferences, but rather that manufacturers and legislators should decide

how the car should operate in certain tragedy situations. The trolley dilemma was initially

proposed by philosophers and ethics researchers to encourage engineers to consider the

implications of their design decisions to avoid developing targeting algorithms unintentionally

(Halalae and Miclosina 2019). As proposed by (Milfont, Davies et al. 2019), programming an

autonomous vehicle to accept a user-defined priority or "command" list for collision situations

has resulted in solutions (and, in essence, targeting algorithms). In specifically, (Schwarting,

Pierson et al. 2019) used a priority list in conjunction with an object categorization algorithm

to tell the autonomous car what action to take in a collision scenario, either on the occupants'

personal ethics or a manufacturer-supplied default list. The crash scenario's outcome is

predictable if the categorization is correct, according to the design. (Wagner, Borenstein et al.

2019) suggest the democratisation of preference learning, based on the findings of preference

surveys that users are less likely to incorporate their ethics (i.e. utilitarian choices) into the

vehicle. In the event of a trolley, if the vehicle fails and the law does not apply, the public's

collective voices will determine who to target.

Some people utilise the concept of social welfare to spread damage more evenly rather than

focusing remedies for instances. (Zhang, Shao et al. 2019) propose evaluating an objective

function that multiplies the passenger and pedestrian utilities such that nonbinary steer angle

solutions emerge in a trolley problem variant where the autonomous vehicle is ferrying a

human occupant and it must suddenly swerve into a wall or kill a pedestrian. In other words,

25

an autonomous car with this objective function may try to strike both the wall and the

pedestrian, causing little injury to all parties involved. This shifts the focus away from survey

data and toward game theory techniques like those developed by (Martinho, Herber et al. 2021),

who formulates social justice as a maximum algorithm. Rather of presuming a certain aim,

social justice approaches maintain impartiality when it comes to the agents.

The recommended trolley scenarios solutions address a problem that is not the same as a motion

planning issue. The autonomous vehicle continually analyses how to drive laterally and

longitudinally to follow a particular reference trajectory and prevent accidents during motion

planning. In crash situations, the trolley scenario solutions concentrate on making last-minute

targeting judgments. Zawieska shows that there is a significant turning point in terms of

scenario risk far before an accident (Zawieska 2020), implying that an autonomous vehicle

equipped with the right motion planner might completely avoid trolley situations. This thesis

takes a step back from trolley issues to address philosophical frameworks and human values in

a broader sense to assist engineers in designing socially acceptable and reasonable motion

planning algorithms.

2.3.4 Ethical Issues

The term "autonomy" originates from philosophy and refers to the limit of human power to

legislate, formulate, deliberate, and choose to obey norms, rules, and laws from a moral

standpoint (Kitchener 2016). This involves the freedom to choose one's own models, as well

as the ability to define one's own goals and purposes in life (Lin 2016). The cognitive

mechanisms that sustain and enable human dignity and action per excellence are inextricably

linked. They usually contain qualities like self-awareness, self-consciousness, and self-

development as grounds for reasons and values (Shaoshan, Li et al. 2017). Humans are the only

creatures that have autonomy in the moral sense of the word. Even when dealing with highly

advanced adaptive systems, using the word "autonomy" to describe basic items is incorrect

(Miller, Wolf et al. 2017). Though, in scientific literature and public discussion, the word

"autonomous" systems have been extensively used to highlight "the greatest level of

automation and the maximum degree of human independence in terms of operational and

decision-making autonomy" (Guanetti, Kim et al. 2018). However, autonomy in the novel

sense is an essential part of human dignity that cannot be relativized.

In actual sense no intelligent system, no matter how sophisticated, can be described as

"autonomous" (Miller, Wolf et al. 2017). In the original ethical sense, it cannot be recognised

26

as a moral person and inherit human poise (Pakusch, Stevens et al. 2018). Human poise as the

basis of human rights implies that important human intervention and interest must be

conceivable in areas of interest to humans and their environment. Unlike the automation of

production, monitoring and deciding for humans in our own way is inappropriate, even if

technically feasible (Urooj, Feroz et al. 2018). They should almost certainly figure out which

goals are served by innovation, what is ethically relevant, and which actual objectives and

conceptions are morally qualified for the search. This can't be left to robots, regardless of how

amazing they are.

The ability and willingness to assume and assign moral obligations is a fundamental component

of human origin that underpins all our ethical, social, and legal organizations. Moral obligation

is interpreted here in a broad sense in which it might denote a certain part of human behaviour,

such as responsibility, risk, causality, liability, receptive dispositions, and moral obligations

related to social norms. Moral obligations, in whatever sense, cannot be assigned or transferred

to "autonomous" innovation.

2.3.5 Ethics of Crashing

During and before accidents, human drivers are prone to making poor judgments. They must

overcome tight time restrictions, a lack of manoeuvring expertise with their vehicles, and

restricted sight. Self-driving cars, on the other hand, have far fewer resources for recognition

and processing capacity. This method has hampered research on car moral studies by

preventing the examination of future sensors and algorithms from eliminating all accidents

(Operto 2011), (Muehlhauser and Helm 2013), and (Goodall 2014). Even if perfect vehicles

should occasionally fail, an ethical decision-making system is still required (Malle, Scheutz et

al. 2016)

These cutting-edge self-driving cars, which are outfitted with cutting-edge software and

sensors, can make pre-crash judgments that properly detect adjacent vehicle trajectories and

avoid high-speed manoeuvres. They will most likely transcend the constraints that humans face

in this manner. When a collision is unavoidable, a computerised vehicle can choose the best

course of action based on safety considerations and the likelihood of the outcome much faster

and with more precision than a human driver (McBride and Hoffman 2016). On highways, it

is typically more effective to brake and swerve during high-speed movements, thus the

computerised system may conclude that braking alone is not optimal. The major flaw with self-

27

driving cars is that their judgments in the case of an accident are predetermined by a system

programmer, rather than a human driver who can make decisions in real time.

The self-driving car can interpret and make decisions based on sensor data, but the selection is

based on a logical sequence that was designed and coded months or years before. If a collision

can be avoided, this procedure is simple: the car chooses the safest path and proceeds. If injuries

cannot be avoided, the self-driving car must choose the most effective way to create an

accident. This decision becomes a moral one (Redelmeier and Raza 2017), (Sarathy, Scheutz

et al. 2017), and (Wintersberger, Frison et al. 2017).

2.4 Vehicle Model Design

Deontology and consequentialism's frameworks are the product of much logical investigation

(Lin 2016) and (Kenwright 2018). Based on their original considerations, we will use these

systems as tools to advance and clarify the selection of self-driving programming schemes. In

this research work, a definition of the problem by the MPC is given since the explicit thinking

on limits and costs in the MPC corresponds well to the standards of deontology and

consequentialism. It will also show that the test of these two philosophical structures leads to

an orderly treatment of the various questions. Requirements for the vehicle are set to maintain

a strategic distance from accidents, follow dynamic conditions, and stay within the limits of its

abilities. In terms of cost-effectiveness, the vehicle is geared towards ideal results by following

a recommended path and providing incentives and value for human life. Interestingly, with

these different goals, it is less certain that traffic rules are complicated or compelling, so

exceptional representations are investigated.

2.4.1 Vehicle Models

The vehicle models used for the trajectory planning of self-driving vehicles are classified as

point-mass vehicle models, kinematic vehicle models, and dynamic vehicle models.

2.4.1.1 Point Mass Model

Point mass models are straight models demonstrating the vehicle as a particle whose mass can

move at both longitudinal and lateral speeds. The tyre model and vehicle geometry are not

considered and can cause significant errors. In this manner, certain state constraints can be

28

added to enable the generated direction to be increasingly possible. Increased longitudinal and

lateral speeds can be enforced by the acceleration associated with the most extreme tyre

constraint limits (Gao, Lin et al. 2010), (Funke, Brown et al. 2015), (Jalalmaab, Fidan et al.

2015), and . In addition, the vehicle's sideslip edge can't be substantial for a vehicle in a non-

drifting manoeuvre and can be forced, (Kong, Pfeiffer et al. 2015). Even with these limitations,

a point mass model can't satisfactorily anticipate the vehicle's behaviour.

2.4.1.2 Kinematics Models

Kinematics model are nonlinear models that show how a vehicle's geometry affects its

performance. No tyre model is considered. However, to satisfy the passenger’s comfort and

avoid skidding, constraints may be imposed on the lateral acceleration to restrain it to ordinary

driving values (Kong, Pfeiffer et al. 2015), (Sheth and Umbarkar 2015), and (Zhang, Sprinkle

et al. 2015, Erlien, Fujita et al. 2016).

2.4.1.3 Vehicle Dynamics Models

Vehicle dynamics models consider tyre models in their models (Erlien, Fujita et al. 2016).

(Houjie, Zhuping et al. 2016), (Nilsson, Brännström et al. 2016) and (Qian, Fortelle et al. 2016)

compare the behaviour of a vehicle kinematics model and an open-loop vehicle dynamics

model. The outcomes demonstrate that both models perform very similarly at low speeds in

modelling vehicle behaviour. At higher speeds (more than 15𝑚/𝑠), the dynamic model works

much better if the manoeuvre includes steering angles of more than 1:50 (Chae, Kang et al.

2017). Thus, when a self-driven vehicle is expected to perform high-speed manoeuvres with

large lateral accelerations, a vehicle dynamics model is preferred over a vehicle kinematics

model for use as an MPC model.

Vehicle dynamics models are derived based on Newton's second law, which states that wheel

models are considered manoeuvring forces. The dynamic equation of the vehicle is non-linear,

regardless of the tyre model, but the main source of non-linear behaviour of the vehicle is the

wheel. The tyres have limited capacity and become saturated (Demirel, Ghadimi et al. 2017).

They present a dynamic model of a four-wheeled vehicle with longitudinal, lateral, and yaw

rate equations in the centre of gravity of the vehicle based on the four forces exerted on all four

wheels. They used a Pacejka tyre model and studied the dynamics of the wheels in the model.

They also consider load transfer resulting from longitudinal and lateral accelerations in the tyre

29

model to generate a more accurate vehicle model. Wheel dynamics increases the number of

vehicle states by four but has a very small impact on vehicle model accuracy (Funke, Brown

et al. 2017), and (Gallardo, Romeo et al. 2017) they used a four-wheel vehicle dynamics model

without wheel dynamics, nor did they consider the effect of load transfer in the model.

A dynamic model of a four-wheeled vehicle without wheel dynamics can be simplified into a

bicycle model. In a bicycle model, the tyres on each axle are modelled as rubber tires. A bicycle

model is not linear (Siampis, Velenis et al. 2017). Look at the bicycle model with a Pacejka

tyre model. They limit the lateral slip angles of the front and rear tires, since the large slip

angles are not favourable. (Bayerlein, De Kerret et al. 2018) and (Berntorp, Hoang et al. 2019)

consider a linear tyre model for the vehicle while the equations of motion of the vehicle are

non-linear. They also force the tyre sideslip angles to keep the tyre in its linear force region

and keep the vehicle model valid.

2.4.1.4 Linear Bicycle Model

The vehicle dynamics models are non-linear, and the MPC that uses them should be non-linear

as well. However, when vehicle dynamics are considered, a linear bicycle model can be used

in a quadratic MPC to deal with high-speed manoeuvres with significant lateral acceleration

(Manenti 2011), (Iftekhar and Olfati-Saber 2012), and (Mladenovic and Abbas 2014)

developed a nonlinear bicycle model with a Pacejka tyre model and longitudinal load transfer.

They then linearize the model around the operating point. They also force the overall

acceleration of the vehicle to stay in the friction circle. The circle is approximated by half-

spaces so that the quadratic constraint is approximated by linear constraints to be utilised in a

quadratic MPC.

Also, (Turri, Carvalho et al. 2013) developed a four-wheel vehicle model for vehicle lateral

motion with a Pacejka tyre model where the longitudinal motion of the vehicle is known. They

also consider load transfer in the model. At that point, they linearize the vehicle's model. They

calculate the rear and front tyre models based on the total longitudinal force of the vehicle and

linearize them. In this way, they consider the load transfer as well as the combined sliding

effects. (Aripin, Md Sam et al. 2014) and (Gao, Gray et al. 2014) presented a nonlinear bicycle

model with a Pacejka tyre model to model the lateral movement of the vehicle, then linearized

the model. They utilise a linear tyre model for the rear tyre force and limit the slip angle of the

tire. They estimate the cornering stiffness of the tyre and the most extreme sideslip angle of the

tyre to obtain the best possible approximation of the tire's behaviour and to generate a lateral

30

force close to the maximum lateral force. For the front tire, they use the tyre force in the motion

equations and derive the steering angle using the inverse Pacejka model. They also limit the

slip angles to maintain the tyres in their linear force regions.

(Nilsson, Brännström et al. 2016) demonstrates a nonlinear bicycle model with a brush tyre

model for the lateral motion of a race vehicle. Like (Gao, Gray et al. 2014), they utilise a rear

tyre model for the front tire. They assume that the nominal curvature of the path is the curvature

of the road. Thus, rather than utilising a linear tyre model for the rear tire, they linearize the

brush model by the nominal sideslip angle corresponding to the nominal curvature of the path.

This work is intended for racing vehicles that operate on high-speed bends that necessitate a

large lateral angle to follow the course. For road vehicles, little tyre sideslip angles are required

to follow the path, and the resulting tyre model would look like a linear tyre model. The paper

also limits the front lateral force and applies a stability envelope to the rear tyre rather than

restricting tyre sideslip angles. The envelope limits the yaw rate to its maximum steady state

value corresponding to the road tire-road friction and the rear sideslip angles to the boundaries

corresponding to the linear force region of the tire.

For example, (Qian, Fortelle et al. 2016, Funke, Brown et al. 2017) demonstrate a nonlinear

bicycle model with a brush tyre model for the lateral motion of a racing vehicle. For the front

and rear tires, they linearize the brush tyre model by the nominal sideslip angles that correspond

to the nominal curvature of the path. They utilise a stability envelope like that of (Yi,

Gottschling et al. 2016). To limit the lateral tyre force of the front tires, they consider the

combined sliding action. They assume that the longitudinal force controlled by the driver

remains constant and they limit the lateral force to the remaining tyre capacity. As referenced,

for a road vehicle, the linearized tyre model in (Qian, Fortelle et al. 2016) and (Funke, Brown

et al. 2017)is like a linear tyre model. In addition, the tyre sideslip angle constraints maintain

the tyres in their range of linear forces to keep the linear tyre pattern in place. Several studies

utilise a vehicle bicycle model with linear tyre models and limit lateral and rear side tilt angles

(Rasekhipour, Khajepour et al. 2017, Brüdigam, Ahmic et al. 2018, Joa, Yi et al. 2019).

2.4.2 Ethical Vehicle Design

The legal and moral consequences of self-driving car judgments in the event of unavoidable

crashes were barely mentioned. Most of the moral machine research is centred on military

applications or general machine intelligence (Purves, Jenkins et al. 2015, Kowalczuk and

Czubenko 2017, Urooj, Feroz et al. 2018). Machine ethics is a relatively new topic of study

31

that focuses on the development of autonomous robots that can demonstrate ethical behaviour

in novel settings.

2.4.2.1 Rational Approach

Engineers must guide the self-driving system explicitly as to how it should react in certain

situations. This rationalist approach is frequently expressed as deontology, in which the system

is required to follow rules, or consequentialism, in which the system's aim is to maximise

utility. Engineers like these logical techniques because computers can readily obey rules and

optimise functions. Unfortunately, as stated in sections 2.3.1 and 2.3.2, this method has certain

drawbacks.

2.4.2.2 The Artificial Intelligence Approach

For years, the automatic translation of languages has been based on rules developed by experts.

The expectation was that the language could be defined by rules, with enough time to learn the

rules and to write them. An alternative approach using algorithms to automatically learn a

language without formal rules is much more successful than rule-based methods. These

techniques are called artificial intelligence (Terziyan, Gryshko et al. 2018, Xu, Dherbomez et

al. 2018). Linguistic translation provides an adequate analogy for ethical systems. In both areas,

artificial intelligence methods are useful if the rules cannot be expressed.

Artificial intelligence methods can learn human ethics by observing human actions or

rewarding their own moral behaviour (Rouse 2017, Soin and Chahande 2017, Taramov and

Shilov 2017). A computer can determine the components of ethics without a person having to

explain exactly why an act is or is not ethical (Purves, Jenkins et al. 2015). (Van den Hoven,

Lokhorst et al. 2012) describe these techniques as "bottom-up" approaches, which may include

techniques such as genetic algorithms and learning algorithms (Damm 2012). In a simple case,

artificial neural networks, which use node layers in a connection-oriented computational

approach to find complex relationships between inputs and outputs, were used in a simple case

to classify hypothetical decisions as either moral or amoral. Hibbard suggested a similar

methodology for formulating a consequentialist approach to machine ethics in which an

independent artificial intelligence agent calculates the moral weights attributed to humans after

questioning subjects in different hypothetical situations (Hibbard 2012). An automated vehicle

project, an autonomous Carnegie Mellon land vehicle in a neural network, used a simple

32

network of artificial neurons trained to teach driving by monitoring a human driver for only a

few minutes (Applin and Fischer 2015). A similar technique could be used with much more

training data to understand how people should behave morally or otherwise in a complex

driving situation when time matters. The neural network could be trained on a combination of

simulations and recordings of crashes and near-misses, with human feedback on the ethical

response. Artificial intelligence techniques have several disadvantages. If they are not carefully

designed, they may mimic humans’ behaviour rather than what they believe. Self-protection

instincts that do not maximise overall safety can be realistic but not ethical. Ethics is about how

humans should or want to behave, not how they currently behave, and artificial intelligence

techniques should capture ideal behaviour.

Another disadvantage of some artificial intelligence approaches is traceability. Artificial

intelligence can be complex, and artificial neural networks cannot explain how a decision was

made based on the input data in a comprehensible manner. There is already anecdotal evidence

of computers that have discovered relationships that researchers do not understand (Carvalho,

Lefévre et al. 2015, Cunningham, Galceran et al. 2015, McBride and Hoffman 2016). They

proposed the choice of decision trees to encourage transparency and a different type of ethics

(Asimov’s laws can be formulated easily as a decision flowchart). However, the risk of

alteration is important for the automation of road vehicles. Ethics would probably require that

all humans be equal. However, a vehicle manufacturer is encouraged to build vehicles that

primarily protect their own occupants. A built-in self-protection component of self-driving

vehicle ethics could be hidden in a complex neural network and could only be discovered by

analysing long-term accident trends. Safety precautions must be taken to prevent this from

happening.

Although artificial intelligence approaches allow computers to learn human ethics without the

difficult task of formulating ethics as a code (Garip, Karayel et al. 2017, Sarathy, Scheutz et al.

2017, Wintersberger, Frison et al. 2017), they lead to actions that are probably not justified.

When formed with limited information, an artificial intelligence can learn completely

involuntary, unwanted, unexpected, and undesirable behaviours. Without further testing,

artificial intelligence reasoning methodologies for self-driving vehicles cannot be

recommended without artificial rules designed to increase transparency and prevent unethical

behaviour.

33

Chapter 3: Mechanic Formulations Governing the Response of
Self-driving Vehicles

3.1 Introduction

This section describes the techniques used for the mechanics formulations guiding the

behaviour of self-driving vehicles in the research to develop a framework for optimising ethical

decision-making using constraining and cost-optimizing techniques by assigning various

potential functions to ethical problems corresponding to their moral values. A linear bicycle

vehicle model will be used to model the behaviour of the vehicle with a model-based design

technique. To actualize the relationship between ethics and technology in self-driving vehicles

and to assess the performance of trajectory planning systems in terms of traffic safety and

compliance, obstacle avoidance, and longitudinal and lateral manoeuvrability, a large model

capable of simulating a realistic driving scenario that includes a variety of factors and with

many cars dynamically entering and leaving the merging zone is created. As shown in figure

3.1 below, these driving scenarios provide several options for technical decisions such as car

types (properties, dynamics), driving strategies (aggressive, defensive) & algorithms,

intersection geometry (weather, time, road conditions), and events that cars react to (sudden

brake, change in steering, sensor failure).

Figure 3.1: System Block Diagram

34

Autonomous agent pool

The agent pool has many vehicles of two different types, and each vehicle model has a driver

strategy (planner) and vehicle dynamics (plant), which is a type of subsystem that repeats the

execution of each element and concatenates the result. This makes it possible to simulate

multiple vehicles of the same type with different behaviour at the same time. Inside the driver's

behaviour, it checks whether it’s safe to merge or switch and uses state-for-state parameters to

calculate the longitudinal and lateral acceleration. These models of driver behaviour could

easily be replaced with a different driver behaviour that has the correct output given the input.

Environment and Interface

The interface takes in either state of one of the outputs from the self-driven pool and fixes it

into one of the chosen scenarios in the environment. These scenarios (single-lane curve, dual-

lane merge, dual-lane switch, three-lane merge & switch, three-lane curve & switch, and four-

lane merge & switch) are modelled in variance, which allows the system to make one block

active at any given time during simulation. Each scenario has a sim-event road model

subsystem where entities are generated, routed, and terminated and are connected to the driver

strategy model of a self-driven agent pool through an interface that allows information flow

between the subsystems. It’s the glue that combines two domains together. For instance, a

vehicle in any scenario is allowed to exit the system when they hit the crossing block, which

shows that the position has hit a limit using information from the self-driven agent pool. In this

case, the vehicle is removed from the simulation with the terminator block. Perception &

Localization of each subsystem takes in either state from the model and maps it on to the road

information. These subsystems must be updated whenever the model is updated with different

map information or different road shapes. With this flexible framework, it’s easier to model

ethical issues and other types of agents and the environment in which they operate.

3.2 Code Generation

The codes were generated using MATLAB code-gen function from the toolbox for safety

checks, lane merge and switch, lane curve and switch, and all the sensors for different driving

scenarios. It was then integrated into the projects as a source code, for static and dynamic

libraries as shown in Appendixes 1-17. The generated code is readable and portable with high

efficiency and flexibility.

35

3.3 Model Predictive Control

Before the delays in the vehicle steering system are taken into account, it is compared to a

model predictive control problem formulation without delay modelling, as shown by (Funke,

Brown et al. 2015).

3.3.1 Formulation of the Problem

A four-state bicycle dynamic model with constant acceleration assumption is utilised in the

baseline MPC formulation. Vehicle lateral velocity (𝑈௬), yaw rate (𝑟), heading deviation (∆ψ),

and lateral deviation (𝑒) are all included in the state vector (x):

𝑥 = [𝑈௬ 𝑟 ∆𝜓 𝑒]் ………………………..…. Equation (3.1)

The front steering angle (δ) computed from an affine vehicle model is the control input to the

vehicle model (𝑢):

𝑥(ାଵ) = 𝐴()𝑥() + 𝐵()𝑢() + 𝑐() 𝑘 = 0, … . 𝑛 − 1 ………… Equation (3.2)

for each time step in the prediction horizon (𝑘) up to a finite number of time steps (𝑛). The

steering input in the original problem formulation by Funke et al. is front lateral tyre force,

however in this study, steering angle (δ) is used, as in (Gray, Gao et al. 2013).

The relationship between front lateral tyre force (𝐹௬) and steering angle (δ) is nonlinear.

According to (Joa, Yi et al. 2019) depicts the relationship as follows:

𝐹௬ =

⎩
⎪
⎨

⎪
⎧−𝐶ఈ 𝑡𝑎𝑛 𝛼 +

ഀ
మ

ଷఓி

|𝑡𝑎𝑛 𝛼| 𝑡𝑎𝑛 𝛼

−
ഀ

య

ଶ మி
మ 𝑡𝑎𝑛ଷ𝛼

−𝜇𝐹௭ 𝑠𝑖𝑛 𝛼

 |𝛼| < 𝑡𝑎𝑛ିଵ(
ଷఓி

ഀ
) ………. Equation (3.3)

where slip angle (α) is the angle between the tyre heading and the tire's velocity vector, 𝑐ఈ is

the tire's cornering stiffness, 𝜇 is the coefficient of friction, and 𝐹௭ is the tire's normal load.

Using tiny angles and the vehicle model in Appendix - 18, the front slip angle (𝛼) for the front

tyres may be stated as follows:

36

𝛼 = 𝑡𝑎𝑛ିଵ ቀ
ା

ೣ
ቁ − 𝛿 ≈

ା

ೣ
− 𝛿 ……………Equation (3.4)

Erlien, Funke, and Gerdes used an affine, time-varying model with consecutive linearization

points to estimate the tyre curve for rear tyres to capture realistic behaviour while retaining the

bicycle model's convexity. For the front tyres, a similar approach may be used:

𝐹௬ =
ఋி

ఋఈ
ฬ

ఈ,బ

൫𝛼 − 𝛼,൯ + 𝐹௬൫𝛼,൯ ………... Equation (3.5)

This is essentially a Taylor expansion around an operational point (𝛼,), with 𝛼, determined

from the preceding optimization's solution at each time step on the prediction horizon. The

system is described by linear differential equations as in (3.4) and steer angle as the controller

input.

A nonzero diagonal entry in the weighting matrix (𝑄) is associated with lateral deviation and

heading deviation as these states are specified relative to a nominal or desired path. The

following is the entire optimization problem:

Minimize (u): ∑ 𝑣()்
ୀ 𝑅()𝑥() + ∑ 𝑥()்

ୀଵ 𝑄()𝑥() …………. Equation (3.6a)

 Subject to: 𝑥(ାଵ) = 𝐴()𝑥() + 𝐵()𝑢() + 𝐶() ………...…...…. Equation (3.6b)

 ห𝑢()ห ≤ 𝑢௫
() …………………………………....………...Equation (3.6c)

 ห𝑣()ห ≤ 𝑣௫
() …………………………………....………...Equation (3.6d)

where 𝑣() = 𝑢() − 𝑢(ିଵ) is the change in front steer angle, weighting matrix (𝑅) penalizes

changes in steer angle, and 𝑢௫
() and 𝑣௫

() are physical limits in the steering system.

The optimization problem (3.6) is a quadratic programme with a sparse structure that can be

solved in real time using an efficient solver. CVXGEN, created by (Mattingley, Boyd et al.

2012) is utilised to solve for the input vector, 𝑢 = [𝑢(0) … … 𝑢(𝑛)] but only the first solution

in the vector (𝑢(0)) controls the steering system. The optimization task is executed at 100

cycles per second on a single core of a ruggedized computer with an i9 CPU. To see if delay

37

compensation was essential, the performance of problem formulation (3.6) was compared to a

baseline to validate all the problem formulations in the chapter.

Despite the steering system’s delay, the self-driving vehicle effectively navigates around the

obstacle, as seen in figure 3.2 (top) plot. The command and measurement of the hand wheel

angle while the self-driving system performs the manoeuvre are shown in the centre plot in

figure 3.2 at time t = 1.63s, it also depicts an open-loop prediction horizon for the steering

command (scaled by steering ratio). The best solution does not anticipate future steering

behaviour well at the end of the prediction horizon now, suggesting a model mismatch. Along

the prediction horizon, the root mean squared (RMS) error between the closed-loop command

and the open-loop forecast is 16.13, indicating that the open-loop forecast accurately predicts

future behaviour. The vehicle yaw rate has substantial oscillations as shown in figure 3.2

(bottom), indicating that the vehicle did not spin properly and had to correct its rotation during

the manoeuvre. This happens because the delay prevents the proper amount of steer angle from

being command when it's needed, necessitating more aggressive manoeuvring to avoid the

disturbance occurring at a time step later than the predictive controller predicted. The yaw rate

has an RMS error of 0.0638 rad/s.

38

Figure 3.2: Baseline trajectory overhead, diamond indicates start of manoeuvre at the top, command
and measuring hand wheel angle with open-loop prediction at one time step in the middle, and yaw

rate at the bottom due to lateral perturbation from the nominal path.

3.4 Pure Delay Modelling

The steering system's delay should be accounted for, based on the outcomes of the preceding

sections. The MPC problem formulation in this part simply includes the pure time delay.

3.4.1 Problem Formulation

The actuated steering command (𝑢௧௨) follows the commanded steering command (𝑢) by a

time delay as shown in equation (3.7) because of which the modelled state transition connection

is formed as in equation (3.8).

39

𝑢௧௨(𝑡) = 𝑢൫𝑡 − 𝑇ௗ௬൯ ……………….. Equation (3.7)

𝑥൫𝑡 + 𝑇ௗ൯ = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢൫𝑡 − 𝑇ௗ௬൯ ……….….. Equation (3.8)

𝑇ௗ is the discretization time into the prediction horizon, where 𝑇ௗ௬ is the pure delay time

and is known to be around 40𝑚𝑠, thus the problem formulation (3.6) is changed to account for

that. For the small-time steps of the prediction horizon, 𝑇ௗ௬ = 𝑇ௗ, such that equation (3.8)

may be discretized as

𝑥(ାଵ) = 𝐴()𝑥() + 𝐵()𝑢(ିଵ) + 𝐶(), 𝑘 = 0, … 𝑛 − 1 …………. Equation (3.9)

The optimal steering input calculated for 𝑇ௗ seconds previously determines the transition

from 𝑥 (0) to 𝑥 (1). When 𝑇ௗ௬ = 𝑇ௗ is taken into consideration, the optimization problem

may be stated as in equation (3.10)

Minimize (u): ∑ 𝑣()்
ୀ 𝑅()𝑥() + ∑ 𝑥()்

ୀ 𝑄()𝑥() …………… Equation (3.10a)

 Subject to: 𝑥(ଵ) = 𝐴()𝑥() + 𝐵()𝑧ିௗ𝑢∗() + 𝐶() ………….…… Equation (3.10b)

 𝑥(ାଵ) = 𝐴()𝑥() + 𝐵()𝑢(ିଵ) + 𝐶() ……………… Equation (3.10c)

 ห𝑢()ห ≤ 𝑢௫
() …………………………………....………...Equation (3.10d)

 ห𝑣()ห ≤ 𝑣௫
() …………………………………....………...Equation (3.10e)

The zeroth item of the optimal solution vector determined d control iterations preceding system

is 𝑧ିௗ𝑢∗(). This solution should be identical to the 𝑇ௗ௬ seconds preceding solution. If the

controller runs every 𝑇௧ seconds,

 𝑑 = 𝑟𝑜𝑢𝑛𝑑 ቀ
்ௗ௬

்௧
ቁ ………………… Equation (3.11)

Because of the delay formulation that leverages the prior control input in seeding equation

(3.10b), the decision variable vector (𝑢) has been decreased from size (𝑛 + 1) to size (𝑛).

40

3.4.2 Simulation Results

The open-loop prediction improves by just considering the pure time delay in the steering

system, as seen in the centre plot of figure 3.3. This method reduces the hand wheel angle RMS

throughout the prediction horizon by approximately by a factor of two to 7.87 at time 𝑡 = 1.63𝑠.

This manoeuvre's yaw rate has a decreased RMS error of 0.0574 𝑟𝑎𝑑/𝑠, as seen in the bottom

figure 3.3. The pure time delay problem formulation produces a trajectory that is comparable

to the baseline trajectory.

Figure 3.3: Pure time delay trajectory overhead, diamond indicates start of manoeuvre at the top,
command and measuring hand wheel angle with open-loop prediction at one time step in the middle,

and yaw rate at the bottom due to lateral perturbation from the nominal path.

41

3.5 Dynamic Lag Modelling

The dynamic lag in the steering system, is included into the MPC problem formulation to

improve the open-loop prediction even more. A first-order lag model with the pure time delay,

a first-order lag model tuned to lump in the pure time delay, and a second-order lag model

adjusted to lump in the pure time delay are all compared in the next section.

3.5.1 First-Order Lag

The state vector is appended with a fifth state 𝑓 to represent the steering input to the affine

vehicle model after a first-order delay to accommodate for first-order dynamics. The new state

vector is transformed into

𝑥 = [𝑈௬ 𝑟 ∆𝜓 𝑒 𝛿]
் …………………..…… Equation (3.12)

The affine vehicle model is also supplemented by 𝛿, which is written as

𝛿
̇ (𝑡) = −

ଵ

ఛ
𝛿(𝑡) +

ଵ

ఛ
𝑢(𝑡) ………..………… Equation (3.13)

where (𝜏) is the time constant. Both problem formulations (3.6) and (3.10) employ the five-

state vector, but with different values for the time constant. The step responses are as shown in

figure 3.4

3.5.2 Second Order Lag

The steering delay is approximated as a second-order system, because there is a pure time delay

with apparently first-order dynamics. In the same way as the first-order equation,

𝑥 = [𝑈௬ 𝑟 ∆𝜓 𝑒 𝛿௦ 𝛿௦
̇]் ……………………… Equation (3.14)

The new states are linked to the actual steering input in the same way as the previous states

were.

𝛿௦
̈ (𝑡) = −𝜔

ଶ𝛿௦(𝑡) − 2𝜁𝜔𝛿௦
̇ (𝑡) − 𝜔

ଶ𝑢(𝑡) ……………Equation (3.15)

42

This delay model is adjusted to have the step response shown in figure 3.4 since it is exclusively

used for problem formulation (3.6).

Figure 3.4: First- and Second-order models on median step response data.

3.5.3 Simulation Results

Because the steering system's real dynamics are unknown, several simulations were conducted

to see which of the problem formulations allowing for dynamic lag worked as illustrated in

figures 3.5, 3.6, and 3.7. of the RMS error for the hand wheel angle over the prediction horizon

at 𝑡 = 1.63𝑠, as well as the RMS and maximum absolute yaw rate. Because of its connection

to lateral acceleration in the inertial frame, the maximum absolute yaw rate is as shown in table

3.1 below

𝛼௬ = �̇� + 𝑟𝑈௫ ……………………..…… Equation (3.16)

43

Table 3.1: RMS of hand wheel angle (HWA) along prediction horizon, RMS of yaw rate, and
maximum absolute yaw rate

Simulation Prediction horizon

HWA RMS+ (0)

Yaw rate RMS

(rad/s)

Max yaw rate*

(rad/s)

Baseline 16.13 0.0638 0.2259

Pure time delay 7.87 0.0574 0.2024

PTD + FOL 7.76 0.0536 0.1895

Lumped + FOL 8.16 0.0555 0.1678

Lumped + SOL 8.38 0.0562 0.1665

+@ t = 1.63s *absolute value

In comparison to the 𝑟𝑈௫ term, the vehicle frame's lateral acceleration (𝑉௫) is modest, and

longitudinal velocity is stable throughout all trials. As a result, the maximum absolute yaw rate

indicates how much lateral acceleration car passengers are exposed to throughout each

manoeuvre.

Because the corresponding models accurately capture the steering actuation, the open-loop

prediction horizons in the central plots of figures (3.5), (3.6), and (3.7) appear qualitatively

comparable. The measured response is smooth, the yaw rate response also reflects the overall

smoothness of the manoeuvre. Compared to the baseline and pure time delay implementations,

the RMS error and maximum of the yaw rate continue to improve quantitatively.

A thorough investigation of the figures in table 3.1 reveals that there is a trade-off to be made

when choosing the “best” delay modelling problem formulation to employ. The aggregated

first order and second-order RMS errors, as well as the maximum absolute yaw rate, have

minimal difference. The lumped second-order method offers a somewhat smoother yaw rate

response at the cost of a wider state space in terms of computation. If the pure time delay is to

be clearly simulated, extra information in-vehicle is required, such as the number of control

time steps required to delay the first input to the optimization problem. Because of the

comparable speed, smaller state space, and easier implementation, I decided to go with the

lumped first-order method.

44

Figure 3.5: Pure time delay with first-order dynamics trajectory overhead, diamond indicates start of
manoeuvre at the top, command and measuring hand wheel angle with open-loop prediction at one
time step in the middle, and yaw rate at the bottom due to lateral perturbation from the nominal path.

45

Figure 3.6: Lumped first-order lag trajectory overhead, diamond indicates start of manoeuvre at the
top, command and measuring hand wheel angle with open-loop prediction at one time step in the

middle, and yaw rate at the bottom due to lateral perturbation from the nominal path.

46

Figure 3.7:Lumped Second-order lag trajectory overhead, diamond indicates start of manoeuvre at
the top, command and measuring hand wheel angle with open-loop prediction at one time step in the

middle, and yaw rate at the bottom due to lateral perturbation from the nominal path.

47

3.6 New Optimization Framework Formulation

The given vehicle dynamics model and restrictions are used to build an optimization of ethical

decision-making control in this part. The controller's goal function now includes the possible

scope, road rules, obstacle avoidance, traffic regulation compliance, ethical consideration,

ethical limitations, and related expenses. Based on the projected values, the new framework

would be able to forecast the vehicle's reaction to a certain horizon and optimise vehicle

dynamics, command tracking, obstacle avoidance, road laws, and ethical reasoning up to that

horizon. The ethical restrictions were implemented as soft constraints that may be readily

broken but are sanctioned when they are. To allow for certain violations, a slack variable was

introduced to the constraint equation, as well as a penalty term in the objective function to

punish the violation. The tyre force limits are supple. This is since the restrictions are

simulations of the actual tyre limitations, which may differ from the actual limitations.

Furthermore, the predicted state inaccuracies may result in constraint violations. To prevent

infeasibility owing to constraint violation, the tyre restrictions are treated as soft constraints.

3.6.1 Scenario Creation

A basic, realistic driving scenario involving several elements, including accident avoidance,

mobility concerns, and traffic rules is built to contextualise the link between ethics and

engineering in self-driving vehicles. As in the case of a self-driven car moving at a steady speed

down a two-lane highway as shown in figure 3.8 below. An obstruction in front of the car is

blocking the present lane of the ego vehicle. This straightforward concept raises a slew of

engineering considerations. Section 3.6.3 explains how the different elements from this

scenario (collision avoidance, mobility, traffic regulations, and speed) are included into an

MPC model.

Figure 3.8: The shaded areas denote driving zones. The most secure sector is the vehicle's present
lane, free of obstructions. As the car leaves the lane, the safety of the driving zone decreases.

48

Programming the vehicle's ability to continue going is one engineering design possibility. This

would include moving into the opposite lane or onto the road shoulder to avoid the obstruction

and continue their journey. If the car decides to join the opposite lane, the vehicle may be in

violation of a traffic rule for a limited period. A double yellow line, for example, might be used

as a lane divider. If the vehicle moves to the road shoulder to avoid the obstacle, it complies

with the double yellow line traffic regulation and continues to travel; nevertheless, the road

shoulder must be available and safe, and it is not intended for normal driving. When weighing

these choices, it's clear that the contending demands of mobility, safety, and legality must be

balanced.

Another option, if mobility is a concern, is to set the self-driven car to closely adhere to traffic

regulations. The fundamental principle is that traffic laws are strictly. However, if the vehicle

is caught between the twin aims of avoiding the obstruction and following the double yellow

line, it may stop and remain stopped indefinitely. This action may have an adverse effect on

the mobility and safety of nearby cars.

The possibility of engineering choices must be established not only in terms of the type of

action to be taken, but also in terms of the degree of action to be taken. The amount of space

between the vehicle and the obstacle, for example, is a design issue while crossing the double

yellow line to manoeuvre around the obstruction and facilitate smooth traffic movement. If

incoming traffic emerges, a small distance between the vehicle and the obstacle allows the

vehicle to keep closer to its original allocated lane, but it increases the danger of brushing

against the obstruction's side. A broader berth guarantees that the vehicle passes without

colliding with the barrier, but it also positions the car further into the opposite lane, making it

take longer to return to its original allocated lane. Another technical issue that demands

significant ethical thought is the degree to which a vehicle is tuned to break a traffic rule. A

layer of engineering design considerations, in addition to the kind and degree of action

performed, incorporates the fact that various types of vehicles may be allocated varying traffic

law permits depending on their projected function in society. This is shown subsequently with

the example of an ambulance and a taxi, both of which transport passengers yet have

significantly distinct road behaviour due to their respective missions.

Deconstructing this basic and frequent driving situation demonstrates the wide range of vehicle

behaviours that may be induced by various engineering design decisions, as well as the need

of making those design decisions in a logical, rational, and unassailable manner. Not only

engineers, but also other road users who will use the roads with autonomous cars, as well as

regulators who oversee traffic safety, should be able to understand the judgments. Engineers

49

can use a reasoning tool to evaluate the ethical consequences of their engineering design

decisions if they comprehend philosophical frameworks in the context of engineering.

3.6.2 Design Alternatives

Deontology and consequentialism are philosophical systems that have been the subject of

significant investigation. These frameworks are utilised as reasoning tools to rationalise and

explain design decisions in the programming of an autonomous vehicle because of their

formative presence in philosophy. As previously discussed, there are several methods for

programming an autonomous vehicle. Because the explicit consideration of constraints and

costs in MPC translates well to the ideas of deontology and consequentialism, an MPC version

of the problem is used in this chapter. The vehicle's actions are constrained by deontological

constraints, and consequentialism is accomplished via the cost function, according to this

philosophical argument. As a result, philosophical frameworks are applied to the design of this

restricted optimization problem.

The sections that follow show how using these two philosophical frameworks to address the

problem leads to a logical investigation of the problem's many aims. Constraints are placed on

the vehicle to ensure that it avoids collisions, follows dynamical equations, and steer within its

capabilities. The cost function's goal is to get the vehicle to follow a predetermined course

while maintaining adequate occupant comfort. In contrast to these other goals, it is less

apparent if traffic regulations constitute a cost or a constraint, thus other representations are

being investigated.

3.6.2.1 Path Tracking

Following a predetermined path is a fundamental goal of an autonomous vehicle. This goal

implies that the reference path is provided by a higher-level planner and is not guaranteed to

be free of obstacles. Because following a path is a physical condition based on a measure of

position differences, path tracking might be ensured using a constraint derived from

deontological reasoning. This might be in the form of a constraint that the vehicle's location on

the path must be equal to the intended position. Following the path is not a rigorous necessity

for preserving safety, according to additional investigation; if an impediment occurs on the

path, the vehicle should have the choice to divert. Considering this logic, a cost function may

be used to achieve the aim of path tracking through optimization, as shown in figure 3.9. As a

50

result of using a consequentialist framework for path tracking, the vehicle is given the

flexibility to deviate; if path tracking were indicated as a rule in a deontological framework,

rule conflict and problem feasibility would present a safety concern. For the specific purpose

of path tracking, the more flexible principles of consequentialism are used instead of the core

notion of deontology, which is that rules must be followed without exception.

Path tracking's goal is converted into a mathematical framework from a consequentialist

perspective. The vehicle must minimise lateral deviation from the path (e) and heading error

(∆ψ) to follow the path using a cost function as in equation (3.17)

𝐽௫ = ∑ 𝑥()்
ୀ 𝑄()𝑥() ……………………… Equation (3.17)

Where 𝑥 is the vehicle state vector encompassing 𝑒 and ∆ψ, 𝑘 is the discrete time step in the

prediction horizon, and the weight matrix (𝑄) only contains diagonal, non-zero entries

corresponding to 𝑒 and ∆ψ (explained in more detail in section 3.6.3.1 and Appendix -19).

Figure 3.9: Calculating the cost based on the difference between the desired path (black) and the
vehicle's actual path (blue with dots).

51

3.6.2.2 Steering Control

There are several designs aims for vehicle steering. As part of mobility, the steering must

function within the actuator's limitations, contribute to path tracking and obstacle avoidance,

and be smooth. The first of these objectives, keeping the actuator within its limitations, may be

expressed as a maximum slew rate constraint. Because this cap represents a physical restriction

on an actuator, it was chosen for this design. Physical limitations are imposed as constraints in

the deontological sense of rigorous rule compliance because they must be highly prioritised in

the control system. It is simply not possible to implement a solution that necessitates control

inputs that exceed physical constraints. As a result, the most acceptable classification for the

slew rate limit is deontological. Furthermore, accepting the vehicle's physical boundaries is

comparable to acknowledging natural laws, which can serve as guiding principles. The

following is a mathematical representation of this limit:

ቚ𝐹௬
()

− 𝐹௬
(ିଵ)

ቚ ≤ 𝐹௬ 𝑚𝑎𝑥 𝑠𝑙𝑒𝑤 …………..… Equation (3.18)

𝐹௬,௫௨ ௦௪ is the maximum slew rate of the steering system, and 𝐹௬, is the lateral front tyre force.

Additional design goals for steering emerge when the limitation of maximum slew rate is

followed. The steering smoothness, which is impacted by the change in input from time step to

time step, is one of the most important goals. Because most riders anticipate a level of comfort

when riding in a vehicle, steering smoothness is a utilitarian criterion to incorporate in the

control algorithm. Occupant comfort is a desired feature, but like path tracking, might result in

safety trade-offs if encoded as a hard and fast rule of matching a certain rate via an equality

condition or remaining under a rate via an inequality constraint. If the vehicle must swerve

rapidly to avoid an obstruction, it will be restricted by the need to maintain smooth steering

and may not be able to steer and manoeuvre quickly enough to prevent a collision. A cost

related with steering smoothness that the algorithm will decrease can, however, be included in

the cost function when evaluated from a consequentialist perspective. If smoothness is

subordinate to more highly valued criteria related to safety, I prefer to account for it in the cost

function. As a result of the cost-benefit analysis, steering smoothness for occupant comfort is

viewed as a cost. By linking a cost with the change in steering, or more accurately, the lateral

front tyre force, the occupant comfort level is included into the objective function as in eq.

(3.19)

52

𝐽௬ = 𝑅 ∑ ቛ𝐹௬
()

− 𝐹௬
(ିଵ)

ቛ
ଶ

ଶ

 ……………….…. Equation (3.19)

where R stands for the associated cost. The differential in front steering angle is reduced by limiting the lateral

front tyre force difference over the prediction horizon. As a result of this term in the cost function, smooth steering

implementation is achieved, which might affect occupant comfort.

3.6.2.3 Obstacle Avoidance

When it comes to driving highways, avoiding obstacles is a top consideration. As discussed in

the previous sections, the potential of collisions and the need to preserve the capacity to avoid

them is the reason for choosing consequentialist costs over deontological principles for path

tracking and steering smoothness. Because collision avoidance is perhaps the most important

feature of a self-driven car, therefore I decided to look at it through the lens of deontology and

use it as a constraint.

The deontological principles that control obstacle avoidance are derived from separating the

environment into tubes through which the vehicle may safely pass and defining the envelope

in which each tube lies. The self-driving vehicle can select from one of three options in the

previous scenario illustrated in figure 3.8: pass the vehicle by joining the lane on the left, pass

the vehicle by going onto the right shoulder, or stay in the lane. The limits of each tube in the

environment may be built using a nominal path, which is essentially the centreline of the lane

in which the vehicle travels in the situation described here. These envelopes are defined by a

series of time-varying constraints on the maximum and lowest lateral offset from the nominal

path (𝑒) required to stay in the tube. To guarantee the trajectory is collision-free, the vehicle's

trajectory across the prediction horizon is limited to stay within this envelope. Because the

nominal path does not have to be obstacle-free, the vehicle's environmental envelope may force

it to deviate from it.

Based on the constant longitudinal vehicle speed (𝑈௫) and the assumption that the distance

along the path is exclusively a function of 𝑈௫, the environment is sampled at discrete positions

along the nominal path. The vehicle's projected position as it approaches the prediction horizon

is shown in figure 3.10b. The objects are expanded to fit the sample, as illustrated in figure

3.10c, to correspond with discrete sampling. This expansion identifies possible gaps (defined

as lengths bigger than the width of a car) between items. A graph search method creates tubes

like the ones illustrated in figure 3.10d by connecting neighbouring viable gaps. For the vehicle

53

to avoid accidents, one tube must include the whole prediction horizon. This tube approach

resembles LaValle's vertical cell decomposition (LaValle 2006), Suh and Bishop's tube

feasibility for robotic arm motion planning (Suh and Bishop 1988), and Ziegler, Bender, Dang,

and Stiller's driving corridors (Ziegler, Bender et al. 2014).

Figure 3.10: Environmental envelope generation using two tubes examples. (a) starting with a set of
obstacles along the nominal path, (b) discretization along the s direction, (c) extension of objects along
that same s direction, which creates alignment with the discretization and from which feasible gaps
between objects are identified, and (d) connecting adjacent gaps into tubes which define maximum (e
(k) max) and minimum (e (k) min) lateral deviation from the nominal path at each time step (k).

54

Due to the characteristic that every linear combination of produced trajectories included within

a tube will also be contained within that tube, the set of collision-free trajectories corresponding

to a single tube is a convex set. This characteristic allows for the rapid identification of

optimum trajectories with fast optimization techniques. The lateral deviation (𝑒) bound for each

time step (𝑘) represented by each tube is given by the following linear inequality:

𝐻௩𝑥() = 𝐺
() …………………………. Equation (3.20)

and,

𝐻௩ = ቂ
ுೡ,

ுೡ,ೝ
ቃ = ൣ

ଵ
ିଵ

൧ ………………. Equation (3.21)

𝐺௩ = ቂ
ீೡ,

ீೡ,ೝ
ቃ = ቈ

ೌೣ
(ೖ)

ି

(ೖ)

ି
భ

మ
ௗ

ି
భ

మ
ௗ

ିௗ್ೠೝ

ିௗ್ೠೝ
 …………… Equation (3.22)

The lateral deviation boundaries for time step k are provided as 𝑒௫
() and 𝑒

() , the vehicle width is d, and the

environmental envelope is represented by the subscript env. A buffer, which specifies a recommended minimum

distance between barriers and the vehicle and may account for vehicle orientation changes in establishing

minimum gaps between obstacles, can be used to further increase occupant comfort.

3.6.2.4 Traffic Regulations

The distinction between rule-based and cost-based design is most unclear in traffic legislation.

This contradiction is exemplified by the case presented in section 3.6.1. Traffic regulations are

deontological in nature since they impose structures and norms. Humans, on the other hand,

are not necessarily deontological in their approach to traffic regulations. In the real world,

drivers in section 3.6.1 scenario make decisions based on criteria including clearance from the

obstruction, traffic in the opposing lane, and overtaking speed. After then, the motorist must

decide whether to cross the double yellow line. Human compliance with traffic regulations

appears to be less deontological and more like a consequentialist balancing of safety, mobility,

and legality, given that people frequently choose to violate the line, notably when passing a

cyclist. As a result, while transitioning from human driver activities to programming a self-

driven car, the option of whether to consider traffic regulations as deontological or

consequentialist is critical.

As discussed in Section 3.6.1, if traffic regulations are established as a rule, they can easily

result in traffic gridlock. When laws are defined as a cost, it implies that they are designed to

55

be violated from the start. Given the problem, a "soft" constraint is used to encode traffic

regulations in the MPC formulation by including a slack variable. The cost of a constraint

violation is scaled using the slack variable. Because the slack variable augments the constraint

to make it less stringent, the constraint is considered consequentialist when the cost is

comparable to other objectives. Due to the substantial cost associated with making the slack

variable value non-zero, a very high weight on the slack variable leads the constraint to

dominate all other objectives in a deontological way. To translate the morally motivated design

decisions into the algorithm, a cost for the slack variable is incorporated, which corresponds to

either crossing the road divider (𝑆௧) or joining the road shoulder (𝑆௧). As shown in section

3.7, treating traffic regulation compliance as deontological or consequentialist leads in

considerably different vehicle behaviour. These many driving results highlight the necessity of

aligning programming decisions with social expectations, and these philosophical frameworks

aid in thinking and justifying the driving behaviour to use.

3.6.3 Model Predictive Control Formulation

The vehicle's optimal path is determined by the control algorithm, which considers the costs

and limitations imposed on its motion. The vehicle divides the globe into many viable tubes,

each representing a convex optimization problem. The vehicle then determines the most cost-

effective path through each tube, as shown in figure 3.11. The mathematics underlying

determining the best path in each tube and its connected cost is described in the following

sections.

Figure 3.11: The three tubes define the generic manoeuvre options to avoid an obstacle. The left and
right tubes are depicted in blue while stopping is depicted in red

56

3.6.3.1 Vehicle Model

The MPC controller uses a four-state bicycle model as its vehicle model. Vehicle sideslip (β)

and yaw rate (𝑟) are two velocity states, while heading deviation (∆ψ) and lateral deviation (𝑒)

are two position states, all of which are detailed in Appendix -18. As a result, the vehicle state

vector is given in equation (3.23)

𝑥 = [𝛽 𝑟 ∆𝜓 𝑒]ఛ ………………………. Equation (3. 23)

The actuator is believed to be front steering in this chapter, and the vehicle is equipped with steer-by-wire

technology. This allows the computer programme to control the lateral front tyre force that is wanted (𝐹௬). The

findings are based on a constant longitudinal speed maintained by a PD cruise controller unless the car must

stop, which isn't essential.

3.6.3.2 Optimization Formulation

The optimal path and control inputs for each tube in the environment are the result to the

following optimization problem.

Minimize: ∑ 𝑥()்
 𝑄()𝑥() ………………….……………… Equation (3.24a)

 + 𝑅 ∑ ቛ𝐹௬,௧
()

− 𝐹௬,௧
(ିଵ)

ቛ
ଶ

ଶ

 ………………..…………. Equation (3.24b)

 + ∑ [𝜎𝑒𝑛𝑣 𝜎𝑒𝑛𝑣]𝑆𝑒𝑛𝑣,𝑜𝑝𝑡
(𝑙)

𝑙 ………………………….… Equation (3.24 c)

 + ∑ [𝜎𝑡𝑟𝑎 𝜎𝑡𝑟𝑎]𝑆𝑡𝑟𝑎,𝑜𝑝𝑡
(𝑙)

𝑙 ………………………….……. Equation (3.24d)

 subject to: 𝑥(ାଵ) = 𝐴ௗ
()

𝑥() + 𝐵ௗ
()

𝐹௬,௧
() + 𝑑ௗ

()….……. Equation (3.24e)

 ቚ𝐹௬,௧
()

 ቚ ≤ 𝐹௬, 𝑚𝑎𝑥 𝑠𝑙𝑒𝑤 ………………….……… Equation (3.24f)

 𝑘 = 0 … … . (𝑇 − 1)

 𝐻௩𝑥() ≤ 𝐺௩
() + 𝑆௩,௧

() + 𝑆௧,௧
()

 …….….. Equation (3.24g)

 𝑙 = ൫𝑇௦௧ + 1൯ … … 𝑇

 ห𝐹𝑦𝑓,𝑜𝑝𝑡

(𝑖)
𝐹𝑦𝑓,𝑜𝑝𝑡

(𝑖−1)
ห ≤ 𝐹𝑦𝑓,𝑚𝑎𝑥 𝑠𝑙𝑒𝑤 ……………….…….… Equation (3.24h)

 𝑖 = 0 … … . 𝑇

57

Where 𝑇௦௧ + 1 is defined as the case when the time steps for the environmental envelope are

longer. The lateral front tyre forces (𝐹௬,௧), vehicle state (𝑥), slack variable on environmental

constraint (𝑆௩,௧), and slack variable on traffic regulation, the variables to be optimised

(𝑆௧,௧). The costs of vehicle states (𝑄), the cost of input change (𝑅), and the costs of slack

variables (env & tra) are the adjustable factors in this optimization problem.

The slack variables are used to create a hierarchy of deontological constraints and ensure that

the problem always provides a viable solution. As a result, the unbounded slack variables exist.

In a deontological paradigm, a slack variable with greater weights has a higher priority. The

slack variables are utilised to make the constraint version of traffic regulations weighted lower

than the obstacle avoidance version. They might also be used to include vehicle stability

constraints like those in (Beal and Gerdes 2012) and (Bobier and Gerdes 2013) in a more

complete form of a vehicle control system. In a deontological sense, as established by (Funke,

Brown et al. 2017), the slack variable weights for such constraints should be put below those

for collision avoidance. Other cost terms, such as those proposed by (Wei, Dolan et al. 2010),

might be included into the cost function.

The Optimization problem (3.6) is a quadratic programme with a very sparse structure that can

be solved in real time using an efficient solution. In this work, CVXGEN, created by

(Mattingley and Boyd 2012), is utilised to find the best lateral front tyre forces (𝐹௬,௧). The

initial solution (𝐹(0)௬,௧), which is then translated to the required steering angle as stated in

Appendix -18, provides the control input to the self-driven car for the next time step. Appendix-

19 shows a different problem formulation in which the road lane dividers and shoulders are

added as additional constraints with a slack variable.

3.7 Simulation Results

The scenario from section 3.6.1 prepares the groundwork for showing an ethically driven

automotive design in real-world simulations. The vehicle selects a different tube or a different

trajectory inside that tube reliant on the driving condition and the engineering design decisions

made in the algorithms. The weights are varied in these simulations to represent various

interpretations of the traffic regulations. As a result, the philosophical argument of various

goals may be transformed into the actual motion of the vehicle using mathematics. The weights'

actual numerical values aren't important; rather, the relative values have an impact on the

58

optimization problem's solution. They can be determined by perceptual algorithms or

developed as a function of geographic indications in practise.

3.7.1 Driving Scenarios

This section covered the simulation of dynamic complex systems and observing the emerging

behaviour based on model-based driving scenarios where the entities of vehicles are separated

and independent from the environment or scenario in which they operate. The content of the

model will be dynamically changing, and model logic will determine when entities enter and

leave the simulation. It involves many entities of different fidelity and properties. The

simulation of the interaction of the environment and entities which are autonomous,

heterogenous, parallel and with different life spans. The modelling approach is sectioned into

three segments, namely, environment (simulation scenario where the agent resides, i.e., road,

pedestrian etc), agent (heterogeneous agent with dynamics), and interface (data exchange

among agents and the environment).

The interface takes in either state of one of the outputs from the self-driven pool and fixes it

into one of the chosen scenarios in the environment. These scenarios (single-lane curve, dual-

lane merge, dual-lane switch, three-lane merge & switch, three-lane curve & switch, and four-

lane merge & switch) are modelled in variance, which allows the system to make one block

active at any given time during simulation. Each scenario has a sim-event road model

subsystem where entities are generated, routed, terminated, and are connected to the driver

strategy model of a self-driven agent pool through an interface that allows information flow

between the subsystems. It’s a glue that combines two domains together.

For instance, vehicles in any scenario can exit the system when they hit the crossing block,

which shows that the position has hit a limit using information from the self-driven agent pool.

In this case, the vehicle is removed from the simulation with the terminator block. The various

simulation outputs are as shown in figures 3.12 – 3.17 below. With this flexible framework, it

is easier to model ethical issues and other types of agents and the environment in which they

operate.

59

Figure 3.12: Single-lane Curve

Figure 3.13: Dual-lane Merge

60

Figure 3.14: Dual-lane Switch

Figure 3.15: Three-lane Merge & Switch

61

Figure 3.16: Three-lane Curve & Switch

Figure 3.17: Three-lane Curve & Switch

62

3.7.2 Consequentialist Costs of Traffic Regulations

The decision to include traffic regulations as slack variables in the MPC formulation is

explained in section 3.6.2. can have an impact on how the vehicle behaves when navigating the

situation described in Section 3.6.1. A consequentialist method provides for greater flexibility

in weighing road limits to reflect the strictness of the consequences of crossing it. Table 3.2

depicts a set of weights in which the shoulder is effectively treated as a hard constraint by

assigning a high cost to the slack variable (representing, for example, a curb on the side of the

road), whereas the double yellow lane divider is treated more as a cost by assigning a lower

weight to it. The car manoeuvres to the left of the obstruction and passes the divider, as shown

in figure 3.18. The car does not cross far into the opposite lane, instead staying near to the

obstruction, because to the comparatively high weight placed on the divider in comparison to

the path tracking weight.

After trading costs on the road shoulder and the road divider, the car travels to the right of the

obstruction in figure 3.19. (representing stricter adherence to the regulation). The weights used

for this case are shown in table 3.3. The trajectory and resultant steering angle are both mirrors

of the initial instance, as the weights define basically a mirror copy of the prior simulations.

63

Table 3.2: weights resulting in a pass on the left

Parameter Symbol Value Unit
Lateral error 𝑄 0.7 m-1
Heading error Q 0.5 rad-1
Smoothness R 0.1 kN-1
Environmental slack σୣ୬୴ 500 m-1
Road divider slack σ୪ୣ୲ 10 m-1
Road shoulder slack σ୰୧୦୲ 150 m-1

Figure 3.18: Vehicle manoeuvres to the left of the obstacle and crosses the divider (The left tube is
chosen because the traffic lane divider is considered safe to cross).

64

Table 3.3: weights resulting in a pass on the right

Parameter Symbol Value Unit
Lateral error 𝑄 0.7 m-1
Heading error Q 0.5 rad-1
Smoothness R 0.1 kN-1
Environmental slack σୣ୬୴ 500 m-1
Road divider slack σ୪ୣ୲ 150 m-1
Road shoulder slack σ୰୧୦୲ 10 m-1

Figure 3.19: Vehicle manoeuvres to the right of the obstacle (The right tube is chosen because
evaluation of the scenario determined it is safer to pass around the obstacle via the road shoulder).

3.7.3 Deontological Constraints in Traffic Regulations

Deontologically describing traffic regulations as hard norms is another philosophical technique

to accounting for traffic laws. The road boundary constraints begin to be like hard or

deontological restrictions when the slack variable weights grow compared to the other weights.

With this weight selection, the tubes to the left and right of the vehicle have unacceptably high

costs, as indicated in table 3.4, thus the vehicle must remain in the tube that corresponds to the

lane. The car must come to a complete pause since the tube is obstructed by the barrier. Figure

3.20 depicts the course of the vehicle while a separate longitudinal PD controller directs a

braking force to bring it to a stop before the tube's end.

65

Different treatments of environmental limits and accompanying traffic rules were integrated

into the MPC formulation. Treating the double yellow lane line as a rigid, deontological

restriction, on the other hand, removes a lot of freedom from the vehicle path and fails to reflect

how humans drive. This implies that traffic regulations may need to be changed to provide

programmers the same degree of freedom as human drivers. Without that choice, programmers

must use a consequentialist method to decide how much to weight the traffic regulations. The

relative values of the weights used for the traffic slack variables dictate how the car manoeuvres

around obstacles in this MPC formulation. When a lane divider is a single, dashed yellow line

or a double yellow line, these values can be affected by geographic indications. The weights

can also be computed by a perception algorithm that uses data from lidars and cameras to assess

the ground's safety in each tube. The MPC formulation's versatility in accounting for

responsible decision-making is demonstrated by these findings.

Table 3.4: weights resulting in a pass on the left

Parameter Symbol Value Unit
Lateral error 𝑄 10 m-1
Heading error Q 1 rad-1
Smoothness R 0.1 kN-1
Environmental slack σୣ୬୴ 500 m-1
Road divider slack σ୪ୣ୲ 150 m-1
Road shoulder slack σ୰୧୦୲ 150 m-1

Figure 3.20: Vehicle remain in the tube corresponding to the lane (Since left and right path options
are weighted equivalently, the tube is blocked and the vehicle brakes to a complete stop).

66

3.7.4 Costs, Constraints, and Weights

The preceding illustrations show that depending on whether traffic regulations are interpreted

deontologically or consequentially, self-driven cars might act quite differently. There are two

advantages to mapping the costs and constraints of deontology and consequentialism. As

shown in this chapter, it may be used to explain a design objective as a cost or constraint by

utilising deontological or consequential reasoning. Also, if an engineer develops a cost or

constraint-based method, this mapping might reveal what sort of behaviour the implementation

might entail.

To further grasp the consequences of this mapping, moral psychologist Greene proposes that

deontological rationalisation occurs in sensitive circumstances, whereas consequential

reasoning occurs in less severe situations (Greene and Sinnott-Armstrong 2008). This explain

why, until the severity of the situation worsens, sticking to the double yellow line is best

portrayed as a cost (i.e. oncoming traffic or erratic behaviour of the obstruction). Treating some

traffic regulations as rules may be annoying, though not inherently restricting, when the

circumstance is low risk.

The choice of weights in the optimization problem eventually affected the vehicle's compliance

with traffic rules, in addition to the costs and limitations (left and right). The weights used in

the optimization problem eventually affected the vehicle's compliance with traffic regulations,

in addition to the costs and constraints chosen (𝛿௧ and 𝛿௧). Path deviation (𝑄 and 𝑄∆ట),

obstacle avoidance (𝛿௩), and even occupant comfort (𝑅) is all affected by the other weights

in the cost function. Because some of these weights are just in the cost function (and therefore

not a slack variable), they can only have a substantial impact on the vehicle's behaviour.

Nevertheless, the concepts of deontology and consequentialism do not give insight into the

selection of weights that may impact the vehicle's behaviour in other ways.

3.8 Vehicle Behaviour

Until now, the MPC formulation has been influenced by traffic circumstances for a single

vehicle. The findings reveal the concepts that fortify consequentialism and deontology as

ethical theories, as well as how the theories may be applied to different types of vehicle

behaviour. These theories, on the other hand, do not clearly guide the selection of relative

numerical weights, which has a significant influence on design objectives for self-driven cars

beyond safety. As a result, this part is inspired by the introduction of virtue ethics, a third

67

normative ethical theory. As stressed by deontology and consequentialism, virtue ethics

focuses ethical behaviour on character rather than right acts or consequences. A choice is

ethical if it follows the inclination of a moral being, according to the virtue ethics paradigm.

To put it another way, moral individuals act virtuously if they always do the right thing in the

right moment, according to their character (Nay and Zagal 2017).

The concept of an agent's character naturally leads to a more particular concept termed role

morality, which will be used in this study. Role morality is the concept that behaviour that is

acceptable within the framework of a certain professional role and circumstance may not be

acceptable outside of that context (Evans 2017). In disciplines such as law and medicine, role

morality is used to explain behaviour that would be considered unethical if it occurred outside

of a professional setting. Samson, the Parisian executioner, is an extreme case, as (Applbaum

2000) points out. A less severe example is a doctor providing medicine to someone who isn't

his or her recognised patient. While it is permissible to write prescriptions within the

professional boundaries of a doctor-patient relationship, it is not permitted outside of this

position. These acceptable roles and codes of behaviour are founded on public expectations of

the service given by experts in that specific area; thus, role morality is drawn from a collective

decision on what is best for society (Nay and Zagal 2017), rather than from any individual in

charge of establishing the rules.

The kind of duty or character that various vehicles should have been thus a significant problem

in the creation of self-driven. The function of a vehicle has an impact on how strictly it must

adhere to traffic regulations. Figures 3.18 to 3.20 demonstrate how a self-driven car can decide

whether to break the traffic regulation of respecting a double yellow line boundary for safety

reasons. The degree of obedience or violation necessitates the use of a guiding principle, which

might be influenced by role morality. Vehicles serve several functions in society. It is

acceptable for an ambulance to run a red light when transporting a passenger to the hospital

who is in a life-threatening condition: the function of an ambulance in society is to take patients

to the hospital as fast as possible to save lives. A cab transporting a harried customer, on the

other hand, may not speed through a red light to save time since its societal function does not

justify it. While deontology and consequentialism allow vehicle aims to be justified as

constraints or costs, morality can assist in determining the strength of the applied rules and

costs for various vehicles. The background for why an ambulance might be programmed to

contemplate breaching traffic regulations more freely than a taxi, for example, is set by role

morality.

68

The nature of a vehicle that can acceptably breach rules, such as an ambulance, can be

represented using the MPC formulation provided in section 3.6.2 by changing the weights for

various purposes. The weight of tracking errors can be decreased when trying to replicate the

desirable behaviour of an emergency response vehicle, for example. Because lateral and

heading errors have smaller costs, the vehicle has more flexibility to depart from the path.

figures 3.21 and 3.22 illustrate the simulation findings using the weights from tables 3.5 and

3.6, respectively. The technique outlined in section 3.6.3 was used to calculate these relative

weights. The emergency vehicle begins executing the manoeuvre sooner, as seen in figures

3.21 and 3.22. This is due to the lower relative costs of lateral and heading error in terms of

smoothness, allowing for higher path deviation. The smoothness of the manoeuvre might be

beneficial to an injured passenger in this situation.

While a vehicle may be programmed to weight traffic regulations and manoeuvre objectives

based on its social function, having an engineering system that does not always follow the rule

is a worrying prospect. This raises another moral question: should the engineers who build such

a system supervise determining the rules' weights? Is adapting the regulation to the

programming reality of self-driven systems a better option? While translating philosophical

frameworks into technical terms does not provide a straightforward answer, it can assist in

raising the relevant issues that must be answered to deploy self-driven cars.

Table 3.5: weights resulting in a pass on the left

Parameter Symbol Value Unit
Lateral error 𝑄 0.3 m-1
Heading error Q 0.25 rad-1
Smoothness R 0.1 kN-1
Environmental slack σୣ୬୴ 500 m-1
Road divider slack σ୪ୣ୲ 5 m-1
Road shoulder slack σ୰୧୦୲ 200 m-1

69

Figure 3.21: The relatively lower costs on lateral and heading error allow the vehicle more freedom
to deviate from the path (Reduction of the cost on path following allows the vehicle behaviour to

model emergency response vehicle character).

Table 3.6: weights resulting in a pass on the left

Parameter Symbol Value Unit
Lateral error 𝑄 0.3 m-1
Heading error Q 0.25 rad-1
Smoothness R 0.1 kN-1
Environmental slack σୣ୬୴ 500 m-1
Road divider slack σ୪ୣ୲ 200 m-1
Road shoulder slack σ୰୧୦୲ 5 m-1

Figure 3.22: The relatively lower costs on lateral and heading error allow the vehicle more freedom
to deviate from the path (Reduction of the cost on path following allows the vehicle behaviour to

model emergency response vehicle character).

70

3.9 Conclusion

Deontology and consequentialism are normative ethical theories that help engineers

comprehend the consequences of various design decisions while programming autonomous

cars. Constraints and cost functions are examples of rule- and cost-based engineering

approaches. By making these linkages, engineers working at the most critical levels of

programming self-driven cars will be able to link their design decisions to wider social

acceptability concerns. Engineers can utilise the mapping of philosophical principles to

mathematical frameworks as a technique for thinking and reasoning about autonomous vehicle

motion planning systems. Through an MPC formulation, this chapter looked at how to prioritise

objectives like path tracking, vehicle occupant comfort, and traffic regulations in the cost

function while constraining obstacles like vehicle slew rate restrictions. Different weighting

systems within the control formulation, depending on the vehicle type and purpose, are based

on the idea of role morality. Additional vehicle objectives may be required in more complicated

circumstances. However, the basic obstacle avoidance manoeuvre described earlier in this

chapter highlights some of the difficulties in combining legal compliance with the desire to

coexist peacefully with human drivers in traffic. To reap the benefits of self-driven cars, legal

and ethical issues must be better integrated into the control code. A formalisation of human

values might aid society in better comprehending and trusting a self-driven car technology.

71

Chapter 4: Human-centred Decision Making

4.1 Introduction

Recognizing the similarities between normative philosophical and mathematical frameworks

aids in the formulation and discussion of specific algorithms for self-driving vehicle decision

making. The parallelism also aids in comprehending the consequences of different objective

trade-offs on human worth. However, how can engineers know which values to include in the

algorithms? Mobility, safety, and legality aren't the only human values. The formal, iterative

process of value-sensitive design (VSD) is used in this chapter to develop ethical considerations

that link values to technical specifications.

Many stakeholders, such as pedestrians, bikers, and car occupants, use the roads, and they all

have values that shape their expectations. Public perceptions of autonomous vehicle driving

behaviour are expected to be shaped by similar human values. Some appropriate criteria to

examine include mobility, safety, and legality (Point, by City et al. , Mehrara Molan and

Ksaibati 2021). The difficulty for self-driving vehicle designers is to relate these human values

to engineering standards. Integrating stakeholders and their values into the design process of

algorithms for self-driving vehicle decision-making algorithms is one method to overcome this

problem.

Many design methods consider human values and requirements, as well as the demands of

diverse stakeholders. Human-centred design (HCD) is a well-known design method (Maguire

2001, Giacomin 2014). HCD techniques entail engaging with a group of stakeholders, most of

whom are direct users of the technology, for the designers to receive feedback on how to

enhance the design. Current HCD techniques, according to (Miller and Cushman 2018), lack

an ethical perspective in terms of justifying designs or recognising their possible ethical

consequences. Life-based design (LBD) (Leikas, Sigfrids et al. 2020) is another design method

that incorporates an ethics investigation. LBD investigates the demands of stakeholders via

their quality of life, taking a comprehensive and holistic approach to the design challenge. It

begins with determining human needs in the design activity, then users and technology

requirements, and finally whether the human quality of life improves because of the created

technology. An ethical evaluation is clearly included in the investigation of the improvement

in quality of life. LBD is justified by the fact that the technology must increase the users' quality

of life. Both HCD and LBD are iterative design methods that aim to enhance technology design

for their respective consumers. HCD is concerned with usability values, whereas LBD is

72

concerned with quality-of-life values. Numerous additional values must be examined when

many stakeholders are affected by a proposed technology, especially when these values may

clash.

Another human design method that incorporates ethical concerns is value-sensitive design

(VSD) (Umbrello and De Bellis 2018), which does so early in the design cycle by openly

exploring values typically prioritising those with ethical significance (Borning and Muller

2012) throughout the whole design process. VSD is a three-part technique that iterates through

conceptual, technical, and empirical studies to solve any general design problem. Human

values are linked to the devolved technology at every level of the design process. VSD is

particularly useful in a design challenge if there are value conflicts concerning ethical problems

according to (Friedman, Kahn et al. 2013) and (Manders-Huits 2011) show how identifying

indirect stakeholders (a component of the conception process) revealed privacy issues for

pedestrians in the design of an office space with a virtual window overlooking a public plaza.

(Van Wynsberghe and Robbins 2014) utilise VSD to create a list of requirements that will

guide future security system designs in implanted medical devices. Also, because of VSD's

universality, it may be tweaked to fit specific design needs. (Van Wynsberghe 2013) adds the

moral framework of care ethics to VSD to ensure that health care robots represent stakeholder

values.

Engineers consider some human values while developing algorithms for self-driving vehicle

motion planning. As Paden, and Cap's assessment framework of a self-driving vehicle

approaching an unsignalized pedestrian crossing (Paden, Čáp et al. 2016) shows, many

algorithm designs prioritise safety and efficiency. In the development of the reward function

of a partially observable Markov decision process (POMDP) for speed control in pedestrian

settings (Bai, Cai et al. 2015) and (Bouton, Nakhaei et al. 2018) similarly focus on safety and

efficiency. As did (Schratter, Bouton et al. 2019) in the development of a reward function for

entering occluded junctions in a speed control POMDP. Engineers seek to relate human values

to engineered technology, as seen by these instances. The assessment frameworks and motion

planning rules' emphasis on safety and efficiency shows the difficulties of designing for two

opposing criteria. (Pouya and Madni 2020) also include occupant comfort in the reward

function and recommend that traffic restrictions might be added in future POMDP design

iterations. Their conversation reveals a willingness to consider the many human values in

question while designing a motion planning policy. To account for various values, a technique

that can assist in selecting which values to include would be beneficial, because humans’ value

more than simply safety and efficiency. Having a list of recognised values may also help you

73

figure out where there are conflicts between different stakeholders and morals. Value conflicts

can be identified early in the design process, allowing engineers to create technology that

expressly resolves them rather of relying on patchwork methods to manage value tensions after

a system has been deployed.

It is claimed that VSD can aid in the development of motion planning algorithms for self-

driving vehicles by filling in the gaps in the design process. VSD is used to validate the

relationship between human values and engineering specifications by defining a more

comprehensive list of human values at play in the design challenge and resolving value

conflicts through design justification. The design task of a speed controller for the scenario of

a pedestrian crosswalk is demonstrated in this chapter using a modified application of VSD for

a self-driving vehicle decision making. The speed restriction is the only constraint on the path's

pace. The self-driving vehicle will most likely need to slow down to properly negotiate the

circumstance. Acceleration command from POMDP policies created with VSD govern the

speed. The VSD speed controllers are first and second rounds of the design process, not final

products. VSD's iterative approach aids in documenting how values are combined into the

speed control design, as well as how tensions between values are addressed.

4.2 Value-Sensitive Design

VSD approach includes three stages: conceptual, technical, and empirical (Friedman, Kahn et

al. 2013, Evans 2017) identifying the values included by the designed technology is a part of

the approach at the conceptual phase. The direct and indirect stakeholders of the technology

are also determined during the conception phase. Some technology implementations are more

adapted to maintain some values than others, according to VSD. The technology being created

is developed using the technical solutions that are most in accordance with the defined values

(from the conceptual phase). Finally, the empirical phase allows for quantitative and qualitative

assessments of the generated design, such as data analysis or findings from user research.

During this time, you can check to see if the designed technology matches the concept. The

designer iterates through the various phases of design development until all three are in sync.

As they create new technology, engineers iterate implicitly through the conceptual, technical,

and empirical phases. VSD is a tool that aids in the formalisation of the engineering process by

recognising and monitoring values inherent in technology across iterations.

74

4.3 First Iteration

Because of the variety of scenarios that a self-driving vehicle may experience on the road,

designing a decision-making algorithm for it is an extensive design challenge. The list of

stakeholders and values may be unsustainable to design for as a first iteration, given the

potential for such a broad influence. This chapter will focus on a specific scenario as a case

study to limit the stakeholder and value consideration area and simplify the design effort.

Figure 4.1 illustrates a two-lane roadway with a single, dashed yellow line. The route also has

a well designated pedestrian crossing. A big, illegally parked vehicle sits just in front of the

crossing. The crossing is partially obstructed by the blocking van from the perspective of the

autonomous car approaching the crosswalk. The steering controller from Chapter 3 will

continue to guide the car in a lateral direction around the van while avoiding obstacles. The

goal of the design task is to create a speed control algorithm that allows the self-driving vehicles

to safely drive the scenario along the provided path.

Figure 4.1: Scenario for an occluded pedestrian crosswalk

4.3.1 Conceptualization

The direct and indirect stakeholders engaged in the scenario and design challenge, as well as

the human values, are identified to begin the VSD process. Engineers and programmers are

forced to think more thoroughly about the repercussions and who is affected by the created

technology when they identify both direct and indirect stakeholders. The self-driving vehicle,

its occupants, any pedestrians who may cross the street, and the authority of traffic regulations

are all direct stakeholders in this scenario. Because the autonomous car is expected to be able

to pursue an obstacle-free path around the occlusion, the obstructing vehicle parked on the road

is an indirect stakeholder. The focus of this initial iteration is on these stakeholders, although

there are many others, including bicyclist and spectators.

75

VSD and the engineering process rely heavily on determining the human values at play in the

scenario and design task. The human values of mobility, safety, and legality are all weighed in

traffic scenarios. More values at risk can be discovered by examining the stakeholders. Human

values to consider in this conception come from (Talhelm, Haidt et al. 2015, McNamara,

Willard et al. 2019), rather than interacting with actual stakeholders. According to Haidt,

human beings are born with a set of values (or moral foundations) such as care and respect for

others, fairness and reciprocity, respect for authority, and individual autonomy, whereas Choi

et al. believe that trust and transparency are critical for self-driving vehicle adoption. Because

the way these moral values are articulated might lead to various technological solutions, more

detailed definitions are offered by considering the stakeholders to explicitly describe what each

value means in this scenario:

 Individual autonomy: Individual autonomy of the vehicle's occupants recognises the

desire to go quickly from one location to another with minimal obstruction.

 Respect for authority: The autonomous vehicle's interaction with traffic regulations is

based on respect for authority.

 Care and respect for others: The desire to avoid harming other individuals

demonstrates care and respect for others.

 Trust and transparency: When a pedestrian think that an approaching vehicle will

surrender to his or her right-of-way when crossing in a crosswalk, trust develops. While

transparency occurs when the self-driving vehicle's activities help to build such

confidence.

 Fairness and reciprocity: Fairness and reciprocity affect both vehicle occupants and

pedestrian stakeholders in the sense that the self-driving vehicle should not conduct

biased or discriminating behaviours based on data about the stakeholders. All personnel

engaged with the autonomous vehicle should be treated equally.

Because these human values must be included in the decision-making algorithm, I link them

all to an engineering specification for usage in the technical implementation phase as shown in

Table 4.1.

76

Table 4.1: Human values mapping to engineering specifications for the first VSD iteration.

Human value Engineering specification Representation

Safety

Legality 𝑣௧

Care and respect for others Safety and Legality 𝑑௧

Respect for authority 𝑐௧

Fairness and reciprocity

Mobility Efficiency 𝑣௧

Individual autonomy

Trust Smoothness 𝑎௧

transparency ∆𝑡

4.3.1.1 Legality and Safety

The connection between legality and safety when crossing an obstructed pedestrian crosswalk

is complicated. Pedestrians in crosswalks have the right-of-way, according to the (Navet and

Simonot-Lion 2017). When approaching a crossing with the possibility of a pedestrian present,

a car should slow down and be ready to stop, as required by Vehicle Code §21950:

 Except as otherwise provided in this chapter, a driver of a vehicle must give the right-

of-way to a pedestrian crossing the street in a designated or unmarked crosswalk at an

intersection.

 A pedestrian's responsibility to use reasonable care for his or her safety is not relieved

by this section. A pedestrian may not abruptly abandon a curb or other safe location

and walk or run into the path of a vehicle that is so near that it poses an imminent threat.

While in a designated or unmarked crosswalk, no pedestrian may unduly halt or delay

traffic.

 When approaching a pedestrian in a designated or unmarked crosswalk, the driver must

take all reasonable precautions and lower the vehicle's speed or take any other measure

required to ensure the pedestrian's safety.

 (d) Subdivision (b) does not relieve a driver of a vehicle of the responsibility to exercise

appropriate care for the safety of any pedestrian crossing a street in a designated or

unmarked crosswalk.

77

Following the law and driving safely are tightly linked, as the vehicle code implies. For this

iteration, I assume that legality and safety are the same engineering criteria for this scenario: if

the self-driving car follows the law, it'll also perform safe actions. Vehicle speed (𝑣௧), distance

to crosswalk (𝑑௧), and whether a pedestrian is crossing the roadway are the essential pieces of

information required for safe and lawful decision-making (𝑐௧). Again, this ties up with the

ethical principles of compassion and regard for others, respect for authority, and fairness and

reciprocity.

4.3.1.2 Mobility and Efficiency

The human value of mobility is reflected in the time efficiency measure. The speed of the

vehicle (𝑣௧) for a particular path has a direct relationship with time efficiency. The moral value

of individual autonomy is central to this goal.

4.3.1.3 The quality of smoothness

Smooth driving improves passenger comfort and fosters stakeholder confidence and

transparency. Smoothness may be measured in longitudinal control by measuring the change

in vehicle speed, which is the same as knowing the acceleration command (𝑎௧) and the time

change (t).

4.3.2 Technical Implementation of Technology

To handle the pedestrian occlusion problem, many decision-making techniques may be

adapted. VSD contends that the choice of technology or algorithm implicates ethics, rather than

just picking an approach at random. The longitudinal motion is selected to be controlled by a

stochastic optimization problem, whereas the lateral motion is controlled by the formulation

from Chapter 3. A stochastic optimization problem can balance the specified values while

accounting for predicted uncertainty in the driving situation. The problem can also be expressed

as an open-loop or closed-loop planning dilemma. Closed-loop planning considers future state

information because it divides the planning problem into smaller sub-problems (i.e. dynamic

programming), but open-loop planning such as stochastic MPC does not since it involves

creating a static sequence of actions. (Gray, Gao et al. 2013). A closed-loop planning technique

is used, with the problem represented as a partially observable Markov decision process

78

(POMDP) (Sunberg and Kochenderfer 2018), to get an offline policy to examine and validate

before placing on a self-driving vehicle. Every design decision made throughout the

development of the POMDP is linked to values from the conceptualization phase to rationalise

the engineering and openly document their embedding of these values.

4.3.2.1 Markov Decision Process with Partially Observation

An agent in a POMDP makes decisions depending on its previous observations. 𝑂ଵ, ……. 𝑂௧.

The history is summarised in a belief state b, which is a distribution across the states, to

decrease the amount of data kept. The best policy is represented by a series of alpha vectors

that translate the belief state into a control input or action. The state vector captures the

information needed to address each value in the goal function, given the values of safety and

legality, efficiency and mobility, and smoothness.

𝑥 = [𝑣௧ 𝑑௧ 𝑐௧]T …………………………. Equation (4.1)

and the control input,

𝑢௧= 𝑎௧ ……………………………………… Equation (4.2)

where 𝑣௧ denotes vehicle speed, 𝑑௧ denotes vehicle distance from crosswalk, 𝑐௧ denotes

pedestrian detection, and 𝑎௧ denotes longitudinal acceleration Appendix -20 has an alternate

formulation that expresses the activities as desired speed. Because the roadway's peak speed is

assumed to be 10m/s, the vehicle speed is constrained by the speed restriction to meet the safety

and legality objectives. The pedestrian detection is a Boolean value since the pedestrian is

either crossing or not, and the detection does not rely on additional information about the

pedestrian that may be discriminatory to preserve the principles of fairness and reciprocity. The

control input, or action, is set to a maximum of 3m/s2 to give pleasant acceleration and

deceleration values, furthering the goal of smoothness for occupant comfort.

The distance to the crosswalk and vehicle speed is calculated using a point mass model of the

vehicle for the dynamics (or state transitions). Over time, the detection of a pedestrian crossing

retains some ambiguity. When a pedestrian is spotted, there is a 90% chance that the pedestrian

will be detected again at the following time step. This probability was chosen to reflect the high

possibility that the pedestrian will stay in the crosswalk while he or she crosses the roadway,

while also admitting that the pedestrian will not stay in the crosswalk indefinitely. When the

79

pedestrian is not identified, there is a 50% probability that he or she will continue to be

undetected, capturing the occlusion's ambiguity. This probability was chosen to represent the

chance of a pedestrian appearing. In the first iteration, the pedestrian state transition

probabilities are set haphazardly to show the process. The state transition probabilities might

be derived using event-based statistics or another model in practise. The control loop assumes

that the distance to the crossing and vehicle speed are both ideal. However, there is observation

uncertainty for pedestrian crossings, with a false positive rate of 5% for detecting and a false

positive rate of 5% for not detecting the pedestrian, capturing sensor noise uncertainty. These

false positive rates were selected arbitrarily low, although they would be caused by the

perception system's capacity to identify pedestrians in practise.

The aim is for the self-driving vehicle to seamlessly pass across the crosswalk in a safe and

efficient manner while complying to all applicable traffic regulations. For each state and action,

the reward function determines the stage cost 𝑔(𝑥௧, 𝑢௧), which ties the conception values to the

technological implementation. The reward for a state action pair is calculated by summing the

state and action's stage costs (4.4), (4.5), and (4.6).

The stage cost for legality and safety is partly generated from physical characteristics, resulting

in a computed reward that is a function of the amount of deceleration required to stop the

vehicle at a particular condition. The constant deceleration needed to come to a complete stop

given the distance to the crossing and vehicle speed is calculated using the constant acceleration

point mass equation.

at = - 𝑣௧
ଶ

2𝑑௧
൘ …………………………………… Equation (4.3)

As a result, the following stage cost for safety and legality is calculated:

𝑔௦(𝑥௧, 𝑢௧) = - (ζ
௩

మ

ௗశɛ
+ η1(𝑑௧ = 0))1(𝑐௧) ………………… Equation (4.4)

where ɛ > 0 is a denominator buffer to soften the constraint, ζ > 0 is a weight on the penalty

incurred by driving quickly as the vehicle approaches the crosswalk, η > 0 is a terminal penalty

independent of velocity to encourage the vehicle to stop when the pedestrian is crossing, and

1(·) is a function that evaluates to 1 if the Boolean logic is true and 0 if it is false.

The stage cost for efficiency and mobility is given by:

𝑔௧(𝑥௧, 𝑢௧) = - λ𝑣௧1(¬𝑐௧) ……………………………… Equation (4.5)

80

When the pedestrian is not crossing, a reward weight of λ> 0 is used to promote a higher speed.

The goal of achieving smoothness for occupant comfort is accomplished by imposing a penalty

stage cost on the change in velocity:

𝑔௦௧(𝑥௧, 𝑢௧) = −ξ (𝑣௧ − 𝑣௧ାଵ)2 = −ξ (𝑎௧∆t)2 ……………………… Equation (4.6)

where ξ is the penalty weight for significant variations in velocity, and the cost of this stage is

solely determined by the current input and the time step.

The QMDP technique is utilised to estimate an optimal solution to solve the POMDP (Sunberg

and Kochenderfer 2018). Although QMDP implies that the state will be completely observable

at the next time step, it is well suited to this problem since the activities are not information

gathering, meaning that they do not directly lower the scenario's uncertainty. Another reason

to utilise QMDP is that it is an offline solution, which means that the policy may be examined

ahead of time before being deployed on a vehicle in the following step (empirical analysis).

The state and action spaces are discretized in this technique to solve the POMDP, but the state

transitions are kept continuous using multilinear grid interpolations (Davies 1996). The vehicle

speed is increased in 0.5𝑚/𝑠 increments, the vehicle distance to the crosswalk is increased by

1m, and accelerations are measured at 0.1𝑚 𝑠ଶ⁄ intervals. The sizes of the state and action

spaces of the POMDP were kept modest by using this discretization: 2,563 total states

(including the terminal state) and 61 potential actions. Every design option in the POMDP is

linked back to a value from the conceptualization phase as a method to record and justify the

engineering of this technology throughout the technical execution. The next part demonstrates

how well the conception is realised by this implementation.

4.3.3 Empirical Research

The qualitative and quantitative assessments are part of the third step of the VSD approach. To

understand how the VSD process affects the design of a speed control algorithm, a

deterministic proportional speed control is used as a baseline. The baseline and POMDP

policies are compared in a qualitative debate.

81

4.3.3.1 Baseline

The baseline is a deterministic proportional speed control. Once a pedestrian has been spotted,

a constant deceleration is directed depending on the current vehicle velocity and distance to the

crosswalk, as shown in eq. (4.7a), which also assumes a constant acceleration point mass

model. If no pedestrians are spotted, the vehicle continues proportional cruise control with gain

𝑘 and known desired velocity 𝑣ௗ௦, as shown in eq (4.7b). These reasoning is as shown below:

If 𝑐௧

𝑎௧ = - 𝑣௧
ଶ

2𝑑௧
൘ …………………………… Equation (4.7a)

else

𝑎௧ = 𝑘(𝑣ௗ௦ – 𝑣௧) …………………………... Equation (4.7b)

Due to the small number of design choices explored in this baseline implementation, the

baseline is purposefully basic to enable for analysis of design features.

4.3.3.2 Comparison of Policies:

Figure 4.2 depicts the baseline controller (4.7), which is a closed-loop strategy that maps every

condition to an action. The vehicle speed is represented on the horizontal axis, while the

distance to the crosswalk is represented on the vertical axis. The activity is indicated by the

colours. Pedestrian detection cuts the policy amount in half. While a pedestrian is identified,

the baseline policy appears to be safe, as shown by the vehicle coasting (zero acceleration)

when it is further away from the crossing and increasing brake orders as it draws closer.

However, while a pedestrian is crossing, this aspect of the regulation is ineffective. When the

pedestrian is not recognised, on the other hand, it is efficient but not safe. Because of the

uncertainty of a pedestrian crossing, this dichotomous behaviour shows the necessity to

anticipate moving from one set of logic to the other. For the situation, the basic policy does not

explicitly resolve the value conflict between safety and efficiency.

The POMDP's closed-loop policy, which was created during the technical implementation

phase, is represented as a set of alpha vectors, each of which corresponds to a different action.

Figure 4.3 depicts the associated action based on the optimal anticipated utility for each state.

The policy recommends a compromise between efficiency further away from the crosswalk

and safety as the vehicle approaches while the pedestrian is crossing. While the pedestrian is

82

not crossing, there is a substantial gain in terms of safety while retaining some efficiency. The

policy similarly suggests that measures will be carried out smoothly across the state area.

Table 4.2 summarises the weights used in the reward function for this strategy. These weights

were selected during simulation to create great combination of positive accelerations away

from the crossing, negative accelerations near to it, and were fine-tuned to resolve the value

tension between the pedestrian and the vehicle, as shown in the following section. With these

weights, the term for continuous deceleration in 𝑔௦ yields a penalty of -2.5 when 𝑣௧ =

10𝑚/𝑠, 𝑑௧ = 0𝑚, and 𝑐௧, whereas 𝑔௧ is 2.5 when ¬𝑐௧. The extra penalty η in 𝑔௦

implies that in this first implementation, safety and legality are emphasised. The buffer's

numerical value was set such that the numerator does not evaluate to zero and the size of the

constant deceleration term is limited. Finally, ξ is used to generate smooth acceleration

commands.

The objective of this initial iteration is to figure out how to deal with value conflicts in the

implementation. and for safety (ζ) and legality (η), efficiency (λ), and smoothness (ξ) are the

special weights that are closely linked to human values. If the general design appears to be

good, exact benefits can be fine-tuned using a Pareto, or multi-objective, optimization over

these weights to better decide the value trade-off to make. This is shown in section 4.5. Though,

in this situation, further weight adjustment is postponed until additional study indicates that the

design is suitable.

Figure 4.2: Baseline closed-loop policy mapping each state to an action.

83

Figure 4.3: Closed-loop policy depicting optimal action at that state assuming perfect state
information.

Table 4.2: Weights of the reward function

Variable Weight Unit

Safety and legality (ζ) 0.2 s2/m

Safety and legality (η) 0.2 –

Buffer (𝜖) 8 m

Efficiency (λ) 0.25 s2/m

Smoothness (ξ) 1 s2/m

4.3.3.3 Simulation Results

To demonstrate how effectively the VSD speed controller realises human values. Using a

deterministic model predictive steering control, the vehicle is tasked with following an

obstacle-free course around the occluding vehicle by simulation as described in Chapter 3.

Observations of vehicle speed, vehicle distance to crosswalk, and detection of pedestrians are

utilised to update the belief with a Bayesian filter for the POMDP policy execution. The

approximate best course of action is then taken as in eq. 4.8

84

𝑎𝑟𝑔𝑚𝑎𝑥 ∝
் 𝑏 ………………………….…. Equation (4.8)

where ∝ is an alpha vector for each action 𝑎 and 𝑏 is a vector representing the belief state. The

POMDPs.jl package is used for both the policy solver and policy execution.

On a two-lane highway, there is an obstructed pedestrian crossing in the simulation scenario.

The car begins at the road's beginning, where it is halted. The person appears in the crosswalk

from behind the occluding car as the vehicle approaches the crosswalk. The control algorithms

have no idea when the pedestrian is going to emerge. The overhead driven trajectory,

acceleration instructions, and speed profile for the baseline and POMDP policies are depicted

in figures 4.4 and 4.5, respectively. The circles in figures 4.4 and 4.5 show when the intensity

filter identified the pedestrian. The initial time step after detection in both techniques mandates

a significant slowdown. The baseline control is unable to lawfully yield to the pedestrian since

it is travelling at full speed when the pedestrian emerges. The POMDP strategy, on the other

hand, causes the vehicle to descend significantly sooner and achieve a lower maximum speed.

As a result, the autonomous agent can successfully halt the unexpected pedestrian.

Figure 4.4: Baseline trajectory overhead, acceleration command, and speed profile using
deterministic speed control (circle indicates when the pedestrian was detected). The vehicle

decelerates upon detection of the pedestrian but does not yield.

85

Figure 4.5: POMDP trajectory overhead, acceleration command, and speed profile using belief about
pedestrian detection (circle indicates when the pedestrian was detected).

4.3.4 Observation

The challenge of creating an algorithm in the face of conflicting values is seen in this initial

iteration of the speed control concept. There are several aspects of the implementation that

should be highlighted, as well as other areas that might be improved.

4.3.4.1 Successful Outcomes

 The self-driving vehicle was able to yield to the pedestrian after accounting for the

pedestrian's uncertainty. Because the POMDP predicted future state information, the

car approaching the crossing at an "acceptable pace" had a significant impact.

 The only information on the pedestrian that was used was whether he or she had been

discovered. Fairness and reciprocity were mostly preserved, but they should be made

more apparent.

86

 The tension between safety, legality, and efficiency may be handled with the right

weights.

 The choice to represent the problem as a POMDP and solve for an offline policy aided

in the investigation and balancing of some of the design task's value tensions.

4.3.4.2 Improvements to be made

 Remove the braking authority restriction, which leads to a priority of occupant comfort

over safety.

 Although the POMDP formulation was created with passenger communication in mind,

it only optimised for velocity smoothness and ignored the shock that car occupants

perceive because of irregular acceleration orders. Smoothness appears to be

accomplished while just considering closed-loop rules, however it may not have been

effectively accounted for with this first iteration.

 This situation does not apply to non-obstructed crosswalks.

 The value tension relies heavily on pedestrian modelling, thus additional attention is

required there

The next version will look at ways to keep these great qualities while also resolving some of

the implementation's drawbacks.

4.4 Second Iteration

The value-sensitive design iterative approach may be used to re-evaluate the design work as

well as identify ways to enhance the technical implementation. The scenario is changed in the

second iteration to emphasise pedestrian behaviour unpredictability. The design job can

explore how pedestrian intent influences self-driving vehicle behaviour and vice versa by

removing the occluding vehicle from the equation. The presence of an occluding car obfuscates

the pedestrian-vehicle interaction. As a result, the occlusion is eliminated, and a pedestrian is

positioned on the roadside, as illustrated in figure 4.6. The designer should develop an

improved familiarity of the pedestrian-vehicle interaction as the iterations proceed. The

occlusion might then be re-introduced into the design task or utilised as a test case during the

analysis phase.

87

Figure 4.6:The scenario of the pedestrian crosswalk with occlusion is eliminated.

4.4.1 Conceptualization

Various stakeholders are still involved in the design process, which touches on a wide range of

human values. The autonomous vehicle's occupants, pedestrians who may cross the street, and

the authority of traffic regulations are now the direct stakeholders. The values in question in

the scenario are mobility, safety, legality, care and respect for others, fairness and reciprocity,

respect for authority, trust and transparency, and individual liberty, even with the occluding

vehicle removed. The values are defined in the same way as in section 4.3.1, but the way they

are translated into technical specifications will be improved.

Only human values connected to a technical objective were expressly evaluated in the previous

phase. This iteration clarifies how each defined value should be represented in the technology.

The Fairness and reciprocity are not easily translated into technical objective. Instead, it

becomes a higher-level design constraint that restricts the information to be non-

discriminatory, such as no age or gender data.

The remaining values are handled by connecting them to technical specifications that may be

used to capture them as shown in table 4.3 below.

4.4.1.1 Respect for Authority and Legality

Safety and legality are not precisely the same criteria, according to the California Vehicle Code.

To be safe, the vehicle code merely requires drivers to use "due care," which is not the same as

being safe. The vehicle code also requires that the vehicle speed be reduced and that any

required steps be taken to ensure pedestrian safety. Vehicle speed (𝑣௧), vehicle distance to

crossing (𝑑௧), and pedestrian conduct are the most important pieces of information for making

legal decisions. The self-driving vehicle must know if the pedestrian is transitioning from the

88

sidewalk to the crosswalk to protect the pedestrian. The non-discriminatory pedestrian position

(𝑐௧) and pedestrian posture (𝑝௧) are believed to reflect pedestrian behaviour.

4.4.1.2 Care, Safety, and Respect for others

A stricter interpretation of the vehicle code reflects the importance of safety. The goal of safety

is to minimise danger and injury. The same data as for legality is required to obtain this value:

vehicle speed (𝑣௧), vehicle distance to crosswalk (𝑑௧), pedestrian position (𝑐௧), and pedestrian

posture (𝑝௧).

4.4.1.3 Efficiency and mobility

The value of mobility still captures the measure of time efficiency, which is exactly

proportional to the vehicle's speed (𝑣௧) on a straight road.

4.4.1.4 Smoothness and Mobility

Smooth driving is another component of mobility that impacts occupant comfort and fosters

trust and sincerity among stakeholders. The value of mobility is meant to be increased in this

iteration by employing both the previous acceleration command (𝑎௧ିଵ) and the present

acceleration instruction (𝑎௧) for smooth actions adjustments.

4.4.2 Technical Implementation of Technology

An additional iteration gives you the option of using a different approach or algorithm that is

more in line with the stated values. The POMDP is maintained in this iteration because it

appears to provide possible resolution, and it helped to expose value conflicts in the prior

iteration. The best policy for controlling the longitudinal acceleration of the vehicle based on

the belief of a pedestrian crossing is computed using dynamic programming once more.

Equation 4.9 below captures the information needed to address their respective values in the

objective function given the technical specification of legality, safety, and mobility.

89

Table 4.3: A summary of human values mapped to engineering specifications for the second VSD iteration.

Human value Engineering specification Representation

Fairness reciprocity Do not use discriminatory information

Legality

Respect for authority

Legality 𝑣௧

𝑑௧

𝑐௧

𝑝௧

Safety

Care and respect for

authority

Safety 𝑣௧

𝑑௧

𝑐௧

𝑝௧

Mobility

Individual autonomy

Trust

transparency

Mobility

𝑣௧

𝑎௧ିଵ

𝑎௧

𝑥 = [𝑣௧ 𝑑௧ 𝑐௧ 𝑝௧ 𝑎௧ିଵ]T ……………………. Equation (4.9)

and the control input,

𝑢௧ = 𝑎௧ ………………………………… Equation (4.10)

Where 𝑣௧ denotes vehicle speed, 𝑑௧ denotes vehicle distance from crosswalk, 𝑐௧ denotes

pedestrian location, 𝑝௧ denotes pedestrian posture, and 𝑎௧ିଵ and 𝑎௧ denote prior and present

longitudinal acceleration, respectively. Because the roadway's peak speed is 10m/s, the

vehicle's top speed is constrained by the speed restriction to meet both legality and safety

requirements. The pedestrian is either in a crosswalk or on the sidewalk, and his or her posture

is either halted, inattentive, or in motion while making eye contact with the car. The pedestrian

states do not rely on other potentially discriminating information about pedestrians to maintain

the ideals of fairness and reciprocity. The control input was formerly limited to 3m/s2 to give

pleasant acceleration levels; however, this hampered the vehicle's capacity to be safe. Allowing

deceleration up to 10m/s2, the control algorithm allows the vehicle to utilise its maximum

braking capability.

To compute the distance to the crossing and vehicle speed, the dynamics (or state transitions)

still rely on a point mass model of the vehicle. To further examine the value tensions for the

90

design task, a new model for pedestrians is built (table 4.4). The chance of a pedestrian moving

from the sidewalk to a crosswalk is determined by their posture. When a pedestrian is

preoccupied, the chance is 50%, and when the pedestrian is moving, the likelihood is 86.7%

(Schroeder, Rouphail et al. 2014) and the statistics on yield and non-yield occurrences for an

aggressive pedestrian at site B are used to compute the likelihood of 86.7%. The likelihood of

transitioning is a function of the vehicle's distance from the crossing while the pedestrian is

stopped while making eye contact with it.

𝑝(𝑐௧|¬𝑐௧; 𝑝௧ = STOPPED) = (𝑝௫/𝑑௫) 𝑑௧, ………………………… Equation (4.11)

where 𝑑௫ is the highest distance the vehicle is away from the crossing, and 𝑝௫ is the

probability of 52.34% (Schroeder, Rouphail et al. 2014) and for a pedestrian waiting on the

near side at site B, the data on yield and non-yield occurrences yielded a chance of 52.35%.

The pedestrian is expected to remain in the crosswalk for the next time step once within the

crosswalk. For the sake of simplicity, the control loop assumes complete knowledge on the

vehicle's distance from the crossing, vehicle speed, and pedestrian posture. The pedestrian

position, however, there is observation uncertainty for the pedestrian position, which captures

sensor uncertainty with a false positive rate of 5%. These false positive rates were selected

arbitrarily low but would derive from the perception system's capacity to recognise pedestrians

in practice.

The aim remains for the self-driving vehicle to travel across the crosswalk in a seamless, safe,

and efficient manner while complying to all applicable traffic regulations. For each state and

action, the reward function defines the stage cost g (𝑥௧, 𝑢௧), which links the conception values

to the technological implementation once more. The reward for a state action pair is calculated

by adding the state and action's stage costs (4.12), (4.13), and (4.16).

Table 4.4: The pedestrian transition model for the second VSD iteration

Pedestrian posture Transition probability 𝑝(𝑐௧/¬𝑐௧)

Distracted 0.5

Stopped 0.523+ (𝑑௧/𝑑௫)

Moving 0.867+
+computed using yield event statistics (Schroeder et al. 2011)

91

The following is the stage cost for legality, which is derived from the constant acceleration

point mass formulae related to the constant deceleration required to come to a complete stop

given the distance to the crosswalk and vehicle speed:

𝑔௧௬(𝑥௧, 𝑢௧) = −ζ
௩

మ

ௗାɛ
 1(𝑐௧) ………………………………. Equation (4.12)

where ζ > 0 is a weight on the penalty suffered by driving rapidly as the vehicle approaches the

crossing, and ɛ > 0 is a buffer in the denominator to ease the restriction.

the stage cost for safety is given by.

𝑔௦௧௬(𝑥௧, 𝑢௧) = −η1(𝑐௧ ∧ 𝑑௧ < 0) ……………………. Equation (4.13)

where η > 0 is a terminal penalty independent of the velocity to boost the vehicle to come to a

complete stop while a pedestrian is crossing.

The stage cost for mobility is divided into two components:

𝑔௧(𝑥௧, 𝑢௧) = λ𝑣௧1(¬𝑐௧) ………………………………... Equation (4.14)

and

𝑔௦௧(𝑥௧, 𝑢௧) = −ξ (𝑎௧ିଵ − 𝑎௧)2 …………………………… Equation (4.15)

As a result, the total cost of mobility at each stage is:

𝑔௧௬(𝑥௧,𝑢௧) = 𝑔௧(𝑥௧,𝑢௧) + 𝑔௦ (𝑥௧,𝑢௧) = λ𝑣௧1(¬𝑐௧) −ξ (𝑎௧ିଵ − 𝑎௧)2 …. Equation (4.16)

where λ> 0 is a reward weight to boost faster speed while the pedestrian is not crossing, and

ξ> 0 is a penalty for excessive acceleration changes.

The QMDP technique is utilised once more to estimate an optimum solution for the POMDP.

Vehicle speed is increased by 0.5𝑚/𝑠, vehicle distance to crosswalk is increased by 1m, and

accelerations are measured at 0.5𝑚/𝑠ଶ intervals in this iteration. The size of the state and action

spaces of the POMDP was kept minimal by using these discretisation’s: 142,884 total states

(including terminal states) and 27 potential actions.

4.4.3 Empirical Research

The simulation results are the subject of the empirical analysis in the second iteration. The state

space of this POMDP, unlike the baseline, cannot be completely described in three dimensions,

92

therefore a policy comparison is not included in this study. Because the POMDP policies are

based on the prior acceleration instruction.

4.4.3.1 Simulation results

In this simulation, pedestrian detection is used to identify whether the pedestrian is in the

crosswalk influence area (the sidewalk) or in the crosswalk, using the specification of a static

polygon for the form of the road. The self-driving car must follow a straight line down the road,

using the same deterministic predictive steering control paradigm as Brown et al. in Chapter 3.

A pedestrian crossing on a two-lane highway is used in the simulation scenario. When a

pedestrian reaches the crosswalk influence area, the vehicle is travelling at a high speed, and

the policy comes into play. The pedestrian may or may not shift into the crosswalk as the car

approaches the intersection. The pedestrian's transition is unknown to the control algorithms.

For comparison with the new POMDP policies, the baseline from the first iteration is employed

once more. Because it will not surrender to the pedestrian until he or she has reached the

crosswalk, it is termed an aggressive baseline. A cautious baseline, in which the vehicle begins

to yield to the pedestrian once he or she reaches the crossing influence area, is also explored as

an option. Except for the crosswalk influence area, which decides when to transition from

cruise control to brakes, the rules are identical. They do not, however, take into consideration

the position of the pedestrian. For the aggressive and cautious baselines, figures 4.7 and 4.8

show the overhead driven trajectory, acceleration instructions, and speed profile, respectively.

The circles represent the times when the computer vision system recognised the pedestrian in

the crosswalk. The person never entered the crosswalk since the aggressive baseline has no

circle. Because the pedestrian did not enter the crosswalk, the car continued to travel at the

speed limit, never yielding to him. When the vehicle was 12.99𝑚 away from the crossing, the

perception system identified the pedestrian in the crosswalk influence region, and the vehicle

yielded to the pedestrian effectively.

93

Figure 4.7: Deterministic speed control is used to provide an aggressive baseline trajectory overhead,
acceleration command, and speed profile. The pedestrian does not enter the crosswalk, thus there is

no red circle.

Figure 4.8: Overhead trajectory with a conservative baseline, acceleration instruction, and speed
profile with deterministic speed control (circle shows when the pedestrian was spotted).

94

To update the belief using a Bayesian filter for the POMDP policy execution, an observation

of the vehicle speed, vehicle distance to the crosswalk, pedestrian posture, and pedestrian

position is utilised, much as the previous iteration. The overhead driven trajectory, acceleration

instructions, and speed profile for POMDP policies are depicted in figures 4.9 to 4.12. The

circles represent the times when the computer vision system recognised the pedestrian in the

crosswalk.

The pedestrian postures are independent of each other in this second POMDP implementation.

As a result, the reward function for each position employs a distinct set of weights (table 4.5).

This makes sense since each pedestrian stance is a discrete scenario that necessitates a different

vehicle reaction. The buffer's numerical value is still arbitrary; it's set such that the numerator

doesn't evaluate to zero and the constant deceleration term's magnitude is kept to a minimum.

The remaining weights can be fine-tuned with more analysis and Pareto optimization (see

section 4.5), but they're picked first to test if this design is suitable.

Table 4.5: The reward function's weights in relation to pedestrian posture (𝑝௧)

Variable Distracted weight (𝑝௧) Walking weight

(𝑝௧)

Stopped weight (𝑝௧) Unit

Legality (ζ) 0.01 0 0.01 s2/m

Buffer 8 8 8 m

Safety (η) 0.5 0.5 0.5 -

Mobility (λ) 0.05 0.01 0.03 s/m

Mobility (ξ) 0.003 0.01 0.003 s2/m

At the extreme states and actions where 𝑣௧ = 10𝑚/𝑠, 𝑑௧ = 0𝑚, and 𝑎௧ିଵ − 𝑎௧ = 13 𝑚 𝑠ଶ⁄ , the

weights are set so that safety, efficiency, and smoothness are prioritised to identical normalised

values: η = 0.5, λ = 0.5, and ξ = 0.507. When 𝑣௧ = 10𝑚/𝑠 and 𝑑௧ = 0𝑚, the legality term

is normalised to ζ = 0.125, implying a lesser priority. Figure 4.9 shows that when a pedestrian

approaches the crosswalk influence region, the policy applies modest negative accelerations to

the vehicle, slowing it to about 1.5𝑚/𝑠 and allowing it to coast until the pedestrian enters the

crosswalk. The vehicle comes to a complete stop after the pedestrian has entered the crosswalk.

The parameters for efficiency and smoothness raise to normalised values of λ = 1 and ξ =

1.69 when the pedestrian is walking as shown in figure 4.10. With more efficiency, the vehicle

95

travels along the road at a quicker pace, necessitating more smoothness to smoothly slow the

vehicle from the faster speed if a pedestrian reaches the crosswalk. Because the pedestrian

transitions to the crosswalk with a high likelihood, the pedestrian has a high conviction of 0.36

that he or she is crossing. This indicates that the impact of the safety and legality parameters

has a significant impact on self-driving vehicle behaviour long before the pedestrian enters the

crosswalk physically. To decrease the huge influence of the safety and legality terms, one of

them (legality in this case) is set to zero to enable the car to approach the crossing. The car

coasts again with these weights until it detects the pedestrian. The car comes to a complete stop

as it approaches the crossing.

Figure 4.9: Overhead POMDP trajectory of a distracted pedestrian, acceleration command, and
speed profile based on pedestrian crossing belief (circle indicates when the pedestrian was detected).

96

Figure 4.10: Overhead walking pedestrian POMDP trajectory, acceleration command, and speed
profile based on pedestrian crossing belief (circle shows when the pedestrian was spotted).

The normalised legality term returns to ζ = 0.125 for the halted pedestrian, but efficiency

and smoothness fall to λ = 0.3 and ξ = 0.507. Smoothness is critical in this situation for the

self-driving vehicle to exhibit directness about its objectives to travel through the surroundings,

therefore it is given the greatest priority. Two situations were examined using these weights.

Because of the diminishing assumption that the pedestrian would cross the roadway, the vehicle

shown in figure 4.11 accelerates progressively as it approaches the crosswalk. The pedestrian

avoids entering the crosswalk because it does not want to create an immediate hazard. Figure

4.12 shows a pedestrian crossing the roadway before the vehicle speeds up too fast in the

second halted pedestrian scenario. The self-driving vehicle comes to a complete stop after the

pedestrian enters the crosswalk.

97

Figure 4.11: Stopped pedestrian POMDP trajectory overhead, acceleration command, and speed
profile utilising pedestrian crossing belief. There is no red circle since the pedestrian does not enter

the crosswalk.

98

Figure 4.12: Stopped pedestrian POMDP trajectory overhead, acceleration command, and speed
profile utilising pedestrian crossing belief (circle shows when the pedestrian was spotted).

Pedestrians have the right of way.

The situation automatically becomes more complicated around the value tension between the

pedestrian's purpose and the self-driving vehicle's desire to drive along the road with this

second iteration's focus on pedestrian behaviour. Over the value statements, the weights chosen

are still arbitrary trade-offs. As a result, a further in-depth examination is likely necessary at

this stage to evaluate whether a certain design point may address the value tensions. A Pareto

optimization, for example, may be used to simulate many scenarios when weights are changed

as shown in section 4.5.

99

4.4.4 Observation

As the technical specifications clarify in terms of the recognised values, this second iteration

of the speed control design shows advances in resolving value conflicts. Because this is not the

final product, there are still certain aspects of the implementation to emphasise and other things

to improve.

4.4.4.1 Successful Outcomes

 The car was able to successfully yield to the pedestrian in all circumstances by

accounting for pedestrian uncertainty. Dynamic programming may be utilised to

account for future state information in the policy since the problem was designed as a

POMDP.

 The main information on the pedestrian was whether he or she was in a crosswalk and

what posture he or she was in. Fairness and reciprocity were upheld because of this.

 The choice to represent the problem as a POMDP and solve for an offline policy was

maintained throughout the design process, which helped to examine and balance some

of the design task's value conflicts. Even though the weights were chosen at random, it

revealed the possibility of resolving the value tensions.

 The penalty on change in acceleration increased smoothness, and the effect was directly

proportional to ξ.

 Efficiency remained consistent with the term λ.

 The pedestrian was modelled as a function of posture, which revealed information about

pedestrian intent and crossing the roadway.

 For the halted pedestrian, the car gradually raised its speed as it neared the

crossing, signalling to the pedestrian that if he or she enters the crosswalk while

simultaneously wanting to proceed down the road, the vehicle will yield.

 The car approached the crossing at a very cautious pace because of the random

likelihood of the inattentive pedestrian.

100

4.4.4.2 Improvements to be made

 Pedestrian modelling must be enhanced further.

 The pedestrian's stance and position did not appear to completely comprehend

the pedestrian's desire to cross the roadway. Other factors might be examined

while keeping the ideals of fairness and reciprocity in mind to reduce the

vehicle's usage of biased information or discriminating behaviours.

 For the pedestrian, there is likely to be a link between distraction and mobility,

which might imply a higher chance of shifting for the distracted posture. Other

pedestrian models might be used to investigate the better points of pedestrian

posture and mobility.

 When a pedestrian enters a crosswalk, the transitions presume that the person

will remain within the crosswalk. This is not the case. There should be further

research on simulating the transition from the crosswalk to the sidewalk (or a

safe distance from the self-driving vehicle's moving lane).

 The car tends to come to a standstill just outside the crosswalk. This might be due to

poor weight selection, or the reward function could be tweaked, for example, by

imposing a small penalty on significant decelerations so the vehicle only comes to a

complete stop when absolutely required. This will aid in the designing of mobility and

efficiency specifications.

 The high possibility of transitioning in the case of the moving pedestrian enhanced the

policy's effect on the parameters of safety and legality. These weights need to be

reduced considerably, or a different formulation should be investigated to isolate the

influence of safety and legality more effectively.

 To establish how effectively mobility, safety, and legality can be accomplished with

this implementation, more research into the choice of weights in the reward function is

also required. For the first iteration, this may be accomplished using a Pareto, or multi-

objective, optimization over the weights, as shown in section 4.5.

101

4.5 Bridging the Gap on Human Values

The policy comparison and experimental results show a speed control algorithm design that is

possibly reasonable, but only for a certain set of weights. The choice of weights in the reward

function can have a significant impact on the vehicle's behaviour. An analytical approach is

required to assess how well more directly the planned technology matches with stakeholder

values. To identify which set of weights best aligns with the values, one approach to do this

analysis is to use the Pareto (or multi-objective) optimization technique. If one goal cannot be

improved without affecting at least one other goal, the design is Pareto optimum. The design

objectives are mapped to a criterion space using evaluation criteria to create a frontier of Pareto

optimum locations. The identification of Pareto optima helps to shut the loop on the design

process, where human values are translated into engineering objectives, engineering objectives

are translated into evaluation criteria, and evaluation criteria are translated into human values.

As a result, engineers may concentrate on Pareto optimum solutions without having to commit

to a certain prioritisation of objectives ahead of time. After that, the Pareto frontier may be

presented to a wider group of stakeholders to select the final design to implement.

By changing the weights in the reward function that correspond to the engineering objectives,

an example of a Pareto frontier for the first VSD iteration is produced. A separate optimum

policy is created for each combination of weights in the reward function. Monte Carlo

simulations are conducted for each specified optimal strategy, and the simulation results are

compared to evaluation criteria. The vehicle velocity at the crossing is mapped to the objective

of safety and legality. The criteria of average time to perform a manoeuvre corresponds to the

objective of efficiency. The criteria of average maximum change in acceleration translates to

the smoothness objective. When the self-driving car is within 20m of the crossing, the

pedestrian appears from behind the occluding vehicle. The pedestrian takes roughly 4 seconds

to cross the roadway, according to the simulations.

The resultant Pareto frontier can then be presented to a broader group of stakeholders, such as

politicians, policymakers, and public interest organisations, to decide which, set of weights to

use on the self-driving vehicle. A slice of the Pareto frontier for safety and legality vs. mobility

is shown in figure 4.13. The yield rate for the simulated suddenly emerging pedestrian

scenarios also adds colour to the picture. Additional data, such as damage curves (Kröyer,

Jonsson et al. 2014), user studies, emissions curves (Mo, Li et al. 2017) and congestion studies

(Soriguera, Martínez et al. 2017), can be conferred on the Pareto boundaries by a broader set

of stakeholders.

102

The Pareto optimization isn't the sole technique for bridging the gap between human values. A

risk management or cost benefit analysis for a collection of outcomes [104] may be another

utilitarian-like analysis technique. Perhaps a deontological approach, in which policymakers or

stakeholders establish thresholds and circumstances, would be preferable. This Pareto analysis

is the first step in illustrating how proper analytical technique may aid in determining how well

a technological implementation incorporates the human values specified during the

conceptualization phase.

Figure 4.13: POMDP's Pareto frontier with different weights linked to evaluation criteria.

103

4.6 Summary

Through the conception and technical implementation phases, this chapter illustrates the formal

integration of human values into the design of a speed control algorithm. The empirical analysis

step aids in the identification of areas for future iterations improvement. In the first iteration, a

POMDP is selected to aid in the realisation of the objectives of safety and legality, efficiency

and mobility, and smoothness in a situation involving a big vehicle parked in front of a

pedestrian crossing. The POMDP assisted in capturing the situation's ambiguity and enabled

the vehicle to be proactive by approaching the crossing at an acceptable speed, resulting in a

successful yield to an unexpected pedestrian. The second iteration examines a minor

adjustment in the situation by eliminating the occlusion and improving the pedestrian model to

look more carefully at the value conflict between the pedestrian and self-driving vehicle.

Likewise, the technological execution of the values of legality, safety, efficiency, and

smoothness were refined. Additional analysis using Pareto optimization offers more

information on how well a solution match with the values indicated. Engineers may think more

thoroughly about how human values are mixed up in technology as it evolves by iterating using

value sensitive design technique.

Although the focus has been on engineers and programmers as designers, VSD allows other

stakeholders, such as policymakers and civil society organisation, to participate in the design

process. VSD is a useful tool for engineers, however, additional participants from third-party

groups can be extensively included to assist guarantee that self-driving cars act in socially

acceptable manners.

104

Chapter 5: Ethical Valence

5.1 Introduction

In the viewpoint of original equipment manufacturers, government organisations, and the

public, self-driving vehicles are transitioning from a distant possibility to a near-term reality.

This transition is not without threat, as recent and somewhat worrying events have

demonstrated. Accidents will continue to happen even as technology advances. The ethics of a

self-driving vehicles has thus quickly become a contentious topic, particularly considering the

apparent diversity of moral preferences within a given society and the so-called "social

dilemma" of choosing a general decisional maxim, even one as benevolent as "minimise

casualties" (Hulse, Xie et al. 2018). While the dangers, weaknesses, and problems associated

with the transition to a self-driving have been highlighted, a viable, implementable solution has

yet to be discovered. What actions must be taken to ensure that the social advantages promised

by self-driving cars are realised?

Undoubtedly, the self-driving vehicle’s decision-making is an essential element of the

response. The ability of a self-driving vehicles to eliminate human error from the stream of

traffic situation is a significant premise and universal discussion in the self-driving vehicle

deliberation: no more drunk-driving, texting, sleeping, or otherwise distracted drivers on the

road. Furthermore, in inevitable collision scenarios, the self-driving vehicles is expected to

make a deliberate decision about how it would crash, thereby replacing human drivers'

inefficient and illogical reactions (Martinez, Heucke et al. 2017). This is a difficult task for any

artificial decision process, not to mention the one that operates in a complex, dynamic, and

unpredictable environment like present-day transportation system. Despite these obstacles, a

workable solution for successful and acceptable self-driving vehicle decision making should

be discovered. In this chapter, the Ethical Valence is suggested as a strategy for a self-driven

vehicle decision making. The Ethical Valence concept describes a self-driving vehicle

decision-making as a technique for claim mitigation, in which various road users hold diverse

moral claims on the vehicle's conduct, and the vehicle must neutralise these claims as it makes

judgments about its surroundings. It must identify an optimum response to these claims in the

event of an unavoidable collision, or in so-called "dilemma situations," one that reflects the

moral claims and relationships that exist inside the vehicle's decision environment and best fits

with user expectations.

105

5.2 Risk Mitigation in Self-Driving vehicles

Volatility, unpredictability, cultural relativism, and, in certain circumstances, fatality

characterise the human trafficking situation. In fact, the number of persons killed or injured on

the world's roads remains unacceptably high, with an estimated 1.35 million deaths and up to

50 million injuries each year (Organization 2018). As a result, many stakeholders, institutions,

and drivers have hailed autonomous vehicles (AVs) as the next, if not last, step toward

accident-free roads. Even the most optimistic long-term predictions of the impact of self-

driving cars expect a 90% reduction in traffic-related incidents (Taiebat, Brown et al. 2018,

Martínez-Díaz, Soriguera et al. 2019). While this figure is unparalleled and remarkable, the

fact remains that fatal, serious, and near-accidents will continue to occur, although less

regularly, once autonomous vehicles are on the road, particularly in the early stages of

implementation when mixed-feet traffic forces autonomous vehicles to interact with human

drivers. Given these projections, it seems irresponsible to think of autonomous cars as merely

harmless road users. As self-driving vehicles deployment progresses, physical, if not fatal,

damage will continue to be a component of the traffic situation.

As a result of the ongoing existence of damage in mixed fleet traffic situations, the literature

has produced two related reactions. First, these dilemma-type decision situations have been

compared to the "trolley problem" (McGuire, Langdon et al. 2009, Christensen and Gomila

2012), and second, there has been a plethora of dilemma scenario analysis as to the form of

decisional or ethics policies that would encompass how morality requires the AV to act in these

types of dilemmas. Obviously, the ideal ethical policy is a complex and open topic that involves

numerous meta-ethical and interdisciplinary concerns. Because it appears that any robust

decision about the moral content that underpins an ethical policy is implicitly supported by

several meta-considerations, such as the source of moral content, whether public and

participatory (Arntz, Gregory et al. 2016, Schulz and Dankert 2016), or traditional western

ethical paradigms such as utilitarianism (Conway, Goldstein-Greenwood et al. 2018), Rawlsian

theories of justice (Holden, Linnerud et al. 2017). The apparent absence of ground-truth ethical

principles across various civilizations and the failure of user expectations to closely correspond

with any pre-existing moral theory likely to worsen these arguments (Yilmaz and Saribay

2017). Lastly, there are important questions of using the trolley problem as a persuasive policy

instrument in the case of self-driving vehicle (König and Neumayr 2017, Kaur and Rampersad

2018), and whether these individual decision-cases cannot be managed through the extensive

ethical analysis of a self-driving vehicles as a disruptive technology (Epting 2019).

106

Consequently, expert discussion has spun an extremely immobilising web around cars whose

wheels have already touched public roads in only a few short years, while the topic of the

optimal ethical policy remains conspicuously open.

Nevertheless, certain aspects of an ideal ethical policy emerge in this setting of moral ambiguity

(Allam and Dhunny 2019). If we accept the assertion that widespread usage and adoption of

self-driving cars is a precondition for the many social advantages these vehicles are said to

bring (Dechesne, Dignum et al. 2019), then any fair ethical policy for a self-driving vehicle

cannot ignore public acceptability. It appears that, for a self-driving car to really become a

morally optimum means of transportation, their behaviour must be in line with the varied

expectations of the people with whom they interact, as well as the broader communities in

which they are deployed. In a nutshell, this constraint ensures the user's happiness and safety,

as well as other important design ideals like trust, responsibility, and transparency (Perera,

Hussain et al. 2019). However, in terms of the vehicle's ethical policy, this claim appears to

provide either a strong reason to prefer moral theories that do not revise what is commonly

referred to as "common sense morality," or, less strongly, a reason to reject any account of the

moral good that fails to adequately capture widely held moral attitudes. Many popular theories

of morality, including most kinds of deontological ethics, utilitarianism, and Rawlsian

contractarianism, look to be in danger if this is accurate; and even if they survive, few will have

kept the purity of their original structure, motives, and scope. Moral theory appears to be at

least beholden to, if not restricted by, prevalent moral views from this standpoint, within the

context of self-driving vehicle ethics.

On the other hand, it appears to be just as ethically problematic to ignore moral theory entirely,

relying solely on the (moral) "wisdom of the crowd" (Dignum 2019, Tronto 2020). Much of

the support for this latter claim comes from a concern about the algorithmic consequences of

human moral failure: whether it's due to bias, prejudice, ignorance, irrationality, or plain

egoism, human behaviour provides (training) data that is at best morally sub-optimal, and at

worst morally unacceptable (Dignum 2019). Some argue that artificial agents should not just

avoid replicating these sorts of behaviours in their interactions, but that if they are intended to

behave as pure moral reasoners, they may even provide a chance for human moral growth

(Cushman, Young et al. 2006, Graham, Nosek et al. 2011, Lind and Wakenhut 2017). In this

case, despite their mismatch with user expectations and the introduction of what Lind has

dubbed "ethically superior robot villains" into our daily lives, ethics regulations based on pure

descriptions of moral theory may be morally justifiable or even needed (Wong 2020). Then,

107

from this vantage point, public acceptance appears to be a non-issue, until it is enhanced by

robotic technology such as driverless cars.

As a result, an ideal ethical policy must resolve the inherent conflict between these two groups

to some extent, finding a balance between public acceptability and moral standards. It appears

that it must be just acceptable enough to gain human users' confidence and adoption, yet just

moral enough to avoid repeating the most heinous of human desires. Similarly, an ideal ethical

policy is better characterised as a collection of procedures that should be followed in sacrifice

or dilemma circumstances, rather than a computer solution to the trolley problem. These

scenarios frequently arise in areas where the law is silent, or where the vehicle cannot offer a

comprehensive response to whom it should prioritise or sacrifice via its actions. The ethics of

a self-driving cars therefore falls firmly inside these many gaps, and regardless of the ethical

policy in place, it is critical that the surrounding decisional architecture reflect and support this

complexity, rather than skirting or denying its depth. In this vain, the next section will aim to

develop an architecture that is adaptable enough to accept a variety of different sorts of ethical

rules while leaving the question of which ethical policy is the "correct" one open.

5.3 The Ethical Valence Concept's Claims and Foundations

The Ethical Valence conceptual approach is best understood as a type of moral claim

mitigation. Every road user in the vehicle's surroundings has a claim on the vehicle's behaviour

as a condition of existing in the decision context, in accordance with the underlying concept.

To put it another way, every individual—from pedestrian to passenger—has a distinct

expectation of how the car will treat them throughout its planning, which, when backed up by

data on human well-being, provides the vehicle a reason to operate in a certain way. The ethical

valence concept depicts self-driving cars as an ecological organism (Wilson 1993, Haidt and

Joseph 2004, Gray, Young et al. 2012), whose agency is directly impacted by its surroundings'

claims. The strength of a claim might vary. A pedestrian's claim to safety, for example, may be

stronger than a passenger's claim if the former is more likely to be badly harmed because of a

self-driving collision. As it drives through its surroundings, the self-driving vehicle's objectives

is to (excellently) accomplish as many claims as possible, reacting in proportion to the strength

of each claim.

Individual claims might be regarded analytically as contributing or pro tanto causes for the

vehicle's behaviour (Appiah 2008, Dempsey 2016). Each claim is a contributory "ought,"

which implies that the strength of a claim is proportional to how strongly its "ought" to respond

108

to the individual's claim, or his "moral pull" (Shapiro 2018). in normal driving conditions, for

example, a self-driving car has every incentive to prioritise its passenger's claim to safety in its

tactical decision-making. When a dilemma scenario develops and an inevitable collision is

forthcoming, the vehicle will be confronted with extra reasons to prioritise the safety claims of

other road users, such as pedestrians or bicycles, all things considered. Because both variables

are antagonistic, the vehicle must choose which is the more powerful and act on that factor.

Thus, by reacting to the strongest attraction in its surroundings, the vehicle is doing what its

"ought" to do morally.

The purpose of claim mitigation in the ethical valence concept is to capture the role of

normative ethics in the decision-making of a self-driving car. In other words, claims allow the

vehicle to decide what morality requires in critical situations by assessing how changes in road

user welfare affect the rightness or wrongness of a self-driving car's actions. In many respects,

this approach is influenced by the distributive ethics "competing claims" paradigm (Sovacool,

Burke et al. 2017, Symons 2019), and when viewed in this perspective, the ethical valence

notion appears to be fundamentally utilitarian. However, this perspective is flawed. In practise,

because the EVT's main goal is to provide a public-acceptance-sensitive account of AV ethical

decision-making, we must seriously consider the idea that other potentially normatively

relevant factors, such as agent-relative constraints and options (Kalajtzidis 2019), should be

included in the theory's foundational structure. We must also resist the seductive temptation to

believe that this requires self-driving cars to have some form of moral status or to meet common

definitions of personhood such as intentionality, subjectivity, or free will (Alfano, Loeb et al.

2014, Frischmann and Selinger 2018). In this perspective, it's probable that if agent-relative

constraints and choices are normatively significant in the setting of self-driving vehicles at all,

it's because they reflect the expectations that certain road users may have about the partiality

of the self-driving vehicle. In this light, the passenger is likely to expect her self-driving car to

prioritise her and her family's needs, particularly when she is in danger of being badly hurt or

killed (Nascimento, Vismari et al. 2019).

The function of claim mitigation in the ethical valence concept is to capture the contribution

that normative ethics might make to a self-driving vehicle's decision-making. In other words,

claims enable the vehicle to determine what morality necessitates in crucial circumstances by

measuring how changes in the welfare of road users impact the rightness or wrongness of a

self-driving vehicle's conduct. In many ways, this approach is inspired by the "competing

claims" paradigm prevalent in distributive ethics (Dignum 2017, Dogan, Costantini et al. 2020),

and seen in this light, the ethical valence concept would appear to be foundationally utilitarian.

109

This vision, however, is imperfect. In practise, because the ethical valence concept’s primary

objective is to provide an account of a self-driving vehicle ethical decision-making that is

sensitive to public acceptance, we must seriously consider the idea that other potentially

normatively relevant factors, such as agent-relative constraints and options (Kalajtzidis 2019),

must be included in the model's foundational structure. We must also avoid the alluring

temptation of supposing that this necessitates self-driving vehicles having some sort of moral

position or possessing popular criteria for personhood like intentionality, subjectivity, or free

choice (Talbot, Jenkins et al. 2017, Vanderelst and Winfield 2018). In this light, it's likely that

if agent-relative restrictions and choices are normatively important in the context of self-

driving cars at all, it's because they mirror the expectations that some road users may have

about the self-driving vehicle’s partiality. In this perspective, the passenger is likely to expect

her self-driving vehicle to prioritise her and her family's interests, especially in situations when

she is at risk of being seriously injured or killed (Keeling 2020).

Because the self-driving car serves as a proxy or substitute for her practical activity in the road

traffic scenario, it is possible that this assumption is accurate (Cunneen, Mullins et al. 2020,

Keeling 2020). As a result, if her self-driving car fails to safeguard her and her loved ones from

harm, it may behave in an unpleasant manner, i.e., as a "morally superior robot villain,"

disregarding the importance of the connections she has with her loved ones. Significantly, the

inclusion of a form of morally admirable partiality on the part of the self-driving vehicle toward

its passengers does not necessarily imply the adoption of a form of passenger-centric

exclusivism, in which the passenger's interest is the only normatively relevant factor

determining the rightness of the self-driving vehicle's actions, as is frequently implied in

popular culture. The fact that a specific person is a passenger in a self-driving car is one

normatively important aspect that must be handled together with information about the

individual well-being of all road users is adequate, rather than going into detail.

Due to this odd mixture at the factoral level of the EVT, we are moving away from

utilitarianism and toward contractarian forms of foundational theory—and perhaps specifically

Scanlonian contractualism—because these types of theory typically view the correct list of

normatively relevant factors as those that would be agreed upon, consented to, or reasonably

unobjectionable for suitably disposed and informed individuals in the first place (Scanlon 2000,

Wallace 2019). To be sure, there are substantial disadvantages to utilising (Scanlonian)

contractualism as the EVT's fundamental theory. Furthermore, the concept of claim mitigation

as given in this chapter is predicated on the idea that an autonomous vehicle role in ethical

decision-making is to directly assess the claims and interests of individual road users in its

110

surroundings. A contractualist explanation of moral deliberation, in which the agent evaluates

the reasons people have for rejecting the agent's current motivating principles, then chooses a

motivating principle that provides reasons for action that no one could possibly reject, contrasts

with the agent's present motivating principles. The "focal point" of contractualist theories,

rather than the acts they inspire, is norms and principles, and as a result, the viewpoint from

which moral debate takes place is the standpoint from which contractualist theories take place

(Habermas 2018). Although this step is not included in the actual choice procedure of the

Ethical Valence Theory, it is carried out by the human decision-makers who are involved in

the design process throughout the development of the theory. It is possible to interpret this

divergence as a departure from Scanlon's original theory in this way, because it requires the

division of cognitive labour between the designer and the machine, which is something that

Scanlon's original thesis glaringly fails to provide. According to the Value Sensitive Design

method (Friedman, Kahn et al. 2013), we may consider this deliberative step to be the major

responsibility of the so-called "conceptual phase" of intelligent artefact design. As soon as it is

installed in an autonomous vehicle, the EVT does not deliberate "across" principles to find the

most acceptable (or least rejectable) option; rather, it simply acts on the principle that its human

designers have chosen to implement, which may or may not satisfy the explicitly Scanlonian

conditions of reasonable rejection. The following are the three most significant analogies

between contractualism and the fundamental framework of Ethical Valence Theory: First and

foremost, unlike contractualism, the EVT does not seek to alter common sense morality by

providing a metric explanation of what constitutes moral worth. Instead, the EVT seeks to

clarify what constitutes moral worth. As opposed to this, it is a pluralist account of morality,

which includes space in its description of normatively significant components for both the

quality of outcomes and the unique and universal duties of all individuals. A second constraint

adhered to by the EVT, which is related to (Scanlonian) contractualism, is that "...in rejecting

a moral principle, we cannot turn to assertions about the impersonal goodness or badness of

occurrences" (Wallace 2019). In addition, both contractualism and the Ethical Valence Concept

adhere to a further 'individualist' restriction, according to which all moral reasons for conduct

"...must appeal entirely to the principle's implications for ourselves and other single

individuals...." (Scanlon 2000, Wallace 2019) both suggest that They are advantageous to the

EVT because they restrict the aggregation of claims in the vehicle's ethical deliberation,

guaranteeing that the vehicle only considers direct changes in individual welfare or everyone’s

degree of claim fulfilment, rather than aggregated claims. Essentially, we have something that

111

is similar in appearance to an ecumenical variation of action consequentialism that adheres to

contractualist limitations and norms.

5.3.1 Valence as a Concept

It is argued that the contractualist motivations of Ethical Valence Concept serve primarily to

track common sense morality as it applies to the case of autonomous vehicles, whereas the

concept of "valence," as well as the theory's use of it, serve primarily to track (empirical)

estimates of public acceptability. The strength of each road user's absolute right not to be hurt

by an autonomous vehicle has already been established. The strength of this right grows in

proportion to the severity of the injury experienced because of an accident, as previously

established. The most important thing to remember about road users is that they each have a

distinct valence, which fluctuates in strength in proportion to how that specific user's identity

connects to several various sets of traits and behaviours. criteria outside of the technical

limitations of identification, data collection, and processing, there are no specific criteria that

should inform a valence, but they can include features such as different age groups, socio-

economic levels, or professions in the vein of the Moral Machines Experiment (Awad, Dsouza

et al. 2018), or they can include forms of morally admirable partiality that might exist between

the self-driving vehicle and its passenger(s) (Keeling 2020). Even though the bulk of the criteria

used to identify valences remain controversial, it would be absurd to attempt to summarise the

whole extent of the issue in this space. In our opinion, while attempts to define and define the

moral limits of valence features fall squarely under the jurisdictional purview of moral

philosophy, such efforts must also engage with the burgeoning world of so-called ethical design

principles (Dignum 2019) and emerging ethico-legal doctrines from various political

institutions (Bonnefon, Shariff et al. 2019), which taken together at the very least, may impose

very strict limitations on the use of such In his 2017 article which points out that the German

parliament's ethics commission on automated and connected driving expressly prohibits "...any

distinction based on personal features (age, gender, physical or mental constitution)...", which

appears to exclude all but a circumstantial categorization of individuals, discriminating only

"cyclists" from "pedestrians" and other such "types" of road users. Accordingly, categorization

of road users according to their relative 'vulnerability,' such as is commonly achieved in the

subject of traffic psychology, may be successful in satisfying such stringent standards.

Valences' attractiveness and function in nature may both appear to be questionable when

confronted with such tight informational limitations. It is likely that two more issues provided

112

by the selection of valence criteria may lend greater credibility to this point of view. First and

foremost, at least from the standpoint of acceptability, there is a clear relationship between

decisional accuracy and robustness of information, which simply means that the finer the

valence criteria are, the more closely the resulting decisions of the self-driving vehicle will be

able to track public acceptability (Martin 2019). In an ideal world, valences would incorporate

all the essential facts about a specific situation to enable for the best-informed decision

possible. Various sources of information, including explicit input from the passenger, empirical

studies, data retrieved from environmental perception, and vehicle-to-vehicle or vehicle-to-

device communication, are asserted to be available for gathering these facts. These facts are

said to include several traits that are comparable across different road users including health

status, age, income, and occupation. The inability to clearly distinguish between which

qualities are significant adds to the already tough process of recognising which characteristics

are relevant. Consider the idea of age, for example. In certain societies, the old are valued more

highly than the young, for reasons like as knowledge, perspective, or other less utilitarian

reasons, but others appear to worship the cult of youth, and as a result, may be more ready to

sacrifice the young in the case of a self-driving vehicle crash. It is possible to record preferred

gerontophobia in both scenarios by empirical investigation of the surrounding environment,

and the valences will reflect these fluctuations because of the findings. When it comes to the

complete examination of an individual's welfare (and, subsequently, his 'claim,' in the sense

that the elderly is more likely than younger people to suffer damage or death because of a

collision), age can be an important factor to consider (Liu, Hainen et al. 2019) When it comes

to a complete examination of an individual's welfare (and, hence, his 'claim,') age might be an

important factor to consider. As a result, it is essential to examine the nature of the facts that

serve as the foundation for valences when formulating empirical research and surveys, as well

as when interpreting the data, to avoid ambiguity.

The unintended or collateral implications that the selection of certain characteristics may have

on the overall traffic environment are a second hurdle that the concept of valence, as we have

mentioned, must overcome before it can be deemed effective in its application. A vehicle that

is designed to discriminate between motorcyclists who are wearing helmets and motorcyclists

who are not wearing helmets in the vehicle's environment is an example of a self-driving

vehicle that is designed to discriminate between motorcyclists who are not wearing helmets in

the vehicle's environment, according to (Arkin 2016) in his paper on autonomous vehicle

ethics. While it may be tough to sacrifice a helmet-wearing rider in an eventual accident, the

vehicle lowers harm by basically targeting the most vulnerable road user on the highway. It is

113

possible that this will result in an unpleasant trade-off in the case of a motorbike collision.

However, by doing so, it disincentivizes other motorcycle riders from wearing helmets,

therefore indirectly raising the amount of danger in the overall traffic scenario. While choosing

to sacrifice the motorcyclist who does not wear a helmet, the government makes another type

of mistake: by placing a high value on the safety of helmet-wearing motorcyclists, the

government unfairly targets illegal road users, displaying an uncomfortable form of

technological paternalism that may appear to 'punish' those who do not adhere to the letter of

the law. The government should reconsider its decision to sacrifice the illegal road user. This

is another case in which the interplay between an impartial claim to safety and a valence may

make the selection of a self-driving vehicles more difficult to comprehend. A "helmet or no-

helmet" criteria may be eliminated from consideration because of the detrimental implications

that employing such a criterion might have on the traffic environment. This is even though it

plainly violates the right to personal safety of road users. By the same token, if the problem is

handled more broadly than as a concern of public safety, and more precisely as a question of

public acceptability, empirical study may be able to absorb the consequences of this influence

more effectively. So, it shouldn't be too surprising that the development of valence criteria is

an extremely contentious topic, in part because it requires policymakers and engineers to

determine which seemingly inconsequential information might one day turn out to be the

deciding factor in a potentially life-threatening situation. Although it is feasible to alleviate

some of this pressure by developing a deliberative process that does not rely solely on valence-

type considerations, this is especially true when moral claims and social acceptability are

considered separately during the design process.

5.3.2 An Ethical Profile

In the ethical valence concept, the idea of an "ethical profile" refers to a specific decision

method or strategy that mitigates the numerous claims and valences of road users and other

road users. This is the final conceptual aspect of the theory. At its core, each moral profile

provides a different criterion of rightness: a maxim or rule that decides whether a certain action

option is right or wrong in the given circumstances. Accordingly, a moral profile describes

which claims the self-driving vehicle is sensitive to, when those claims are sensitive to those

claims, and how those claims are influenced by a given individual's valence strength. It is

possible to organise the mitigation process between valences and claims in a variety of ways,

but a preliminary categorical distinction between users who are within the self-driving vehicle

114

and those who are outside of it can be utilised to honour the unique duty the self-driving vehicle

may have in relation to its passengers. To do this, claim mitigation should be conceptualised

as the weighing of a passenger's claim against those in the self-driving vehicle's surrounding

environment. We may then investigate a range of potential mitigations across these two areas

of interest, including the following: A risk-averse altruist moral profile, for example, may

prioritise the user who has the greatest valence in the event of a collision, provided that the

threat to the s self-driving vehicle's passenger is not severe. In this sort of profile, it appears

that the passenger in a self-driving vehicle may be prepared to endure some degree of injury to

respond properly in the traffic environment, but not to the point that he or she would die or

suffer significantly debilitating injuries because of his or her decisions. A profile like this might

help to reduce public concern about so-called "killer cars" and to enhance user confidence in

autonomous vehicles by reducing public anxiety. However, a self-driving vehicle's passenger

would be prioritised by a threshold egoist type profile if there is no considerable threat of

damage to another user who has a greater valence than the passenger, which is unlikely.

Perhaps a profile like this could increase public acceptance of autonomous vehicles if the

criteria for their use were designed to address (and eventually prioritise) the needs of especially

vulnerable road users such as children under the age of six and people with disabilities who are

unable to walk or stand on their own.

There will never be a single profile that will be able to resolve the moral and societal problem

that autonomous automobiles offer once and for all, since there is no such thing. The selection

of a moral profile, as well as the selection of valence criteria, are available as multiple entry

points for human control in an autonomous machine, although this is not the case with

autonomous machines. The public is also given a say in the choices made by a self-driving

vehicle, which is crucial because it guarantees, among other things, that the self-driving vehicle

is sensitive to moral urgency and that its deliberation process is fair and well-organized on the

side of the public. By focusing on flexibility rather than rigidity, we can assure that the actions

of an autonomous vehicle are both acceptable and moral, rather than merely moral.

As previously mentioned, the validity of the Ethical Valence Theory is jeopardised by a well-

known computational weakness: the theory's reliance on computations of the degree of harm

that is expected to be suffered by certain road users. Since many ethics policies that aim at

damage or risk minimization do not have the informational certainty necessary to successfully

predict the harmfulness of individual accidents this has become a recurring source of concern

in the literature on robot ethics (Arkin 2016, Lin, Abney et al. 2017). As a result, the Ethical

Valence Theory is susceptible to similar objections in this regard as well. Because of a lack of

115

specific knowledge about elements such as the posture of people or the structural integrity of

individual cars, estimating the possibility of injury to road users will remain approximative and

imprecise. This is exacerbated by ambiguity in the vehicle's assessment of the road itself.

Although it has this shortcoming, the ethical valence concept has the advantage of not relying

on the possibility of harm in a disproportionate amount when making ethical decisions. There

are a variety of elements that impact what the vehicle will do, including the potential for injury

and the possibility of an impartial claim being filed against it, among other considerations.

The ability of the ethical valence concept to anticipate and respond to the emergence of a

second dilemma scenario that may arise because of its original morally optimal action choice

is one last theoretical difficulty. For autonomous cars, this relates to the problem of temporal

horizons in the decision-making process, and as a result, it constitutes both a technology barrier

for self-driving vehicles and a fundamental theoretical error in consequentialist ethics. If the

self-driving vehicles has perfect foresight, it should be able to anticipate and mitigate any

negative externalities that may arise because of its ethical decision-making in the future.

Indeed, it's likely that this is one of the implicit assumptions that underpin the concept of

autonomous vehicles behaving as superhuman drivers, as has been suggested by some. Because

‘short-sighted' autonomous vehicles may appear to be immoral in comparison, it may appear

that designers have a techno-ethical duty to incorporate lengthy time horizons into vehicle

decision-making. When elucidating appropriate moral profiles, the moral significance of a

temporal discount rate and the ostensibly relevant characteristics of that rate become important

considerations. This is especially true if these considerations are seen to be important when it

comes to public acceptability in a contractualist spirit. However, these considerations are not

the only considerations. In the absence of such information, it is not abundantly clear that the

functional moral agency of autonomous vehicles will be required to extend much further into

the future than is currently anticipated, particularly if this process threatens the real-time

performance of the decision-making algorithm. If an autonomous vehicle is confronted with

these types of issues, the boundary between its decisional ethics policy and its larger society

policy for autonomous vehicles is usually blurred, if not completely erased. Two terrains exist

inside the action space of unavoidable accidents that do not necessarily have to be completely

consistent with one another to function properly. Briefly stated, when faced with a dilemma, it

is critical that the vehicle make the ethically optimal choice within its environment, and in an

ideal world, it would also account for any additional harm that it might cause. However, it is

possible that the need for optimization will extend beyond this horizon in the case of

autonomous vehicles due to wishful thinking.

116

Because of this, ethical valence concept is meant to serve as an adaptive response to the many

types of uncertainty that are characteristic of the early stages in the adoption of self-driving

vehicles from a theoretical viewpoint. ethical valence theory, which was developed in response

to moral ambiguity and a lack of universal ethical consensus, presents customizable and

flexible moral profiles in a claim-based framework that is not closely linked to traditional moral

theory or any one idea of what is right or wrong. ethical valence concept are used to help

vehicles in deciding on which facts and features should be considered when making decisions

in ambiguous situations. This information has been backed up by empirical investigation and

is available when the vehicle is operating in ambiguous situations. While it does not want to

create "morally superior robot villains" or to replicate criminal behaviour in human drivers, it

does not rule out the possibility. Instead, it seeks to provide a satisfactory solution to the moral

and societal issues posed by self-driving vehicle, as well as a practical tool for engineers to

utilise in their daily job.

5.4 Ethical Valence Theory Computational Implementation

Described in this section is the process of putting the ethical valence concept into practise. The

topics mentioned in the preceding sections will be examined again, but this time from the

perspective of computational standpoint. As it drives the thousands of kilometres it will

traverse, a self-driving vehicle will encounter problematic scenarios on public highways at

various points along the way. In these situations, every potential response will result in the

harm (perhaps fatal) of a road user. We found that the emergence of a dilemma situation

triggers the activation of an ethically constrained deliberation model, the ethical valence

concept, which is a deliberation model with ethical restrictions in our self-driving vehicle's

simulation. To distinguish between this model and the one that is used in regular settings, where

performance and efficiency constraints impact the decision-making process, it is necessary to

distinguish between them.

5.4.1 The MDP Algorithms

It will be addressed in further depth in this section about the various components of a Markov

Decision Process (MDP). A brief and abbreviated introduction will be provided; however,

comprehending this introduction will be necessary for understanding the future sections.

117

According to (Sigaud and Buffet 2013), the technique is composed of five components, which

are as follows:

Figure 5.1: Self-driving vehicle’s state representation

 The state space (𝒔𝒊 ∈ 𝑺): collection of all possible self-driving vehicle configurations,

and the behaviour of the system is described by a series of states that are repeated

throughout time.

 The action set (𝒂𝒊 ∈ 𝑨): collection of all possible actions available to the self-driving

vehicle. It is responsible for initiating the shift from one state to another in the self-

driving vehicle’s internal state transition system.

 Transition probability (𝑻): whenever a self-driving vehicle is in one state, the transition

probability (T) represents the likelihood that performing an action will result in the self-

driving vehicle shifting to another state; it is represented by the formula 𝑝(s୲ାଵ |s୲, a୲)

when the self-driving vehicle is in another state.

 The reward function (𝑹): the performance of a function in relation to the global goal

can be quantified.

 The discount constant (𝜸): is a variable that may be used to change the value of utility

between time (t + 1) and the present time (t). It is described as between the numbers

[0, 1].

According to the example that will be used in the application section, the state may be defined

as (𝑥, 𝑦, 𝜃, 𝑣, ∅), with the only source of information being the self-driving vehicle's

configuration (the configuration of all other road users is already accounted for in the reward

118

function). Each of the variables in the equation (𝑥, 𝑦) represents the position of the centre point

of the rear-axis, as well as the direction of the vehicle, the scalar velocity, and the steering

angle.

The outcome of a MDP algorithm is a policy (𝜋∗) that, for each state, identifies the most

optimal action to be performed and then implements that action in that state. As shown in

eq.5.1, when this action is done at the state 𝑠௧, it increases the value V (𝑠௧, 𝑎௧) at the state 𝑠௧ to

the greatest extent possible.

V*(s) = 𝔼గ [∑ ϒஶ
ୀ ∙ 𝑟 (s, 𝑎) |𝑠 = 𝑠] = 𝑚𝑎𝑥∈ [𝑟 (s, 𝑎) + ∑ 𝑝(𝑠ᇱ|𝑠, 𝑎)𝑉(𝑠ᇱ)௦ᇲ∈ௌ] ………… Equation (5.1)

By simply creating a connection between the actions that maximise 𝑉(𝑠) and 𝑠, then the policy is retrieved

from eq.5.1 as shown in eq.5.2

𝜋 (𝑠) ∈ 𝑎𝑟𝑔𝑚𝑎𝑥∈ [𝑟 (s, 𝑎) + ∑ 𝑝(𝑠ᇱ|𝑠, 𝑎)𝑉(𝑠ᇱ)௦ᇲ∈ௌ] …………. Equation (5.2)

5.4.2 Dilemma Situations classifications

During each stage of the self-driving vehicle's trip, it should be possible to assess whether a

circumstance poses a moral problem that should be investigated and contemplated in further

depth. It is necessary to categorise circumstances to determine if the self-driving is required to

act in line with ethical limitations or just to achieve certain objectives. Self-driving vehicles

are expected to comply to three principles that explain their responsibilities towards other road

users in their near area. These rules are as follows: One or more of these rules may be violated

across all possible actions, indicating that the non-dilemma portion of the Self-driving vehicle’s

decision-making will be unable to cope with the consequences of all possible actions and that

ethical deliberation will be required for the Self-driving vehicle to act in an acceptable manner.

Harm is defined as the unpleasant consequences that a person experiences because of colliding

with another road user, regardless of the type of collision that occurred. Below are the

responsibilities of Self-driving vehicles in relation to other road users:

 It is critical that the lives of the passengers are not jeopardised in any way.

 It is not acceptable to put the lives of road users and those in the surrounding

environment at danger.

 It is essential to follow all traffic regulations.

119

It is important to note that both the first and second criterion apply to interactions between

other road users and the self-driving vehicle in question. Vehicles are represented as rectangles,

whilst humans are represented as squares, to make their implementation as simple as possible.

It is judged that a collision has occurred if these structures come into touch with one another

because of the performance of a certain activity. Based on the findings of (de Moura et al 2010),

a safe border may be established around the self-driving vehicle to prohibit the execution of

actions that would eliminate the possibility of breaking without swerving to avoid an accident

from occurring. This circumstance would not necessarily be deemed a conundrum that needed

to be resolved since there are other viable choices available.

So far, there has been no concern given to the compliance with traffic rules and regulations.

The vehicle, on the other hand, should be cognizant of the interplay between ethical and legal

activity, which is a desirable characteristic in this context. Another way of putting it is that

where there is an inherent conflict between preventing human injury on the one hand and

complying to traffic laws on the other, it is better to prioritise avoiding the former over the

latter. Therefore, it is important to describe the MDP algorithm such that this priority may be

stated in a manner that is independent of the effect of the temporal discount rate on the priority

expression. Nevertheless, following a violation, the self-driving vehicle must return to a 'safe'

state to prevent a second collision from occurring as a direct result of the action it performed

in the first place. All activities result in a collision if this is the case, as determined by the

decision-making process of the self-driving vehicle.

Compliance with traffic rules from the outset of the self-driving vehicle's development is an

issue that has gotten little attention in the literature. Put another way, legal conformity presents

challenges related to the interpretation of laws that may be ambiguous, allow for exceptions,

or be internally inconsistent, and the resolution of all these challenges may necessitate the

application of common sense thinking to be successfully resolved (Rizaldi and Althoff 2015,

Prakken 2017). As a result of complying to traffic rules, it is important to include somewhat

abstract criteria, which are used in legislation to map real-world behaviour, into a self-driving

vehicle and, more broadly, into an autonomous system to ensure that it operates safely (Leenes

and Lucivero 2014, Boden, Bryson et al. 2017). In certain cases, such as (Esterle, Gressenbuch

et al. 2020), researchers have already attempted to incorporate some aspects of various traffic

codes particularly those relating to circulation and behaviour into a self-driving vehicle. Most

of these endeavours have been carried out utilising logic-based techniques to simulate

restrictions, with logic-based approaches representing just the procedural demands that are

commonly included in traffic regulations, as opposed to other approaches.

120

Consequently, while the obligation requiring traffic code observance is properly specified, it

may not be required to fully apply the whole traffic code to its full extent because of these

factors. To avoid going beyond the scope of this thesis and discussing the methods by which

all traffic codes should be implemented within a self-driving vehicle, a set of logical rules will

be used to represent the procedural rules that are present in each traffic code. This will avoid

going beyond the scope of this thesis and discussing the methods by which all traffic codes

should be implemented within a self-driving vehicle. If this set of criteria is followed, the self-

driving vehicle should be able to cruise in a legal way virtually all the time. In this part, we

will not discuss exceptions to the code or how to settle disagreements amongst rules, as they

are considered ethical decisions rather than legal decisions (even if ideally the procedures to

solve conflicts between rules present in traffic codes should be used where possible).

Consider the following logic rules in a straight-line domain, with no pedestrian strips or

semaphores, and a solid double line between each of the logic rules:

 Do not cross into the opposite lane of traffic unless necessary.

 Avoid parking your vehicle on the sidewalk.

 Drivers are not permitted to exceed the specified speed limit.

It should be noted that the previous example contains a simplification that is only valid in a

small number of unique instances. In general, the self-driving vehicle should be intended to

target the 4th or 5th level of automation in typical contexts, thus the real set of rules will be

considerably wider in scope than these three rules.

5.4.3 An Algorithm for Ethical Deliberation

All action that the self-driving vehicle can do is evaluated considering the collection of tasks

that have been specified. The ethical valence concept must still decide on which action to take

and which action to carry out if, at a certain point, there is no acceptable alternative available.

Specifically, it accomplishes this using two variables: valence and injury. It is comparable in

general terms to that of (Mittelstadt 2019) in that it takes into consideration world states as well

as decisions (formerly referred to as 'acts') and the repercussions of those decisions, as well as

the consequences of those decisions. For its part, our method differs somewhat from the others

in that it provides a quantification of the effects of prospective actions as well as the inclusion

of uncertainties in the execution of those acts, which is particularly essential.

121

5.4.3.1 Injury

It is necessary to take "injury" into account in ethical reasoning to estimate the danger for self-

driving vehicle occupants and other road users engaged in a hypothetical collision, and

therefore to establish whether they have a legal claim against the vehicle. To determine the

severity of an accident, for many years, the difference in velocity between two involved road

users (∆𝑣) has served as the key variable (Evans 1994, Evans 2001, Jurewicz, Sobhani et al.

2016, Organization 2017).

It is the bulk of vehicle crash research performed in the field of accident data that is used to

establish the function of (∆𝑣) in collision outcomes. This is because historical accident data is

easier to get by than current accident data. There are two metrics that may be used to evaluate

injury: the risk of fatality (as calculated by the risk of death calculator) and the Abbreviated

Injury Scale (AIS) (MacKenzie, Shapiro et al. 1985, Hsu, Wu et al. 2019). It is necessary to

consider not only fatal collisions but also collisions that can result in severe injury (referred to

as MAIS3+, which indicates that at least one injury in some region of the body is greater than

AIS3, on a scale that ranges from zero to six) in this context, so we will use the latter term.

Whenever the European Union measures road traffic accidents, this number is used as a

baseline to compare performance between member states (Weijermars, Bos et al. 2018).

Table 5.1: The collision threshold that is utilised in fatality collisions (∆𝑣)

Classification Contact point ∆𝒗 value (m/s) source

Pedestrian collision – 6.94 (Kröyer 2015)

Vehicle collision Rear 10.56 (Jurewicz, Sobhani et al.

2016)

 Front 7.78 (Jurewicz, Sobhani et al.

2016)

 Far side 6.39 (Jurewicz, Sobhani et al.

2016)

 Near side 5.56 (Jurewicz, Sobhani et al.

2016)

There are several different types of severe injury thresholds, all of which are included in table

5.1 above. Typically, an injury is deemed "severe" if it reflects an MAIS3+ injury risk of 10%

or more. Injury severity was calculated using definition of severe injury, which is more than 9

122

(defined as the squared sum of AIS for the three most seriously damaged body areas). This

definition is tougher than MAIS3+ and was used to compute the ISS for the pedestrian instance

as well. Insurance policies cover both the near-side (driver's side) and far-side (passenger's

side) of a lateral collision. It is applied the same penalty that is used for collisions between

vehicles when a single vehicle collides with another single vehicle. The data presented in

(Jurewicz, Sobhani et al. 2016) was collected by the National Highway Traffic Safety

Administration (NHTSA) and was previously published in (Bahouth, Graygo et al. 2014). It

considered injuries in the front seat, with a seat belt, without rollover, with a passenger age

ranging from 16 to 55, involving passenger vehicles and heavy vehicles, and it considered

injuries in the front seat, with a seat belt, without rollover, with a passenger age ranging from

16 to 55, Retrospective analysis has certain drawbacks, as will be discussed below. (Rosen,

Stigson et al. 2011) feel that the data is biased because it is being collected from a limited

number of nations. Aside from that, age is a key component in the pedestrian scenario (Kröyer

2015), and as a result, the distribution of age in the investigated population plays a role in the

resultant curve that is not considered in the analysis. In addition, underreporting of non-

dilemma cases (Hyder, Paichadze et al. 2017), estimation of collision velocities (Rosen,

Stigson et al. 2011), neglect of a vehicle's mass and geometry (Mizuno and Kajzer 1999, Martin

and Wu 2018), and the use of different methodologies to evaluate AIS scores (Weijermars, Bos

et al. 2018) all reduce the precision of this approach (Rosen, Stigson et al. 2011). Taking into

consideration contextual information is important since the preceding technique has limits

when applied to specific situations (even though it generalises well across a population). This

type of system may be used to simulate the collision interaction between two vehicles, where

the starting velocity of each vehicle is projected onto the axes n (normal to the contact plane

between the two vehicles) and t (tangential to the contact plane).

Evaluating the collision velocity was accomplished using the conservation of linear

momentum, which is represented in eq.5.3. It is represented by the variable 𝑣 , which reflects

the collision velocity for both road users (k and l), as expressed by the variable 𝑣. The masses

𝑚 and 𝑚 correspond to the entire mass of the road user (if it is a vehicle, then the vehicle's

mass plus the passengers' mass), while the velocities and impacts of k and l are represented by

𝑣
 and 𝑣

 respectively.

𝑚𝑣
 + 𝑚𝑣

 = (𝑚 + 𝑚) 𝑣 …………………………………… Equation (5.3)

123

Because a vehicle's mass is far greater than that of any pedestrians, we assume that there is no

change in the self-driving vehicle's velocity in accidents with those involved. Considering that

the most common factors used to predict damage for pedestrians are the kind of vehicle

involved (due to the height of bonnet leading edge) (Mizuno and Kajzer 1999, Lefler and

Gabler 2004) and the vehicle's collision velocity (Mizuno and Kajzer 1999), this simplification

was made. As a result, the ultimate velocity of the pedestrian is regarded to be identical to the

self-driving vehicles. It is the same rationale that is used for vehicle-to-vehicle collisions that

is used when a vehicle collides with a static object, with the exception that 𝑣 is set to zero

instead of one.

Eq.5.4 below defines harm as the quantification of the severity of an accident, which is the

result of the accident (Esterle, Gressenbuch et al. 2020). It is computed for each road user based

on the velocity variation caused by the collision, with the velocity at contact for the road user

𝑘, 𝑣
 , and the forward velocity 𝑣 as inputs. The coefficient of structural vulnerability (𝑣௩௨

 ,),

which is determined later in eq.5.4, is taken into consideration. This arrangement takes into

consideration the impact force as well as the structural susceptibility to such a force, among

other things.

ℎ (𝑠௧, 𝑠௧
ᇱ, 𝑎௧) = 𝑣௩௨

 ∙ (ฮ𝑣 − 𝑣
 ฮ) …………………………… Equation (5.4)

Whether or not two vehicles with varying dimensions and masses give the same level of

protection to their occupants is defined as compatibility (Mizuno and Kajzer 1999). In the

opinion of (Mizuno and Kajzer 1999, Petzoldt, Schleinitz et al. 2018), sport utility vehicles, for

example, are designed to protect their occupants while being hostile against other cars. For

pedestrians, the height of the bonnet leading edge explains why some cars are more dangerous

for pedestrians than others. This is because the site of harm is determined by whatever portion

of the body the vehicle contacts when it hits a person. According to (Crocetta, Piantini et al.

2015) pedestrian can impact the hood in a variety of locations, which alters the way they are

projected onto the ground, resulting in either more or lesser damage. 𝑐௩௨ is a constant that

reflects all the intrinsic features of a system or item (including its state). Preferably, one would

calculate ℎ (𝑠௧, 𝑠௧
ᇱ, 𝑎௧) using the same process used to determine the probability of MAIS3+

injury versus ∆𝑣 plot (logistic regression with weighting), but velocities at the impact 𝑣
 are

not available in publicly available databases of vehicle collisions, which makes this an

impractical option. Aside from that, it would be beneficial to categorise collisions according to

124

the type of vehicle involved (SUV, sedan, minivan, etc.) as well as the direction of the collision

(frontal collisions, near side collisions, far side collisions, against a static object, etc), which

are not always available in public databases. Because the determination of 𝑣
 for collisions is

the topic of itself, it is beyond the scope of this thesis to go into greater detail about it. A linear

function was used to simplify the ℎ (𝑠௧, 𝑠௧
ᇱ, 𝑎௧) = 𝑓 (𝑐௩௨, ∆𝑣) equation, and 𝑐௩௨ will be

estimated in the application section because of this.

5.4.3.2 Ethical Valences

The goal of a valence is to indicate the degree of social acceptability that is associated to the

claims of road users in the vehicle's surroundings, as stated in earlier sections. In this way,

certain road users' claims may be more or less "acceptable" to fulfil through the vehicle's action

option. The valences track various physical characteristics that are seen to carry social

importance, such as height, age, gender, helmet-wearing-cyclist, or stroller-pushing-adult, all

of which are detectable by the self-driving vehicle’s object classification algorithms in the

sense that they are rooted in the phenomenal signature of individuals. Importantly, the intensity

of these valences is determined by a sort of ranking or hierarchisation, as shown in table 5.2

below, which ties a road user's claim with a certain class or category of valence.

Table 5.2: Potential valence hierarchical structure

1st Highlight 2nd Highlight Categorization

Young (0 – 18) years Pedestrian A

Adult (18 – 65) years Pedestrian B

Old (65+) years Pedestrian C

Young Vehicle passenger D

Adult Vehicle passenger E

Old Vehicle passenger F

As a result, there might be more or fewer valence groups depending on the amount or detail of

the valence traits under examination. Two characteristics are utilised in this example: age and

road user type. According to new study, western cultures prefer to protect the young and

vulnerable (as indicated by their susceptibility to injury) in self-driving vehicle collisions

(Awad, Dsouza et al. 2018). Considering the findings, the category was devised. When there

125

are a lot of people, automobiles, or pedestrians, the entity with the most users and highest

categorisation gets priority. When comparing a self-driving vehicle with passengers D and E

to one with passengers D and F, the latter has a higher valence. When the valence factors are

limited to a bare minimum or are clear (as in the example above), the likelihood of numerous

road users having the same valence but competing claims increases dramatically. In this sense,

there may be situations when determining the level of harm is the most important factor in

selecting what action to take. In these cases, the vehicle satisfies the strongest claim in its

surroundings, protecting the person whose welfare is jeopardised the greatest, either because

of a dangerous situation (high velocity difference) or because of a vehicle vulnerability

(detected by the structural vulnerability constant). The operational moral profile, which

governs the claim mitigation method between passengers in cars and road users outside of

them, complicates this basic maximisation of welfare. Table 5.3 shows two possible moral

profiles for achieving this aim. The danger is deemed substantial if the value of ∆𝑣 exceeds the

limits set out in table 5.1.

Table 5.3: Potential moral profiles for a self-driving vehicle

Moral profiles Interpretation

Altruism with a low risk

tolerance

If the risk to the self-driving vehicle occupant is not

extreme, then protects the road user with the highest

valence.

Egoism at the threshold If the risk to the road user with the highest valence is not

extreme, then protects the self-driving vehicle occupant.

These profiles don't quite match any established moral theories, and they reflect a wider range

of egoistic rationality perspectives than any traditional moral theories (Hedden 2015). These

compromises are meant to represent differing degrees of agreement between the claims and

valences of self-driving vehicle occupant and those of other agents operating inside the self-

driving vehicle's environment. These profiles typically confirm the view that a certain degree

of morally praiseworthy bias in self-driving vehicle behaviour is conceivable, and possibly

even desirable, to best correspond with user expectations or earn user confidence, according to

(Lin 2016, Martin 2019). Furthermore, the profiles in table 5.3 are not exhaustive, and they

depict somewhat factually confusing interpretations of the numerous different profile types that

the Ethical Valence Concept may accommodate. In these versions, the damage calculation is

126

the major element that informs the different repercussions of the self-driving vehicle's actions,

which are based on trade-offs between the passenger's claims and those of other actors in the

vehicle's surroundings.

5.4.3.3 Consideration of Ethical Issues

After being informed on the values and hazards, the self-driving vehicle can decide on what to

do. The operational moral profile, which is discussed in further detail below, influences this

decision greatly. Each moral profile, as shown in the example, reflects a different style of

deliberation, as in table 5.4 below. It's worth repeating that the moral profiles and, for that

matter, ethical deliberation itself appear in the vehicle's tactical planning only when it's in a

dilemma situation; otherwise, they're missing. Aside from that, clear, goal-oriented planning is

in place, with standard decision-making criteria being used. Each profile calls for a different

approach to implementation.

Table 5.4: Technique for optimization depending on the selected moral profile.

Moral profiles Consideration

Altruism with a low risk

tolerance

Reduce the projected injury from the highest-valence road

user until the self-driving vehicle's collision becomes

serious.

Egoism at the threshold Reduce the projected injury to the self-driving vehicle

occupant until the risk to the highest-valence road user

becomes serious.

The implementation process considers the self-driving vehicle state (𝑠, which is represented

by (𝑥, 𝑦) position, 𝜃 direction, 𝑣 velocity, and ∅ steering angle), the environment state (𝑒,

which includes the location and velocity of all agents in the environment), the highest road user

valence (η), and the maximum ∆𝑣 as the input. The action that should be performed (𝑎) is the

output in this example using the altruism with a low risk tolerance as a case study. To begin,

calculate all damage measures for all potential actions and subsequent states (represented by

the state space 𝑠ᇱ, which is made up of states reached following a single transition). The

decisional horizon is comparable to one transition in this situation because the accident will

occur shortly afterward. Using equations 5.3 & 5.44 as the first step. The self-driving vehicle

is solely responsible for the behaviour of one road user in an ideal accident. Transition

127

uncertainty, represented as, 𝑝(𝑠
ᇱ|𝑠, 𝑎୨), is used to account for all other road users, given the

current state (𝑠) and an action (𝑎୨).

1st algorithm: Estimation of all potential damages

If all possible outcomes result in a velocity differential larger than ∆𝑣 (the road user's velocity

minus the self-driving vehicle's expected velocity), the accident is regarded extreme, and the

self-driving vehicle's passenger's safety takes precedence over the road user's safety. In the

setting of the profile under evaluation, the selected action decreases the expected damage to

the self-driving vehicle. The value of (∆𝑣) varies based on the sort of collision, to emphasise

(as seen by the values in table 5.1). The expected harm (ℎ௫(𝑠, 𝑎୨), 𝑎𝑠 𝑖𝑛 𝑒𝑞. 5.5) is derived

using the transition probability, which provides a mean harm value for a road user - k, given

that many states 𝑠
ᇱ might be reached for a single state 𝑠 and action 𝑎, resulting in distinct

collisions. In this case, it is thought that the position of all road users, as well as the surveillance

of the self-driving vehicle's state, are optimal (no uncertainty in these measures).

ℎ௫
 (𝑠, 𝑎) = ∑ 𝑝(𝑠

ᇱ|𝑠, 𝑎)ℎ(𝑠, 𝑠
ᇱ, 𝑎௧)௦

ᇲ∈௦
 …………………………… Equation (5.5)

It's likely that the transition probability indicates uncertainty in assessing other road users'

behaviour, among other sources of uncertainty in the circumstance. The transition probability

will have static values that are dependent on the action and the current situation since the MDP

approach given here does not bother itself with such calculations. Each action has an 80%

probability of success and a 20% risk of moving the self-driving vehicle to one of the

neighbouring states (10% for each). The expectation of r (𝑠, 𝑎, 𝑠ᇱ, 𝑜) over all 𝑠ᇱ and 𝑜 is needed

to make optimal decisions.

1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑖 ∈ 𝐴 do

2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑖
′ ∈ 𝑆′ do

3 𝑣𝑓 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑓𝑖𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠 (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 5.3)
4 ℎ𝑘 (𝑠𝑖, 𝑠𝑖

′ , 𝑎𝑡) ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 ℎ𝑎𝑟𝑚 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟𝑜𝑎𝑑 𝑢𝑠𝑒𝑟𝑠
(𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 − 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5.4)

5 𝑒𝑛𝑑
6 𝑒𝑛𝑑

128

Figure 5.2: State transition uncertainty for POMDP

For extreme activities, success is more likely than failure, with a probability of 90% versus a

probability of 10% (as seen in figure 5.1). If the set of allowed actions according to ∆𝑣, 𝐴 is

not empty, the selected action is the one that minimises the anticipated harm to the road user

while maintaining the maximum valence for the actions ∈ 𝐴. When there are several minimal

actions to choose from, the one that decreases the self-driving vehicle's expected harm is chosen

as shown in below in the 2nd algorithm.

2nd algorithm: Decision Making

While this position may look severe when compared to other options, such as the possibility of

minimising both values, it is quite reasonable. The goal of achieving both damage reduction

and road user harm minimising at the same time is not difficult to attain. However, in our

1 𝐴η ← 𝑎𝑙𝑙 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝐴 𝑡ℎ𝑎𝑡 (ฮ𝑣𝑓 − 𝑣𝑖
𝐴𝑉 ฮ ≤ ∆𝑣)

2 𝑖𝑓 𝐴η = ∅ 𝑡ℎ𝑒𝑛
3 𝑎η = 𝑎𝑟𝑔𝑚𝑖𝑛𝑎∈𝐴 ℎ𝑒𝑥𝑝

𝐴𝑣 (𝑠𝑖 , 𝑎𝑗)
4 𝑒𝑙𝑠𝑒
5 𝑎c ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑎∈𝐴η

 ℎ𝑒𝑥𝑝
𝑅𝑈 (𝑠𝑖 , 𝑎𝑗)

6 𝑖𝑓 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑎𝑐 𝑒𝑥𝑖𝑠𝑡𝑠 𝑡ℎ𝑒𝑛
7 𝑎η = 𝑎𝑟𝑔𝑚𝑖𝑛𝑎c

 ℎ𝑒𝑥𝑝
𝐴𝑣 (𝑠𝑖, 𝑎𝑐)

8 𝑒𝑙𝑠𝑒
9 𝑎η = 𝑎c
10 𝑒𝑛𝑑
11 𝑒𝑛𝑑

129

scenario, both moral profiles are in direct conflict with one another to maximise the safety of

one road user over the other, even though there are an endless number of compromises that

may be foreseen between the self-driving vehicle and road users. When considering the profile

of egoism at the threshold, the only difference between it and the other profiles would be the

action deliberation process represented by the 2nd algorithm.

5.4.3.4 Ethical Valence Concept in a Hypothetical Situation

A simplified dilemma situation in an urban context is shown in figure 5.2, which demonstrates

how to cope with it. In comparison to the other options, three acts stand out: swerving to the

left and colliding with a yellow vehicle; continuing straight and colliding with a pedestrian;

and swerving to the right and colliding with the wall. This is accomplished by searching the

action space, and in this case just three actions have statistically significant differences in their

consequences. Therefore, to aid in the decision-making process, the ethical valence concept

must be turned on and engaged.

Scenario 1 displays the collision simulation while the self-driving vehicle is in its initial

condition (10, 3.25, 0, 15, 0). The collision simulation is as shown in figure 5.3

(𝑥, 𝑦 coordinates of the vehicle, direction, longitudinal velocity, and steering angle). For

simulating the self-driving vehicles' behaviour, a non-holonomic single-track model developed

by (Qian et al. 2016) was used. The collision happens during a decision iteration, which divides

the self-driving vehicle's trajectory into periods of 0.5seconds.

To estimate the vulnerability constant, 𝑐௩௨, the data from (Kröyer 2015, Jurewicz, Sobhani et

al. 2016) are combined with eq. 5.6 below, 𝑝𝑟𝑜𝑏ெூௌଷା (∆𝑣), where ProbMAIS3+ (∆𝑣) is the

probability of MAIS3+ injury given a ∆𝑣, or the difference between the starting and ending

velocities prior to the collision, respectively. As previously stated in the preceding sections,

this is an ineffective approach of accounting for such circumstances, but it will suffice for the

purposes of the example being offered.

𝑐௩௨ =
ଵ

ଵି ಾಲೄయశ (∆௩)
 ……………………… Equation (5.6)

The preference order is shown in table 5.5, based on the valences for each road user in fig.

5.3. In scenario 1, ∆𝑣 equals 23.1m/s for a self-driving vehicle-vehicle (frontal collision),

130

14.1m/s for a self-driving vehicle-pedestrian (pedestrian collision), and 14.2m/s for a self-

driving vehicle-wall (frontal collision).

Figure 5.3: Potential dilemma situation

Figure 5.4: Simulation of a collision in scenario 1.

131

Comparing these values to the constraints established in table 5.1, it is possible to infer that all

acts pose a significant danger to the self-driving vehicle as well as to other road users on the

highway. Due to the altruism with a low risk tolerance profile being followed, the pedestrian

would be run over, since the self-driving vehicle must be prioritised (∆𝑣 is over the limit,

therefore the self-driving vehicle's damage is decreased, choosing the value highlighted in red

from table 5.6; such an approach is seen in the 2nd algorithm), and the pedestrian would be

murdered in the process. Every possible collision scenario is illustrated in table 5.6, along with

the resulting damage and expected damage (total of damages weighted by transition probability

as in equation 5.5) that were computed for each self-driving vehicle’s potential collision.

Table 5.5: Valence Classification

Road user Valences Classification

Self-driving vehicle C, F, F 3°

Vehicle C, D 2°

Pedestrian A 1°

Table 5.6: The harm to self-driving vehicle for each potential collision in scenario 1

Collision type Self-driving vehicle’s harm Self-driving vehicle’s expected

harm

Vehicle collision 8.77 7.02

Pedestrian collision 0 2.46

Wall collision 15.80 12.64

As demonstrated in table 5.5, if the self-driving vehicle is programmed to have egoism at the

threshold as its operational moral profile, a collision with a wall would be the favoured choice

since the valences of both the pedestrian and the vehicle are greater than they are for a collision

with another object (because both ∆𝑣 are above the limit, the expected harm of road users with

valences higher than the self-driving vehicle is minimised, as shown in red values from table

5.7). For instance, as demonstrated in table 5.7, the nominal road user's harm is provided in the

first column, while the predicted vehicle harm and pedestrian harm are provided in the second

and third columns, respectively. The predicted vehicle harm and pedestrian harm are attained

using the transition probability from equation 5.5 and shown in the first and second columns,

respectively. Considering that the wall is a static object, both the actual harm it does and the

132

expected harm it causes are equal to zero (only human safety is considered; historical, cultural,

or affective values of a static object such as a tree or a monument are ignored). The relative

locations of road users are shown in figure 5.3, and table 5.11 demonstrates that in scenario 2,

where the initial self-driving vehicle's state is (10, 3.25, 0, 7.5, 0), damages and velocity

variations would cause the selected actions to become unintended consequences. Collisions

involving pedestrians result in velocity differences of 14.87m/s, 5.63m/s, and 6.07m/s. This

shows that in this case, neither the pedestrian nor the wall would result in a serious threshold

crash.

However, using altruism with a low risk tolerance as the operative moral profile results in the

wall collision action being executed (in this case, the expected harm of the road user with the

highest valence is minimised), resulting in the action highlighted in red value of table 8, while

using egoism at the threshold as the operative moral profile results in the pedestrian collision

action being executed (in this case, the expected harm of the self-driving vehicle is minimised),

resulting in the action highlighted in red value of table 8 and using the tables 5.8 and 5.9 are

structurally similar to tables 5.6 and 5.7, respectively, in terms of their organisation.

Table 5.7: The harm to road users for each potential collision in scenario -1

Collision type Road user’s h Vehicle’s ℎ௫ Pedestrian ℎ௫

Vehicle collision 16.80 15.12 1.57

Pedestrian collision 15.71 1.68 12.57

Wall collision 0 0 1.57

Table 5.8: Quantification of collisions for scenario -2

Collision type Self-driving vehicle’s harm Self-driving vehicle’s expected

harm

Vehicle collision 5.10 4.08

Pedestrian collision 0 1.12

Wall collision 6.07 4.86

133

Table 5.9: Quantification of collisions for other road users in scenario-2

Collision type Road user’s h Vehicle’s ℎ௫ Pedestrian ℎ௫

Vehicle collision 10.85 9.76 0.56

Pedestrian collision 5.63 1.08 4.51

Wall collision 0 0 0.56

Table 5.10: The initial state of road users

Road user States Scenario 1 Scenario 2

Vehicle (𝑥, 𝑦, 𝜃, 𝑣, ∅) (25, 6.75, 180, 15, 0) (22, 6.75, 180, 7.5, 0)

Pedestrian (𝑥, 𝑦, 𝜃, 𝑣) (17, 3, 90, 1.5) (17, 3, 90, 1.5)

Wall (𝑥, 𝑦, 𝜃, 𝑣) (15, 0.75, 0, 0) (15, 0.75, 0, 0)

Figure 5.5: Simulation of a collision for scenario 2.

134

5.5 Summary

While the research detailed in this chapter, as well as the moral and computational approach

that reinforces it, should not be the "ultimate" normative answer to the problem of behaviour

in self-driving vehicles, they really constitute that solution. However, as will be described

further below, there are a variety of reasons why the ethical valence concept may fall short of

the expectations of some stakeholders involved in the development of a self-driving vehicles.

The ethical valence concept distinguishes between various road users in several ways. For

example, it distinguishes between "passengers" and other vulnerable road users, or it

distinguishes between the types of vehicles that might be involved in an ethical dilemma

situation. It is possible that this positioning will be viewed negatively by some because it does

not adhere to some of the prominent normative doctrines that have been proposed in recent

years, the majority of which condemn the practise of discrimination between potential victims

of a self-driving vehicle's actions (Luetge 2017). The ambiguity around the valences in question

may serve to increase this concern even further. In what ways can we ensure that the

information they get is accurate and representative of the information we collect? So, what

should we do in the case that the information we've obtained threatens to jeopardise civic or

human rights? In the future years, it is projected that the design of the decision process for

highly autonomous systems, such as self-driving vehicles, would continue to be a heated topic

of discussion. As a result, a high degree of interdisciplinary cooperation between scientific

fields that have traditionally enjoyed independence will be required, as will a steep learning

curve on the part of users, governments, and other institutions in the societies in which these

technologies will be implemented. Although it appears that when technology makes

autonomous decisions that have implications for human lives and well-being, designers have

an additional responsibility to ensure that the outcomes are acceptable, ethical, and respectful

rather than just efficient. It is possible to handle a component of this problem through the

application of law, and a bigger percentage of the problem can be addressed through ethical

considerations and moral philosophy. However, the final judgments must be representative of

the people who will be affected by them, as well as their views, claims, and perceptions of what

is right. To address this multi-disciplinary and urgent requirement for public engagement and

acceptance, the Ethical Valence Concept seeks to provide the foundation for the development

of an ethical and acceptable self-driving vehicle for use on the world's highways and other

public transportation systems. The major goal of this theory is to do just that.

135

Chapter 6: Conclusion and Further work

6.1 Conclusion

Self-driving vehicle decision-making algorithms are a common design choice that many

engineers overlook because of the ethical ambiguity they introduce into the process. For

platooning autonomous cars, the following distance appears to be an easy decision. But it could

affect fuel efficiency, response time, and even the flow of nearby traffic. For engineers, this

thesis provides a framework for understanding how these factors and various algorithm

implementations might impact vehicle behaviour and society in general.

As a result, in many circumstances, engineering decisions are centred on a single objective,

such as safety. To ensure the safety of the vehicle when driving laterally, Chapter 3 focuses on

modelling steering system delays in a decision-making algorithm. Various technical trade-offs,

such as algorithm complexity and implementation overhead, must be considered in this

endeavour.

The two techniques proposed in this thesis for a self-driving vehicle decision-making process

that take ethical issues into account are milestones in the direction of better engineers and better

self-driving vehicle decision-making algorithms. The first technique goes straight to

philosophy, using connections between philosophical and mathematical frameworks to support

design decisions for a self-driving vehicle steering control system. The use of rule-based

mathematical techniques such as set theory and constraints may be justified using deontological

reasoning, a philosophy founded on rules.

The use of cost-based mathematical paradigms, such as optimization, can be explained using

consequential reasoning, a cost-based philosophy. Model predictive control (MPC), which

solves a constrained optimization problem, is one strategy for leveraging the benefits of both

deontology and consequentialism, according to chapter 3. Because the choice of weights might

lead to a range of vehicle behaviours, a third philosophy known as virtue ethics is used to gain

a better understanding of the situation. Engineers can use this mapping to justify their design

decisions in terms of cost, constraint, and weight when building a self-driving vehicle decision-

making algorithm.

Engineers may be better qualified to ethically programme a self-driving vehicle decision-

making algorithm if a diverse range of stakeholders (preferably representative of a society) and

explicit consideration of human values are included in the design process. The stakeholders

and the values that have been established give advice to the engineers and bring viewpoints to

136

the table that they may not have considered at the outset in isolation. In Chapter 4, a modified

value-sensitive design technique is used to link human values with engineering standards. To

help in the accomplishment of the stated human values, many analysis approaches might be

used. This method is demonstrated with an example design challenge of a self-driving vehicle

speed control system for travelling over a pedestrian crossing. Even if the implementation is

ethically designed, there may be a variety of design possibilities to choose from. Extra analysis,

such as Pareto optimization, can help with communication to a larger set of stakeholders, as

well as additional rationale resources, when deciding which design point to deploy.

6.1.1 Contributions

This thesis contributes the following:

 An MPC formulation to account for steering actuation latency on a self-driving

vehicle platform. The formulation made use of straightforward, computationally

efficient models to enhance a self-driving vehicle's capability (Chapter 3).

 Incorporation of traffic regulations governing lane dividers and crosswalks in an

MPC and POMDP respectively. The traffic regulation (§21460) is incorporated into

the formulation of the model predictive steering control to examine the adherence of an

autonomous vehicle to double yellow lines when manoeuvring around an obstacle

(Chapter 3). The speed of an autonomous vehicle passing over a crosswalk is controlled

by the traffic regulation (§21950), which is integrated in the model of a POMDP

(Chapter 4).

 A mathematical mapping of philosophical principles. The philosophical principles of

deontology, consequentialism, and virtue ethics are mapped to the mathematical

concepts of constraints, costs, and choice of weights (Chapter 3). Engineers can better

understand the consequences of using a cost, constraint, or even weights by using this

method.

 Designing ethical decision-making algorithms using a modified value sensitive

design technique. VSD is used to identify human values that may be involved in the

design of a speed controller for crossing scenarios. Iterating through the design task

reveals conflicts between the values until the technology is created to match with the

specified human values.

 Implementation of an ethical valence concept for claim mitigation in a self-driving

decision-making algorithm. Ethical valence concept describes self-driving vehicle

137

decision-making as a sort of claim mitigation where various road users hold different

moral claims on the vehicle's behaviour, and the vehicle must mitigate these claims as

it makes judgments about its surroundings. Actions' consequent damage and

uncertainty are assessed and accounted for, leading to an ethical implementation that is

realistic. These algorithms are designed to accommodate a variety of "moral

perspectives" regarding what morality needs and what road users may anticipate,

providing an evaluation tool for a self-driving vehicle's ethical decision-making

process.

6.2 Further work

Ethical implications should be addressed at every stage of the self-driving vehicle development

process, from sensors to perception algorithms to testing and deployment. While this thesis

focuses on the decision layer of the self-driving vehicle stack, human values may be influenced

at all levels of the stack.

6.2.1 Generalizability

Scenarios were used to show the effectiveness of the methodologies discussed in the thesis. It

is thus unknown how successfully these techniques will scale or generalise to the actual world

since, as discussed in Chapter 5, summary, the real world contains an infinite number of

possibilities to deal with. Scalability and generalizability are expected to be essential

considerations for those building self-driving vehicles and integrating them into the design

process might assist in explaining the viability of such a concept.

Some strategies exist for scaling single-user problem formulations, even if scalability was not

considered at the outset of the design. For instance, a speed control POMDP for an autonomous

vehicle to travel along a roadway with a single pedestrian nearby with an uncertain purpose

has been proposed by (Christensen and Gomila 2012, Sigaud and Buffet 2013). For each

pedestrian encountered in the experiment, they launched a new instance of the POMDP. Each

instance produces a result. The final course of action was the most cautious of the bunch. Utility

fusion (Martinez, Heucke et al. 2017) is another method in which the utilities of each

encountered pedestrian are added together or decreased. The policy's final action is taken after

the utilities are reconciled.

138

6.2.2 Utilizing VSD to Quantify Engineering Improvements

Engineers' engineering practises might be transformed through value-sensitive design. So, the

programmers are compelled to evaluate how the conditional statement or reward function they

are coding will contribute to achieving goals outlined in the conceptualization. There are no

quantitative measurements here. Such an approach should be evaluated by a user research done

by engineers. The identical design task might be undertaken by two different teams of

engineers: one that is taught about VSD, the other that is not. An interview with engineers can

be conducted after completing a design task so that their thoughts and justifications can be

documented.

6.2.3 VSD and Philosophical Principles

The philosophical framework technique, despite its limitations in Chapter 3, might nevertheless

be useful in the engineering process. Even though the focus of Chapter 4 was on engineering

analysis, a more thorough philosophical investigation may be presented as well. An engineer

who understands the link between these philosophical and mathematical frameworks can

perform some exploratory analysis or assess basic design consequences. Philosophers, on the

other hand, are individuals who are genuinely trained to make moral judgments. Therefore,

VSD might be a fantastic approach to further involving them in the design process by allowing

them to do a philosophical analysis concurrently with the technical study. (For a legal analysis,

a similar argument may be made.)

6.2.4 Strategy

Government authorities recognise the critical role of ethical considerations in the development

of autonomous vehicle technology (Lin, Abney et al. 2017, Organization 2017). This thesis

asserts that a technique such as VSD may assist policymakers and regulators. This is primarily

due to a conversation focused on human values. However, it is critical to involve policymakers

directly to ascertain if they find this approach effective.

139

6.2.5 Prospects

Society must be able to participate in the discussion about self-driving vehicle technology

before it can reap the advantages of it. Engaging a wider set of stakeholders allows for more

diverse viewpoints to be incorporated into the design process. As a result, everyone will benefit

from enhanced technological capabilities.

140

Reference

Ahrens, D. M. (2020). "RETROACTIVE LEGALITY." The Journal of Criminal Law and Criminology (1973-)
110(3): 379-440.

Alfano, M., et al. (2014). "Experimental moral philosophy."

Allam, Z. and Z. A. Dhunny (2019). "On big data, artificial intelligence and smart cities." Cities 89: 80-
91.

Althoff, M., et al. (2017). CommonRoad: Composable benchmarks for motion planning on roads. 2017
IEEE Intelligent Vehicles Symposium (IV), IEEE.

Appiah, K. A. (2008). Experiments in ethics, Harvard University Press.

Applbaum, A. I. (2000). Ethics for adversaries, Princeton University Press.

Applin, S. A. and M. D. Fischer (2015). New technologies and mixed-use convergence: How humans
and algorithms are adapting to each other. 2015 IEEE International Symposium on Technology and
Society (ISTAS).

Aripin, M. K., et al. (2014). A Review of Active Yaw Control System for Vehicle Handling and Stability
Enhancement.

Arkin, R. C. (2016). "Ethics and autonomous systems: Perils and promises [point of view]." Proceedings
of the IEEE 104(10): 1779-1781.

Arntz, M., et al. (2016). "The risk of automation for jobs in OECD countries: A comparative analysis."

Arslan, O., et al. (2017). Sampling-based algorithms for optimal motion planning using closed-loop
prediction. 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE.

Awad, E., et al. (2018). "The moral machine experiment." Nature 563(7729): 59-64.

Bahouth, G., et al. (2014). "The benefits and tradeoffs for varied high-severity injury risk thresholds
for advanced automatic crash notification systems." Traffic injury prevention 15(sup1): S134-S140.

Bai, H., et al. (2015). Intention-aware online POMDP planning for autonomous driving in a crowd. 2015
ieee international conference on robotics and automation (icra), IEEE.

Bayerlein, H., et al. (2018). Trajectory optimization for autonomous flying base station via
reinforcement learning. 2018 IEEE 19th International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), IEEE.

141

Beal, C. E. and J. C. Gerdes (2012). "Model predictive control for vehicle stabilization at the limits of
handling." IEEE Transactions on Control Systems Technology 21(4): 1258-1269.

Berntorp, K., et al. (2019). "Motion planning of autonomous road vehicles by particle filtering." IEEE
Transactions on Intelligent Vehicles 4(2): 197-210.

Bharadwaj, S., et al. (2021). "Decentralized control synthesis for air traffic management in urban air
mobility." IEEE Transactions on Control of Network Systems.

Binns, R. (2018). "What Can Political Philosophy Teach Us about Algorithmic Fairness?" IEEE Security
& Privacy 16(3): 73-80.

Bobier, C. G. and J. C. Gerdes (2013). "Staying within the nullcline boundary for vehicle envelope
control using a sliding surface." Vehicle System Dynamics 51(2): 199-217.

Boden, M., et al. (2017). "Principles of robotics: regulating robots in the real world." Connection
Science 29(2): 124-129.

Bonnefon, J.-F., et al. (2019). "The trolley, the bull bar, and why engineers should care about the ethics
of autonomous cars [point of view]." Proceedings of the IEEE 107(3): 502-504.

Borning, A. and M. Muller (2012). Next steps for value sensitive design. Proceedings of the SIGCHI
conference on human factors in computing systems.

Bouton, M., et al. (2018). Scalable decision making with sensor occlusions for autonomous driving.
2018 IEEE international conference on robotics and automation (ICRA), IEEE.

Brazell, S., et al. (2019). "A Machine-Learning-Based Approach to Assistive Well-Log Correlation."
Petrophysics 60(04): 469-479.

Brown, M. and J. C. Gerdes (2019). "Coordinating tire forces to avoid obstacles using nonlinear model
predictive control." IEEE Transactions on Intelligent Vehicles 5(1): 21-31.

Brüdigam, T., et al. (2018). "Legible Model Predictive Control for Autonomous Driving on Highways."
IFAC-PapersOnLine 51(20): 215-221.

Cai, J., et al. (2018). "Feature selection in machine learning: A new perspective." Neurocomputing 300:
70-79.

Carvalho, A., et al. (2015). "Automated driving: The role of forecasts and uncertainty—A control
perspective." European Journal of Control 24: 14-32.

142

Chae, H., et al. (2017). Autonomous braking system via deep reinforcement learning. 2017 IEEE 20th
International Conference on Intelligent Transportation Systems (ITSC).

Chen, K., et al. (2019). "Active steering control for autonomous vehicles based on a driver-in-the-loop
platform: A case study of collision avoidance." Proceedings of the Institution of Mechanical Engineers,
Part I: Journal of Systems and Control Engineering 233(10): 1422-1437.

Chen, S., et al. (2019). "A reinforcement learning based approach for multi-projects scheduling in cloud
manufacturing." International Journal of Production Research 57(10): 3080-3098.

Cheng, S., et al. (2019). "Longitudinal collision avoidance and lateral stability adaptive control system
based on MPC of autonomous vehicles." IEEE Transactions on Intelligent Transportation Systems
21(6): 2376-2385.

Christensen, J. F. and A. Gomila (2012). "Moral dilemmas in cognitive neuroscience of moral decision-
making: A principled review." Neuroscience & Biobehavioral Reviews 36(4): 1249-1264.

Claussmann, L., et al. (2019). "A review of motion planning for highway autonomous driving." IEEE
Transactions on Intelligent Transportation Systems 21(5): 1826-1848.

Conway, P., et al. (2018). "Sacrificial utilitarian judgments do reflect concern for the greater good:
Clarification via process dissociation and the judgments of philosophers." Cognition 179: 241-265.

Crocetta, G., et al. (2015). "The influence of vehicle front-end design on pedestrian ground impact."
Accident Analysis & Prevention 79: 56-69.

Cunneen, M., et al. (2020). "Autonomous vehicles and avoiding the trolley (dilemma): vehicle
perception, classification, and the challenges of framing decision ethics." Cybernetics and Systems
51(1): 59-80.

Cunningham, A. G., et al. (2015). MPDM: Multipolicy decision-making in dynamic, uncertain
environments for autonomous driving. 2015 IEEE International Conference on Robotics and
Automation (ICRA).

Cushman, F., et al. (2006). "The role of conscious reasoning and intuition in moral judgment: Testing
three principles of harm." Psychological science 17(12): 1082-1089.

Damm, L. (2012). Moral Machines: Teaching Robots Right from Wrong, Routledge. 25: 149-153.

Datta, S. (2019). 3-Dimensional Path Planning of An Unmanned Aerial Vehicle, Texas A&M University-
Kingsville.

Davies, S. (1996). "Multidimensional triangulation and interpolation for reinforcement learning."
Advances in neural information processing systems 9: 1005-1011.

143

Dechesne, F., et al. (2019). "AI & Ethics at the Police: Towards Responsible use of Artificial Intelligence
in the Dutch Police." AI & Ethics at the Police: Towards Responsible use of Artificial Intelligence in the
Dutch Police.

Del Giudice, M. and B. J. Crespi (2018). "Basic functional trade-offs in cognition: An integrative
framework." Cognition 179: 56-70.

Demirel, B., et al. (2017). "Optimal control of linear systems with limited control actions: Threshold-
based event-triggered control." IEEE Transactions on Control of Network Systems 5(3): 1275-1286.

Dempsey, M. M. (2016). "Against Liability: Toward a Reasons-Based Account of Self-Defense." Against
Liability: A Reasons-Based Account of Self-Defense, in Ethics of Self Defense, Christian Coons and
Michael Weber, eds.(Oxford University Press, 2016), Villanova Law/Public Policy Research
Paper(2016-1033).

Deori, L., et al. (2018). "4-D flight trajectory tracking: A receding horizon approach integrating
feedback linearization and scenario optimization." IEEE Transactions on Control Systems Technology
27(3): 981-996.

Di, X. and R. Shi (2021). "A survey on autonomous vehicle control in the era of mixed-autonomy: From
physics-based to AI-guided driving policy learning." Transportation research part C: emerging
technologies 125: 103008.

Dignum, V. (2017). "Responsible autonomy." arXiv preprint arXiv:1706.02513.

Dignum, V. (2019). Responsible artificial intelligence: how to develop and use AI in a responsible way,
Springer Nature.

Dogan, E., et al. (2020). "Ethical issues concerning automated vehicles and their implications for
transport." Policy Implications of Autonomous Vehicles. Elsevier, The Netherlands: 215-233.

Du, X. and K. K. Tan (2015). "Autonomous Reverse Parking System Based on Robust Path Generation
and Improved Sliding Mode Control." IEEE Transactions on Intelligent Transportation Systems 16(3):
1225-1237.

Enke, B. (2020). "Moral values and voting." Journal of Political Economy 128(10): 3679-3729.

Epting, S. (2019). "Automated vehicles and transportation justice." Philosophy & Technology 32(3):
389-403.

Erlien, S. M., et al. (2016). "Shared Steering Control Using Safe Envelopes for Obstacle Avoidance and
Vehicle Stability." IEEE Transactions on Intelligent Transportation Systems 17(2): 441-451.

144

Esterle, K., et al. (2020). Formalizing traffic rules for machine interpretability. 2020 IEEE 3rd Connected
and Automated Vehicles Symposium (CAVS), IEEE.

Evans, L. (1994). "Driver injury and fatality risk in two-car crashes versus mass ratio inferred using
Newtonian mechanics." Accident Analysis & Prevention 26(5): 609-616.

Evans, L. (2001). "Causal influence of car mass and size on driver fatality risk." American Journal of
Public Health 91(7): 1076.

Evans, N. (2017). "Virtue Ethics in Knowledge Management." Handbook of Virtue Ethics in Business
and Management: 1231-1243.

Faulhaber, A. K., et al. (2019). "Human decisions in moral dilemmas are largely described by
utilitarianism: Virtual car driving study provides guidelines for autonomous driving vehicles." Science
and Engineering Ethics 25(2): 399-418.

Friedman, B., et al. (2013). Value sensitive design and information systems. Early engagement and
new technologies: Opening up the laboratory, Springer: 55-95.

Frischmann, B. and E. Selinger (2018). Re-engineering humanity, Cambridge University Press.

Funke, J., et al. (2015). Prioritizing collision avoidance and vehicle stabilization for autonomous
vehicles. 2015 IEEE Intelligent Vehicles Symposium (IV).

Funke, J., et al. (2017). "Collision Avoidance and Stabilization for Autonomous Vehicles in Emergency
Scenarios." IEEE Transactions on Control Systems Technology 25(4): 1204-1216.

Gallardo, D. I., et al. (2017). "A simplified estimation procedure based on the EM algorithm for the
power series cure rate model." Communications in Statistics-Simulation and Computation 46(8): 6342-
6359.

Gao, Y., et al. (2014). A tube-based robust nonlinear predictive control approach to semiautonomous
ground vehicles.

Gao, Y., et al. (2010). "Predictive Control of Autonomous Ground Vehicles With Obstacle Avoidance
on Slippery Roads." (44175): 265-272.

Garip, Z., et al. (2017). Path Planning for Multiple Mobile Robots Using A* Algorithm.

Ghazal, T. M., et al. (2021). "Internet of vehicles and autonomous systems with AI for medical things."
Soft computing: 1-13.

Giacomin, J. (2014). "What is human centred design?" The Design Journal 17(4): 606-623.

145

Gogarty, B. and M. Hagger (2008). "The laws of man over vehicles unmanned: The legal response to
robotic revolution on sea, land and air." JL Inf. & Sci. 19: 73.

Goodall, N. J. (2014). "Ethical Decision Making during Automated Vehicle Crashes." Transportation
Research Record 2424(1): 58-65.

Graham, J., et al. (2011). "Mapping the moral domain." Journal of personality and social psychology
101(2): 366.

Gray, A., et al. (2013). Robust Predictive Control for semi-autonomous vehicles with an uncertain
driver model. 2013 IEEE Intelligent Vehicles Symposium (IV).

Gray, A., et al. (2013). Stochastic predictive control for semi-autonomous vehicles with an uncertain
driver model. 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013).

Gray, K., et al. (2012). "Mind perception is the essence of morality." Psychological inquiry 23(2): 101-
124.

Greene, J. and W. Sinnott-Armstrong (2008). "Moral psychology." The secret joke of Kant’s soul 3: 35-
80.

Grüne, L. and J. Pannek (2017). Nonlinear model predictive control. Nonlinear model predictive
control, Springer: 45-69.

Guanetti, J., et al. (2018). "Control of connected and automated vehicles: State of the art and future
challenges." Annual Reviews in Control 45: 18-40.

Gupta, S., et al. (2019). "Negotiation Between Vehicles and Pedestrians for the Right of Way at
Intersections." IEEE Transactions on Intelligent Transportation Systems 20(3): 888-899.

Habermas, J. (2018). Inclusion of the other: Studies in political theory, John Wiley & Sons.

Haidt, J. and C. Joseph (2004). "Intuitive ethics: How innately prepared intuitions generate culturally
variable virtues." Daedalus 133(4): 55-66.

Halalae, I. and C.-O. Miclosina (2019). "THE IMPACT OF ISAAC ASIMOV'S IDEAS ON THE INTELLIGENT
ROBOTS EVOLUTION." Robotica & Management 24(2).

Hedden, B. (2015). Reasons without persons: Rationality, identity, and time, OUP Oxford.

Hibbard, B. (2012). Avoiding Unintended AI Behaviors. Artificial General Intelligence, Berlin,
Heidelberg, Springer Berlin Heidelberg.

146

Holden, E., et al. (2017). The imperatives of sustainable development: needs, justice, limits, Routledge.

Houjie, J., et al. (2016). Obstacle avoidance of autonomous vehicles with CQP-based model predictive
control. 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

Hsu, S.-Y., et al. (2019). "Impact of adapting the Abbreviated Injury Scale (AIS)-2005 from AIS-1998 on
injury severity scores and clinical outcome." International journal of environmental research and
public health 16(24): 5033.

Huang, Y., et al. (2019). "A motion planning and tracking framework for autonomous vehicles based
on artificial potential field elaborated resistance network approach." IEEE Transactions on Industrial
Electronics 67(2): 1376-1386.

Hulse, L. M., et al. (2018). "Perceptions of autonomous vehicles: Relationships with road users, risk,
gender and age." Safety science 102: 1-13.

Hyder, A. A., et al. (2017). "Monitoring the decade of action for global road safety 2011–2020: an
update." Global public health 12(12): 1492-1505.

Iftekhar, L. and R. Olfati-Saber (2012). Autonomous driving for vehicular networks with nonlinear
dynamics. 2012 IEEE Intelligent Vehicles Symposium.

Jalalmaab, M., et al. (2015). Model predictive path planning with time-varying safety constraints for
highway autonomous driving. 2015 International Conference on Advanced Robotics (ICAR).

Jie, C., et al. (2018). "Stochastic Optimization in a Cumulative Prospect Theory Framework." IEEE
Transactions on Automatic Control: 1-1.

Joa, E., et al. (2019). "Estimation of the tire slip angle under various road conditions without tire–road
information for vehicle stability control." Control Engineering Practice 86: 129-143.

Jurewicz, C., et al. (2016). "Exploration of vehicle impact speed–injury severity relationships for
application in safer road design." Transportation Research Procedia 14: 4247-4256.

Kalajtzidis, J. (2019). "Ethics of Social Consequences as a Hybrid Form of Ethical Theory?" Philosophia
47(3): 705-722.

Kaur, K. and G. Rampersad (2018). "Trust in driverless cars: Investigating key factors influencing the
adoption of driverless cars." Journal of Engineering and Technology Management 48: 87-96.

Keeling, G. (2020). "Why trolley problems matter for the ethics of automated vehicles." Science and
Engineering Ethics 26(1): 293-307.

147

Kenwright, B. (2018). "Virtual Reality: Ethical Challenges and Dangers [Opinion]." IEEE Technology and
Society Magazine 37(4): 20-25.

Kitchener, K. S. (2016). Ethical Issues and Professional Standards in Psychotherapy. Encyclopedia of
Mental Health (Second Edition). H. S. Friedman. Oxford, Academic Press: 132-142.

Kong, J., et al. (2015). Kinematic and dynamic vehicle models for autonomous driving control design.
2015 IEEE Intelligent Vehicles Symposium (IV).

König, M. and L. Neumayr (2017). "Users’ resistance towards radical innovations: The case of the self-
driving car." Transportation research part F: traffic psychology and behaviour 44: 42-52.

Kowalczuk, Z. and M. Czubenko (2017). "Emotions Embodied in the SVC of an Autonomous Driver
System." IFAC-PapersOnLine 50(1): 3744-3749.

Krotov, V. and L. Silva (2018). "Legality and ethics of web scraping."

Kröyer, H. R. (2015). "Is 30 km/ha ‘safe’speed? Injury severity of pedestrians struck by a vehicle and
the relation to travel speed and age." IATSS research 39(1): 42-50.

Kröyer, H. R., et al. (2014). "Relative fatality risk curve to describe the effect of change in the impact
speed on fatality risk of pedestrians struck by a motor vehicle." Accident Analysis & Prevention 62:
143-152.

LaValle, S. M. (2006). Planning algorithms, Cambridge university press.

Lǎzǎroiu, G., et al. (2020). "Connected and Autonomous Vehicle Mobility: Socially Disruptive
Technologies, Networked Transport Systems, and Big Data Algorithmic Analytics." Contemporary
Readings in Law and Social Justice 12(2): 61-69.

Leenes, R. and F. Lucivero (2014). "Laws on robots, laws by robots, laws in robots: regulating robot
behaviour by design." Law, Innovation and Technology 6(2): 193-220.

Lefler, D. E. and H. C. Gabler (2004). "The fatality and injury risk of light truck impacts with pedestrians
in the United States." Accident Analysis & Prevention 36(2): 295-304.

Leikas, J., et al. (2020). Good Life Ecosystems–Ethics and Responsibility in the Silver Market.
International Conference on Human-Computer Interaction, Springer.

Li, S., et al. (2017). "Formation control of heterogeneous discrete-time nonlinear multi-agent systems
with uncertainties." IEEE Transactions on Industrial Electronics 64(6): 4730-4740.

148

Li, Z., et al. (2019). Predictable Trajectory Planner in Time-domain and Hierarchical Motion Controller
for Intelligent Vehicles in Structured Road. 2019 IEEE Intelligent Vehicles Symposium (IV), IEEE.

Lin, P. (2016). Why Ethics Matters for Autonomous Cars. Autonomous Driving: Technical, Legal and
Social Aspects. M. Maurer, J. C. Gerdes, B. Lenz and H. Winner. Berlin, Heidelberg, Springer Berlin
Heidelberg: 69-85.

Lin, P., et al. (2017). Robot ethics 2.0: From autonomous cars to artificial intelligence, Oxford University
Press.

Lind, G. and R. Wakenhut (2017). Testing for moral judgment competence. Moral judgments and social
education, Routledge: 25-48.

Liu, J., et al. (2019). "Pedestrian injury severity in motor vehicle crashes: an integrated spatio-temporal
modeling approach." Accident Analysis & Prevention 132: 105272.

Luetge, C. (2017). "The German ethics code for automated and connected driving." Philosophy &
Technology 30(4): 547-558.

Luo, Q., et al. (2019). "Localization and navigation in autonomous driving: Threats and
countermeasures." IEEE Wireless Communications 26(4): 38-45.

MacKenzie, E. J., et al. (1985). "The Abbreviated Injury Scale and Injury Severity Score: levels of inter-
and intrarater reliability." Medical care: 823-835.

Maguire, M. (2001). "Methods to support human-centred design." International journal of human-
computer studies 55(4): 587-634.

Malle, B. F., et al. (2016). Which robot am I thinking about? The impact of action and appearance on
people's evaluations of a moral robot. 2016 11th ACM/IEEE International Conference on Human-
Robot Interaction (HRI).

Manders-Huits, N. (2011). "What values in design? The challenge of incorporating moral values into
design." Science and Engineering Ethics 17(2): 271-287.

Manenti, F. (2011). Considerations on Nonlinear Model Predictive Control Techniques.

Martin, J.-L. and D. Wu (2018). "Pedestrian fatality and impact speed squared: Cloglog modeling from
French national data." Traffic injury prevention 19(1): 94-101.

Martin, K. (2019). "Ethical implications and accountability of algorithms." Journal of Business Ethics
160(4): 835-850.

149

Martínez-Díaz, M., et al. (2019). "Autonomous driving: a bird's eye view." IET intelligent transport
systems 13(4): 563-579.

Martinez, C. M., et al. (2017). "Driving style recognition for intelligent vehicle control and advanced
driver assistance: A survey." IEEE Transactions on Intelligent Transportation Systems 19(3): 666-676.

Martinho, A., et al. (2021). "Ethical issues in focus by the autonomous vehicles industry." Transport
Reviews: 1-22.

Mattingley, J. and S. Boyd (2012). "CVXGEN: A code generator for embedded convex optimization."
Optimization and Engineering 13(1): 1-27.

McBride, N. and R. R. Hoffman (2016). "Bridging the Ethical Gap: From Human Principles to Robot
Instructions." IEEE Intelligent Systems 31(5): 76-82.

McGuire, J., et al. (2009). "A reanalysis of the personal/impersonal distinction in moral psychology
research." Journal of Experimental Social Psychology 45(3): 577-580.

McNamara, R. A., et al. (2019). "Weighing outcome vs. intent across societies: How cultural models of
mind shape moral reasoning." Cognition 182: 95-108.

Meghjani, M., et al. (2019). Context and intention aware planning for urban driving. 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE.

Mehrara Molan, A. and K. Ksaibati (2021). "Factors impacting injury severity of crashes involving traffic
barrier end treatments." International journal of crashworthiness 26(2): 202-210.

Merat, N., et al. (2018). "What externally presented information do VRUs require when interacting
with fully Automated Road Transport Systems in shared space?" Accident Analysis and Prevention
118: 244-252.

Milfont, T. L., et al. (2019). "The Moral Foundations of Environmentalism." Social Psychological Bulletin
14(2): 1-25.

Miller, K. W., et al. (2017). "This “Ethical Trap” Is for Roboticists, Not Robots: On the Issue of Artificial
Agent Ethical Decision-Making." Science and Engineering Ethics 23(2): 389-401.

Miller, R. and F. Cushman (2018). "Moral values and motivations: How special are they." The atlas of
moral psychology: Mapping good and evil: 1-13.

Mittelstadt, B. (2019). "Principles alone cannot guarantee ethical AI." Nature Machine Intelligence
1(11): 501-507.

150

Mizuno, K. and J. Kajzer (1999). "Compatibility problems in frontal, side, single car collisions and car-
to-pedestrian accidents in Japan." Accident Analysis & Prevention 31(4): 381-391.

Mladenovic, M. N. and M. Abbas (2014). Priority-based intersection control framework for self-driving
vehicles: Agent-based model development and evaluation. 2014 International Conference on
Connected Vehicles and Expo (ICCVE).

Mo, B., et al. (2017). "Speed profile estimation using license plate recognition data." Transportation
research part C: emerging technologies 82: 358-378.

Mohseni, F., et al. (2020). "Distributed Cooperative MPC for Autonomous Driving in Different Traffic
Scenarios." IEEE Transactions on Intelligent Vehicles 6(2): 299-309.

Morris, E. A., et al. (2020). "Are drivers cool with pool? Driver attitudes towards the shared TNC
services UberPool and Lyft Shared." Transport Policy 94: 123-138.

Muehlhauser, L. and L. Helm (2013). The Singularity and Machine Ethics.

Nar, K., et al. (2017). Learning prospect theory value function and reference point of a sequential
decision maker. 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

Nascimento, A. M., et al. (2019). "A systematic literature review about the impact of artificial
intelligence on autonomous vehicle safety." IEEE Transactions on Intelligent Transportation Systems
21(12): 4928-4946.

Navet, N. and F. Simonot-Lion (2017). Automotive embedded systems handbook, CRC press.

Nay, J. L. and J. P. Zagal (2017). Meaning without consequence: virtue ethics and inconsequential
choices in games. Proceedings of the 12th International Conference on the Foundations of Digital
Games.

Nilsson, J., et al. (2016). "Longitudinal and Lateral Control for Automated Yielding Maneuvers." IEEE
Transactions on Intelligent Transportation Systems 17(5): 1404-1414.

Operto, F. (2011). "Ethics in Advanced Robotics." IEEE Robotics & Automation Magazine 18(1): 72-78.

Organization, W. H. (2017). Global status report on road safety 2018. Geneva: World Health
Organization; 2018.

Organization, W. H. (2018). Global status report on road safety 2018: summary, World Health
Organization.

151

Paden, B., et al. (2016). A Survey of Motion Planning and Control Techniques for Self-driving Urban
Vehicles.

Paden, B., et al. (2016). "A survey of motion planning and control techniques for self-driving urban
vehicles." IEEE Transactions on Intelligent Vehicles 1(1): 33-55.

Pakusch, C., et al. (2018). "Unintended effects of autonomous driving: A study on mobility preferences
in the future." Sustainability (Switzerland) 10(7).

Pan, Y., et al. (2020). "The validation of a semi-recursive vehicle dynamics model for a real-time
simulation." Mechanism and Machine Theory 151: 103907.

Perera, H., et al. (2019). Towards integrating human values into software: Mapping principles and
rights of GDPR to values. 2019 IEEE 27th International Requirements Engineering Conference (RE),
IEEE.

Petzoldt, T., et al. (2018). "Potential safety effects of a frontal brake light for motor vehicles." IET
intelligent transport systems 12(6): 449-453.

Peysakhovich, A. and J. Naecker (2017). "Using methods from machine learning to evaluate behavioral
models of choice under risk and ambiguity." Journal of Economic Behavior & Organization 133: 373-
384.

Pimentel, J. and J. Bastiaan (2018). Characterizing the safety of self-driving vehicles: A fault
containment protocol for functionality involving vehicle detection. 2018 IEEE International Conference
on Vehicular Electronics and Safety (ICVES), IEEE.

Ploeg, J. (2017). Cooperative Vehicle Automation: Safety Aspects and Control Software Architecture.
2017 IEEE International Conference on Software Architecture Workshops (ICSAW).

Plyley, K. (2018). Tolerated illegality and intolerable legality: from legal philosophy to critique.

Point, I., et al. "Traffic Safety Facts."

Pouya, P. and A. M. Madni (2020). "Expandable-Partially Observable Markov Decision-Process
Framework for Modeling and Analysis of Autonomous Vehicle Behavior." IEEE Systems Journal.

Prakken, H. (2017). "On the problem of making autonomous vehicles conform to traffic law." Artificial
Intelligence and Law 25(3): 341-363.

Purves, D., et al. (2015). "Autonomous Machines, Moral Judgment, and Acting for the Right Reasons."
Ethical Theory and Moral Practice 18(4): 851-872.

152

Qian, X., et al. (2016). A hierarchical Model Predictive Control framework for on-road formation
control of autonomous vehicles. 2016 IEEE Intelligent Vehicles Symposium (IV).

Rahman, M. H., et al. (2019). A Deep Learning Based Approach to Predict Sequential Design Decisions.
ASME 2019 International Design Engineering Technical Conferences and Computers and Information
in Engineering Conference.

Rasekhipour, Y., et al. (2017). "A Potential Field-Based Model Predictive Path-Planning Controller for
Autonomous Road Vehicles." IEEE Transactions on Intelligent Transportation Systems 18(5): 1255-
1267.

Redelmeier, D. A. and S. Raza (2017). "Life-threatening motor vehicle crashes in bright sunlight."
Medicine 96(1): e5710-e5710.

Rehman, S. and J. Dzionek‑Kozłowska (2018). "The trolley problem revisited. An exploratory study."

Riaz, F., et al. (2018). "A collision avoidance scheme for autonomous vehicles inspired by human social
norms." Computers & Electrical Engineering 69: 690-704.

Rizaldi, A. and M. Althoff (2015). Formalising traffic rules for accountability of autonomous vehicles.
2015 IEEE 18th international conference on intelligent transportation systems, IEEE.

Rosen, E., et al. (2011). "Literature review of pedestrian fatality risk as a function of car impact speed."
Accident Analysis & Prevention 43(1): 25-33.

Rouse, W. B. (2017). "The Systems, Man, and Cybernetics of Driverless Cars: Challenges and
Opportunities for the SMCS." IEEE Systems, Man, and Cybernetics Magazine 3(3): 6-8.

Sadat, A., et al. (2020). Perceive, predict, and plan: Safe motion planning through interpretable
semantic representations. European Conference on Computer Vision, Springer.

Sakib, N. (2020). "Highway Lane change under uncertainty with Deep Reinforcement Learning based
motion planner."

Sarathy, V., et al. (2017). Learning behavioral norms in uncertain and changing contexts. 2017 8th IEEE
International Conference on Cognitive Infocommunications (CogInfoCom).

Scanlon, T. (2000). What we owe to each other, Belknap Press.

Schratter, M., et al. (2019). Pedestrian collision avoidance system for scenarios with occlusions. 2019
IEEE Intelligent Vehicles Symposium (IV), IEEE.

153

Schroeder, B., et al. (2014). Empirically-based performance assessment & simulation of pedestrian
behavior at unsignalized crossings, Southeastern Transportation Research, Innovation, Development
and Education ….

Schulz, W. and K. Dankert (2016). "‘Governance by Things’ as a challenge to regulation by law."
Internet Policy Review 5(2): 2017-2001.

Schwarting, W., et al. (2018). "Planning and decision-making for autonomous vehicles." Annual Review
of Control, Robotics, and Autonomous Systems 1: 187-210.

Schwarting, W., et al. (2018). "Planning and Decision-Making for Autonomous Vehicles." Annual
Review of Control, Robotics, and Autonomous Systems 1(1): 187-210.

Schwarting, W., et al. (2019). "Social behavior for autonomous vehicles." Proceedings of the National
Academy of Sciences 116(50): 24972-24978.

Shaoshan, L., et al. (2017). Creating Autonomous Vehicle Systems, Morgan & Claypool.

Shapiro, I. (2018). Democracy's place, Cornell University Press.

Sheth, P. D. and A. J. Umbarkar (2015). Constrained Optimization Problems Solving Using Evolutionary
Algorithms: A Review. 2015 International Conference on Computational Intelligence and
Communication Networks (CICN).

Siampis, E., et al. (2017). "A real-time nonlinear model predictive control strategy for stabilization of
an electric vehicle at the limits of handling." IEEE Transactions on Control Systems Technology 26(6):
1982-1994.

Sigaud, O. and O. Buffet (2013). Markov decision processes in artificial intelligence, John Wiley & Sons.

Singh, S., et al. (2018). "Robust tracking with model mismatch for fast and safe planning: an SOS
optimization approach." arXiv preprint arXiv:1808.00649.

Soin, A. and M. Chahande (2017). Moving vehicle detection using deep neural network. 2017
International Conference on Emerging Trends in Computing and Communication Technologies
(ICETCCT).

Son, S. H., et al. (2020). "Idle speed control with low-complexity offset-free explicit model predictive
control in presence of system delay." arXiv preprint arXiv:2012.02859.

Soriguera, F., et al. (2017). "Effects of low speed limits on freeway traffic flow." Transportation
research part C: emerging technologies 77: 257-274.

154

Sovacool, B. K., et al. (2017). "New frontiers and conceptual frameworks for energy justice." Energy
Policy 105: 677-691.

Stower, H. (2019). "Investigating the moral machine." Nature Medicine 25(1): 19-19.

Suh, S. H. and A. B. Bishop (1988). "Collision-avoidance trajectory planning using tube concept:
Analysis and simulation." Journal of robotic systems 5(6): 497-525.

Sunberg, Z. N. and M. J. Kochenderfer (2018). Online algorithms for POMDPs with continuous state,
action, and observation spaces. Twenty-Eighth International Conference on Automated Planning and
Scheduling.

Symons, X. (2019). Meeting needs and respecting persons: An ethical framework for the allocation of
lifesaving healthcare interventions, Australian Catholic University.

Taeihagh, A. and H. S. M. Lim (2019). "Governing autonomous vehicles: emerging responses for safety,
liability, privacy, cybersecurity, and industry risks." Transport Reviews 39(1): 103-128.

Taiebat, M., et al. (2018). "A review on energy, environmental, and sustainability implications of
connected and automated vehicles." Environmental science & technology 52(20): 11449-11465.

Takapoui, R., et al. (2020). "A simple effective heuristic for embedded mixed-integer quadratic
programming." International journal of control 93(1): 2-12.

Talbot, B., et al. (2017). "When robots should do the wrong thing." Robot ethics 2: 258-273.

Talhelm, T., et al. (2015). "Liberals think more analytically (more “WEIRD”) than conservatives."
Personality and Social Psychology Bulletin 41(2): 250-267.

Tanelli, M., et al. (2018). "Guest Editorial: Multifaceted Driver–Vehicle Systems: Toward More
Effective Driving Simulations, Reliable Driver Modeling, and Increased Trust and Safety." IEEE
Transactions on Human-Machine Systems 48(1): 1-5.

Taramov, A. and N. Shilov (2017). A systematic review of proactive driver support systems and
underlying technologies. 2017 20th Conference of Open Innovations Association (FRUCT).

Terziyan, V., et al. (2018). "Patented intelligence: Cloning human decision models for Industry 4.0."
Journal of Manufacturing Systems.

Tjolleng, A., et al. (2017). "Classification of a Driver's cognitive workload levels using artificial neural
network on ECG signals." Applied ergonomics 59: 326-332.

Tronto, J. C. (2020). Moral boundaries: A political argument for an ethic of care, Routledge.

155

Tuncali, C. E. and G. Fainekos (2019). Rapidly-exploring random trees for testing automated vehicles.
2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE.

Turri, V., et al. (2013). Linear model predictive control for lane keeping and obstacle avoidance on low
curvature roads. 16th International IEEE Conference on Intelligent Transportation Systems (ITSC
2013).

Umbrello, S. and A. F. De Bellis (2018). "A value-sensitive design approach to intelligent agents."
Artificial Intelligence Safety and Security (2018) CRC Press (. ed) Roman Yampolskiy.

Urooj, S., et al. (2018). Systematic literature review on user interfaces of autonomous cars: Liabilities
and responsibilities. 2018 International Conference on Advancements in Computational Sciences
(ICACS).

Van den Hoven, J., et al. (2012). "Engineering and the Problem of Moral Overload." Science and
Engineering Ethics 18(1): 143-155.

Van Wynsberghe, A. (2013). "Designing robots for care: Care centered value-sensitive design." Science
and Engineering Ethics 19(2): 407-433.

Van Wynsberghe, A. and S. Robbins (2014). "Ethicist as designer: a pragmatic approach to ethics in the
lab." Science and Engineering Ethics 20(4): 947-961.

Vanderelst, D. and A. Winfield (2018). The dark side of ethical robots. Proceedings of the 2018
AAAI/ACM Conference on AI, Ethics, and Society.

Vasile, C.-I., et al. (2017). Minimum-violation scLTL motion planning for mobility-on-demand. 2017
IEEE International Conference on Robotics and Automation (ICRA), IEEE.

Wagner, A., et al. (2019). Kantian one day, Consequentialist the next: Moral emotions as mediators
between ethical frameworks for robots. 2019 Conference of the International Association for
Computing and Philosophy (IACAP 2019).

Wallace, R. J. (2019). The moral nexus, Princeton University Press.

Wang, Q., et al. (2018). Predictive Maneuver Planning for an Autonomous Vehicle in Public Highway
Traffic.

Wang, Y., et al. (2012). On Studying Relationship between Altruism and the Psychological
Phenomenon of Self-Deception in Rational and Autonomous Networks. 2012 32nd International
Conference on Distributed Computing Systems Workshops.

156

Wei, J., et al. (2010). A prediction-and cost function-based algorithm for robust autonomous freeway
driving. 2010 IEEE Intelligent Vehicles Symposium, IEEE.

Weijermars, W., et al. (2018). "Serious road traffic injuries in europe, lessons from the eu research
project safetycube." Transportation Research Record 2672(32): 1-9.

Wilson, J. Q. (1993). "The moral sense." American Political Science Review 87(1): 1-11.

Wintersberger, P., et al. (2017). Do moral robots always fail? Investigating human attitudes towards
ethical decisions of automated systems. 2017 26th IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN).

Wong, D. B. (2020). Moral relativity, University of California Press.

Wulfmeier, M., et al. (2016). Watch this: Scalable cost-function learning for path planning in urban
environments. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE.

Xu, J., et al. (2019). "Destination Prediction A Deep Learning based Approach." IEEE Transactions on
Knowledge and Data Engineering: 1-1.

Xu, P., et al. (2018). "System Architecture of a Driverless Electric Car in the Grand Cooperative Driving
Challenge." IEEE Intelligent Transportation Systems Magazine 10(1): 47-59.

Yi, B., et al. (2016). Real time integrated vehicle dynamics control and trajectory planning with MPC
for critical maneuvers. 2016 IEEE Intelligent Vehicles Symposium (IV).

Yilmaz, O. and S. A. Saribay (2017). "Activating analytic thinking enhances the value given to
individualizing moral foundations." Cognition 165: 88-96.

Yoon, Y., et al. (2009). "Model-predictive active steering and obstacle avoidance for autonomous
ground vehicles." Control Engineering Practice 17(7): 741-750.

Yurtsever, E., et al. (2020). "A survey of autonomous driving: Common practices and emerging
technologies." IEEE Access 8: 58443-58469.

Zachko, O., et al. (2019). Models of safety management in development projects. 2019 IEEE 14th
International Conference on Computer Sciences and Information Technologies (CSIT), IEEE.

Zawieska, K. (2020). "Disengagement with ethics in robotics as a tacit form of dehumanisation." AI &
SOCIETY 35(4): 869-883.

Zhang, H., et al. (2019). "A novel machine learning based approach for iPS progenitor cell
identification." PLOS Computational Biology 15(12): e1007351.

157

Zhang, K., et al. (2015). Computationally aware control of autonomous vehicles: a hybrid model
predictive control approach.

Zhang, X., et al. (2018). Behavioral cloning for driverless cars using transfer learning. 2018 IEEE/ION
Position, Location and Navigation Symposium (PLANS).

Ziegler, J., et al. (2014). Trajectory planning for Bertha—A local, continuous method. 2014 IEEE
intelligent vehicles symposium proceedings, IEEE.

158

Appendixes

Appendix-1: Source code for simulation Id
classdef getSimId < matlab.System & matlab.system.mixin.Propagates
 % Get Simulation Id

 % Public, tunable properties
 properties
 %NumberOfVehicles Maximum number of vehicles
 NumberOfVehicles = 0;

 %NumEachVehicle Maximum number of each type of vehicles
 NumEachVehicle = zeros (6, 1);
 end

 properties (DiscreteState)

 end

 % Pre-computed constants
 Properties (Access = private)
 adasData_;
 end

 methods (Access = protected)
 function Id = getAvaiableId(obj, vehType)
 for i = 1: obj.NumberOfVehicles
 if ((obj.adasData_(i).Type == vehType) && ...
 (obj.adasData_(i).Id <= 0))
 Id = i;
 return;
 end
 end
 disp('Too many vehicles');
 return;
 end
 function setupImpl(obj)
 % Perform one-time calculations, such as computing constants
 obj.adasData_(obj.NumberOfVehicles).Type = VehType.None;
 obj.adasData_(obj.NumberOfVehicles).Id = 0;
 for i = obj.NumberOfVehicles : -1 : 1
 obj.adasData_(i) = obj.adasData_(end);
 if i <= obj.NumEachVehicle(1)
 obj.adasData_(i).Type = VehType(1);
 elseif i <= sum (obj.NumEachVehicle(1 : 2))
 obj.adasData_(i).Type = VehType(2);
 end
 end

 end

 function y = stepImpl (obj, vehType, vehId)
 % Implement algorithm. Calculate y as a function of input u and
 % discrete states.
 if (vehId < 0)
 idx = -vehId;
 obj.adasData_(idx).Id = -idx;
 y = idx;

159

 else
 idx = obj.getAvaiableId(vehType);
 obj.adasData_(idx).Id = idx;
 y = idx;
 end
 end

 function sz = getOutputSizeImpl(obj)
 sz = 1;
 end

 function c = isOutputFixedSizeImpl(obj)
 c = true;
 end

 function c = isOutputComplexImpl(obj)
 c = false;
 end

 function c = getOutputDataTypeImpl(obj)
 c = 'double';
 end

 function resetImpl(obj)
 % Initialize / reset discrete-state properties
 end
 end
end

160

Appendix-2: Source code for vehicle type
classdef VehType < Simulink.IntEnumType
 enumeration
 None (0)
 Veh1(1)
 Veh2(2)
 end
end

161

Appendix-3: Source code for safety check
classdef SafetyCheck < matlab.System & matlab.system.mixin.Propagates
 & matlab.system.mixin.CustomIcon

 % This template includes the minimum set of functions required
 % to define a System object with discrete state.
 % Public, tunable properties
 properties
 % Safety Distance [m]
 safeDistance = 75;

 % Average Vehicle Length [m]
 aveVehLength = 6;

 % Max Accelerating Rate [m/s^2]
 maxAccelRate = 3;

162

 % Max Deaccelerating Rate [m/s^2]
 maxDeaccelRate = 10;

 % Lane Width [m]
 LaneWidth = 7;
 end

 properties (DiscreteState)

 end

 % Pre-computed constants
 properties (Access = private)

 end

 methods (Access = protected, Static)
 function header = getHeaderImpl
 % Define header panel for System block dialog
 header = matlab.system.display.Header(...
 'Title', "Safety Check", ...
 'Text','Check whether it is safe to change lane.');
 end
 end

 methods (Access = protected)

 function flag = supportsMultipleInstanceImpl(obj)
 flag = true;
 end

 function icon = getIconImpl(~)
 icon = {"Safety Check"};
 end

 function setupImpl(obj)
 % Perform one-time calculations, such as computing constants
 end

 function y = stepImpl(obj, u)
 % Implement algorithm. Calculate y as a function of input u and
 % discrete states.

 if (u.exist == false)
 y = 0;
 return;
 end

 y = 1;

163

 % If can switch lane, the time needed is about
 % Assume ay = 1/3*a;
 t_est = sqrt(3*obj.LaneWidth/obj.maxAccelRate);

 %% check front vehicle
 if (u.frontDistance < obj.safeDistance)
 %false if front vehicle exists
 a_front_mx = 2*(u.frontDistance + u.frontVelocity*t_est -
obj.safeDistance/5)/t_est^2;
 if a_front_mx < -obj.maxDeaccelRate/1 || u.frontDistance <
1.5*obj.aveVehLength
 % if current vehicle does not have enough brake
 y = 0;
 return;
 end
 end

 %% check rear vehicle
 if (u.rearDistance < obj.safeDistance)
 % if rear vehicle exists
 a_rear_mn = 2*(-u.rearDistance + u.rearVelocity*t_est +
obj.safeDistance/5)/t_est^2;
 if a_rear_mn > obj.maxAccelRate/1.5 || u.rearDistance <
1.5*obj.aveVehLength
 % if current vehicle does not have enough power
 y = 0;
 return;
 end
 end

 end

 function sz_1 = getOutputSizeImpl(obj)
 sz_1 = 1;
 end

 function c1 = isOutputFixedSizeImpl(obj)
 c1 = true;
 end

 function c1 = isOutputComplexImpl(obj)
 c1 = false;
 end

 function c1 = getOutputDataTypeImpl(obj)
 c1 = 'double';
 end

 function resetImpl(obj)
 % Initialize / reset discrete-state properties

164

 end
 end
end

165

Appendix-4: Source code for change lane
classdef ChangeLane < Simulink.IntEnumType
 enumeration
 None (0)
 Left (1)
 Right (2)
 end
end

166

Appendix-5: Source code for helper plot lane curve
classdef (StrictDefaults)helperPlotLaneCurve < matlab.System &
matlab.system.mixin.CustomIcon
 % This is a helper block and may be modified in the future.

 %#codegen

 Properties (Nontunable, SetAccess = immutable)
 %XLim X range
 XLim = [0 200]

 %YLim Y range
 YLim = [-100 50]
 end

 properties (Nontunable, Logical)
 %ShowVelocity Display Velocity
 showVelocity = false

 %ShowAcceleration Display Acceleration
 showAcceleration = false
 end

 properties (Access=private)
 hFig
 hAxis
 hGlyph
 hText
 hTexta

 basicPos = [-2.5, 2.5, 2.5, -2.5; -1.5, -1.5, 1.5, 1.5]
 end

 methods
 function obj = helperPlotLaneCurve(varargin)
 % Constructor
 setProperties(obj,nargin,varargin{:});
 end
 end

 methods (Access=protected)
 function setupImpl(obj,varargin)
 obj.hFig = figure;
 obj.hAxis = axes;
 set(obj.hFig, 'position', [100 100 840 640])
 hold on;
 axis equal
 xlim(obj.XLim);
 ylim(obj.YLim);

 theta = linspace(pi/2, 3*pi/4, 1000);

167

 radius = 100;
 laneWidth = 7;
 center = [100, -100];

 plot (obj.hAxis, center(1) + (radius - laneWidth/2)*cos(theta),
center(2) + (radius - laneWidth/2)*sin(theta), 'linewidth', 2, 'color',
'k');
 plot (obj.hAxis, center(1) + (radius + laneWidth/2)*cos(theta),
center(2) + (radius + laneWidth/2)*sin(theta), 'linewidth', 2, 'color',
'k');
 plot (obj.hAxis, [100 200], [-laneWidth/2 -laneWidth/2],
'linewidth', 2, 'color', 'k')
 plot (obj.hAxis, [100 200], [laneWidth/2 laneWidth/2],
'linewidth', 2, 'color', 'k')

 mPosition_X = varargin{1};

 for i = length(mPosition_X): -1: 1
 obj.hGlyph(i) = patch('XData', [0, 5, 5, 0], 'YData', [-1.5
-1.5 1.5 1.5], 'visible', 'off');

 markerFaceColor = 'g';

 set(obj.hGlyph(i), 'FaceColor', markerFaceColor);
 obj.hText(i) = text(0, 0, '0', 'visible', 'off');
 obj.hTexta(i) = text(0, 0, '0', 'visible', 'off');
 end
 end

 function stepImpl(obj,varargin)
 %Update the Simulink control toolbar

 mPosition_X = varargin{1};
 mPosition_Y = varargin{2};
 mVelocity_X = varargin{3};
 mVelocity_Y = varargin{4};
 mAcceleration_X = varargin{5};
 mAcceleration_Y = varargin{6};
 mId = varargin{7};
 mType = varargin{8};

 % Update the plot if it is visible
 if strcmp(get(obj.hFig,'Visible'),'on')
 for i = 1: length(mPosition_X)
 if (mId(i) <= 0)
 set(obj.hGlyph(i), 'XData', obj.basicPos(1, :) +
mPosition_X(i), ...
 'YData', obj.basicPos(2, :) + mPosition_Y(i),
'visible', 'off');
 set(obj.hText(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 5 0], ...

168

 'String', [num2str(round(mVelocity_X(i), 2)), '
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'off');
 set(obj.hTexta(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 10 0], ...
 'String', [num2str(round(mAcceleration_X(i),
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'off');
 continue;
 end

 if (sqrt(mVelocity_X(i)^2 + mVelocity_Y(i)^2) < 5e-2)
 continue;
 end

 curPosition = zeros (2, 1);
 curPosition(1) = mPosition_X(i) - 5/2;
 curPosition(2) = mPosition_Y(i) - 3/2;

 cosTheta = mVelocity_X(i)/sqrt(mVelocity_X(i)^2 +
mVelocity_Y(i)^2);
 sinTheta = mVelocity_Y(i)/sqrt(mVelocity_X(i)^2 +
mVelocity_Y(i)^2);
 rotationMatrix = [cosTheta, -sinTheta; sinTheta,
cosTheta];

 mbasicPos = rotationMatrix * obj.basicPos;

 markerFaceColor = 'g';

 switch mType(i)
 case VehType(1)
 markerFaceColor = 'b';
 case VehType(2)
 markerFaceColor = 'r';
 end

 set(obj.hGlyph(i), 'XData', mbasicPos(1, :) +
mPosition_X(i), ...
 'YData', mbasicPos(2, :) + mPosition_Y(i),
'visible', 'on', 'FaceColor', markerFaceColor);

 if obj.showVelocity
 set(obj.hText(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 5 0], ...
 'String', [num2str(round(mVelocity_X(i), 2)), '
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'on');
 end

 if obj.showAcceleration
 set(obj.hTexta(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 10 0], ...

169

 'String', [num2str(round(mAcceleration_X(i),
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'on');
 end
 end
 end
 end
 end

 % Simulink interface
 methods(Access=protected)
 function str = getIconImpl(~)
 str = sprintf('Simulation\n\nVisualization');
 end

 function num = getNumInputsImpl(obj)
 num = 8;
 end

 function varargout = getInputNamesImpl(obj)
 varargout = {};

 varargout = {varargout{:} 'Position_X'};
 varargout = {varargout{:} 'Position_Y'};
 varargout = {varargout{:} 'Velocity_X'};
 varargout = {varargout{:} 'Velocity_Y'};
 varargout = {varargout{:} 'Acceleration_X'};
 varargout = {varargout{:} 'Acceleration_Y'};
 varargout = {varargout{:} 'Id'};
 varargout = {varargout{:} 'Type'};
 end
 end

 methods (Access = protected, Static)
 function header = getHeaderImpl
 % Define header panel for System block dialog
 header = matlab.system.display.Header(...
 'Title', 'SimulationVisualization’, ...
 'Text', getHeaderText());
 end

 function simMode = getSimulateUsingImpl
 % Return only allowed simulation mode in System block dialog
 simMode = 'Interpreted execution';
 end

 function flag = showSimulateUsingImpl
 % Return false if simulation mode hidden in System block dialog
 flag = false;
 end
 end
end

170

function str = getHeaderText
str = sprintf([...
 'Plot simulation results.']);
end

171

Appendix-6: Source code for helper plot lane merge
classdef (StrictDefaults)helperPlotLaneMerge < matlab.System &
matlab.system.mixin.CustomIcon
 %
 % This is a helper block and may be removed or modified in the future.

 %#codegen

 properties(Nontunable, SetAccess = immutable)
 %XLim X range
 XLim = [0 300]

 %YLim Y range
 YLim = [-150 100]
 end

 properties(Nontunable, Logical)
 %ShowVelocity Display Velocity
 showVelocity = false

 %ShowAcceleration Display Acceleration
 showAcceleration = false
 end

 properties(Access=private)
 hFig
 hAxis
 hGlyph
 hText
 hTexta

 basicPos = [-2.5, 2.5, 2.5, -2.5; -1.5, -1.5, 1.5, 1.5]
 end

 methods
 function obj = helperPlotLaneMerge(varargin)
 % Constructor
 setProperties(obj,nargin,varargin{:});
 end
 end

 methods (Access=protected)
 function setupImpl(obj,varargin)
 obj.hFig = figure;
 obj.hAxis = axes;
 set (obj.hFig, 'position', [100 100 840 640])
 hold on;
 axis equal
 xlim(obj.XLim);
 ylim(obj.YLim);

172

 plot (obj.hAxis, [0, 173 - 7], [0 0], 'linewidth', 2, 'color',
'k')
 plot (obj.hAxis, [173 + 7 300], [0 0], 'linewidth', 2, 'color',
'k')
 plot (obj.hAxis, [173 - 7 173 + 7], [0 0], 'linewidth', 2,
'color', 'k', 'linestyle', '--')
 plot (obj.hAxis, [0 300], [7 7], 'linewidth', 2, 'color', 'k')
 plot (obj.hAxis, [0 173 - 7], [-100 + 7/sqrt(3) 0],
'linewidth', 2, 'color', 'k')
 plot (obj.hAxis, [0 173 + 7], [-100 - 7/sqrt(3) 0],
'linewidth', 2, 'color', 'k')
 mPosition_X = varargin{1};

 for i = length(mPosition_X) : -1 : 1
 obj.hGlyph(i) = patch('XData', [0, 5, 5, 0], 'YData', [-1.5
-1.5 1.5 1.5], 'visible', 'off');

 markerFaceColor = 'g';

 set(obj.hGlyph(i), 'FaceColor', markerFaceColor);
 obj.hText(i) = text(0, 0, '0', 'visible', 'off');
 obj.hTexta(i) = text(0, 0, '0', 'visible', 'off');
 end
 end

 function stepImpl(obj,varargin)
 %Update the Simulink control toolbar

 mPosition_X = varargin{1};
 mPosition_Y = varargin{2};
 mVelocity_X = varargin{3};
 mVelocity_Y = varargin{4};
 mAcceleration_X = varargin{5};
 mAcceleration_Y = varargin{6};
 mId = varargin{7};
 mType = varargin{8};

 % Update the plot if it is visible
 if strcmp(get(obj.hFig,'Visible'),'on')
 for i = 1 : length(mPosition_X)
 if (mId(i) <= 0)
 set(obj.hGlyph(i), 'XData', obj.basicPos(1, :) +
mPosition_X(i), ...
 'YData', obj.basicPos(2, :) + mPosition_Y(i),
'visible', 'off');
 set(obj.hText(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 5 0], ...
 'String', [num2str(round(mVelocity_X(i), 2)), '
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'off');
 set(obj.hTexta(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 10 0], ...

173

 'String', [num2str(round(mAcceleration_X(i),
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'off');
 continue;
 end

 if (sqrt(mVelocity_X(i)^2 + mVelocity_Y(i)^2) < 5e-2)
 continue;
 end

 curPosition = zeros(2, 1);
 curPosition(1) = mPosition_X(i) - 5/2;
 curPosition(2) = mPosition_Y(i) - 3/2;

 cosTheta = mVelocity_X(i)/sqrt(mVelocity_X(i)^2 +
mVelocity_Y(i)^2);
 sinTheta = mVelocity_Y(i)/sqrt(mVelocity_X(i)^2 +
mVelocity_Y(i)^2);
 rotationMatrix = [cosTheta, -sinTheta; sinTheta,
cosTheta];

 mbasicPos = rotationMatrix * obj.basicPos;

 markerFaceColor = 'g';

 switch mType(i)
 case VehType(1)
 markerFaceColor = 'b';
 case VehType(2)
 markerFaceColor = 'r';
 end

 set(obj.hGlyph(i), 'XData', mbasicPos(1, :) +
mPosition_X(i), ...
 'YData', mbasicPos(2, :) + mPosition_Y(i),
'visible', 'on', 'FaceColor', markerFaceColor);

 if obj.showVelocity
 set(obj.hText(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 5 0], ...
 'String', [num2str(round(mVelocity_X(i), 2)), '
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'on');
 end

 if obj.showAcceleration
 set(obj.hTexta(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 10 0], ...
 'String', [num2str(round(mAcceleration_X(i),
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'on');
 end
 end
 end

174

 end
 end

 % Simulink interface
 Methods (Access=protected)
 function str = getIconImpl(~)
 str = sprintf('Simulation\n\nVisualization');
 end

 function num = getNumInputsImpl(obj)
 num = 8;
 end

 function varargout = getInputNamesImpl(obj)
 varargout = {};

 varargout = {varargout{:} 'Position_X'};
 varargout = {varargout{:} 'Position_Y'};
 varargout = {varargout{:} 'Velocity_X'};
 varargout = {varargout{:} 'Velocity_Y'};
 varargout = {varargout{:} 'Acceleration_X'};
 varargout = {varargout{:} 'Acceleration_Y'};
 varargout = {varargout{:} 'Id'};
 varargout = {varargout{:} 'Type'};
 end
 end

 methods (Access = protected, Static)
 function header = getHeaderImpl
 % Define header panel for System block dialog
 header = matlab.system.display.Header(...
 'Title', 'SimulationVisualization’, ...
 'Text', getHeaderText());
 end

 function simMode = getSimulateUsingImpl
 % Return only allowed simulation mode in System block dialog
 simMode = 'Interpreted execution';
 end

 function flag = showSimulateUsingImpl
 % Return false if simulation mode hidden in System block dialog
 flag = false;
 end
 end
end

function str = getHeaderText
str = sprintf([...
 'Plot simulation results.']);
end

175

Appendix-7: Source code for helper plot lane switch
classdef (StrictDefaults)helperPlotLaneSwitch < matlab.System &
matlab.system.mixin.CustomIcon
 %
 % This is a helper and may be removed or modified in the future.

 %#codegen

 properties (Nontunable, SetAccess = immutable)
 %XLim X range
 XLim = [0 120]

 %YLim Y range
 YLim = [-50 50]
 end

 properties (Nontunable, Logical)
 %ShowVelocity Display Velocity
 showVelocity = false

 %ShowAcceleration Display Acceleration
 showAcceleration = false
 end

 properties (Access=private)
 hFig
 hAxis
 hGlyph
 hText
 hTexta

 basicPos = [-2.5, 2.5, 2.5, -2.5; -1.5, -1.5, 1.5, 1.5]
 end

 methods
 function obj = helperPlotLaneSwitch(varargin)
 % Constructor
 setProperties(obj,nargin,varargin{:});
 end
 end

 methods(Access=protected)
 function setupImpl(obj,varargin)
 obj.hFig = figure;
 obj.hAxis = axes;
 set (obj.hFig, 'position', [100 100 840 640])
 hold on;
 axis equal
 xlim(obj.XLim);
 ylim(obj.YLim);

176

 plot (obj.hAxis, [0 120], [-7 -7], 'linewidth', 2, 'color',
'k')
 plot (obj.hAxis, [0 120], [0 0], 'linewidth', 2, 'color', 'k',
'linestyle', '--')
 plot (obj.hAxis, [0 120], [7 7], 'linewidth', 2, 'color', 'k')

 mPosition_X = varargin{1};

 for i = length(mPosition_X) : -1 : 1
 obj.hGlyph(i) = patch('XData', [0, 5, 5, 0], 'YData', [-1.5
-1.5 1.5 1.5], 'visible', 'off');

 markerFaceColor = 'g';

 set(obj.hGlyph(i), 'FaceColor', markerFaceColor);
 obj.hText(i) = text(0, 0, '0', 'visible', 'off');
 obj.hTexta(i) = text(0, 0, '0', 'visible', 'off');
 end
 end

 function stepImpl(obj,varargin)
 %Update the Simulink control toolbar

 mPosition_X = varargin{1};
 mPosition_Y = varargin{2};
 mVelocity_X = varargin{3};
 mVelocity_Y = varargin{4};
 mAcceleration_X = varargin{5};
 mAcceleration_Y = varargin{6};
 mId = varargin{7};
 mType = varargin{8};

 % Update the plot if it is visible
 if strcmp(get(obj.hFig,'Visible'),'on')
 for i = 1 : length(mPosition_X)
 if (mId(i) <= 0)
 set(obj.hGlyph(i), 'XData', obj.basicPos(1, :) +
mPosition_X(i), ...
 'YData', obj.basicPos(2, :) + mPosition_Y(i),
'visible', 'off');
 set(obj.hText(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 5 0], ...
 'String', [num2str(round(mVelocity_X(i), 2)), '
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'off');
 set(obj.hTexta(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 10 0], ...
 'String', [num2str(round(mAcceleration_X(i),
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'off');
 continue;
 end

 if (sqrt(mVelocity_X(i)^2 + mVelocity_Y(i)^2) < 5e-2)

177

 continue;
 end

 curPosition = zeros(2, 1);
 curPosition(1) = mPosition_X(i) - 5/2;
 curPosition(2) = mPosition_Y(i) - 3/2;

 cosTheta = mVelocity_X(i)/sqrt(mVelocity_X(i)^2 +
mVelocity_Y(i)^2);
 sinTheta = mVelocity_Y(i)/sqrt(mVelocity_X(i)^2 +
mVelocity_Y(i)^2);
 rotationMatrix = [cosTheta, -sinTheta; sinTheta,
cosTheta];

 mbasicPos = rotationMatrix * obj.basicPos;

 markerFaceColor = 'g';

 switch mType(i)
 case VehType(1)
 markerFaceColor = 'b';
 case VehType(2)
 markerFaceColor = 'r';
 end

 set(obj.hGlyph(i), 'XData', mbasicPos(1, :) +
mPosition_X(i), ...
 'YData', mbasicPos(2, :) + mPosition_Y(i),
'visible', 'on', 'FaceColor', markerFaceColor);

 if obj.showVelocity
 set(obj.hText(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 5 0], ...
 'String', [num2str(round(mVelocity_X(i), 2)), '
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'on');
 end

 if obj.showAcceleration
 set(obj.hTexta(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 10 0], ...
 'String', [num2str(round(mAcceleration_X(i),
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'on');
 end
 end
 end
 end
 end

 % Simulink interface
 methods (Access=protected)
 function str = getIconImpl(~)

178

 str = sprintf('Simulation\n\nVisualization');
 end

 function num = getNumInputsImpl(obj)
 num = 8;
 end

 function varargout = getInputNamesImpl(obj)
 varargout = {};

 varargout = {varargout{:} 'Position_X'};
 varargout = {varargout{:} 'Position_Y'};
 varargout = {varargout{:} 'Velocity_X'};
 varargout = {varargout{:} 'Velocity_Y'};
 varargout = {varargout{:} 'Acceleration_X'};
 varargout = {varargout{:} 'Acceleration_Y'};
 varargout = {varargout{:} 'Id'};
 varargout = {varargout{:} 'Type'};
 end
 end

 methods (Access = protected, Static)
 function header = getHeaderImpl
 % Define header panel for System block dialog
 header = matlab.system.display.Header(...
 'Title', 'SimulationVisualization’, ...
 'Text', getHeaderText());
 end

 function simMode = getSimulateUsingImpl
 % Return only allowed simulation mode in System block dialog
 simMode = 'Interpreted execution';
 end

 function flag = showSimulateUsingImpl
 % Return false if simulation mode hidden in System block dialog
 flag = false;
 end
 end
end

function str = getHeaderText
str = sprintf([...
 'Plot simulation results.']);
end

179

Appendix-8: Source code for helper plot lane switch and merge
classdef (StrictDefaults)helperPlotLaneSwitchAndMerge < matlab.System &
matlab.system.mixin.CustomIcon

 % This is a helper block and may be removed or modified in the future.

 %#codegen

 Properties (Nontunable, SetAccess = immutable)
 %XLim X range
 XLim = [0 300]

 %YLim Y range
 YLim = [-150 100]
 end

 properties (Nontunable, Logical)
 %ShowVelocity Display Velocity
 showVelocity = false

 %ShowAcceleration Display Acceleration
 showAcceleration = false
 end

 properties (Access=private)
 hFig
 hAxis
 hGlyph
 hText
 hTexta

 basicPos = [-2.5, 2.5, 2.5, -2.5; -1.5, -1.5, 1.5, 1.5]
 end

 methods
 function obj = helperPlotLaneSwitchAndMerge(varargin)
 % Constructor
 setProperties(obj,nargin,varargin{:});
 end
 end

 methods (Access=protected)
 function setupImpl(obj,varargin)
 obj.hFig = figure;
 obj.hAxis = axes;
 set(obj.hFig, 'position', [100 100 840 640])
 hold on;
 axis equal
 xlim(obj.XLim);
 ylim(obj.YLim);

180

 plot (obj.hAxis, [0 173 - 7], [0 0], 'linewidth', 2, 'color',
'k')
 plot (obj.hAxis, [173 + 7 300], [0 0], 'linewidth', 2, 'color',
'k')
 plot (obj.hAxis, [173 - 7 173 + 7], [0 0], 'linewidth', 2,
'color', 'k', 'linestyle', '--')
 plot (obj.hAxis, [0 300], [7 7], 'linewidth', 2, 'color', 'k',
'linestyle', '--')
 plot (obj.hAxis, [0 300], [14 14], 'linewidth', 2, 'color',
'k')
 plot (obj.hAxis, [0 173 - 7], [-100 + 7/sqrt(3) 0],
'linewidth', 2, 'color', 'k')
 plot (obj.hAxis, [0 173 + 7], [-100 - 7/sqrt(3) 0],
'linewidth', 2, 'color', 'k')

 mPosition_X = varargin {1};

 for i = length(mPosition_X): -1: 1
 obj.hGlyph(i) = patch('XData', [0, 5, 5, 0], 'YData', [-1.5
-1.5 1.5 1.5], 'visible', 'off');

 markerFaceColor = 'g';

 set(obj.hGlyph(i), 'FaceColor', markerFaceColor);
 obj.hText(i) = text(0, 0, '0', 'visible', 'off');
 obj.hTexta(i) = text(0, 0, '0', 'visible', 'off');
 end
 end

 function stepImpl(obj,varargin)
 %Update the Simulink control toolbar

 mPosition_X = varargin{1};
 mPosition_Y = varargin{2};
 mVelocity_X = varargin{3};
 mVelocity_Y = varargin{4};
 mAcceleration_X = varargin{5};
 mAcceleration_Y = varargin{6};
 mId = varargin{7};
 mType = varargin{8};

 % Update the plot if it is visible
 if strcmp(get(obj.hFig,'Visible'),'on')
 for i = 1: length(mPosition_X)
 if (mId(i) <= 0)
 set(obj.hGlyph(i), 'XData', obj.basicPos(1, :) +
mPosition_X(i), ...
 'YData', obj.basicPos(2, :) + mPosition_Y(i),
'visible', 'off');
 set(obj.hText(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 5 0], ...

181

 'String', [num2str(round(mVelocity_X(i), 2)), '
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'off');
 set(obj.hTexta(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 10 0], ...
 'String', [num2str(round(mAcceleration_X(i),
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'off');
 continue;
 end

 if (sqrt(mVelocity_X(i)^2 + mVelocity_Y(i)^2) < 5e-2)
 continue;
 end

 curPosition = zeros (2, 1);
 curPosition(1) = mPosition_X(i) - 5/2;
 curPosition(2) = mPosition_Y(i) - 3/2;

 cosTheta = mVelocity_X(i)/sqrt(mVelocity_X(i)^2 +
mVelocity_Y(i)^2);
 sinTheta = mVelocity_Y(i)/sqrt(mVelocity_X(i)^2 +
mVelocity_Y(i)^2);
 rotationMatrix = [cosTheta, -sinTheta; sinTheta,
cosTheta];

 mbasicPos = rotationMatrix * obj.basicPos;

 markerFaceColor = 'g';

 switch mType(i)
 case VehType(1)
 markerFaceColor = 'b';
 case VehType(2)
 markerFaceColor = 'r';
 end

 set(obj.hGlyph(i), 'XData', mbasicPos(1, :) +
mPosition_X(i), ...
 'YData', mbasicPos(2, :) + mPosition_Y(i),
'visible', 'on', 'FaceColor', markerFaceColor);

 if obj.showVelocity
 set(obj.hText(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 5 0], ...
 'String', [num2str(round(mVelocity_X(i), 2)), '
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'on');
 end

 if obj.showAcceleration
 set(obj.hTexta(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 10 0], ...

182

 'String', [num2str(round(mAcceleration_X(i),
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'on');
 end
 end
 end
 end
 end

 % Simulink interface
 Methods (Access=protected)
 function str = getIconImpl(~)
 str = sprintf('Simulation\n\nVisualization');
 end

 function num = getNumInputsImpl(obj)
 num = 8;
 end

 function varargout = getInputNamesImpl(obj)
 varargout = {};

 varargout = {varargout{:} 'Position_X'};
 varargout = {varargout{:} 'Position_Y'};
 varargout = {varargout{:} 'Velocity_X'};
 varargout = {varargout{:} 'Velocity_Y'};
 varargout = {varargout{:} 'Acceleration_X'};
 varargout = {varargout{:} 'Acceleration_Y'};
 varargout = {varargout{:} 'Id'};
 varargout = {varargout{:} 'Type'};
 end
 end

 methods (Access = protected, Static)
 function header = getHeaderImpl
 % Define header panel for System block dialog
 header = matlab.system.display.Header(...
 'Title', 'SimulationVisualization’, ...
 'Text', getHeaderText());
 end

 function simMode = getSimulateUsingImpl
 % Return only allowed simulation mode in System block dialog
 simMode = 'Interpreted execution';
 end

 function flag = showSimulateUsingImpl
 % Return false if simulation mode hidden in System block dialog
 flag = false;
 end
 end
end

183

function str = getHeaderText
str = sprintf([...
 'Plot simulation results.']);
end

184

Appendix-9: Source code for helper plot lane curve-1
classdef (StrictDefaults)helperPlotLaneCurve1 < matlab.System &
matlab.system.mixin.CustomIcon

 % This is a helper block and may be removed or modified in the future.

 %#codegen

 Properties (Nontunable, SetAccess = immutable)
 %XLim X range
 XLim = [-220, 220]

 %YLim Y range
 YLim = [-200, 130]
 end

 properties (Nontunable, Logical)
 %ShowVelocity Display Velocity
 showVelocity = false

 %ShowAcceleration Display Acceleration
 showAcceleration = false
 end

 properties (Access=private)
 hFig
 hAxis
 hGlyph
 hText
 hTexta

 basicPos = [-2.5, 2.5, 2.5, -2.5; -1.5, -1.5, 1.5, 1.5]
 end

 methods
 function obj = helperPlotLaneCurve1(varargin)
 % Constructor
 setProperties(obj,nargin,varargin{:});
 end
 end

 methods (Access=protected)
 function setupImpl(obj,varargin)
 obj.hFig = figure;
 obj.hAxis = axes;
 set(obj.hFig, 'position', [100 100 840 640])
 hold on;
 axis equal
 xlim(obj.XLim);
 ylim(obj.YLim);

185

 theta = linspace (0, pi, 1000);
 radius = 100;
 laneWidth = 7;

 center1 = [-radius - laneWidth, 0];
 center2 = [radius + laneWidth, 0];

 plot (obj.hAxis, center1(1) + (radius -
laneWidth/2)*cos(theta), center1(2) + (radius - laneWidth/2)*sin(theta),
'linewidth', 2, 'color', 'k');
 plot (obj.hAxis, center1(1) + (radius +
laneWidth/2)*cos(theta), center1(2) + (radius + laneWidth/2)*sin(theta),
'linewidth', 2, 'color', 'k');
 plot (obj.hAxis, center2(1) + (radius -
laneWidth/2)*cos(theta), center2(2) + (radius - laneWidth/2)*sin(theta),
'linewidth', 2, 'color', 'k');
 plot (obj.hAxis, center2(1) + (radius +
laneWidth/2)*cos(theta), center2(2) + (radius + laneWidth/2)*sin(theta),
'linewidth', 2, 'color', 'k');

 plot (obj.hAxis, [-laneWidth/2 -laneWidth/2], [0 120],
'linewidth', 2, 'color', 'k')
 plot (obj.hAxis, [laneWidth/2 laneWidth/2], [0 120],
'linewidth', 2, 'color', 'k')
 plot (obj.hAxis, [-laneWidth/2 -laneWidth/2], [-200 0],
'linewidth', 2, 'color', 'k', 'linestyle', '--')
 plot (obj.hAxis, [laneWidth/2 laneWidth/2], [-200 0],
'linewidth', 2, 'color', 'k', 'linestyle', '--')
 plot (obj.hAxis, [-3*laneWidth/2 -3*laneWidth/2], [-200 0],
'linewidth', 2, 'color', 'k')
 plot (obj.hAxis, [3*laneWidth/2 3*laneWidth/2], [-200 0],
'linewidth', 2, 'color', 'k')

 mPosition_X = varargin{1};

 for i = length(mPosition_X): -1: 1
 obj.hGlyph(i) = patch('XData', [0, 5, 5, 0], 'YData', [-1.5
-1.5 1.5 1.5], 'visible', 'off');

 markerFaceColor = 'g';

 set(obj.hGlyph(i), 'FaceColor', markerFaceColor);
 obj.hText(i) = text(0, 0, '0', 'visible', 'off');
 obj.hTexta(i) = text(0, 0, '0', 'visible', 'off');
 end
 end

 function stepImpl(obj,varargin)
 %Update the Simulink control toolbar

 mPosition_X = varargin{1};

186

 mPosition_Y = varargin{2};
 mVelocity_X = varargin{3};
 mVelocity_Y = varargin{4};
 mAcceleration_X = varargin{5};
 mAcceleration_Y = varargin{6};
 mId = varargin{7};
 mType = varargin{8};

 % Update the plot if it is visible
 if strcmp(get(obj.hFig,'Visible'),'on')
 for i = 1: length(mPosition_X)
 if (mId(i) <= 0)
 set(obj.hGlyph(i), 'XData', obj.basicPos(1, :) +
mPosition_X(i), ...
 'YData', obj.basicPos(2, :) + mPosition_Y(i),
'visible', 'off');
 set(obj.hText(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 5 0], ...
 'String', [num2str(round(mVelocity_X(i), 2)), '
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'off');
 set(obj.hTexta(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 10 0], ...
 'String', [num2str(round(mAcceleration_X(i),
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'off');
 continue;
 end

 if (sqrt(mVelocity_X(i)^2 + mVelocity_Y(i)^2) < 5e-2)
 continue;
 end

 curPosition = zeros (2, 1);
 curPosition (1) = mPosition_X(i) - 5/2;
 curPosition (2) = mPosition_Y(i) - 3/2;

 cosTheta = mVelocity_X(i)/sqrt(mVelocity_X(i)^2 +
mVelocity_Y(i)^2);
 sinTheta = mVelocity_Y(i)/sqrt(mVelocity_X(i)^2 +
mVelocity_Y(i)^2);
 rotationMatrix = [cosTheta, -sinTheta; sinTheta,
cosTheta];

 mbasicPos = rotationMatrix * obj.basicPos;

 markerFaceColor = 'g';

 switch mType(i)
 case VehType(1)
 markerFaceColor = 'b';
 case VehType(2)
 markerFaceColor = 'r';
 end

187

 set(obj.hGlyph(i), 'XData', mbasicPos(1, :) +
mPosition_X(i), ...
 'YData', mbasicPos(2, :) + mPosition_Y(i),
'visible', 'on', 'FaceColor', markerFaceColor);

 if obj.showVelocity
 set(obj.hText(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 5 0], ...
 'String', [num2str(round(mVelocity_X(i), 2)), '
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'on');
 end

 if obj.showAcceleration
 set(obj.hTexta(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 10 0], ...
 'String', [num2str(round(mAcceleration_X(i),
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'on');
 end
 end
 end
 end
 end

 % Simulink interface
 methods(Access=protected)
 function str = getIconImpl(~)
 str = sprintf('Simulation\n\nVisualization');
 end

 function num = getNumInputsImpl(obj)
 num = 8;
 end

 function varargout = getInputNamesImpl(obj)
 varargout = {};

 varargout = {varargout{:} 'Position_X'};
 varargout = {varargout{:} 'Position_Y'};
 varargout = {varargout{:} 'Velocity_X'};
 varargout = {varargout{:} 'Velocity_Y'};
 varargout = {varargout{:} 'Acceleration_X'};
 varargout = {varargout{:} 'Acceleration_Y'};
 varargout = {varargout{:} 'Id'};
 varargout = {varargout{:} 'Type'};
 end
 end

 methods (Access = protected, Static)
 function header = getHeaderImpl
 % Define header panel for System block dialog
 header = matlab.system.display.Header(...

188

 'Title', 'SimulationVisualization’, ...
 'Text', getHeaderText());
 end

 function simMode = getSimulateUsingImpl
 % Return only allowed simulation mode in System block dialog
 simMode = 'Interpreted execution';
 end

 function flag = showSimulateUsingImpl
 % Return false if simulation mode hidden in System block dialog
 flag = false;
 end
 end
end

function str = getHeaderText
str = sprintf([...
 'Plot simulation results.']);
end

189

Appendix-10: Source code for helper plot lane switch and merge-2
classdef (StrictDefaults)helperPlotLaneSwitchAndMerge2 < matlab.System &
matlab.system.mixin.CustomIcon

 % This is a helper block and may be removed or modified in the future.

 %#codegen

 Properties (Nontunable, SetAccess = immutable)
 %XLim X range
 XLim = [0 300]

 %YLim Y range
 YLim = [-150 100]
 end

 properties (Nontunable, Logical)
 %ShowVelocity Display Velocity
 showVelocity = false

 %ShowAcceleration Display Acceleration
 showAcceleration = false
 end

 properties (Access=private)
 hFig
 hAxis
 hGlyph
 hText
 hTexta

 basicPos = [-2.5, 2.5, 2.5, -2.5; -1.5, -1.5, 1.5, 1.5]
 end

 methods
 function obj = helperPlotLaneSwitchAndMerge2(varargin)
 % Constructor
 setProperties(obj,nargin,varargin{:});
 end
 end

 methods (Access=protected)
 function setupImpl(obj,varargin)
 obj.hFig = figure;
 obj.hAxis = axes;
 set (obj.hFig, 'position', [100 100 840 640])
 hold on;
 axis equal
 xlim(obj.XLim);
 ylim(obj.YLim);

190

 plot (obj.hAxis, [0 173 - 7], [0 0], 'linewidth', 2, 'color',
'k')
 plot (obj.hAxis, [173 + 7 300], [0 0], 'linewidth', 2, 'color',
'k')
 plot (obj.hAxis, [173 - 7 173 + 7], [0 0], 'linewidth', 2,
'color', 'k', 'linestyle', '--')
 plot (obj.hAxis, [0 300], [7 7], 'linewidth', 2, 'color', 'k',
'linestyle', '--')
 plot (obj.hAxis, [0 300], [14 14], 'linewidth', 2, 'color',
'k')
 plot (obj.hAxis, [0 173 - 7], [-100 + 7/sqrt(3) 0],
'linewidth', 2, 'color', 'k')
 plot (obj.hAxis, [0 173 + 7], [-100 - 7/sqrt(3) 0],
'linewidth', 2, 'color', 'k')
 plot(obj.hAxis, [30/tan(pi/6) 30/tan(pi/6) + 70/tan(pi/9) +
7/(2*sin(pi/9))], [-70 - 7/(2*cos(pi/9)) 0], 'linewidth', 2, 'color', 'k')
 plot (obj.hAxis, [88.085 30/tan(pi/6) + 70/tan(pi/9) -
7/(2*sin(pi/9))], [-53.127 0], 'linewidth', 2, 'color', 'k')

 mPosition_X = varargin{1};

 for i = length(mPosition_X): -1: 1
 obj.hGlyph(i) = patch('XData', [0, 5, 5, 0], 'YData', [-1.5
-1.5 1.5 1.5], 'visible', 'off');

 markerFaceColor = 'g';

 set(obj.hGlyph(i), 'FaceColor', markerFaceColor);
 obj.hText(i) = text(0, 0, '0', 'visible', 'off');
 obj.hTexta(i) = text(0, 0, '0', 'visible', 'off');
 end
 end

 function stepImpl(obj,varargin)
 %Update the Simulink control toolbar

 mPosition_X = varargin{1};
 mPosition_Y = varargin{2};
 mVelocity_X = varargin{3};
 mVelocity_Y = varargin{4};
 mAcceleration_X = varargin{5};
 mAcceleration_Y = varargin{6};
 mId = varargin{7};
 mType = varargin{8};

 % Update the plot if it is visible
 if strcmp(get(obj.hFig,'Visible'),'on')
 for i = 1: length(mPosition_X)
 if (mId(i) <= 0)
 set(obj.hGlyph(i), 'XData', obj.basicPos(1, :) +
mPosition_X(i), ...

191

 'YData', obj.basicPos(2, :) + mPosition_Y(i),
'visible', 'off');
 set(obj.hText(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 5 0], ...
 'String', [num2str(round(mVelocity_X(i), 2)), '
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'off');
 set(obj.hTexta(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 10 0], ...
 'String', [num2str(round(mAcceleration_X(i),
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'off');
 continue;
 end

 if (sqrt(mVelocity_X(i)^2 + mVelocity_Y(i)^2) < 5e-2)
 continue;
 end

 curPosition = zeros (2, 1);
 curPosition(1) = mPosition_X(i) - 5/2;
 curPosition(2) = mPosition_Y(i) - 3/2;

 cosTheta = mVelocity_X(i)/sqrt(mVelocity_X(i)^2 +
mVelocity_Y(i)^2);
 sinTheta = mVelocity_Y(i)/sqrt(mVelocity_X(i)^2 +
mVelocity_Y(i)^2);
 rotationMatrix = [cosTheta, -sinTheta; sinTheta,
cosTheta];

 mbasicPos = rotationMatrix * obj.basicPos;

 markerFaceColor = 'g';

 switch mType(i)
 case VehType(1)
 markerFaceColor = 'b';
 case VehType(2)
 markerFaceColor = 'r';
 end

 set(obj.hGlyph(i), 'XData', mbasicPos(1, :) +
mPosition_X(i), ...
 'YData', mbasicPos(2, :) + mPosition_Y(i),
'visible', 'on', 'FaceColor', markerFaceColor);

 if obj.showVelocity
 set(obj.hText(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 5 0], ...
 'String', [num2str(round(mVelocity_X(i), 2)), '
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'on');
 end

192

 if obj.showAcceleration
 set(obj.hTexta(i), 'Position', [mPosition_X(i)
mPosition_Y(i) + 10 0], ...
 'String', [num2str(round(mAcceleration_X(i),
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'on');
 end
 end
 end
 end
 end

 % Simulink interface
 Methods (Access=protected)
 function str = getIconImpl(~)
 str = sprintf('Simulation\n\nVisualization');
 end

 function num = getNumInputsImpl(obj)
 num = 8;
 end

 function varargout = getInputNamesImpl(obj)
 varargout = {};

 varargout = {varargout{:} 'Position_X'};
 varargout = {varargout{:} 'Position_Y'};
 varargout = {varargout{:} 'Velocity_X'};
 varargout = {varargout{:} 'Velocity_Y'};
 varargout = {varargout{:} 'Acceleration_X'};
 varargout = {varargout{:} 'Acceleration_Y'};
 varargout = {varargout{:} 'Id'};
 varargout = {varargout{:} 'Type'};
 end
 end

 methods (Access = protected, Static)
 function header = getHeaderImpl
 % Define header panel for System block dialog
 header = matlab.system.display.Header(...
 'Title', 'SimulationVisualization’, ...
 'Text', getHeaderText());
 end

 function simMode = getSimulateUsingImpl
 % Return only allowed simulation mode in System block dialog
 simMode = 'Interpreted execution';
 end

 function flag = showSimulateUsingImpl
 % Return false if simulation mode hidden in System block dialog
 flag = false;
 end

193

 end
end

function str = getHeaderText
str = sprintf([...
 'Plot simulation results.']);
end

194

Appendix-11: Source code for utilities forcing step
function MinimalDistance = fcn(u)

idx = 1;
tx = zeros(length(u), 1);
ty = zeros(length(u), 1);

for i = 1: length(u)
 if (u(i). Id > 0)
 tx(idx) = u(i). Position(1);
 ty(idx) = u(i). Position(2);
 idx = idx + 1;
 end
end

x = tx(1:idx - 1);
y = ty(1:idx - 1);

if (isempty(x))
 MinimalDistance = 0;
 return;
end

len = length(x);
distance = zeros(len*(len-1)/2,1);

idx = 1;
for i = 1: len
 for j = i + 1: len
 distance(idx) = sqrt((x(i) - x(j))^2 + (y(i) - y(j))^2);
 idx = idx + 1;
 end
end

if isempty(distance)
 MinimalDistance = 1000;
else
 MinimalDistance = min(distance);
end

195

Appendix-12: Source code of sensor model for single lane curve scenario
%
% Sensor model for single lane curve scenario

LaneWidth = 7;

centerPoint = [100; -100];
radius = 100;

if mCurVehInfo.Id <= 0
 % Vehicle is disabled
 return;
end

curId = abs(mCurVehInfo.Id);

%% VehglobalInfoInput.dynamicInfo

if mCurVehInfo.Position(1) <= 100
 mLocalVehInfo.dynamicInfo.lateralDeviation = norm(mCurVehInfo.Position
- centerPoint) - radius;
 tRelPos = mCurVehInfo.Position - centerPoint;
 tRelPos = tRelPos/norm(tRelPos);
 mLocalVehInfo.curLane.curvature = [tRelPos(2); -tRelPos(1)];
else
 mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(2) -
0;
 mLocalVehInfo.curLane.curvature = [1; 0];
end

%% VehInput.curLane/leftLane/rightLane

mCurRadian = atan2(mCurVehInfo.Position(2) - centerPoint(2),
mCurVehInfo.Position(1) - centerPoint(1));

for i = 1: length(mGlobalInfo)
 if mGlobalInfo(i). Id <= 0
 % Vehicle is disabled
 continue;
 end

 if mGlobalInfo(i).Position(1) <= radius && mCurVehInfo.Position(1) <=
radius

 mSensoredRadian = atan2(mGlobalInfo(i).Position(2) -
centerPoint(2), mGlobalInfo(i).Position(1) - centerPoint(1));

 if mSensoredRadian < mCurRadian ...
 && radius*(mCurRadian - mSensoredRadian) <
mLocalVehInfo.curLane.frontDistance
 % Sensored vehicle is in front of the current vehicle & with a

196

 % smaller distance
 mLocalVehInfo.curLane.frontDistance = radius*(mCurRadian -
mSensoredRadian);
 mLocalVehInfo.curLane.frontVelocity =
norm(mGlobalInfo(i).Velocity) - norm(mCurVehInfo.Velocity);

 elseif mSensoredRadian > mCurRadian ...
 && radius*(mSensoredRadian - mCurRadian) <
mLocalVehInfo.curLane.rearDistance
 % Sensored vehicle is in rear of the current vehicle and with a
 % smaller distance
 mLocalVehInfo.curLane.rearDistance = radius*(mSensoredRadian -
mCurRadian);
 mLocalVehInfo.curLane.rearVelocity =
norm(mGlobalInfo(i).Velocity) - norm(mCurVehInfo.Velocity);

 end
 elseif mGlobalInfo(i).Position(1) > radius && mCurVehInfo.Position(1) >
radius
 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...
 && (mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1)) <
mLocalVehInfo.curLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.frontDistance =
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1);
 mLocalVehInfo.curLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && (mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1)) <
mLocalVehInfo.curLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.rearDistance = mCurVehInfo.Position(1) -
mGlobalInfo(i).Position(1);
 mLocalVehInfo.curLane.rearVelocity = mGlobalInfo(i).Velocity(1)
- mCurVehInfo.Velocity(1);
 end
 end

end

197

Appendix-13: Source code of sensor model for two lane merge scenarios
%
% Sensor model for two lane merge scenarios

LaneWidth = 7;

mergePoint = [173 + LaneWidth/2*cos(pi/6); LaneWidth/2*sin(pi/6)];
mergeRange = 173 + LaneWidth/2/sin(pi/6)*[-1, 1];

if mCurVehInfo.Id <= 0
 % Vehicle is disabled
 return;
end

curId = abs(mCurVehInfo.Id);

%% VehglobalInfoInput.dynamicInfo
if mCurVehInfo.Destination > 0
 % Vehicle's destination is the first lane
 if mCurVehInfo.Position(2) < 0
 % Vehicle is in the side lane -> change left
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left;
 else
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None;
 end
end

if mCurVehInfo.Position(2) >= 0
 % Vehicle is in the main lane
 mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(2) -
LaneWidth/2;
else
 % Vehicle is in the side lane
 % assume side lane is 30 degree with main lane
 mLocalVehInfo.curLane.curvature = [cos(pi/6); sin(pi/6)];

 vNormal = [-mLocalVehInfo.curLane.curvature(2);
mLocalVehInfo.curLane.curvature(1)];
 vLateralDeviation = dot(mCurVehInfo.Position - mergePoint,
vNormal)*vNormal;
 temp = cross([mLocalVehInfo.curLane.curvature; 0], [vLateralDeviation;
0]);
 mLocalVehInfo.dynamicInfo.lateralDeviation =
norm(vLateralDeviation)*temp(3);
end

%% VehInput.curLane/leftLane/rightLane
if mCurVehInfo.Position(2) < 0 && mCurVehInfo.Position(2) > -LaneWidth ...
 && mCurVehInfo.Position(1) >= mergeRange(1) &&
mCurVehInfo.Position(1) <= mergeRange(2)
 mLocalVehInfo.leftLane.exist = true;
end

198

for i = 1: length(mGlobalInfo)
 if mGlobalInfo(i). Id <= 0
 % Vehicle is disabled
 continue;
 end

 if mCurVehInfo.Position(2) >= 0
 % Vehicle is in the first lane
 if mGlobalInfo(i).Position(2) >= 0
 % Sensored vehicle is in the first lane too
 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...
 && (mGlobalInfo(i).Position(1) -
mCurVehInfo.Position(1)) < mLocalVehInfo.curLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.frontDistance =
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1);
 mLocalVehInfo.curLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && (mCurVehInfo.Position(1) -
mGlobalInfo(i).Position(1)) < mLocalVehInfo.curLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.rearDistance =
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1);
 mLocalVehInfo.curLane.rearVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 end
 else
 % Comment below codes because vehicles on main lane only
 % consider those on the main lane
 end
 else
 % Vehicle in the second lane

 % treat the mergePoint as front objection(vehicle) with 0 velocity

 if norm(mCurVehInfo.Position - mergePoint) <
mLocalVehInfo.curLane.frontDistance
 mLocalVehInfo.curLane.frontDistance = norm(mCurVehInfo.Position
- mergePoint);
 mLocalVehInfo.curLane.frontVelocity = -
norm(mCurVehInfo.Velocity);
 end

 if mGlobalInfo(i).Position(2) >= 0
 % Sensored vehicle is in the first lane

 sensoredVehToMerge = mGlobalInfo(i).Position(1) -
mergePoint(1);

199

 curVehToMerge = -norm(mCurVehInfo.Position - mergePoint);

 if sensoredVehToMerge > curVehToMerge ...
 && (sensoredVehToMerge - curVehToMerge) <
mLocalVehInfo.leftLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.leftLane.frontDistance = sensoredVehToMerge -
curVehToMerge;
 mLocalVehInfo.leftLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - dot(mCurVehInfo.Velocity,
mLocalVehInfo.curLane.curvature);
 elseif sensoredVehToMerge < curVehToMerge ...
 && (curVehToMerge - sensoredVehToMerge) <
mLocalVehInfo.leftLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.leftLane.rearDistance = curVehToMerge -
sensoredVehToMerge;
 mLocalVehInfo.leftLane.rearVelocity =
mGlobalInfo(i).Velocity(1) - dot(mCurVehInfo.Velocity,
mLocalVehInfo.curLane.curvature);
 end
 else
 % Sensored vehicle is in the second lane too

 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...
 && norm(mGlobalInfo(i).Position - mCurVehInfo.Position)
< mLocalVehInfo.curLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.frontDistance =
norm(mGlobalInfo(i).Position - mCurVehInfo.Position);
 mLocalVehInfo.curLane.frontVelocity =
dot(mGlobalInfo(i).Velocity - mCurVehInfo.Velocity,
mLocalVehInfo.curLane.curvature);
 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && norm(mCurVehInfo.Position - mGlobalInfo(i).Position)
< mLocalVehInfo.curLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.rearDistance =
norm(mCurVehInfo.Position - mGlobalInfo(i).Position);
 mLocalVehInfo.curLane.rearVelocity =
dot(mGlobalInfo(i).Velocity - mCurVehInfo.Velocity,
mLocalVehInfo.curLane.curvature);
 end
 end
 end
end

200

Appendix-14: Source code of sensor model for two lane switch scenarios
%
% Sensor model for two lane switch scenarios

LaneWidth = 7;

if mCurVehInfo.Id <= 0
 % Vehicle is disabled
 return;
end

curId = abs(mCurVehInfo.Id);

%% VehglobalInfoInput.dynamicInfo
if mCurVehInfo.Destination > 0
 if mCurVehInfo.Destination == 1
 % Vehicle's destination is the first lane
 if mCurVehInfo.Position(2) < 0
 % Vehicle is in the second lane -> change right
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left;
 else
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None;
 end
 else
 % Vehicle's destination is the second lane
 if mCurVehInfo.Position(2) > 0
 % Vehicle is in the first lane -> change right
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Right;
 else
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None;
 end
 end
end

if mCurVehInfo.Position(2) >= 0
 mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(2) -
LaneWidth/2;
else
 mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(2) +
LaneWidth/2;
end

%% VehInput.curLane/leftLane/rightLane
if mCurVehInfo.Position(2) >= 0
 mLocalVehInfo.rightLane.exist = true;
else
 mLocalVehInfo.leftLane.exist = true;
end

for i = 1: length(mGlobalInfo)
 if mGlobalInfo(i). Id <= 0
 % Vehicle is disabled

201

 continue;
 end

 if mCurVehInfo.Position(2) >= 0
 % Vehicle is in the first lane
 if mGlobalInfo(i).Position(2) >= 0
 % Sensored vehicle is in the first lane too
 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...
 && (mGlobalInfo(i).Position(1) -
mCurVehInfo.Position(1)) < mLocalVehInfo.curLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.frontDistance =
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1);
 mLocalVehInfo.curLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && (mCurVehInfo.Position(1) -
mGlobalInfo(i).Position(1)) < mLocalVehInfo.curLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.rearDistance =
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1);
 mLocalVehInfo.curLane.rearVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 end
 else
 % Sensored vehicle is in the second lane
 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...
 && (mGlobalInfo(i).Position(1) -
mCurVehInfo.Position(1)) < mLocalVehInfo.rightLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.rightLane.frontDistance =
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1);
 mLocalVehInfo.rightLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && (mCurVehInfo.Position(1) -
mGlobalInfo(i).Position(1)) < mLocalVehInfo.rightLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.rightLane.rearDistance =
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1);
 mLocalVehInfo.rightLane.rearVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 end
 end
 else
 % Vehicle in the second lane
 if mGlobalInfo(i).Position(2) >= 0
 % Sensored vehicle is in the first lane
 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...

202

 && (mGlobalInfo(i).Position(1) -
mCurVehInfo.Position(1)) < mLocalVehInfo.leftLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.leftLane.frontDistance =
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1);
 mLocalVehInfo.leftLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && (mCurVehInfo.Position(1) -
mGlobalInfo(i).Position(1)) < mLocalVehInfo.leftLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.leftLane.rearDistance =
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1);
 mLocalVehInfo.leftLane.rearVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 end
 else
 % Sensored vehicle is in the second lane too
 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...
 && (mGlobalInfo(i).Position(1) -
mCurVehInfo.Position(1)) < mLocalVehInfo.curLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.frontDistance =
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1);
 mLocalVehInfo.curLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && (mCurVehInfo.Position(1) -
mGlobalInfo(i).Position(1)) < mLocalVehInfo.curLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.rearDistance =
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1);
 mLocalVehInfo.curLane.rearVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 end
 end
 end
end

203

Appendix-15: Source code of sensor model for three lane switch and lane merge scenarios
%
% Sensor model for three lane switch and lane merge scenarios

LaneWidth = 7;

mergePoint = [173 + LaneWidth/2*cos(pi/6); LaneWidth/2*sin(pi/6)];
mergeRange = 173 + LaneWidth/2/sin(pi/6)*[-1, 1];

if mCurVehInfo.Id <= 0
 % Vehicle is disabled
 return;
end

curId = abs(mCurVehInfo.Id);

%% VehglobalInfoInput.dynamicInfo
if mCurVehInfo.Destination > 0
 if mCurVehInfo.Destination == 1
 % Vehicle's destination is the first lane
 if mCurVehInfo.Position(2) < LaneWidth
 % Vehicle is in the second/third lane -> change left
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left;
 else
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None;
 end
 elseif mCurVehInfo.Destination == 2
 % Vehicle's destination is the second lane
 if mCurVehInfo.Position(2) >= LaneWidth
 % Vehicle is in the first lane -> change right
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Right;
 elseif mCurVehInfo.Position(2) < 0
 % Vehicle is in the third lane -> change left
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left;
 else
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None;
 end
 end
end

if mCurVehInfo.Position(2) >= LaneWidth
 mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(2) -
3*LaneWidth/2;
elseif mCurVehInfo.Position(2) >= 0
 mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(2) -
LaneWidth/2;
else
 % assume side lane is 30 degree with main lane
 mLocalVehInfo.curLane.curvature = [cos(pi/6); sin(pi/6)];

 vNormal = [-mLocalVehInfo.curLane.curvature(2);
mLocalVehInfo.curLane.curvature(1)];

204

 vLateralDeviation = dot(mCurVehInfo.Position - mergePoint,
vNormal)*vNormal;
 temp = cross([mLocalVehInfo.curLane.curvature; 0], [vLateralDeviation;
0]);
 mLocalVehInfo.dynamicInfo.lateralDeviation =
norm(vLateralDeviation)*temp(3);
end

%% VehInput.curLane/leftLane/rightLane
if mCurVehInfo.Position(2) >= LaneWidth
 mLocalVehInfo.rightLane.exist = true;
elseif mCurVehInfo.Position(2) >= 0
 mLocalVehInfo.leftLane.exist = true;
elseif mCurVehInfo.Position(2) < 0 && mCurVehInfo.Position(2) > -
LaneWidth ...
 && mCurVehInfo.Position(1) >= mergeRange(1) &&
mCurVehInfo.Position(1) <= mergeRange(2)
 mLocalVehInfo.leftLane.exist = true;
end

for i = 1: length(mGlobalInfo)
 if mGlobalInfo(i). Id <= 0
 % Vehicle is disabled
 continue;
 end

 if mCurVehInfo.Position(2) >= LaneWidth
 % Vehicle is in the first lane
 if mGlobalInfo(i).Position(2) >= LaneWidth
 % Sensored vehicle is in the first lane too
 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...
 && (mGlobalInfo(i).Position(1) -
mCurVehInfo.Position(1)) < mLocalVehInfo.curLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.frontDistance =
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1);
 mLocalVehInfo.curLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && (mCurVehInfo.Position(1) -
mGlobalInfo(i).Position(1)) < mLocalVehInfo.curLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.rearDistance =
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1);
 mLocalVehInfo.curLane.rearVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 end
 elseif mGlobalInfo(i).Position(2) >= 0
 % Sensored vehicle is in the second lane
 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...

205

 && (mGlobalInfo(i).Position(1) -
mCurVehInfo.Position(1)) < mLocalVehInfo.rightLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.rightLane.frontDistance =
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1);
 mLocalVehInfo.rightLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && (mCurVehInfo.Position(1) -
mGlobalInfo(i).Position(1)) < mLocalVehInfo.rightLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.rightLane.rearDistance =
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1);
 mLocalVehInfo.rightLane.rearVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 end
 end
 elseif mCurVehInfo.Position(2) >= 0
 % Vehicle in the second lane
 if mGlobalInfo(i).Position(2) >= LaneWidth
 % Sensored vehicle is in the first lane
 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...
 && (mGlobalInfo(i).Position(1) -
mCurVehInfo.Position(1)) < mLocalVehInfo.leftLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.leftLane.frontDistance =
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1);
 mLocalVehInfo.leftLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && (mCurVehInfo.Position(1) -
mGlobalInfo(i).Position(1)) < mLocalVehInfo.leftLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.leftLane.rearDistance =
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1);
 mLocalVehInfo.leftLane.rearVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 end
 elseif mGlobalInfo(i).Position(2) >= 0
 % Sensored vehicle is in the second lane too
 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...
 && (mGlobalInfo(i).Position(1) -
mCurVehInfo.Position(1)) < mLocalVehInfo.curLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.frontDistance =
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1);
 mLocalVehInfo.curLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);

206

 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && (mCurVehInfo.Position(1) -
mGlobalInfo(i).Position(1)) < mLocalVehInfo.curLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.rearDistance =
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1);
 mLocalVehInfo.curLane.rearVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 end
 end
 else
 % Vehicle in the third lane

 % treat the mergePoint as front objection(vehicle) with 0 velocity

 if norm(mCurVehInfo.Position - mergePoint) <
mLocalVehInfo.curLane.frontDistance
 mLocalVehInfo.curLane.frontDistance = norm(mCurVehInfo.Position
- mergePoint);
 mLocalVehInfo.curLane.frontVelocity = -
norm(mCurVehInfo.Velocity);
 end

 if mGlobalInfo(i).Position(2) >= LaneWidth
 % Sensored vehicle is in the first lane
 % Do nothing
 elseif mGlobalInfo(i).Position(2) >= 0
 % Sensored vehicle is in the second lane

 sensoredVehToMerge = mGlobalInfo(i).Position(1) -
mergePoint(1);
 curVehToMerge = -norm(mCurVehInfo.Position - mergePoint);

 if sensoredVehToMerge > curVehToMerge ...
 && (sensoredVehToMerge - curVehToMerge) <
mLocalVehInfo.leftLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.leftLane.frontDistance = sensoredVehToMerge -
curVehToMerge;
 mLocalVehInfo.leftLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - dot(mCurVehInfo.Velocity,
mLocalVehInfo.curLane.curvature);
 elseif sensoredVehToMerge < curVehToMerge ...
 && (curVehToMerge - sensoredVehToMerge) <
mLocalVehInfo.leftLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.leftLane.rearDistance = curVehToMerge -
sensoredVehToMerge;

207

 mLocalVehInfo.leftLane.rearVelocity =
mGlobalInfo(i).Velocity(1) - dot(mCurVehInfo.Velocity,
mLocalVehInfo.curLane.curvature);
 end
 else
 % Sensored vehicle is in the third lane too

 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...
 && norm(mGlobalInfo(i).Position - mCurVehInfo.Position)
< mLocalVehInfo.curLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.frontDistance =
norm(mGlobalInfo(i).Position - mCurVehInfo.Position);
 mLocalVehInfo.curLane.frontVelocity =
dot(mGlobalInfo(i).Velocity - mCurVehInfo.Velocity,
mLocalVehInfo.curLane.curvature);
 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && norm(mCurVehInfo.Position - mGlobalInfo(i).Position)
< mLocalVehInfo.curLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.rearDistance =
norm(mCurVehInfo.Position - mGlobalInfo(i).Position);
 mLocalVehInfo.curLane.rearVelocity =
dot(mGlobalInfo(i).Velocity - mCurVehInfo.Velocity,
mLocalVehInfo.curLane.curvature);
 end
 end
 end
end

208

Appendix-16: Source code of sensor model for three lane curve and lane switch scenarios
%
% Sensor model for three lane curve and lane scenarios

LaneWidth = 7;
radius = 100;

centerPoint1 = [-radius - LaneWidth; 0];
centerPoint2 = [radius + LaneWidth; 0];

if mCurVehInfo.Id <= 0
 % Vehicle is disabled
 return;
end

curId = abs(mCurVehInfo.Id);

%% VehglobalInfoInput.dynamicInfo
if mCurVehInfo.Destination > 0
 if mCurVehInfo.Destination == 1
 % Vehicle's destination is the first lane
 if mCurVehInfo.Position(1) > -LaneWidth/2
 % Vehicle is in the second/third lane -> change left
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Right;
 else
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None;
 end
 elseif mCurVehInfo.Destination == 2
 % Vehicle's destination is the second lane
 if mCurVehInfo.Position(1) < -LaneWidth/2
 % Vehicle is in the first lane -> change left
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left;
 elseif mCurVehInfo.Position(1) > LaneWidth/2
 % Vehicle is in the third lane -> change right
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Right;
 else
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None;
 end
 else
 % Vehicle's destination is the third lane
 if mCurVehInfo.Position(1) < LaneWidth/2
 % Vehicle is in the first/second lane -> change left
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left;
 else
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None;
 end
 end
end

if mCurVehInfo.Position(1) <= -LaneWidth/2
 % Vehicle is in the left lane
 if mCurVehInfo.Position(2) >= 0

209

 mLocalVehInfo.dynamicInfo.lateralDeviation =
norm(mCurVehInfo.Position - centerPoint1) - radius;
 tRelPos = mCurVehInfo.Position - centerPoint1;
 tRelPos = tRelPos/norm(tRelPos);
 mLocalVehInfo.curLane.curvature = [tRelPos(2); -tRelPos(1)];
 else
 mLocalVehInfo.dynamicInfo.lateralDeviation =
mCurVehInfo.Position(1) + LaneWidth;
 mLocalVehInfo.curLane.curvature = [0; -1];
 end
elseif mCurVehInfo.Position(1) >= LaneWidth/2
 % Vehicle is in the right lane
 if mCurVehInfo.Position(2) >= 0
 mLocalVehInfo.dynamicInfo.lateralDeviation = radius -
norm(mCurVehInfo.Position - centerPoint2);
 tRelPos = mCurVehInfo.Position - centerPoint2;
 tRelPos = tRelPos/norm(tRelPos);
 mLocalVehInfo.curLane.curvature = [-tRelPos(2); tRelPos(1)];
 else
 mLocalVehInfo.dynamicInfo.lateralDeviation =
mCurVehInfo.Position(1) - LaneWidth;
 mLocalVehInfo.curLane.curvature = [0; -1];
 end
else
 % Vehicle is in the center lane
 mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(1) -
0;
 mLocalVehInfo.curLane.curvature = [0; -1];
end

%% VehInput.curLane/leftLane/rightLane

if mCurVehInfo.Position(1) <= -LaneWidth/2
 if mCurVehInfo.Position(2) < 0
 mLocalVehInfo.leftLane.exist = true;
 mLocalVehInfo.leftLane.curvature = [0; -1];
 end
elseif mCurVehInfo.Position(1) >= LaneWidth/2
 if mCurVehInfo.Position(2) < 0
 mLocalVehInfo.rightLane.exist = true;
 mLocalVehInfo.rightLane.curvature = [0; -1];
 end
else
 if mCurVehInfo.Position(2) < 0
 mLocalVehInfo.leftLane.exist = true;
 mLocalVehInfo.rightLane.exist = true;
 mLocalVehInfo.leftLane.curvature = [0; -1];
 mLocalVehInfo.rightLane.curvature = [0; -1];
 end
end

for i = 1 : length(mGlobalInfo)
 if mGlobalInfo(i).Id <= 0

210

 % Vehicle is disabled
 continue;
 end

 if mCurVehInfo.Position(1) <= -LaneWidth/2
 % Vehicle is in the left lane
 if mGlobalInfo(i).Position(1) <= -LaneWidth/2
 % Sensored vehicle is in the left lane
 if mCurVehInfo.Position(2) >= 0 &&
mGlobalInfo(i).Position(2) >= 0
 % Both current vehicle and sensored vehicles are in the
 % circle section
 mCurRadian = atan2(mCurVehInfo.Position(2) -
centerPoint1(2), mCurVehInfo.Position(1) - centerPoint1(1));
 mSensoredRadian = atan2(mGlobalInfo(i).Position(2) -
centerPoint1(2), mGlobalInfo(i).Position(1) - centerPoint1(1));

 if mSensoredRadian < mCurRadian ...
 && radius*(mCurRadian - mSensoredRadian) <
mLocalVehInfo.curLane.frontDistance
 % Sensored vehicle is in front of the current vehicle
and with a
 % smaller distance
 mLocalVehInfo.curLane.frontDistance =
radius*(mCurRadian - mSensoredRadian);
 mLocalVehInfo.curLane.frontVelocity =
norm(mGlobalInfo(i).Velocity) - norm(mCurVehInfo.Velocity);

 elseif mSensoredRadian > mCurRadian ...
 && radius*(mSensoredRadian - mCurRadian) <
mLocalVehInfo.curLane.rearDistance
 % Sensored vehicle is in rear of the current vehicle
and with a
 % smaller distance
 mLocalVehInfo.curLane.rearDistance =
radius*(mSensoredRadian - mCurRadian);
 mLocalVehInfo.curLane.rearVelocity =
norm(mGlobalInfo(i).Velocity) - norm(mCurVehInfo.Velocity);

 end
 elseif mCurVehInfo.Position(2) < 0 &&
mGlobalInfo(i).Position(2) < 0
 % Both current vehicle and sensored vehicles are in the
 % straight section
 if mGlobalInfo(i).Position(2) < mCurVehInfo.Position(2) ...
 && (mCurVehInfo.Position(2) -
mGlobalInfo(i).Position(2)) < mLocalVehInfo.curLane.frontDistance
 % Vehicle in front of current vehicle and with a
smaller
 % distance
 mLocalVehInfo.curLane.frontDistance =
mCurVehInfo.Position(2) - mGlobalInfo(i).Position(2);

211

 mLocalVehInfo.curLane.frontVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2));
 elseif mGlobalInfo(i).Position(2) >
mCurVehInfo.Position(2) ...
 && (mGlobalInfo(i).Position(2) -
mCurVehInfo.Position(2)) < mLocalVehInfo.curLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.rearDistance =
mGlobalInfo(i).Position(2) - mCurVehInfo.Position(2);
 mLocalVehInfo.curLane.rearVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2));
 end

 end
 elseif mGlobalInfo(i).Position(1) >= LaneWidth/2
 % Sensored vehicle is in the right lane

 % do nothing since the two vehicles are seperated by the middle
 % lane

 else
 % Sensored vehicle is in the middle lane
 if mCurVehInfo.Position(2) < 0
 if mGlobalInfo(i).Position(2) < mCurVehInfo.Position(2) ...
 && (mCurVehInfo.Position(2) -
mGlobalInfo(i).Position(2)) < mLocalVehInfo.leftLane.frontDistance
 % Vehicle in front of current vehicle and with a
smaller
 % distance
 mLocalVehInfo.leftLane.frontDistance =
mCurVehInfo.Position(2) - mGlobalInfo(i).Position(2);
 mLocalVehInfo.leftLane.frontVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2));
 elseif mGlobalInfo(i).Position(2) >
mCurVehInfo.Position(2) ...
 && (mGlobalInfo(i).Position(2) -
mCurVehInfo.Position(2)) < mLocalVehInfo.leftLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.leftLane.rearDistance =
mGlobalInfo(i).Position(2) - mCurVehInfo.Position(2);
 mLocalVehInfo.leftLane.rearVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2));
 end
 end

 end
 elseif mCurVehInfo.Position(1) >= LaneWidth/2
 % Vehicle is in the right lane

 if mGlobalInfo(i).Position(1) <= -LaneWidth/2

212

 % Sensored vehicle is in the left lane

 % do nothing since the two lanes are seperated by the middle
 % lane

 elseif mGlobalInfo(i).Position(1) >= LaneWidth/2
 % Sensored vehicle is in the right lane

 if mCurVehInfo.Position(2) >= 0 &&
mGlobalInfo(i).Position(2) >= 0
 % Both current vehicle and sensored vehicles are in the
 % circle section
 mCurRadian = atan2(mCurVehInfo.Position(2) -
centerPoint2(2), mCurVehInfo.Position(1) - centerPoint2(1));
 mSensoredRadian = atan2(mGlobalInfo(i).Position(2) -
centerPoint2(2), mGlobalInfo(i).Position(1) - centerPoint2(1));

 if mSensoredRadian > mCurRadian ...
 && radius*(mSensoredRadian - mCurRadian) <
mLocalVehInfo.curLane.frontDistance
 % Sensored vehicle is in front of the current vehicle
and with a
 % smaller distance
 mLocalVehInfo.curLane.frontDistance =
radius*(mSensoredRadian - mCurRadian);
 mLocalVehInfo.curLane.frontVelocity =
norm(mGlobalInfo(i).Velocity) - norm(mCurVehInfo.Velocity);

 elseif mSensoredRadian < mCurRadian ...
 && radius*(mCurRadian - mSensoredRadian) <
mLocalVehInfo.curLane.rearDistance
 % Sensored vehicle is in rear of the current vehicle
and with a
 % smaller distance
 mLocalVehInfo.curLane.rearDistance = radius*(mCurRadian
- mSensoredRadian);
 mLocalVehInfo.curLane.rearVelocity =
norm(mGlobalInfo(i).Velocity) - norm(mCurVehInfo.Velocity);

 end

 elseif mCurVehInfo.Position(2) < 0 &&
mGlobalInfo(i).Position(2) < 0
 % Both current vehicle and sensored vehicles are in the
 % straight section
 if mGlobalInfo(i).Position(2) < mCurVehInfo.Position(2) ...
 && (mCurVehInfo.Position(2) -
mGlobalInfo(i).Position(2)) < mLocalVehInfo.curLane.frontDistance
 % Vehicle in front of current vehicle and with a
smaller
 % distance

213

 mLocalVehInfo.curLane.frontDistance =
mCurVehInfo.Position(2) - mGlobalInfo(i).Position(2);
 mLocalVehInfo.curLane.frontVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2));
 elseif mGlobalInfo(i).Position(2) >
mCurVehInfo.Position(2) ...
 && (mGlobalInfo(i).Position(2) -
mCurVehInfo.Position(2)) < mLocalVehInfo.curLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.rearDistance =
mGlobalInfo(i).Position(2) - mCurVehInfo.Position(2);
 mLocalVehInfo.curLane.rearVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2));
 end

 end

 else
 % Sensored vehicle is in the middle lane
 if mCurVehInfo.Position(2) < 0
 if mGlobalInfo(i).Position(2) < mCurVehInfo.Position(2) ...
 && (mCurVehInfo.Position(2) -
mGlobalInfo(i).Position(2)) < mLocalVehInfo.rightLane.frontDistance
 % Vehicle in front of current vehicle and with a
smaller
 % distance
 mLocalVehInfo.rightLane.frontDistance =
mCurVehInfo.Position(2) - mGlobalInfo(i).Position(2);
 mLocalVehInfo.rightLane.frontVelocity =
mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2);
 elseif mGlobalInfo(i).Position(2) >
mCurVehInfo.Position(2) ...
 && (mGlobalInfo(i).Position(2) -
mCurVehInfo.Position(2)) < mLocalVehInfo.rightLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.rightLane.rearDistance =
mGlobalInfo(i).Position(2) - mCurVehInfo.Position(2);
 mLocalVehInfo.rightLane.rearVelocity =
mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2);
 end
 end

 end

 else
 % Vehicle is in the middle lane
 if mGlobalInfo(i).Position(1) <= -LaneWidth/2
 % Sensored vehicle is in the left lane
 if mGlobalInfo(i).Position(2) < 0
 % Sensored vehicle is in the straight section

214

 if mGlobalInfo(i).Position(2) < mCurVehInfo.Position(2) ...
 && (mCurVehInfo.Position(2) -
mGlobalInfo(i).Position(2)) < mLocalVehInfo.rightLane.frontDistance
 % Vehicle in front of current vehicle and with a
smaller
 % distance
 mLocalVehInfo.rightLane.frontDistance =
mCurVehInfo.Position(2) - mGlobalInfo(i).Position(2);
 mLocalVehInfo.rightLane.frontVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2));
 elseif mGlobalInfo(i).Position(2) >
mCurVehInfo.Position(2) ...
 && (mGlobalInfo(i).Position(2) -
mCurVehInfo.Position(2)) < mLocalVehInfo.rightLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.rightLane.rearDistance =
mGlobalInfo(i).Position(2) - mCurVehInfo.Position(2);
 mLocalVehInfo.rightLane.rearVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2));
 end
 end
 elseif mGlobalInfo(i).Position(1) >= LaneWidth/2
 % Sensored vehicle is in the right lane
 if mGlobalInfo(i).Position(2) < 0
 if mGlobalInfo(i).Position(2) < mCurVehInfo.Position(2) ...
 && (mCurVehInfo.Position(2) -
mGlobalInfo(i).Position(2)) < mLocalVehInfo.leftLane.frontDistance
 % Vehicle in front of current vehicle and with a
smaller
 % distance
 mLocalVehInfo.leftLane.frontDistance =
mCurVehInfo.Position(2) - mGlobalInfo(i).Position(2);
 mLocalVehInfo.leftLane.frontVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2));
 elseif mGlobalInfo(i).Position(2) >
mCurVehInfo.Position(2) ...
 && (mGlobalInfo(i).Position(2) -
mCurVehInfo.Position(2)) < mLocalVehInfo.leftLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.leftLane.rearDistance =
mGlobalInfo(i).Position(2) - mCurVehInfo.Position(2);
 mLocalVehInfo.leftLane.rearVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2));
 end
 end
 else
 % Sensored vehicle is in the middle lane
 if mGlobalInfo(i).Position(2) < mCurVehInfo.Position(2) ...
 && (mCurVehInfo.Position(2) -
mGlobalInfo(i).Position(2)) < mLocalVehInfo.curLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller

215

 % distance
 mLocalVehInfo.curLane.frontDistance =
mCurVehInfo.Position(2) - mGlobalInfo(i).Position(2);
 mLocalVehInfo.curLane.frontVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2));
 elseif mGlobalInfo(i).Position(2) > mCurVehInfo.Position(2) ...
 && (mGlobalInfo(i).Position(2) -
mCurVehInfo.Position(2)) < mLocalVehInfo.curLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.rearDistance =
mGlobalInfo(i).Position(2) - mCurVehInfo.Position(2);
 mLocalVehInfo.curLane.rearVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2));
 end

 end

 end

end

216

Appendix-17: Source code of sensor model for four lane switch and lane merge scenarios
%
% Sensor model for four lane switch and lane merge scenarios

LaneWidth = 7;

mergePoint = [173 + LaneWidth/2*cos(pi/6); LaneWidth/2*sin(pi/6)];
mergeRange = 173 + LaneWidth/2/sin(pi/6)*[-1, 1];
mergePoint2 = [70/tan(pi/9) + 30/tan(pi/6) + 0*7/(2*sin(pi/9)); 0*3.5];
mergeRange2 = 70/tan(pi/9) + 30/tan(pi/6) + LaneWidth/2/sin(pi/9)*[-1, 1];

if mCurVehInfo.Id <= 0
 % Vehicle is disabled
 return;
end

curId = abs(mCurVehInfo.Id);

%% VehglobalInfoInput.dynamicInfo
if mCurVehInfo.Destination > 0
 if mCurVehInfo.Destination == 1
 % Vehicle's destination is the first lane
 if mCurVehInfo.Position(2) < LaneWidth
 % Vehicle is in the second/third lane -> change left
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left;
 else
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None;
 end
 elseif mCurVehInfo.Destination == 2
 % Vehicle's destination is the second lane
 if mCurVehInfo.Position(2) >= LaneWidth
 % Vehicle is in the first lane -> change right
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Right;
 elseif mCurVehInfo.Position(2) < 0
 % Vehicle is in the third lane -> change left
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left;
 else
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None;
 end
 else
 % Vehicle's destination is the third lane
 if mCurVehInfo.Position(2) < 0
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left;
 else
 mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None;
 end
 end
end

if mCurVehInfo.Position(2) >= LaneWidth
 mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(2) -
3*LaneWidth/2;

217

elseif mCurVehInfo.Position(2) >= 0
 mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(2) -
LaneWidth/2;
elseif mCurVehInfo.Destination == 2
 % Vehicle is in the first side lane
 % assume side lane is 30 degree with main lane
 mLocalVehInfo.curLane.curvature = [cos(pi/6); sin(pi/6)];

 vNormal = [-mLocalVehInfo.curLane.curvature(2);
mLocalVehInfo.curLane.curvature(1)];
 vLateralDeviation = dot(mCurVehInfo.Position - mergePoint,
vNormal)*vNormal;
 temp = cross([mLocalVehInfo.curLane.curvature; 0], [vLateralDeviation;
0]);
 mLocalVehInfo.dynamicInfo.lateralDeviation =
norm(vLateralDeviation)*temp(3);
else
 % Vehicle is in the second side lane

 if mCurVehInfo.Position(2) < -70
 mLocalVehInfo.curLane.curvature = [cos(pi/6); sin(pi/6)];
 vNormal = [-mLocalVehInfo.curLane.curvature(2);
mLocalVehInfo.curLane.curvature(1)];
 vLateralDeviation = dot(mCurVehInfo.Position - mergePoint,
vNormal)*vNormal;
 temp = cross([mLocalVehInfo.curLane.curvature; 0],
[vLateralDeviation; 0]);
 mLocalVehInfo.dynamicInfo.lateralDeviation =
norm(vLateralDeviation)*temp(3);
 else
 mLocalVehInfo.curLane.curvature = [cos(pi/9); sin(pi/9)];
 vNormal = [-mLocalVehInfo.curLane.curvature(2);
mLocalVehInfo.curLane.curvature(1)];
 vLateralDeviation = dot(mCurVehInfo.Position - mergePoint2,
vNormal)*vNormal;
 temp = cross([mLocalVehInfo.curLane.curvature; 0],
[vLateralDeviation; 0]);
 mLocalVehInfo.dynamicInfo.lateralDeviation =
norm(vLateralDeviation)*temp(3);
 end

end

%% VehInput.curLane/leftLane/rightLane
if mCurVehInfo.Position(2) >= LaneWidth
 mLocalVehInfo.rightLane.exist = true;
elseif mCurVehInfo.Position(2) >= 0
 mLocalVehInfo.leftLane.exist = true;
elseif mCurVehInfo.Position(2) < 0 && mCurVehInfo.Position(2) > -
LaneWidth ...
 && mCurVehInfo.Position(1) >= mergeRange(1) &&
mCurVehInfo.Position(1) <= mergeRange(2)

218

 mLocalVehInfo.leftLane.exist = true;
elseif mCurVehInfo.Position(2) < 0 && mCurVehInfo.Position(2) > -
LaneWidth ...
 && mCurVehInfo.Position(1) >= mergeRange2(1) &&
mCurVehInfo.Position(1) <= mergeRange2(2)
 mLocalVehInfo.leftLane.exist = true;
end

for i = 1 : length(mGlobalInfo)
 if mGlobalInfo(i).Id <= 0
 % Vehicle is disabled
 continue;
 end

 if mCurVehInfo.Position(2) >= LaneWidth
 % Vehicle is in the first lane
 if mGlobalInfo(i).Position(2) >= LaneWidth
 % Sensored vehicle is in the first lane too
 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...
 && (mGlobalInfo(i).Position(1) -
mCurVehInfo.Position(1)) < mLocalVehInfo.curLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.frontDistance =
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1);
 mLocalVehInfo.curLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && (mCurVehInfo.Position(1) -
mGlobalInfo(i).Position(1)) < mLocalVehInfo.curLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.rearDistance =
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1);
 mLocalVehInfo.curLane.rearVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 end
 elseif mGlobalInfo(i).Position(2) >= 0
 % Sensored vehicle is in the second lane
 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...
 && (mGlobalInfo(i).Position(1) -
mCurVehInfo.Position(1)) < mLocalVehInfo.rightLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.rightLane.frontDistance =
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1);
 mLocalVehInfo.rightLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && (mCurVehInfo.Position(1) -
mGlobalInfo(i).Position(1)) < mLocalVehInfo.rightLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance

219

 mLocalVehInfo.rightLane.rearDistance =
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1);
 mLocalVehInfo.rightLane.rearVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 end
 end
 elseif mCurVehInfo.Position(2) >= 0
 % Vehicle in the second lane
 if mGlobalInfo(i).Position(2) >= LaneWidth
 % Sensored vehicle is in the first lane
 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...
 && (mGlobalInfo(i).Position(1) -
mCurVehInfo.Position(1)) < mLocalVehInfo.leftLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.leftLane.frontDistance =
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1);
 mLocalVehInfo.leftLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && (mCurVehInfo.Position(1) -
mGlobalInfo(i).Position(1)) < mLocalVehInfo.leftLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.leftLane.rearDistance =
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1);
 mLocalVehInfo.leftLane.rearVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 end
 elseif mGlobalInfo(i).Position(2) >= 0
 % Sensored vehicle is in the second lane too
 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...
 && (mGlobalInfo(i).Position(1) -
mCurVehInfo.Position(1)) < mLocalVehInfo.curLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.frontDistance =
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1);
 mLocalVehInfo.curLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && (mCurVehInfo.Position(1) -
mGlobalInfo(i).Position(1)) < mLocalVehInfo.curLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.rearDistance =
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1);
 mLocalVehInfo.curLane.rearVelocity =
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1);
 end
 end
 elseif mCurVehInfo.Destination == 2
 % Vehicle in the third lane (the first side lane)

220

 % treat the mergePoint as front objection(vehicle) with 0 velocity

 if norm(mCurVehInfo.Position - mergePoint) <
mLocalVehInfo.curLane.frontDistance
 mLocalVehInfo.curLane.frontDistance = norm(mCurVehInfo.Position
- mergePoint);
 mLocalVehInfo.curLane.frontVelocity = -
norm(mCurVehInfo.Velocity);
 end

 if mGlobalInfo(i).Position(2) >= LaneWidth
 % Sensored vehicle is in the first lane
 % Do nothing
 elseif mGlobalInfo(i).Position(2) >= 0
 % Sensored vehicle is in the second lane

 sensoredVehToMerge = mGlobalInfo(i).Position(1) -
mergePoint(1);
 curVehToMerge = -norm(mCurVehInfo.Position - mergePoint);

 if sensoredVehToMerge > curVehToMerge ...
 && (sensoredVehToMerge - curVehToMerge) <
mLocalVehInfo.leftLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.leftLane.frontDistance = sensoredVehToMerge -
curVehToMerge;
 mLocalVehInfo.leftLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - dot(mCurVehInfo.Velocity,
mLocalVehInfo.curLane.curvature);
 elseif sensoredVehToMerge < curVehToMerge ...
 && (curVehToMerge - sensoredVehToMerge) <
mLocalVehInfo.leftLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.leftLane.rearDistance = curVehToMerge -
sensoredVehToMerge;
 mLocalVehInfo.leftLane.rearVelocity =
mGlobalInfo(i).Velocity(1) - dot(mCurVehInfo.Velocity,
mLocalVehInfo.curLane.curvature);
 end
 else
 % Sensored vehicle is in the third lane too

 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...
 && norm(mGlobalInfo(i).Position - mCurVehInfo.Position)
< mLocalVehInfo.curLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.frontDistance =
norm(mGlobalInfo(i).Position - mCurVehInfo.Position);

221

 mLocalVehInfo.curLane.frontVelocity =
dot(mGlobalInfo(i).Velocity - mCurVehInfo.Velocity,
mLocalVehInfo.curLane.curvature);
 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && norm(mCurVehInfo.Position - mGlobalInfo(i).Position)
< mLocalVehInfo.curLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.rearDistance =
norm(mCurVehInfo.Position - mGlobalInfo(i).Position);
 mLocalVehInfo.curLane.rearVelocity =
dot(mGlobalInfo(i).Velocity - mCurVehInfo.Velocity,
mLocalVehInfo.curLane.curvature);
 end
 end
 else
 % Vehicle in the second side lane

 % treat the mergePoint2 as front objection(vehicle) with 0 velocity

 if norm(mCurVehInfo.Position - mergePoint2) <
mLocalVehInfo.curLane.frontDistance
 mLocalVehInfo.curLane.frontDistance = norm(mCurVehInfo.Position
- mergePoint2);
 mLocalVehInfo.curLane.frontVelocity = -
norm(mCurVehInfo.Velocity);
 end

 if mGlobalInfo(i).Position(2) >= LaneWidth
 % Sensored vehicle is in the first lane
 % Do nothing
 elseif mGlobalInfo(i).Position(2) >= 0
 % Sensored vehicle is in the second lane

 sensoredVehToMerge = mGlobalInfo(i).Position(1) -
mergePoint2(1);
 curVehToMerge = -norm(mCurVehInfo.Position - mergePoint2);

 if sensoredVehToMerge > curVehToMerge ...
 && (sensoredVehToMerge - curVehToMerge) <
mLocalVehInfo.leftLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.leftLane.frontDistance = sensoredVehToMerge -
curVehToMerge;
 mLocalVehInfo.leftLane.frontVelocity =
mGlobalInfo(i).Velocity(1) - dot(mCurVehInfo.Velocity,
mLocalVehInfo.curLane.curvature);
 elseif sensoredVehToMerge < curVehToMerge ...
 && (curVehToMerge - sensoredVehToMerge) <
mLocalVehInfo.leftLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller

222

 % distance
 mLocalVehInfo.leftLane.rearDistance = curVehToMerge -
sensoredVehToMerge;
 mLocalVehInfo.leftLane.rearVelocity =
mGlobalInfo(i).Velocity(1) - dot(mCurVehInfo.Velocity,
mLocalVehInfo.curLane.curvature);
 end
 else
 % Sensored vehicle is in the side lane too

 if mGlobalInfo(i).Position(2) > -70 && ...
 mGlobalInfo(i).Position(1) <
(mGlobalInfo(i).Position(2) + 100 + 7/sqrt(3))*sqrt(3)
 % Sensored vehicle is in the first side lane and passes the
 % switching point, ignore

 continue;
 end

 if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ...
 && norm(mGlobalInfo(i).Position - mCurVehInfo.Position)
< mLocalVehInfo.curLane.frontDistance
 % Vehicle in front of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.frontDistance =
norm(mGlobalInfo(i).Position - mCurVehInfo.Position);
 mLocalVehInfo.curLane.frontVelocity =
dot(mGlobalInfo(i).Velocity - mCurVehInfo.Velocity,
mLocalVehInfo.curLane.curvature);
 elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ...
 && norm(mCurVehInfo.Position - mGlobalInfo(i).Position)
< mLocalVehInfo.curLane.rearDistance
 % Vehicle in rear of current vehicle and with a smaller
 % distance
 mLocalVehInfo.curLane.rearDistance =
norm(mCurVehInfo.Position - mGlobalInfo(i).Position);
 mLocalVehInfo.curLane.rearVelocity =
dot(mGlobalInfo(i).Velocity - mCurVehInfo.Velocity,
mLocalVehInfo.curLane.curvature);
 end
 end
 end
end

223

Appendix -18: Vehicle Model

Figure 18.1: The bicycle model's schematic illustration

Velocity States

The velocity states in the vehicle model are the sideslip angle 𝛽 and yaw rate 𝑟. The angle of

the sideslip is given by:

𝛽 = 𝑡𝑎𝑛(
𝑈௬

𝑈௫
൘) ≈

𝑈௬
𝑈௫

൘ ………….. Equation (78.1)

In the body-fixed frame, the lateral and longitudinal velocities are indicated as 𝑈௬ and 𝑈௫. It

was assumed for simplicity 𝑈௫ > 𝑈௬ as a convenience and that 𝑈௫ is constant. For the sideslip

and yaw rates, the equations of motion are as follows.

�̇� =
ிା ிೝ

ೣ
− 𝑟 …………………….….. Equation (18.2)

�̇� =
ிି ிೝ

ூ
 ………………………….... Equation (18.3)

The lateral tyre force on the front and rear axles is indicated by 𝐹௬ and 𝐹௬, the vehicle mass

is denoted by 𝑚, the yaw inertia is denoted by 𝐼௭௭, and the distances between the vehicle's

224

centre of gravity and the front and rear axles are marked by 𝑎 and 𝑏, respectively. The slip

angle of the front tyre, 𝛼, and the rear tyre, 𝛼, may be stated as follows:

𝛼 = 𝑡𝑎𝑛ିଵ ቀ𝛽 +

ೣ
ቁ − 𝛿 ≈ 𝛽 +

ೣ
− 𝛿 ………….. Equation (18.4)

𝛼 = 𝑡𝑎𝑛ିଵ ቀ𝛽 −

ೣ
ቁ ≈ 𝛽 −

ೣ
 ……………Equation (18.5)

Small-angle approximations result in linear expressions. Fialas’ brush tyre model, as described

by Pacejka, provides the link between lateral tyre forces and tyre slip angles as follows:

𝐹௬ =

⎩
⎪
⎨

⎪
⎧−𝐶ఈ 𝑡𝑎𝑛 𝛼 +

ഀ
మ

ଷఓி
|𝑡𝑎𝑛 𝛼| 𝑡𝑎𝑛 𝛼

−
ഀ

య

ଶ మி
మ 𝑡𝑎𝑛ଷ𝛼

−𝜇𝐹௭ 𝑠𝑖𝑛 𝛼

 |𝛼| < 𝑡𝑎𝑛ିଵ(
ଷఓ

ഀ
)

Otherwise

𝐹௬ = 𝑓௧(𝛼) ……………………………….…….. Equation (18.6)

The surface coefficient of friction is provided here as 𝜇, the normal load as 𝐹௭ and 𝐹௭, and

the tyre cornering stiffness as 𝐶ఈ.

The MPC controller's vehicle model uses the front tyre force to maintain the problem linear in

terms of input. Equations (18.4) and (18.6) provide the following steering angle:

𝛿 = 𝛽 +

 ௫
− 𝑓௧

ିଵ (𝐹௬) ……………….… Equation (18.7)

To handle the nonlinearity of the rear tyres, the brush tyre model is linearized at a given rear

tyre slip angle (∝ഥ), and the rear tyre force (𝐹௬) is therefore treated as an affine function of

∝.

𝐹௬ = 𝐹ത௬ − 𝐶∝̅ഥೝ
(𝛼 − 𝛼ത) …………………….. Equation (18.8)

225

The comparable cornering stiffness at 𝛼ത is 𝐶ఈ̅ഥೝ
, and 𝐹ത௬ = 𝑓௧(𝛼ത). The current rear slip angle,

𝛼, is selected to be 𝛼ത in the prediction horizon's first-time steps. This enables the MPC

controller to take rear tyre saturation into account in the short-term prediction. This enables the

MPC controller to explicitly account for rear tyre saturation in short-term prediction.

The velocity state equations of motion may now be expressed as affine functions of the states

and inputs, 𝐹௬:

�̇� =
ிା ிതೝ ି ̅ഥഀೝ(ఉି

್ೝ

ೆೣ
 ି ఈഥೝ)

ೣ
− 𝑟 ………………..….. Equation (18.9)

�̇� =
ிି[ிതೝ ି ̅ഥഀೝ(ఉି

್ೝ

ೆೣ
 ି ఈഥೝ)]

ூ
 …………………….… Equation (18.10)

Position States

The vehicle's position states, the heading deviation (∆ψ) and lateral deviation (𝑒), are expressed

in terms of a nominal route that does not have to be obstacle-free. The heading deviation and

lateral deviation have the following equations of motion:

∆̇𝜓 = 𝑟 …………………………………………………..…….. Equation (18.11)

�̇� = 𝑈௫ 𝑠𝑖𝑛(∆𝜓) + 𝑈௬ 𝑐𝑜𝑠(∆𝜓) …………………. Equation (18.12)

Small angle assumptions for ((∆ψ) and (𝛽) are used to approximate the following nonlinear

equations as linear functions of the vehicle states, yielding:

�̇� ≈ 𝑈௫∆𝜓 + 𝑈௫𝛽 …………………………… Equation (18.13)

As a result of combining equations (18.9), (18.10), (18.11), and (18.13), a continuous state-

space representation of the vehicle model is obtained as:

�̇� ≈ 𝐴(𝛼ത) + 𝐵𝐹௬ + 𝑑(𝛼ത) ……………..….. Equation (18.14)

and,

226

𝑥 = [𝛽 𝑟 ∆𝜓 𝑒]்

𝐴(𝛼ത) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡−

𝐶ఈ̅ഥೝ

𝑚𝑈௫

𝑏𝐶ఈ̅ഥೝ

𝑚𝑈௫
ଶ

− 1 0 0

𝑏𝐶ఈ̅ഥೝ

𝐼௭௭

𝑏ଶ𝐶ఈ̅ഥೝ

𝐼௭௭𝑈௫

0 0

0 1
𝑈௫ 0

0
𝑈௫

0
0⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝐵 =
1

𝑚𝑈௫

𝑎

𝐼௭௭
 0 0൨

்

𝑑(𝛼ത) = ቈ
𝐹ത௬ − 𝛼ത𝐶ఈ̅ഥೝ

𝑚𝑈௫
 −

𝑏(𝐹ത௬ − 𝛼ത𝐶ఈ̅ഥೝ
)

𝐼௭௭
 0 0

்

A continuous-time model is denoted by the letter c. 𝐴(𝛼ത) denotes 𝐴 's linearization around

𝛼ത.

227

Appendix -19: Alternative MPC Formulation for Lane Dividers

An affine vehicle model is used to determine the vehicle input for lateral tyre force using a

model predictive control (MPC) technique. A 4-state bicycle dynamic model with a constant

speed assumption is employed in the MPC formulation. The vehicle sideslip angle, yaw rate r,

heading deviation, and lateral deviation e make up the state vector:

𝑥 = [𝑈௬ 𝑟 ∆𝜓 𝑒]்

The lateral tyre force, which is nonlinearly related to the steering angle, is the vehicle model

u's control input. When the vehicle input is represented as a lateral tyre force, however, the

vehicle states have a linear relationship:

𝑥(ାଵ) = 𝐴()𝑥() + 𝐵()𝑢() + 𝑐() 𝑘 = 1 … . 𝑇 ………… Equation (19.1)

At each time step in the forecast horizon k, up to a fixed period T.

A nonzero diagonal element in the weighting matrix Q is associated with lateral deviation and

heading deviation as these states are defined relative to a nominal route. The following

limitation represents the safe driving space in which a vehicle may travel in the environment:

𝐻௩
 𝑥() = 𝐺௩

()
 𝑘 = 1 … . . 𝑇 …………………………. Equation (19.8)

Vehicle states must operate in an obstacle-free environment. The limits of a roadway's traffic

lanes are encoded using:

𝐻௧
 𝑥() = 𝐺௧

()
 𝑘 = 1 … . . 𝑇 …………………………. Equation (19.3)

228

where the subscript "tra" denotes traffic-related regulation. The following summarises the

optimization problem:

Minimize (u): ∑ 𝑥()்்
ୀଵ 𝑄()𝑥() + 𝑣()்𝑅()𝑣() + 𝑊𝑒𝑛𝑣

𝑘 𝜎𝑒𝑛𝑣
𝑘 + 𝑊𝑡𝑟𝑎

𝑘 (𝜎𝑡𝑟𝑎
𝑘)2 …. Equation (19.4a)

 Subject to: 𝑥(ାଵ) = 𝐴()𝑥() + 𝐵()𝑢() + 𝐶() ………...…....................…. Equation (19.4b)

 𝐻௩
 𝑥() = 𝐺௩

() ………………………………………………………. Equation (19.4c)

 𝐻௧
 𝑥() = 𝐺௧

()
 ………………………………………………………. Equation (19.4d)

 ห𝑢()ห ≤ 𝑢௫
() ……………………………………………....………...Equation (19.4e)

 ห𝑣()ห ≤ 𝑣௫
() ………………………………….…………....………...Equation (19.4f)

where 𝑣() = 𝑢() − 𝑢(ିଵ) represents the change in lateral tyre force, 𝜎𝑒𝑛𝑣 and 𝜎𝑡𝑟𝑎 are slack

variables on the restrictions enforcing the safe environment and traffic lanes, respectively, and

𝑣௫
()

 and 𝑢௫
()

 are physical limitations in the steering system and tyre forces.

The weight given to changes in steering inputs is determined by the cost (𝑅). Cost 𝑊𝑒𝑛𝑣 decides

how much emphasis should be paid on staying inside the safe environmental envelope, i.e.,

avoiding collisions with objects. Cost of the weight given to following traffic regulations, such

as not crossing a double yellow line, is determined by 𝑊𝑡𝑟𝑎. The higher the priority of

environmental envelope and/or traffic law violation in the list of restrictions, the more weight

is given to cost terms with a slack variable. The environmental slack variable 𝜎𝑒𝑛𝑣 is linear, but

the traffic law slack variable 𝜎𝑡𝑟𝑎 is quadratic in the cost function to avoid penalising relatively

minor lane boundary violations.

229

Appendix – 20: Formulation of the POMDP Speed Scale

The vehicle's acceleration values are directly controlled by the Markov decision process

(POMDP) formulation presented in Chapter 4. Since the acceleration orders vary with each

time step, the steering MPC is unable to forecast how the speed will change along the prediction

horizon during the prediction horizon. As a result, Chapter 4 assumes that the speed remains

constant over the prediction horizon. A speed profile, such as that proposed by Funke et al.,

might be used as an alternate method of speed prediction for steering MPC. Instead of

commanding acceleration directly, an alternative POMDP formulation would scale the desired

speed profile rather than commanding acceleration directly to reconcile POMDP speed control

with MPC speed profile predictions. This appendix illustrates the speed scaling POMDP

formulation by using the scenario of a pedestrian crosswalk on a two-lane roadway with a huge

vehicle occluding the event of a pedestrian crossing, as illustrated in figure 4.1.

The state space is represented as a low-dimensional subspace that contains information about

the vehicle's behaviour and velocity, as well as information about its perception. The following

components of the state are taken into consideration in this work: the vehicle's velocity (𝑣௧),

the vehicle's distance along the path (𝑑௧), and the occurrence of a pedestrian crossing (𝑐௧).

Continuous states exist for speed and distance along the course. States vt and dt are discretized

to minimise the size of the problem even further. The maximum speed taken into consideration

for the scenario is 10𝑚/𝑠, with discretization intervals of 1𝑚/𝑠 between each frame. For a

path that is 60𝑚 long, the distance along the path is discretized into intervals of 0.5𝑚. State

(𝑐௧) has previously been discretized as a binary occurrence in the previous state.

The longitudinal acceleration of the vehicle is the type of actuation considered in this case.

Proportional speed control is used to determine the commanded longitudinal acceleration of

the vehicle. Consequently, the POMDP action space may be thought of as a speed scaling factor

that can be applied to the desired speed in longitudinal control. Following the discretization of

the action space, the actions are denoted by 𝐴 =

 0, 10%, 20%, 30%, 50%, 60%, 70%, 80%, 90%, 100%, respectively.

The observation space stores data that the agent observes because of performing an action. The

number of unobservable tiles (𝑛௧) and the detection of a pedestrian crossing are the two sorts

of observations that are taken into consideration (𝑐௧). Since the number of unobservable tiles

has been reduced to ten discretized bins that are linearly spaced between 0 and 1800

unobservable tiles, the problem size has been simplified. The identification of a pedestrian

230

crossing is done by a separate algorithm that has been particularly created to identify

pedestrians on the road.

Specifically, the reward function in this POMDP formulation is meant to achieve the following

goals:

 Encourage the vehicle to continue driving until it reaches the end of the route.

 If the vehicle detects a pedestrian, it must surrender to the pedestrian. Thus, when a

pedestrian crossing event occurs, non-zero scale factors are penalised.

 Furthermore, when the vehicle cannot see the pedestrian, it should not travel at a high

rate of speed.

To accomplish the described objectives, the reward function is provided with the following two

costs:

 Complete path reward: The vehicle that drives all the way to the end of the path will

receive a +100 bonus.

 Not yielding cost: The cost of not yielding is -50 if the vehicle fails to yield to a

pedestrian crossing.

 Too fast cost: The cost of deterring the car from rushing around the occlusion because

to its proximity to a pedestrian crossing is set at -5, which is orders of magnitude lower

than the cost of a collision. The penalty for exceeding 6 m/s when a pedestrian crossing

is not visible is simply applied in this case by penalising the vehicle for exceeding the

speed limit.

For all other states, it is presumed that the reward is equal to zero. The system's dynamics are

not genuinely stochastic; rather, uncertainty is injected into the system's dynamics because of

the rough discretization of the state space. A pedestrian crossing is also represented as a random

process in the case of a collision. The state transition model is defined by the following

parameters:

 Because the vehicle simulation is closer to continuous time than state space

discretization, speed scaling and changes in speed are not instantly realised in the state

space discretization.

 It is presumed that the vehicle is either halted or going ahead (does not reverse

direction).

 It is presumed that if a pedestrian is present within the crosswalk, that person is standing

immobile.

231

Although the state in a POMDP is a belief state, the state transition function for a POMDP is

the identical as the state transition function for an MDP (assuming no state uncertainty). While

the state contains the facts about a pedestrian crossing event, the problem merely keeps a belief

about whether a pedestrian crossing event occurred based on observations. The observation

model in a typical POMDP problem is described as the conditional probability of witnessing

each observation given the current state (𝑠) and the action (𝑎) done to get there: 𝑃𝑟(𝑜|𝑠, 𝑎). It

is assumed for the purposes of this research that the activity does not add to the observation

(𝑜) made. As a result, the observation model is no longer dependent on a and merely needs to

define 𝑃𝑟(𝑜|𝑠). 𝑃𝑟(𝑜𝑛, 𝑜𝑐|𝑠), which is the probability of having a few unobservable tiles and

detecting a pedestrian given the present state, is the observation model using the observation

space mentioned above. If the situation of a pedestrian not crossing is noticed, a basic

observation model with uniform distribution is implemented. Given a state in which a

pedestrian is crossing, the observation distribution shifts 30% in favour of identifying a

pedestrian crossing.

