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Abstract 

When driving, humans balance values like safety, legality, and mobility. When sharing the road 

with humans, an autonomous vehicle will likely use the same values. Incorporating human 

values into algorithm design is tough for self-driving vehicle engineers. To address this 

problem, a decision-making algorithm is designed using philosophical concepts translated into 

mathematical frameworks. Deontological ethics parallels rule-based mathematical concepts, 

whereas consequentialism parallels cost-based mathematical concepts. The virtue ethics 

philosophical principle is also used to motivate the different weightings of path tracking, 

obstacle avoidance, and traffic regulation compliance. The consequences of different design 

decisions made in a model predictive steering controller are highlighted by simulation results 

of a self-driven vehicle negotiating an obstructed two-lane route with a double yellow line. 

The value-sensitive design (VSD) iterative process is used to formalise the link between human 

values and technological needs. A modified VSD technique was used to develop a self-driven 

vehicle speed control algorithm for pedestrian crossings. The VSD iterations model the 

problem as a partially observable Markov decision process that was used to generate an 

effective approach for controlling the vehicle's longitudinal acceleration based on the belief of 

a pedestrian crossing. 

An ethical valence that characterises self-driven vehicle decision-making as a mechanism for 

claim mitigation, in which various road users make varying moral claims on the vehicle's 

behaviour, and the vehicle must neutralise these claims while making assessments about its 

surroundings. With self-driving vehicles, the harm produced by an action and the uncertainties 

connected with it are assessed and accounted for, leading to an ethical implementation that is 

realistic. Instead of describing how moral concepts need self-driving vehicles to behave, this 

approach provides a computational approach that may accommodate a variety of moral 

positions about what morality demands and what road users could expect.
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Chapter 1: General Introduction  

1.1 Main Overview  

Despite the major success of self-driving vehicles in increasing safety, eliminating various 

sources of errors, especially due to human cognition, and reducing car crashes, there is still no 

guarantee that accidents will be completely avoided. A self-driving vehicle is expected to 

behave properly in such situations to make appropriate moral and ethical choices that reduce 

the cost of human life, possible injury, or damage, and avoid the obstacles with the highest 

priority. It is generally believed that they will be more secure than human-driven vehicles, 

which are more likely to detect and stay away from the dangers and impacts of various drivers 

and pedestrians. Since 94% of accidents are attributed to driver errors, with 31% attributed to 

drunk drivers and 10% attributed to occupied drivers (Tanelli, Toledo-Moreo et al. 2018),  the 

case for self-driving vehicles for increased security and lives saved is very compelling. Indeed, 

even the most optimistic expectations concerning self-driving vehicles demonstrate that they 

can bring significant benefits regarding social expenses of death or damage, as well as 

expanded comfort and profitability for the individual consumer. 

As experts travelling in an area that includes many road users, from pedestrians to cyclists to 

other drivers, both self-driving and manned vehicles, computer-controlled vehicles consistently 

interact with those around them. The idea of these communications is a consequence of the 

programming in the vehicle and the requirements defined by the software engineers. Similarly, 

as human drivers show the scope of driving styles, self-driving vehicles offer a large screen on 

which designers can create responses to different driving situations. In any case, the conduct 

of the vehicle and its control algorithms will eventually be judged not by measurements or test 

track execution, but rather by the standards and morals of the public in which they operate. 

Humans can go from one location to another in a quick and pleasant manner by driving. People 

have places to go, people they want to see, and activities they want to do. Automobile mobility 

gives ease, efficiency, and flexibility to people who drive. This urge to travel demonstrates how 

essential mobility is in the lives of those who drive. However, drivers are not the only ones 

who desire mobility. The need for mobility of one road user may collide with that of another 

road user. A pedestrian, for example, could wish to cross the street in a crosswalk while a 

motorist is driving down the road. This reveals a disagreement over mobility's worth. The term 

"value" is defined by (Enke 2020), (Miller and Cushman 2018), as "what a person or group of 

people considers valuable in life". As a result, mobility might be considered a human virtue. 
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While driving, another issue is safety. Consider driving along a street when a toy ball 

unexpectedly rolls into the roadway from behind a huge family vehicle parked nearby. The 

human driver has no way of knowing whether someone will run out to chase the ball. Human 

drivers, on the other hand, recognise that they just need to stop or slow down to maintain the 

situation's safety since that person may be someone's child. Drivers who value safety can 

safeguard other people and property from a two-ton moving car (Ploeg 2017) (Riaz, Jabbar et 

al. 2018). 

Legality is a third value. Thanks to traffic regulations, humans can safely use the road with 

other drivers and vulnerable road users. Although traffic regulations are defined as rigid 

restrictions, human drivers frequently test the limits of these restrictions or completely 

disregard them. Traffic regulations, however, are rarely severely enforced, according to 

(Krotov and Silva 2018), (Gogarty and Hagger 2008). and can operate a vehicle in the face of 

legal issues.  

As seen by how they manage the circumstances, human drivers traverse the roads by balancing 

values such as mobility, safety, and legality. Many other values, such as care and respect for 

others, fairness and reciprocity, respect for authority, trust, and transparency, are also 

implicated while driving. One value may take precedence over another, or the values may even 

clash, depending on the situation (Plyley 2018). Human drivers, luckily, have a means of 

evaluating which values are most important at any given time (Zachko, Golovatyi et al. 2019). 

In the history of the ethics of robots, we still must decide whether artificial agents can truly 

behave morally without free will (Krotov and Silva 2018). In any case, it appears that other 

road users and society will interpret self-driving vehicles' activities and the needs put forth by 

their software engineers from a moral standpoint. The control framework that decides the 

activities of self-driving vehicles is thoroughly investigated if it causes damage, and social 

acceptance is greatly influenced by the social interactions that shape daily traffic. 

Unexpectedly, the interpretation of philosophical developments and ideas and their 

mathematical counterparts in the control hypothesis is simple. Thus, similarities can be 

established between the philosophical theory and the use of costs or constraint functions in the 

control hypothesis. These enable the execution of ethical principles as either a cost or rules for 

controlling systems with other objectives. Looking at the issue from the mathematical 

perspective of determining control laws for a vehicle leads to the conclusion of both  (Goodall 

2014), and (Qian, Fortelle et al. 2016) that a single philosophical concept is unlikely to be 

sufficient for programming self-driving vehicles. However, in this research work, the idea of 
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several moral frameworks, as well as parallels between ethics, consequentialism, and a 

constrained optimization problem as a starting point, will be addressed. 

 

1.2 Rationale 

The research problems are formulated as follows: 

1) How can decision-making behaviour be adopted to better respond to risks in navigation 

and exploration? 

2) From a consequentialist perspective, how can these principles best be described as a 

weighting of costs, which form the more absolute rules of deontological ethics? 

3) How do vehicles decide where to go next, and how do interactions with other vehicles 

affect what needs to be done? 

4) How do vehicles use the data provided by their sensors to make short-term and long-

term decisions? 

 

1.3 Thesis Contributions 

This thesis bridges the gap between decision-making and ethics by accounting for actuation 

delays in a steering controller, incorporating traffic regulations relating to lane dividers and 

crosswalks into problem formulations, mapping normative theories to mathematical concepts 

found in decision-making algorithms, and connecting human values to engineering 

specifications using a modified form of a generic design technique. 

To achieve the aim of the research work, the following objectives are set: 

1) To account for steering actuation delay compensation in model predictive control 

2) To integrate lane dividers in model predictive steering control and crosswalks in 

partially observable speed control 

3) To Integrate philosophical principles as mathematical frameworks in self-driven 

vehicle decision-making planning 

4) To develop a modified value sensitive design technique for self-driven vehicle decision-

making algorithms. 

5) To develop an ethical valence algorithm for a self-driven vehicle 
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1.4 Thesis Organization 

The contributions are spread over the chapters and include ethical considerations for self-

driving vehicle decision-making. This thesis is structured into six chapters and summarised as 

follows. 

Chapter One: Provides the main overview and highlights issues related to the thesis, 

challenges, objectives, contributions to knowledge, and summary of the report. 

Chapter Two: It examines some of the fundamental concepts and similar works to demonstrate 

the motivation and headlines for this research work. Including the theoretical background and 

how the philosophical concepts of deontology and consequentialism relate to technical design 

decisions. 

Chapter Three: It provides a mechanical formulation governing the response of self-driving 

vehicles that includes the stages taken for the development of the ethical optimization 

framework and how a model-based design technique was utilised to achieve the research 

objectives. 

Chapter Four: It employs a modified version of the value-sensitive design (VSD) approach to 

directly relate human values to engineering specifications through iteration over 

conceptualization, technical implementation, and empirical analysis. In this case, the revised 

VSD is utilised to create an ethical decision-making algorithm for safe pedestrian crossing 

navigation. During the conceptualization phase, the ethical values and stakeholders in the 

situation are identified. In a closed-loop planning technique, the control algorithm takes the 

form of a POMDP to account for the scenario's uncertainty. 

Chapter Five: It offers an ethical valence technique that provides a computational method 

that is flexible enough to support a variety of "moral perspectives" on what morality demands 

and what road users could anticipate, as well as an evaluation tool for the social acceptability 

of an autonomous vehicle's ethical decision-making. 

Chapter Six: It summarises the contributions of the thesis, including preliminary work that 

explicitly accounts for ethical issues in self-driving vehicle decision-making algorithms. There 

is more work to be done. As part of the recommendation, emphasis was placed on describing 

how some of the future work may be implemented. As a result, the findings emphasize that 

ethical considerations are present throughout the self-driven vehicle stack, not just at the 

decision-making layer, but also in all aspects of vehicle and system design, such as sensor 

selection, perception layer design, and even how vehicles are tested and deployed. 
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Chapter 2: Literature Review 

2.1 Introduction  

Self-driving vehicles are designed with the expectation of decreasing the rate of accidents by 

eliminating the root cause: the driver. However, there are circumstances in which an accident 

is probably imminent, if not inevitable, even for a self-driving vehicle. In such circumstances, 

a self-driving vehicle is supposed to react appropriately. By colliding with different obstacles, 

different costs will be incurred depending on the damage and the injury. A self-driving vehicle 

in an impending accident situation should consider these costs and provide a manoeuvre to 

avoid the highest priority obstacles. In cases when value conflicts develop, autonomous vehicle 

motion planning necessitates ethical concerns. However, certain technical issues in motion 

planning do not include value conflicts since they are concerned with the system's functionality. 

This chapter focuses on ensuring that the proposed trajectories can be performed by accounting 

for the actuation level in the decision-layer in a computationally efficient manner. 

Because it can account for system restrictions while maximising numerous objectives, model 

predictive control (MPC) has been demonstrated to perform well in autonomous driving 

applications. MPC also uses a system model to anticipate how control inputs will affect the 

plant's future trajectory. MPC also uses a system model to forecast how control inputs will 

affect the plant's future trajectory. Tracking the reference trajectory by reducing lateral 

deviation in the cost function and specifying obstacle avoidance as a constraint for the motion 

planning issue established in the previous chapter is one approach to designing an MPC 

problem. To execute the specified trajectories, however, an autonomous vehicle must steer 

effectively. 

Today's automated cars are modified production cars. A simple external interface to the 

steering actuation is provided by an electric power assisted steering (EPAS) system 

incorporating a motor attached to the steering column. On the other hand, EPAS might cause 

severe delays and compliance issues in the production steering system. It is critical to model 

and integrate the delay in the MPC formulation if a system has a non-trivial time delay between 

actuation requests and fulfilment. Path tracking and passenger comfort might be jeopardised if 

this isn't done correctly. 

Actuation modelling in MPC has been extensively studied in the literature, with state 

propagation or extra delay states in the model being the most common approaches. (Grüne and 

Pannek 2017) demonstrate state propagation in simulation for systems with well-known signal 
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delays, and (Bayerlein, De Kerret et al. 2018) address a 20𝑚𝑠 signal delay with state 

propagation using a second order Runge Kutta method with validation on 1:43 scale electric 

cars. As established by (Tjolleng, Jung et al. 2017), an alternate technique to state propagation 

for pure time delays involves explicitly modelling the signal delay in the model by appending 

the system dynamics with delay states. In simulation and on small-scale electric automobiles, 

these methods show state propagation to be a suitable tool for actuation dynamics with known 

signal delays. 

Although actuation modelling is not a new addition to MPC, I am unaware of any comparisons 

of different techniques using MPC on a full-scale. In addition to pure time delays, the actuation 

modelling approaches do not consider actuation dynamics. Various actuation modelling 

problems formulations are assessed using low-fidelity models as part of the research reported 

in this thesis. Using first- and second-order identifiable system models, the actuation dynamics 

are integrated into the system dynamics. All the models improve the system's behaviour. 

 

2.2 Self-driving Vehicle Architecture 

In this section, the relationships between the motion planning module and different modules of 

a self-driving vehicle are described. Figure 2.1 illustrates the relationships through the design 

of a self-driving vehicle (Rasouli, Tsotsos et al. 2018). The motion planning module determines 

the direction of the vehicle to avoid obstacles, comply with traffic rules, follow the desired 

instructions, and allow passengers a smooth ride (Xu, Zhao et al. 2019). It is believed that the 

module gets data about the obstacles, roads, vehicles, and directions from alternate modules 

(Sadat, Casas et al. 2020). 

The information on the obstacles incorporates the position, speed, size, and classification of 

every obstacle. The road data comprises the road profile, the number of paths, and the size of 

the paths. The vehicle data incorporates the vehicle's position, heading angle, longitudinal 

speed, lateral speed, yaw rate, and typical tyre force. The obstacles, road, and vehicle data are 

provided to the motion planning module from the perception and estimation module (Joa, Yi 

et al. 2019). Additionally, the desired instructions, including the ideal path and speed, are 

produced in the behavioural module (Schwarting, Alonso-Mora et al. 2018). To estimate its 

condition in model predictive control, it is assumed that every obstacle travel at the same 

longitudinal and lateral speeds as its present speeds. The danger connected with the 

unpredictable behaviour of the obstacles, as well as the estimated inaccuracy of the vehicle and 
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obstacle circumstances, are considered while establishing the safety margin of the various 

potential functions. 

(Joa, Yi et al. 2019) predicted the MPC using a linear vehicle model that was built to reflect 

the vehicle's longitudinal, lateral, and yaw movements but not the roll, pitch, or bounce 

motions. The vehicle's roll, pitch, and bounce motions do not correspond to the vehicle's 

movement on the path, but rather to the vertical tyre forces (Cheng, Li et al. 2019), which are 

thought to be accessible for the estimate module's motion planning module. The vehicle's 

parameters are also thought to be stable. In any event, if their values vary and the estimation 

module evaluates the parameters, the vehicle model may be adequately updated by the 

estimated parameters in all circumstances (Gallardo, Romeo et al. 2017). 

 

 

 

Figure 2.1: Architecture of Self-driving Vehicles 

 

2.2.1 Self-driven Vehicle Motion Planning 

Self-driven cars accessing the streets are likely to face comparable circumstances as human 

drivers, such as sharing the road with other humans and vulnerable road users, transporting 

human passengers, and unexpectedly confronting objects or people from behind occlusions. A 

self-driving car will have to traverse the roads while balancing priorities like mobility, safety, 
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and legality. The issue for autonomous vehicle developers is to build motion planning 

algorithms that balance these opposing human values. 

There are several definitions of motion planning in the literature. Motion planning is defined 

in this thesis as an algorithm that plans lateral and longitudinal motion in terms of a specified 

reference trajectory using a mix of steering and acceleration instructions. The reference is a 

hypothetical path that defines the autonomous vehicle's planned locations and speeds, but it is 

not guaranteed to be obstacle-free. If an autonomous car is navigating a two-lane highway and 

encounters a barrier or a pedestrian, the car will need to use a motion planner to decide whether 

to follow the reference or prevent crashes. Motion planning is appropriate for motion planning 

in situations like these. Model predictive control (MPC) is an excellent choice for a motion 

planner because it solves for a series of control inputs by maximising a cost function according 

to a set of constraints in a receding way along a prediction horizon (Berntorp, Hoang et al. 

2019). The cost function, restrictions, and weights must all be determined by the MPC 

optimization problem designer for the vehicle to achieve goals such as mobility, safety, and 

legality. Other motion planning approaches could be a suitable fit, and the designers of such 

algorithms will have to think about the same things. 

The most recent studies (Yurtsever, Lambert et al. 2020); (Claussmann, Revilloud et al. 2019)) 

give a comprehensive summary of self-driving vehicle motion planning. In summary, most 

conventional methods for determining the are based on one of the principles below. Grid 

planners (Ghazal, Said et al. 2021), fundamental elements directed to the street, whose major 

benefit is their simplicity and efficiency, especially in road scenarios, are examples of the 

discretization of the entrance space with collision verification. The major benefit of random 

planning, such as quick search in random trees (Cai, Luo et al. 2018), is the probabilistic 

exploration of huge state spaces while retaining a high degree of calculation. Finally, the 

limited optimization and control of the receding horizon (Deori, Garatti et al. 2018), which is 

primarily used for trajectory tracking but can now also calculate trajectories without colliding 

with other road users, as described by (Brown and Gerdes 2019), who developed a nonlinear 

predictive control model and applied it to safe navigation in an intelligent vehicle, this was 

made feasible by recent improvements in nonlinear forced optimization solvers. The major 

benefits of forced optimization are the path regularity and the direct coding of the vehicle model 

in the trajectory planning. Constrained optimization only converges to an optimal local path 

for the vehicle if the problem is not convex. 

A set of regulations apply to self-driving cars. These guidelines put constraints on the motion 

planner, which must always be adhered to. They must, nevertheless, be broken in specific 
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instances. Like Traditional motion planning methods may be utilised to identify the route with 

the lowest cost if the traffic regulations are incorporated into the cost function (Althoff, Koschi 

et al. 2017). It may also describe the rules as logical functions and utilise automated control 

synthesis to implement them. To generate a discrete model of a robot system and arrive at an 

objective state, (Singh, Chen et al. 2018), and (Li, Zhang et al. 2017) have developed a 

technique of movement synthesis that only breaks the rules with the lowest priority for the 

shortest time feasible. Despite its promise, automated control synthesis has problems when 

applied to non-deterministic systems and settings, as well as continuous dynamic models like 

self-driving cars. Similarly, (Vasile, Tumova et al. 2017) looked at the issue of road network 

violations of minimal limits related to integrated planning and routing. They used syntactically 

safe linear time logic formulae to define the expected behaviour of the vehicle, as well as a 

motion planner based on RRT formulae to find the shortest route with the fewest trajectory 

violations for a single vehicle and trip. Routing for a minimum violation linked to fleet 

management and vehicle pooling is still an outstanding issue that must be addressed to ensure 

effective transportation with the least delays. 

 

2.2.1.1 Safety and Mobility 

Engineers already make judgments that affect the values of mobility and safety while 

developing autonomous vehicle motion planning algorithms. (Mohseni, Frisk et al. 2020) 

investigates the creation of two MPC optimization problems for conducting a constant speed 

double-lane change manoeuvre along a collision-free reference trajectory at the vehicle's 

handling limitations. According to Falcone et al., the cost function includes heading deviation, 

lateral deviation, yaw rate deviation, and steering effort, whereas the constraints include the 

vehicle model and actuator restrictions. In most systems, the weight placed on heading 

deviation is higher than in other states. The weight on steering effort is smaller than the weight 

on heading deviation in the nonlinear MPC formulation, but it is higher than the weight on 

lateral deviation. The steering effort penalty is two orders of magnitude larger than heading 

deviation in the linear time-varying formulation, which also includes a limitation on slip angle. 

Since the authors do not specify how mobility and safety are captured in their algorithms, I 

interpret the formulations to mean that mobility is achieved by following the desired speed, 

while safety is achieved by vehicle models and system constraints since the reference trajectory 

is obstacle-free. (Demirel, Ghadimi et al. 2017) build a limited optimization problem and solve 

it in a receding manner. Following the speed limit, smoothing acceleration, jerking, and 
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attenuating extreme yaw rates are all part of the cost function. The driving corridor, as well as 

the steering geometry and tyre friction restrictions, are all limitations. The publication does not 

provide the weights used in the tests. The authors also didn't explain how their algorithm 

incorporates mobility and safety clearly. These formulations lead me to believe that, in addition 

to occupant comfort, mobility is achieved by adhering to the speed limit wherever feasible, 

while safety is achieved by avoiding obstructions and road edges. 

Instead of solving a limited optimization problem, (Tuncali and Fainekos 2019) construct 

reference trajectories using rapidly exploring random trees (RRT) and samples from the control 

space. To randomly sample viable, smooth paths in a congested environment, a generative 

closed-loop vehicle model with limitations is employed. (Li, Xiong et al. 2019) employ the 

closed-loop RRT to avoid using a motion planner since the reference trajectory it provides 

accounts for obstructions as well as the closed-loop speed and steering controllers. Acceleration 

and steering restrictions are some of the constraints. The closed-loop controllers have gains to 

choose from, even if there is no cost function. Using various safety systems to overrule the 

planned trajectory, (Li, Xiong et al. 2019) emphasise safety over mobility considerations, in 

my opinion. (Meghjani, Luo et al. 2019) explicitly account for mobility as well as safety by 

penalising collisions and rewarding the vehicle for completing manoeuvres. Although 

restrictions are not explicitly considered while optimising a POMDP model's policy, Bouton et 

al. employ a discrete state space to restrict the maximum speed of the manoeuvres and a discrete 

action space to restrict the change in acceleration instructions. Engineers have included ideals 

of safety and mobility into the design of motion planning algorithms in several other instances. 

 

2.2.1.2 Legality, Mobility, and Safety 

Most autonomous vehicle decision-making algorithms include mobility and safety, but legality 

is rarely mentioned, if at all (Taeihagh and Lim 2019) and (Lǎzǎroiu, Machová et al. 2020). To 

create viable pathways that maintained inside lane markers and considered halting positions at 

traffic lights and stop signs, all competitors used some variation of a finite state machine. The 

motion planners were subjected to a speed constraint. The implicit value conflict between 

mobility, safety, and legality was mitigated by partitioning the decision problem into 

hierarchical decision structures, where the top-level algorithms considered only the legal rules 

and bounded the feasible paths for the motion planners to consider only mobility and safety. 

Only during error recovery, such as when a sensor fails, would there be value conflicts with 

legality. If the legal criteria were too stringent to provide a viable path, they were trimmed until 
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an obstacle-free viable path was found. Essentially, unless a fail-safe mode was activated to 

follow the vehicle code first the hybrid decision architecture proposed by (Schwarting, Alonso-

Mora et al. 2018), which considers traffic rules in the mission and reference planners and safety, 

smoothness, and efficiency in the lower-level behavioural planner (Ahrens 2020), demonstrates 

that this paradigm of "trying to be legal first". 

Another option is to create a controller that enforces adherence to a rule set, such as the traffic 

code, rather than separating the value dispute in the decision architecture. To create an obedient 

controller, (Bharadwaj, Carr et al. 2021) use linear temporal logic (LTL) to describe the traffic 

code. The autonomous car can drive around an impediment on the road and a double yellow 

line in simulations since the logic rules enable passing a double yellow after the vehicle has 

come to a complete stop first. (Datta 2019) extend this work by constructing dynamically viable 

trajectories that follow the rule set using a sampling-based technique known as optimum 

rapidly exploring random trees (RRT). It is difficult to define a rule set that is accessible, that 

is, one that does not excessively confine the vehicle's movements. To address this issue, Reyes 

Castro et al. allowed and chose rule prioritization. 

On the other hand, learning techniques that learn from human drivers to balance mobility, 

safety, and legality are on the other end of the spectrum. Cost function learning using expert 

demonstrations is used by (Morris, Zhou et al. 2020). The planning issue is expressed as a 

Markov decision process (MDP), which develops a "perception-to-cost" mapping without 

explicitly providing any attributes. This strategy obscures the decision-making process and 

lacks the openness required to comprehend the consequences of mobility, safety, and legality. 

(Wulfmeier, Wang et al. 2016) use a similar strategy to develop a "perception-to-cost" map, 

but they describe the characteristics explicitly. Using maximum entropy inverse reinforcement 

learning, driving style is parameterized in a cost function. To understand how drivers negotiate 

a blocked route with a double yellow line (Morris, Zhou et al. 2020), specify the characteristics. 

The autonomous car, with these implementations, represents the demonstrator's mobility, 

safety, and legality values. As evidenced by the literature cited above, there are several 

approaches to creating a decision-making algorithm. Some strategies are based on limitations, 

while others are based on costs, and still others allow for a mixture of the two. The choice of a 

cost, a constraint, or a weight may appear arbitrary in the general formulation of a motion 

planning algorithm. How these decisions relate to human values is even less obvious. When 

constructing motion planning algorithms, an analysis of ethics and human values may help 

engineers choose what should be a cost or restriction, as well as the weights. 
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2.2.2 Self-driving Vehicle Behavioural Motion Planning 

Most of the above-mentioned work presupposes that a prediction of other road users' future 

routes is available. Real-life traffic scenarios, on the other hand, entail complicated interactions 

among several road users (Xu, Zhao et al. 2019) and (Schwarting, Pierson et al. 2019). Dealing 

with complicated disturbances and modelling interactions with other road users is an issue for 

self-driving cars that has yet to be overcome(Sadat, Casas et al. 2020). To achieve human-level 

dependability and react safely even in complicated urban circumstances, self-driving vehicles 

that operate in complex, dynamic environments require techniques that generalise to 

unforeseen situations and reason quickly. Accurate perception is necessary for well-informed 

judgments. 

Even though most of the approaches mentioned above summarise perception outside of 

planning, perception is crucial for self-driving cars. As a result, a brief explanation of the 

current state of perception is given, followed by a discussion of the end-to-end methods for 

integrated perception and planning, which produce command inputs for the vehicle directly 

from sensory data and are typically based on machine learning (Stower 2019). Self-driven 

Collaboration and supporting choices are required in vehicles with human driving behaviour. 

Other drivers' intentions must be deduced and included in a planning framework that allows 

for smart and helpful decision-making without the requirement for vehicle-to-vehicle contact. 

If self-driving cars must be able to discern the intentions of other road users, they must also 

allow others to do so. Without the necessity for explicit communication, this results in 

dependencies and interactions depending on the scene and the behaviour exhibited. 

 

2.2.3 Decision-making for Self-driving Vehicles 

Radar, computer vision, Lidar, sonar, GPS, odometry, and inertial measurement units are all 

used in a self-driven decision-making system to manage the vehicle, destination, and 

knowledge of its surroundings (Arslan, Berntorp et al. 2017). Sensory data is interpreted by the 

control systems module to determine the best navigation pathways, obstructions, and signs. 

These perceptions, along with previous knowledge about the road, traffic regulations, vehicle 

statuses, and sensor models, are used to select values for the vehicle's regulated inputs that 

guide its movement (Huang, Ding et al. 2019). The perception module uses the previously 

collected data to acquire a sense of the vehicle's and its environment's dynamic circumstances; 

the estimations are then used by the decision module to manage the vehicle to meet the driving 
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goals. As shown in the decision module of figure 2.1 above, the decision-making system of a 

self-driving automobile is divided into three components. A path via the road network is 

designed during the planning stage. After that, a behavioural layer calculates a local driving 

task that will get the automobile to its destination while adhering to the laws of the road (Luo, 

Cao et al. 2019). After that, a motion planning layer chooses a continuous path in the 

environment to carry out a local navigation job. The faults in the scheduled motion execution 

in the control module are then reactively corrected by the control system. 

Self-driving decision-making is also classified as deterministic or stochastic (Sakib 2020). 

When there is confined or restricted access to the information that is anticipated to determine 

the probable outcome, this is referred to as a stochastic event. In this case, some outcomes are 

more likely than others, and the probability of a particular outcome may not be known due to 

constraints on the best way to determine the likelihood of a particular outcome while decisions 

are made based on known data, and genuine issues frequently include some obscure 

parameters. 

 

2.2.4 Control Framework for Self-driving Vehicles 

Various control algorithms, ranging from classical control (PID) (Yoon, Shin et al. 2009) to 

advanced controllers, including back-stepping control, sliding mode control (Manenti 2011), 

fuzzy logic, and model-based predictive control, have been proposed in the literature for such 

unpredictable systems (Gray, Gao et al. 2013) and (Goodall 2014). Also, it can systematically 

manage the system's nonlinearities, uncertainties, and systematic constraints and can optimise 

the current stage by considering the future stages and trajectories. Predictability distinguishes 

model-based control from other control systems. The main issue with using MPC is the 

computational burden of dealing with real optimization, especially for nonlinear models. Since 

the optimization in non-linear models is no longer convex, it is necessary to meet the 

requirements of stability and numerical solution. Non-linear models are linearized around an 

operating point to best meet computer demand (Carvalho, Lefévre et al. 2015). At this point, 

the linearized MPC problem is converted into specific formats to implement some fast and 

well-developed convex optimization solvers. 

Most reviews suggest using hierarchical control structures (Cunningham, Galceran et al. 2015) 

and (Du and Tan 2015) with a high-level path planner to create dynamically accessible 

trajectories that evade all obstacles and a low-level tracking controller to control the vehicle to 

follow the reference trajectories. Control strategies based on Model Predictive Control (MPC) 
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(Kong, Pfeiffer et al. 2015) have received increased consideration because of their capacity to 

explore the state space utilising gradient information. MPC starts iteratively to formulate and 

solve problems of optimal control with a limited horizon, which are generally solved by 

nonlinear optimization techniques. MPC begins by iteratively formulating and solving 

optimum control problems with a restricted horizon, which are often addressed using nonlinear 

optimization techniques. Each optimization offers an optimal control route for the specified 

prediction horizon, as well as an optimal system trajectory thanks to the MPC's predictive 

capacity. This unique characteristic of MPC is ideal for decision-making planning as well as 

self-driving vehicle tracking control (Zhang, Sprinkle et al. 2015). 

The continuous component is handled by MPC-based non-linear motion planners presented in 

previous work (Paden, Čáp et al. 2016), but the discrete component is not. The major issue is 

that MPC-based non-linear optimization methods are reliant on continuous, gradient-based 

optimization methods, which are incapable of dealing with logical restrictions (Houjie, 

Zhuping et al. 2016). Furthermore, gradient-based optimization may be represented as a local 

optimum, corresponding to a single manoeuvre option, whereas the global optimum requires 

the exploration of many manoeuvre alternatives. Some approaches for estimating non-

differentiable constraints using differentiable non-linear functions have been developed to 

address these difficulties (Nilsson, Brännström et al. 2016). Approximations like this, on the 

other hand, add to the computing load. To adjust to diverse local optima, researchers (Qian, 

Fortelle et al. 2016), (Yi, Gottschling et al. 2016) and (Garip, Karayel et al. 2017) recommend 

picking the optimal manoeuvre choice. They do not, however, guarantee global optimality, and 

designing efficient heuristics in a complicated driving environment is a significant issue. 

A kinematic model of the car can be used to control the vehicle at low speeds. Proportional 

integral derivative control (PID), feedback linearization, or predictive control of the model can 

all be used to monitor a specified reference path (Wang, Ayalew et al. 2018). For high-speed 

operation or forceful manoeuvres, however, the entire dynamic model of the vehicle, including 

tyre forces, must be employed. Forward control, also known as non-linear control, model 

predictive control, or feedback, stabilises the vehicle's behaviour while it travels the set route. 

Even in autonomous races, good tracking performance was achieved using these models and 

car controls. These control techniques are based on a vehicle model that must be predictable 

(Joa, Yi et al. 2019). For framework identification, there are strategies based on optimization 

and learning-based approaches (Brazell, Bayeh et al. 2019). The technology used is determined 

by the amount and type of data available, as well as an understanding of the system's dynamics 

and control technique. Identifying the online model (Chen, Fang et al. 2019) will enhance the 
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performance of autonomous cars when road and vehicle conditions change over time. Machine 

learning technologies have a lot of potential for generating models out of massive amounts of 

data (Rahman, Xie et al. 2019). 

According to (Faulhaber, Dittmer et al. 2019), who suggested threat measures based on 

dynamic vehicle limitations, the most reasonable method to incorporate human input into the 

output of the safety system is to linearly mix the two. There, human input was blended with a 

calculated path depending on the threat's intensity. For example, feedback can be used to 

achieve shared control (Huang, Ding et al. 2019). Human input may also be directly integrated 

into an optimization framework in a slightly aggressive manner. The goal is to close the gap 

between the self-driving system's strategy and the objectives of the driver. The present steering 

and acceleration inputs, in their most basic form, reveal the driver's purpose. To compute the 

safe inputs for the common control, (Pan, Xiang et al. 2020) devised a restricted convex 

optimization. The method, however, was confined to a one-step viewpoint. One of the most 

common assumptions for intelligent cars is to consider the vehicle's set speed and simply 

improve it using the steering angle, which simplifies the optimization issue. For example, (Son, 

Oh et al. 2020) reduced the angular difference between the steering wheel and the artificial 

control input necessary to maintain safe trajectories. On the other hand, (Yurtsever, Lambert et 

al. 2020), specified vehicle stability and environmental circumstances to offer safe steering 

controls in a discrete environment, taking into consideration the vehicle's constant speed and 

resolving a convex optimization. It is now feasible to optimise concurrently via the steering 

angle and the speed or the accelerator pedal input (Di and Shi 2021) to achieve minimum 

intervention thanks to the advancement of rapid nonlinear optimizers. 

 

2.2.5 Learning-Based Approaches 

Game-theoretic methods, probabilistic approaches, and partially observable Markov decision 

processes, such socially compliant driving, are all focused on the framework and model for 

human-driven vehicle interactions. Consequently, interactions may be exhibited by indirect 

control of the other vehicle, like an untrained framework, using the data-driven techniques 

described in (Nar, Ratliff et al. 2017). Based on the features of expert demonstrations, the 

suggested method learns the reward function from the IRL. Staying on course, preventing 

accidents, monitoring progress, and limiting effort costs are some of the goals of manually 

created functions such as cost conditions. Other cars' behaviour is based on a two-player game 

in which the other vehicle optimises its own reward in response to the self-driven vehicle's 
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control route. In such situation, the human driver has no choice but to be selfish. The impacts 

of self-driving car behaviour on human activities can be exploited using this method. The belief 

status code is associated with one of two discrete cost functions that describe the driver's 

behaviour, such as attentive or distracted driving. Exploration-exploitation compensation 

(Peysakhovich and Naecker 2017), unlike comparable POMDP formulations, is not yet 

processed and is merely coded by a linear combination of goals in the reward function. The 

weights of the incentive function, on the other hand, can be determined by a human driver 

iteratively picking a favourite route from a collection of two entrant pathways (Jie, P. L et al. 

2018). Without a set of expert routes and predetermined labels, the vehicle may learn the 

reward function in this way. (Zhang, Chen et al. 2018) demonstrated an enhanced type of 

algorithm and its effectiveness by constructing pathways that resemble those of humans in 

parking lots, with less demonstration necessary during learning. 

Finally, (Del Giudice and Crespi 2018) and (Terziyan, Gryshko et al. 2018) shown the efficacy 

of generative learning through conflicting imitation, which has been used to the optimization 

of recurrent methods. As previously mentioned, a method to learning guidelines based on 

expert demonstrations is reconstructing the expert's cost function using IRL, then deriving a 

model of this cost function with better learning (Xu, Dherbomez et al. 2018). Because this 

method is inherently sluggish, problematic generative learning offers a framework for deriving 

models from data directly. The method replicates developing human driver behaviour, such as 

path-changing, while remaining valid over time (Son, Oh et al. 2020). 

 

2.3 Philosophical Principles 

Academics, researchers, journalists, and philosophers have been debating moral norms for 

decades. This section examines these criteria as they pertain to vehicle behaviour. A specialist 

programmes a self-driving car, and the programming follows a set of decision-making and 

control logic. While morality and control logic cannot be compared, there are ethical 

frameworks that are suited for mathematical systems. 

The importance of safety in autonomous vehicle motion planning extends beyond the steering 

actuation system's predictable control. Engineers face new problems while designing control 

algorithms for driverless cars. Control systems have always had desired requirements and 

performance criteria for which programmers created control algorithms. The capacity to drive 

safely and seamlessly in traffic is the ultimate anticipated performance outcome for fully 

autonomous cars. Because traffic conditions involving people are difficult to quantify, setting 
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criteria for obtaining this desired outcome is difficult as well. Driving in traffic necessitates 

that the vehicle adheres to social road-behaviour norms. Expectations such as avoiding 

collisions and obeying traffic regulations go beyond technological specifications to touch on 

long-standing and formally defined moral concerns in philosophy. The link between 

philosophical frameworks and mathematical frameworks used in programming autonomous 

cars is explored in this chapter to resolve value conflicts. 

Accident prevention is essentially driven by the notion of protecting life and preventing harm. 

(Wang, Vasilakos et al. 2012) defined care (and its opposite, damage) as one of the basic 

concepts for moral reasoning. Another moral underpinning for a vehicle's compliance with 

traffic regulations is its level of respect for authority. In addition, interactions with other road 

users should be based on fairness and reciprocity, which is another of moral foundations 

(Wang, Vasilakos et al. 2012). The fact that these social expectations for autonomous cars are 

so well aligned with ethical standards in philosophy implies that philosophy might be a 

valuable tool for translating such expectations into specifications. (Purves, Jenkins et al. 2015) 

use social justice in the design of a traffic control framework for automated cars, which is in 

the same domain as engineering ethics but with distinct applications. (Arkin 2016), as well as 

(Lin 2016), argue that ethics should be considered throughout the engineering process. (Miller, 

Wolf et al. 2017) synthesise operations research ethics theories and apply them to ethical 

decision-making robots. (Shaoshan, Li et al. 2017) also argues that ethical considerations are 

crucial in the development of autonomous cars. 

Both (Guanetti, Kim et al. 2018) and (Merat, Louw et al. 2018) point out that a single 

conceptual paradigm is unlikely to suffice for programming autonomous systems. As a result, 

academics have developed solutions that include many philosophical notions. The organised 

standards for vehicle behaviour are influenced by deontology, a rule-based ethical framework, 

and consequentialism, a cost-based ethical framework. (Pakusch, Stevens et al. 2018) propose 

a three-tiered method for determining ethical decisions in autonomous vehicles. The first layer 

is a rational approach in which the vehicle respects deontological and consequentialist ethical 

standards. Artificial intelligence and a combined rational-artificial intelligence method are used 

in the second and third layers, respectively. In an optimum control problem, (Urooj, Feroz et 

al. 2018) offer the two ethical frameworks of deontology and consequentialism as parallels to 

constraints and cost, respectively. Many semi-autonomous and autonomous vehicles (Chen, 

Pei et al. 2019) are already designed using this sort of control formulation. As a result, the work 

described here employs several ethical frameworks, deontology, and consequentialism as a 

starting point and applies the principles to a controlled optimization problem. 
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This chapter has two objectives. To begin with, engineers will be introduced to ethical theories 

that mirror engineering paradigms to better understand how such frameworks may involve a 

specific ethical theory. The second objective is to apply these ethical standards to technical 

decisions that result in acceptable, justified autonomous vehicle behaviour. To reason about 

driving objectives as norms or costs as suitable, normative ethical theories, such as deontology 

and consequentialism, are employed. These objectives may be converted into constraints and 

cost functions that can be used in motion planning algorithms such as the MPC formulation. 

This allows for morally driven design decisions to be presented and evaluated in a basic traffic 

situation. Given the formulation of an optimization problem, selecting suitable weights for 

various purposes might be difficult. Therefore, an ethical theory known as virtue ethics in the 

form of role morality can help. Role morality and virtue ethics are founded on character 

alignment (Martinho, Herber et al. 2021). This paradigm, when applied to self-driven systems, 

directs algorithm development to accomplish desired behaviour for various vehicle kinds. To 

include ethical reasoning into the design of autonomous vehicle control, an MPC problem is 

applied to illustrate the influence of various traffic rule formulations. This highlights a broader 

issue of virtue ethics and the role of morality in self-driven cars, which is addressed in Section 

3.7 further. 

One of the most important ethical ideas is deontology. According to a set of norms, 

deontological ethics assesses the morality of one's acts. To be moral, one must, in essence, 

follow a set of principles that define the appropriate ethical behaviour, and these norms must 

be followed without exception. Deontological ethics is exemplified by Isaac Asimov's Three 

Laws of Robotics (Asimov, 1941), which state: 

 A robot may not injure a human being or, through inaction, allow a human being to 

come to harm. 

 A robot must obey the orders given to it by human beings, except where such orders 

would conflict with the First Law. 

 A robot must protect its own existence if such protection does not conflict with the First 

or Second Laws. 

The Three Laws of Robotics provide a clear set of behavioural norms for the robots in Asimov's 

novels to obey, essentially acting as behavioural restrictions. A robot is free to operate as 

needed if it follows the three laws. Certainly, Asimov's robot novels frequently contain odd 

behaviour caused by opposing interpretations of these principles, highlighting the limitations 

of such an approach. 
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For the development of automated vehicle systems, deontology provides one form of 

motivating structure: rules that may be created and obeyed on the road. Conditionals and 

constraints, which are employed in decision-making and control algorithms to restrict and 

influence system behaviour, are comparable to these principles (for example, a conditional for 

actuation saturation or a constraint in an optimization problem). Constraints meant to prevent 

an autonomous vehicle from harming humans, inflicting property damage on itself or other 

things, or breaking traffic regulations are examples of such restrictions for an autonomous 

vehicle. The ability of rules to be hierarchical in a deontological framework is a significant 

characteristic since it establishes clear priorities. From a programming position, the ability to 

weave dependencies and hierarchies together gives a benefit of clarity in thinking for the 

algorithm's development. However, if an algorithm is designed strictly deontologically, it may 

create too restricted driving goals. 

Consequentialism is a major normative ethical theory that examines the moral acceptability of 

actions exclusively because of their effects. To overcome the limits of deontology, 

consequentialism is sometimes presented as the opposite of deontological ethics. There are 

numerous varieties of consequentialism, but the focus here is on utilitarianism, which is a kind 

of consequentialism. Utilitarianism examines a scenario's expected utility and assesses the 

implications of actions depending on which provides the greatest outcomes (Enke 2020). 

Consider Santa Claus being hurt and needing to be rushed to the hospital since he gives so 

much good to the world via his numerous gifts. By using consequentialism, the ambulance 

driver may justify breaching traffic regulations and taking additional measures as needed to 

speed up Santa's recovery. Consequentialism has drawbacks as well, since defining what is 

"good" may be difficult. 

Consequentialism, as a more precise form of utilitarianism, provides a foundation for thinking 

about ethical behaviour in an optimization problem. In control theory, optimum control 

employs a mathematical solution to identify the best control action. The viable option that 

minimises the cost function is the optimal control action (i.e., the morally correct decision) 

(i.e., the desired outcome toward which one strives). Minimizing damage to vehicle occupants 

might be one example of such a cost function for autonomous cars. In consequentialist form, 

the best option would be to manoeuvre the car to fulfil the aim of minimising injury to the 

occupants at all costs. This method has several drawbacks, such as the difficulty in creating or 

assessing the cost function (as with concepts like "damage" (Sadat, Casas et al. 2020) or making 

that cost function comprehensive (by, for instance, considering road users other than the 

occupants in this case). 
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2.3.1 Deontological Constraints 

Cost functions examine the impact of various measures on several conflicting goals. To 

prioritise objectives, optimal controllers pay greater attention to higher cost or weight targets, 

placing the related costs considerably above those of the other objectives (Arkin 2016). This, 

however, only works if certain conditions are met. If some costs are orders of magnitude higher 

than others, the problem's mathematics may become unconditioned, resulting in rapid changes 

in inputs or extreme actions. These problems can be encountered in both mathematics and 

philosophy. Furthermore, hidden concessions in a cost function for some reasons may have an 

impact on the real meaning or priority of specific goals. While it may appear rational to punish 

both steering adjustments and pedestrian accidents, these goals are clearly prioritised. Rather 

than attempting to make an accident a thousand or a million times more expensive than a 

change in steering angle, it's better to define optimal behaviour in more absolute terms: the 

vehicle must maintain a strategic distance from hits, regardless of steering direction strength. 

As a result, the objective shifts from a consistent cost-cutting strategy to an ethical application 

of certain standards. These objectives can be defined numerically by imposing constraints on 

the optimization problems. Limitations may take on some forms that mirror the practises 

enforced by scientific rules or the framework's stated constraints. They might also indicate 

system limitations that should not be exceeded. 

Restrictions on an optimal control problem can be used to model the control law by restricting 

vehicle traffic to paths that avoid pedestrians, cars, cyclists, and other obstacles, and can be 

used to capture ethical rules associated with an ethical manner, such as the goal of avoiding 

collisions with other road users. If there were a set of actions or control entries that could be 

performed to avoid a collision, the vehicle would never have one, and no other goals could 

alter or replace it. Some road codes may be coded simply as restrictions. As a result, the 

mobility of the chosen vehicle may be limited, either physically or ethically. In most cases, it 

is possible to drive comfortably while still adhering to all traffic regulations and keeping a safe 

distance from other road users. However, in certain circumstances, dealing with the restrictions 

put on the problem is beyond the range of possibility. These might be situations where death is 

inescapable from a moral standpoint. However, far more benign confrontations are both 

conceivable and prevalent. 

These scenarios, in numerical terms, describe possibilities that are scientifically impossible to 

realise. As a result, there is no control input that can meet all the vehicle's movement 

restrictions. The more limitations are put on the vehicle's mobility, the more likely it is to 
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encounter a dilemma in which a constraint must be broken. Beyond the mere assertion that 

there is no ideal action, a vehicle must be selected to accomplish anything under these 

circumstances. When dealing with constraints in optimization problems, it's common to treat 

the constraint as a "soft constraint" or slack variable. The restrictions are typically valid, but if 

the issue becomes unsolvable, the solution will change it at an exorbitant cost. In this way, the 

framework may be certain that it will discover a solution to the problem and will make every 

effort to minimise constraint violations. A hierarchy of constraints would surely be enforced 

by giving the cost of certain constraint breaches a larger weight than the cost of others. When 

the vehicle reaches a dilemma scenario, it functions according to rules or ethical constraints 

until it confronts a dilemma, at which time the hierarchy or weight put on various constraints 

resolves the problem using a consequentialist method. In the presence of practicality, this 

becomes a dual system of ethics, in line with the philosophy offered by (Miller, Wolf et al. 

2017) and (Urooj, Feroz et al. 2018), which addresses some of the difficulties with adopting a 

single ethical framework stated by (Arkin 2016). 

The Three Laws of Robotics, proposed by science fiction author Isaac Asimov, are the most 

well-known hierarchical framework of ethical standards for self-driving cars. These guidelines 

do not provide a comprehensive ethical framework and would not be sufficient for moral 

behaviour in a self-driving car. When these principles were applied to real-life circumstances, 

Asimov's actions caused conflict. Nonetheless, beginning with the First Law, this fundamental 

framework is well adapted to addressing some of the moral issues that might arise. This law 

emphasises the value of human life and the responsibility of a self-driving car to protect it. The 

ability to reduce the number of accidents and fatalities is a key driver for the development and 

implementation of self-driving cars. As a result, it appears acceptable to position human life 

protection at the top of the hierarchy of rules for self-driving cars, which is essentially identical 

to the scenario in Asimov's laws. 

Could it be enough for the car to just avoid a collision rather than aim to reduce human injury? 

The most common way for a human to be injured in a self-driving car is through direct contact 

during a collision. Limiting the responsibility to avoid collisions would mean that the vehicle 

would not need to be modified to sacrifice itself to save human life in an accident in which it 

was not involved. In theory, the moral responsibility is to avoid causing damage rather than to 

initiate a collision. Incidents with defenceless road users such as pedestrians or bicycles may 

be prioritised over collisions that just result in property damage. 

In a strictly logical calculation, such an approach would not produce the optimal results. A 

small pedestrian injury may be less expensive than material damage. Collisions, in any event, 
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must be extremely uncommon. Due to restrictions imposed by scientific laws, careful design 

of the control system configuration would allow self-driving cars to avoid any collisions that 

are preventable. In exceptional instances where collisions are unavoidable, society can tolerate 

inferior results in self-driving vehicles that explicitly weigh human life in relation to other 

objectives to gain clarity and comfort. These are clear rules that can be actualized in a self-

driving vehicle and organised by the correct decision about the violation of slack variables of 

the constraints. Prioritizing human life and the most vulnerable road users and expressing the 

resulting hierarchy in Asimov's laws, these are clear rules that can be actualized in a self-

driving vehicle and organised by the correct decision about the violation of slack variables of 

the constraints. Such moral standards would just necessitate object categorization rather than 

attempts to improve harm estimates. This might be accomplished by utilising current 

recognition and perception systems, which do not always classify objects properly. 

 

2.3.2 Consequential Cost 

The basic strategy of ideal control - the selection of information sources that improve a cost 

function - is like the consequentialist rationality approach. Alternative utilitarianism aims to 

discover if the control inputs of this expanded model offer the ideal outcome in the moral sense 

when the moral implications of an action may be a cost function. The ideal controller follows 

the consequentialist approach to rationality since the vehicle may re-examine or act on its 

control data sources to reach the optimal result in a random scenario. We assume, as a 

theoretical model, that all elements of the ground may be weighted according to the degree of 

risk they pose to the vehicle. (Van den Hoven, Lokhorst et al. 2012) presented such a structure 

as a model of human driving that is dependent on Earth's values, and it has led to various ideas 

for the management of autonomous driving or driving assistance. These include (Lin 2016), 

the mechanical field approach potential (Wintersberger, Frison et al. 2017), the virtual guards 

of Donath and its partners (Binns 2018) and the work of self-driving vehicle control according 

to the risk possibilities by (Goodall 2014). The control calculation at that point begins with a 

critical direction for the engine, brakes, and controls that move the vehicle along that lane. 

The construction of an acceptable cost function is the most important test of these approaches 

in terms of design and logic. The fundamental example offers a cost function for a single 

vehicle's danger. A more comprehensive societal stance would be reflected by a holistic 

technique. One possible solution is to calculate the cost of injury to various road users and 

consider it as a cost that may be reduced. Depending on the circumstances, the expenses may 
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include property damage or even death. Such consideration would need a large amount of 

measurement data on environmental obstacles as well as ways for assessing the possible effects 

of impact scenarios, potentially by overcoming the facts emerging from previous incidents. 

Aside from the applications that this consistent technique employs with the data, the behaviour 

of such cost functions as a result offers certain challenges. If it is anticipated that such an 

endeavour will be considerably described or addressed, the vehicle will attempt to minimise 

damage in the case of a worldwide problem and, as a result, decrease the societal effect of 

accidents. However, in such circumstances, the car may make a movement that further harms 

the occupant or the vehicle owner to prevent harm to others. Such benevolent tendencies may 

be good for business, but they are unlikely to be appreciated by the vehicle's owners or tenants. 

Take, for example, a vehicle that is primarily concerned with the residents' safety. With a few 

exceptions, the world perspective triumphed in the vehicle structure. Wax models, for example, 

and the resemblance to pedestrian accidents. Because a collision with a stroller would not 

threaten the car's rental of another vehicle, a vehicle that endangers the safety of its occupants 

cannot endangers the safety of pedestrians. Such cars are unlikely to result in a significant 

reduction in the frequency of traffic accidents during rush hour, and they are unlikely to 

improve social recognition. 

With all these challenges in defining an acceptable cost function and getting the necessary data 

to accurately calculate the cost of actions, a straightforward consequentialist method that 

employs cost function capabilities to code the morale of robotic vehicles looks unfeasible. In 

any case, the primary notion of lowering the costs of punishing undesired actions or 

encouraging desired activities might be a beneficial and important aspect of the control 

calculation, both for physical observation, such as motion planning, and moral issues. The 

morality of friendliness described in this framework by (Krotov and Silva 2018) and (Pimentel 

and Bastiaan 2018) for computerised cars, for example, may be integrated since delays can be 

viewed as a cost function. 

 

2.3.3 Ethics and Self-driven Vehicles 

The iconic trolley dilemma may come to mind when the subject of autonomous cars and ethics 

comes up. The trolley issue depicts an unstable trolley that has broken brakes and has become 

free on a set of railway rails. Five people will be killed if the trolley continues its path. As a 

bystander, you have the option of intervening and diverting the trolley to another set of rails 

where an unsuspecting victim will undoubtedly die (Rehman and Dzionek‑Kozłowska 2018). 
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If an autonomous vehicle takes the place of the trolley, an algorithm will have to decide whether 

to continue a collision path with five people or swerve and kill a random pedestrian. This would 

be a bad situation for an autonomous car (or anybody else) to find itself in on the road. As a 

result, there is a lot of research being done to try to figure out what the problem is and how to 

solve it. 

Along the same lines as figuring out how to solve the trolley problem, some attention has been 

paid to the public's preferences for what an autonomous car should behave in a crash scenario 

when it must choose between striking one thing and striking another. In these preference 

surveys and trials, it is anticipated that an autonomous vehicle would be able to target a specific 

entity positively. Most of the participants wanted the vehicle to follow a utilitarian approach, 

sacrificing the few for the many (Rehman and Dzionek‑Kozłowska 2018), (Faulhaber, Dittmer 

et al. 2019) and (Gupta, Vasardani et al. 2019). The societal conundrum emerges when 

considering whether an autonomous vehicle should be designed to follow utilitarian principles. 

The authors conclude that the participants do not want the autonomous car to be utilitarian or 

to follow their own preferences, but rather that manufacturers and legislators should decide 

how the car should operate in certain tragedy situations. The trolley dilemma was initially 

proposed by philosophers and ethics researchers to encourage engineers to consider the 

implications of their design decisions to avoid developing targeting algorithms unintentionally 

(Halalae and Miclosina 2019). As proposed by (Milfont, Davies et al. 2019), programming an 

autonomous vehicle to accept a user-defined priority or "command" list for collision situations 

has resulted in solutions (and, in essence, targeting algorithms). In specifically, (Schwarting, 

Pierson et al. 2019) used a priority list in conjunction with an object categorization algorithm 

to tell the autonomous car what action to take in a collision scenario, either on the occupants' 

personal ethics or a manufacturer-supplied default list. The crash scenario's outcome is 

predictable if the categorization is correct, according to the design. (Wagner, Borenstein et al. 

2019) suggest the democratisation of preference learning, based on the findings of preference 

surveys that users are less likely to incorporate their ethics (i.e. utilitarian choices) into the 

vehicle. In the event of a trolley, if the vehicle fails and the law does not apply, the public's 

collective voices will determine who to target. 

Some people utilise the concept of social welfare to spread damage more evenly rather than 

focusing remedies for instances. (Zhang, Shao et al. 2019) propose evaluating an objective 

function that multiplies the passenger and pedestrian utilities such that nonbinary steer angle 

solutions emerge in a trolley problem variant where the autonomous vehicle is ferrying a 

human occupant and it must suddenly swerve into a wall or kill a pedestrian. In other words, 
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an autonomous car with this objective function may try to strike both the wall and the 

pedestrian, causing little injury to all parties involved. This shifts the focus away from survey 

data and toward game theory techniques like those developed by (Martinho, Herber et al. 2021), 

who formulates social justice as a maximum algorithm. Rather of presuming a certain aim, 

social justice approaches maintain impartiality when it comes to the agents. 

The recommended trolley scenarios solutions address a problem that is not the same as a motion 

planning issue. The autonomous vehicle continually analyses how to drive laterally and 

longitudinally to follow a particular reference trajectory and prevent accidents during motion 

planning. In crash situations, the trolley scenario solutions concentrate on making last-minute 

targeting judgments. Zawieska shows that there is a significant turning point in terms of 

scenario risk far before an accident (Zawieska 2020), implying that an autonomous vehicle 

equipped with the right motion planner might completely avoid trolley situations. This thesis 

takes a step back from trolley issues to address philosophical frameworks and human values in 

a broader sense to assist engineers in designing socially acceptable and reasonable motion 

planning algorithms. 

 

2.3.4 Ethical Issues 

The term "autonomy" originates from philosophy and refers to the limit of human power to 

legislate, formulate, deliberate, and choose to obey norms, rules, and laws from a moral 

standpoint (Kitchener 2016). This involves the freedom to choose one's own models, as well 

as the ability to define one's own goals and purposes in life (Lin 2016). The cognitive 

mechanisms that sustain and enable human dignity and action per excellence are inextricably 

linked. They usually contain qualities like self-awareness, self-consciousness, and self-

development as grounds for reasons and values (Shaoshan, Li et al. 2017). Humans are the only 

creatures that have autonomy in the moral sense of the word. Even when dealing with highly 

advanced adaptive systems, using the word "autonomy" to describe basic items is incorrect 

(Miller, Wolf et al. 2017). Though, in scientific literature and public discussion, the word 

"autonomous" systems have been extensively used to highlight "the greatest level of 

automation and the maximum degree of human independence in terms of operational and 

decision-making autonomy" (Guanetti, Kim et al. 2018). However, autonomy in the novel 

sense is an essential part of human dignity that cannot be relativized. 

In actual sense no intelligent system, no matter how sophisticated, can be described as 

"autonomous" (Miller, Wolf et al. 2017). In the original ethical sense, it cannot be recognised 
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as a moral person and inherit human poise (Pakusch, Stevens et al. 2018). Human poise as the 

basis of human rights implies that important human intervention and interest must be 

conceivable in areas of interest to humans and their environment. Unlike the automation of 

production, monitoring and deciding for humans in our own way is inappropriate, even if 

technically feasible (Urooj, Feroz et al. 2018). They should almost certainly figure out which 

goals are served by innovation, what is ethically relevant, and which actual objectives and 

conceptions are morally qualified for the search. This can't be left to robots, regardless of how 

amazing they are. 

The ability and willingness to assume and assign moral obligations is a fundamental component 

of human origin that underpins all our ethical, social, and legal organizations. Moral obligation 

is interpreted here in a broad sense in which it might denote a certain part of human behaviour, 

such as responsibility, risk, causality, liability, receptive dispositions, and moral obligations 

related to social norms. Moral obligations, in whatever sense, cannot be assigned or transferred 

to "autonomous" innovation. 

 

2.3.5 Ethics of Crashing 

During and before accidents, human drivers are prone to making poor judgments. They must 

overcome tight time restrictions, a lack of manoeuvring expertise with their vehicles, and 

restricted sight. Self-driving cars, on the other hand, have far fewer resources for recognition 

and processing capacity. This method has hampered research on car moral studies by 

preventing the examination of future sensors and algorithms from eliminating all accidents 

(Operto 2011), (Muehlhauser and Helm 2013), and (Goodall 2014). Even if perfect vehicles 

should occasionally fail, an ethical decision-making system is still required (Malle, Scheutz et 

al. 2016) 

These cutting-edge self-driving cars, which are outfitted with cutting-edge software and 

sensors, can make pre-crash judgments that properly detect adjacent vehicle trajectories and 

avoid high-speed manoeuvres. They will most likely transcend the constraints that humans face 

in this manner. When a collision is unavoidable, a computerised vehicle can choose the best 

course of action based on safety considerations and the likelihood of the outcome much faster 

and with more precision than a human driver (McBride and Hoffman 2016). On highways, it 

is typically more effective to brake and swerve during high-speed movements, thus the 

computerised system may conclude that braking alone is not optimal. The major flaw with self-
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driving cars is that their judgments in the case of an accident are predetermined by a system 

programmer, rather than a human driver who can make decisions in real time. 

The self-driving car can interpret and make decisions based on sensor data, but the selection is 

based on a logical sequence that was designed and coded months or years before. If a collision 

can be avoided, this procedure is simple: the car chooses the safest path and proceeds. If injuries 

cannot be avoided, the self-driving car must choose the most effective way to create an 

accident. This decision becomes a moral one (Redelmeier and Raza 2017), (Sarathy, Scheutz 

et al. 2017), and (Wintersberger, Frison et al. 2017). 

 

2.4 Vehicle Model Design 

Deontology and consequentialism's frameworks are the product of much logical investigation 

(Lin 2016) and (Kenwright 2018). Based on their original considerations, we will use these 

systems as tools to advance and clarify the selection of self-driving programming schemes. In 

this research work, a definition of the problem by the MPC is given since the explicit thinking 

on limits and costs in the MPC corresponds well to the standards of deontology and 

consequentialism. It will also show that the test of these two philosophical structures leads to 

an orderly treatment of the various questions. Requirements for the vehicle are set to maintain 

a strategic distance from accidents, follow dynamic conditions, and stay within the limits of its 

abilities. In terms of cost-effectiveness, the vehicle is geared towards ideal results by following 

a recommended path and providing incentives and value for human life. Interestingly, with 

these different goals, it is less certain that traffic rules are complicated or compelling, so 

exceptional representations are investigated. 

 

2.4.1 Vehicle Models 

The vehicle models used for the trajectory planning of self-driving vehicles are classified as 

point-mass vehicle models, kinematic vehicle models, and dynamic vehicle models. 

  

2.4.1.1 Point Mass Model 

Point mass models are straight models demonstrating the vehicle as a particle whose mass can 

move at both longitudinal and lateral speeds. The tyre model and vehicle geometry are not 

considered and can cause significant errors. In this manner, certain state constraints can be 
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added to enable the generated direction to be increasingly possible. Increased longitudinal and 

lateral speeds can be enforced by the acceleration associated with the most extreme tyre 

constraint limits (Gao, Lin et al. 2010), (Funke, Brown et al. 2015), (Jalalmaab, Fidan et al. 

2015), and . In addition, the vehicle's sideslip edge can't be substantial for a vehicle in a non-

drifting manoeuvre and can be forced, (Kong, Pfeiffer et al. 2015). Even with these limitations, 

a point mass model can't satisfactorily anticipate the vehicle's behaviour. 

  

2.4.1.2 Kinematics Models  

Kinematics model are nonlinear models that show how a vehicle's geometry affects its 

performance. No tyre model is considered. However, to satisfy the passenger’s comfort and 

avoid skidding, constraints may be imposed on the lateral acceleration to restrain it to ordinary 

driving values (Kong, Pfeiffer et al. 2015), (Sheth and Umbarkar 2015), and (Zhang, Sprinkle 

et al. 2015, Erlien, Fujita et al. 2016). 

  

2.4.1.3 Vehicle Dynamics Models  

Vehicle dynamics models consider tyre models in their models (Erlien, Fujita et al. 2016). 

(Houjie, Zhuping et al. 2016), (Nilsson, Brännström et al. 2016) and (Qian, Fortelle et al. 2016) 

compare the behaviour of a vehicle kinematics model and an open-loop vehicle dynamics 

model. The outcomes demonstrate that both models perform very similarly at low speeds in 

modelling vehicle behaviour. At higher speeds (more than 15𝑚/𝑠), the dynamic model works 

much better if the manoeuvre includes steering angles of more than 1:50 (Chae, Kang et al. 

2017). Thus, when a self-driven vehicle is expected to perform high-speed manoeuvres with 

large lateral accelerations, a vehicle dynamics model is preferred over a vehicle kinematics 

model for use as an MPC model. 

Vehicle dynamics models are derived based on Newton's second law, which states that wheel 

models are considered manoeuvring forces. The dynamic equation of the vehicle is non-linear, 

regardless of the tyre model, but the main source of non-linear behaviour of the vehicle is the 

wheel. The tyres have limited capacity and become saturated (Demirel, Ghadimi et al. 2017). 

They present a dynamic model of a four-wheeled vehicle with longitudinal, lateral, and yaw 

rate equations in the centre of gravity of the vehicle based on the four forces exerted on all four 

wheels. They used a Pacejka tyre model and studied the dynamics of the wheels in the model. 

They also consider load transfer resulting from longitudinal and lateral accelerations in the tyre 
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model to generate a more accurate vehicle model. Wheel dynamics increases the number of 

vehicle states by four but has a very small impact on vehicle model accuracy (Funke, Brown 

et al. 2017), and (Gallardo, Romeo et al. 2017) they used a four-wheel vehicle dynamics model 

without wheel dynamics, nor did they consider the effect of load transfer in the model. 

A dynamic model of a four-wheeled vehicle without wheel dynamics can be simplified into a 

bicycle model. In a bicycle model, the tyres on each axle are modelled as rubber tires. A bicycle 

model is not linear (Siampis, Velenis et al. 2017). Look at the bicycle model with a Pacejka 

tyre model. They limit the lateral slip angles of the front and rear tires, since the large slip 

angles are not favourable. (Bayerlein, De Kerret et al. 2018) and (Berntorp, Hoang et al. 2019) 

consider a linear tyre model for the vehicle while the equations of motion of the vehicle are 

non-linear. They also force the tyre sideslip angles to keep the tyre in its linear force region 

and keep the vehicle model valid. 

  

2.4.1.4 Linear Bicycle Model 

The vehicle dynamics models are non-linear, and the MPC that uses them should be non-linear 

as well. However, when vehicle dynamics are considered, a linear bicycle model can be used 

in a quadratic MPC to deal with high-speed manoeuvres with significant lateral acceleration 

(Manenti 2011), (Iftekhar and Olfati-Saber 2012), and (Mladenovic and Abbas 2014) 

developed a nonlinear bicycle model with a Pacejka tyre model and longitudinal load transfer. 

They then linearize the model around the operating point. They also force the overall 

acceleration of the vehicle to stay in the friction circle. The circle is approximated by half-

spaces so that the quadratic constraint is approximated by linear constraints to be utilised in a 

quadratic MPC. 

Also, (Turri, Carvalho et al. 2013) developed a four-wheel vehicle model for vehicle lateral 

motion with a Pacejka tyre model where the longitudinal motion of the vehicle is known. They 

also consider load transfer in the model. At that point, they linearize the vehicle's model. They 

calculate the rear and front tyre models based on the total longitudinal force of the vehicle and 

linearize them. In this way, they consider the load transfer as well as the combined sliding 

effects. (Aripin, Md Sam et al. 2014) and (Gao, Gray et al. 2014) presented a nonlinear bicycle 

model with a Pacejka tyre model to model the lateral movement of the vehicle, then linearized 

the model. They utilise a linear tyre model for the rear tyre force and limit the slip angle of the 

tire. They estimate the cornering stiffness of the tyre and the most extreme sideslip angle of the 

tyre to obtain the best possible approximation of the tire's behaviour and to generate a lateral 
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force close to the maximum lateral force. For the front tire, they use the tyre force in the motion 

equations and derive the steering angle using the inverse Pacejka model. They also limit the 

slip angles to maintain the tyres in their linear force regions. 

(Nilsson, Brännström et al. 2016) demonstrates a nonlinear bicycle model with a brush tyre 

model for the lateral motion of a race vehicle. Like (Gao, Gray et al. 2014), they utilise a rear 

tyre model for the front tire. They assume that the nominal curvature of the path is the curvature 

of the road. Thus, rather than utilising a linear tyre model for the rear tire, they linearize the 

brush model by the nominal sideslip angle corresponding to the nominal curvature of the path. 

This work is intended for racing vehicles that operate on high-speed bends that necessitate a 

large lateral angle to follow the course. For road vehicles, little tyre sideslip angles are required 

to follow the path, and the resulting tyre model would look like a linear tyre model. The paper 

also limits the front lateral force and applies a stability envelope to the rear tyre rather than 

restricting tyre sideslip angles. The envelope limits the yaw rate to its maximum steady state 

value corresponding to the road tire-road friction and the rear sideslip angles to the boundaries 

corresponding to the linear force region of the tire. 

For example, (Qian, Fortelle et al. 2016, Funke, Brown et al. 2017) demonstrate a nonlinear 

bicycle model with a brush tyre model for the lateral motion of a racing vehicle. For the front 

and rear tires, they linearize the brush tyre model by the nominal sideslip angles that correspond 

to the nominal curvature of the path. They utilise a stability envelope like that of (Yi, 

Gottschling et al. 2016). To limit the lateral tyre force of the front tires, they consider the 

combined sliding action. They assume that the longitudinal force controlled by the driver 

remains constant and they limit the lateral force to the remaining tyre capacity. As referenced, 

for a road vehicle, the linearized tyre model in (Qian, Fortelle et al. 2016) and (Funke, Brown 

et al. 2017)is like a linear tyre model. In addition, the tyre sideslip angle constraints maintain 

the tyres in their range of linear forces to keep the linear tyre pattern in place. Several studies 

utilise a vehicle bicycle model with linear tyre models and limit lateral and rear side tilt angles 

(Rasekhipour, Khajepour et al. 2017, Brüdigam, Ahmic et al. 2018, Joa, Yi et al. 2019). 

 

2.4.2 Ethical Vehicle Design 

The legal and moral consequences of self-driving car judgments in the event of unavoidable 

crashes were barely mentioned. Most of the moral machine research is centred on military 

applications or general machine intelligence (Purves, Jenkins et al. 2015, Kowalczuk and 

Czubenko 2017, Urooj, Feroz et al. 2018). Machine ethics is a relatively new topic of study 
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that focuses on the development of autonomous robots that can demonstrate ethical behaviour 

in novel settings. 

 

2.4.2.1 Rational Approach 

Engineers must guide the self-driving system explicitly as to how it should react in certain 

situations. This rationalist approach is frequently expressed as deontology, in which the system 

is required to follow rules, or consequentialism, in which the system's aim is to maximise 

utility. Engineers like these logical techniques because computers can readily obey rules and 

optimise functions. Unfortunately, as stated in sections 2.3.1 and 2.3.2, this method has certain 

drawbacks. 

  

2.4.2.2 The Artificial Intelligence Approach 

For years, the automatic translation of languages has been based on rules developed by experts. 

The expectation was that the language could be defined by rules, with enough time to learn the 

rules and to write them. An alternative approach using algorithms to automatically learn a 

language without formal rules is much more successful than rule-based methods. These 

techniques are called artificial intelligence (Terziyan, Gryshko et al. 2018, Xu, Dherbomez et 

al. 2018). Linguistic translation provides an adequate analogy for ethical systems. In both areas, 

artificial intelligence methods are useful if the rules cannot be expressed. 

Artificial intelligence methods can learn human ethics by observing human actions or 

rewarding their own moral behaviour (Rouse 2017, Soin and Chahande 2017, Taramov and 

Shilov 2017). A computer can determine the components of ethics without a person having to 

explain exactly why an act is or is not ethical (Purves, Jenkins et al. 2015). (Van den Hoven, 

Lokhorst et al. 2012) describe these techniques as "bottom-up" approaches, which may include 

techniques such as genetic algorithms and learning algorithms (Damm 2012). In a simple case, 

artificial neural networks, which use node layers in a connection-oriented computational 

approach to find complex relationships between inputs and outputs, were used in a simple case 

to classify hypothetical decisions as either moral or amoral. Hibbard suggested a similar 

methodology for formulating a consequentialist approach to machine ethics in which an 

independent artificial intelligence agent calculates the moral weights attributed to humans after 

questioning subjects in different hypothetical situations (Hibbard 2012). An automated vehicle 

project, an autonomous Carnegie Mellon land vehicle in a neural network, used a simple 
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network of artificial neurons trained to teach driving by monitoring a human driver for only a 

few minutes (Applin and Fischer 2015). A similar technique could be used with much more 

training data to understand how people should behave morally or otherwise in a complex 

driving situation when time matters. The neural network could be trained on a combination of 

simulations and recordings of crashes and near-misses, with human feedback on the ethical 

response. Artificial intelligence techniques have several disadvantages. If they are not carefully 

designed, they may mimic humans’ behaviour rather than what they believe. Self-protection 

instincts that do not maximise overall safety can be realistic but not ethical. Ethics is about how 

humans should or want to behave, not how they currently behave, and artificial intelligence 

techniques should capture ideal behaviour. 

Another disadvantage of some artificial intelligence approaches is traceability. Artificial 

intelligence can be complex, and artificial neural networks cannot explain how a decision was 

made based on the input data in a comprehensible manner. There is already anecdotal evidence 

of computers that have discovered relationships that researchers do not understand (Carvalho, 

Lefévre et al. 2015, Cunningham, Galceran et al. 2015, McBride and Hoffman 2016). They 

proposed the choice of decision trees to encourage transparency and a different type of ethics 

(Asimov’s laws can be formulated easily as a decision flowchart). However, the risk of 

alteration is important for the automation of road vehicles. Ethics would probably require that 

all humans be equal. However, a vehicle manufacturer is encouraged to build vehicles that 

primarily protect their own occupants. A built-in self-protection component of self-driving 

vehicle ethics could be hidden in a complex neural network and could only be discovered by 

analysing long-term accident trends. Safety precautions must be taken to prevent this from 

happening. 

Although artificial intelligence approaches allow computers to learn human ethics without the 

difficult task of formulating ethics as a code (Garip, Karayel et al. 2017, Sarathy, Scheutz et al. 

2017, Wintersberger, Frison et al. 2017), they lead to actions that are probably not justified. 

When formed with limited information, an artificial intelligence can learn completely 

involuntary, unwanted, unexpected, and undesirable behaviours. Without further testing, 

artificial intelligence reasoning methodologies for self-driving vehicles cannot be 

recommended without artificial rules designed to increase transparency and prevent unethical 

behaviour. 
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Chapter 3: Mechanic Formulations Governing the Response of 
Self-driving Vehicles 

3.1 Introduction 

This section describes the techniques used for the mechanics formulations guiding the 

behaviour of self-driving vehicles in the research to develop a framework for optimising ethical 

decision-making using constraining and cost-optimizing techniques by assigning various 

potential functions to ethical problems corresponding to their moral values. A linear bicycle 

vehicle model will be used to model the behaviour of the vehicle with a model-based design 

technique. To actualize the relationship between ethics and technology in self-driving vehicles 

and to assess the performance of trajectory planning systems in terms of traffic safety and 

compliance, obstacle avoidance, and longitudinal and lateral manoeuvrability, a large model 

capable of simulating a realistic driving scenario that includes a variety of factors and with 

many cars dynamically entering and leaving the merging zone is created. As shown in figure 

3.1 below, these driving scenarios provide several options for technical decisions such as car 

types (properties, dynamics), driving strategies (aggressive, defensive) & algorithms, 

intersection geometry (weather, time, road conditions), and events that cars react to (sudden 

brake, change in steering, sensor failure). 

 

 

Figure 3.1: System Block Diagram 
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Autonomous agent pool 

The agent pool has many vehicles of two different types, and each vehicle model has a driver 

strategy (planner) and vehicle dynamics (plant), which is a type of subsystem that repeats the 

execution of each element and concatenates the result. This makes it possible to simulate 

multiple vehicles of the same type with different behaviour at the same time. Inside the driver's 

behaviour, it checks whether it’s safe to merge or switch and uses state-for-state parameters to 

calculate the longitudinal and lateral acceleration. These models of driver behaviour could 

easily be replaced with a different driver behaviour that has the correct output given the input. 

  

Environment and Interface 

The interface takes in either state of one of the outputs from the self-driven pool and fixes it 

into one of the chosen scenarios in the environment. These scenarios (single-lane curve, dual-

lane merge, dual-lane switch, three-lane merge & switch, three-lane curve & switch, and four-

lane merge & switch) are modelled in variance, which allows the system to make one block 

active at any given time during simulation. Each scenario has a sim-event road model 

subsystem where entities are generated, routed, and terminated and are connected to the driver 

strategy model of a self-driven agent pool through an interface that allows information flow 

between the subsystems. It’s the glue that combines two domains together. For instance, a 

vehicle in any scenario is allowed to exit the system when they hit the crossing block, which 

shows that the position has hit a limit using information from the self-driven agent pool. In this 

case, the vehicle is removed from the simulation with the terminator block. Perception & 

Localization of each subsystem takes in either state from the model and maps it on to the road 

information. These subsystems must be updated whenever the model is updated with different 

map information or different road shapes. With this flexible framework, it’s easier to model 

ethical issues and other types of agents and the environment in which they operate. 

 

3.2 Code Generation 

The codes were generated using MATLAB code-gen function from the toolbox for safety 

checks, lane merge and switch, lane curve and switch, and all the sensors for different driving 

scenarios. It was then integrated into the projects as a source code, for static and dynamic 

libraries as shown in Appendixes 1-17. The generated code is readable and portable with high 

efficiency and flexibility. 
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3.3 Model Predictive Control 

Before the delays in the vehicle steering system are taken into account, it is compared to a 

model predictive control problem formulation without delay modelling, as shown by (Funke, 

Brown et al. 2015). 

 

3.3.1 Formulation of the Problem 

A four-state bicycle dynamic model with constant acceleration assumption is utilised in the 

baseline MPC formulation. Vehicle lateral velocity (𝑈௬), yaw rate (𝑟), heading deviation (∆ψ), 

and lateral deviation (𝑒) are all included in the state vector (x): 

 

𝑥 = [𝑈௬  𝑟  ∆𝜓  𝑒]்  ………………………..…. Equation (3.1) 

 
The front steering angle (δ) computed from an affine vehicle model is the control input to the 

vehicle model (𝑢):  

 

𝑥(௞ାଵ) =  𝐴(௞)𝑥(௞) +  𝐵(௞)𝑢(௞) +  𝑐(௞)   𝑘 = 0, … . 𝑛 − 1 ………… Equation (3.2) 

      

for each time step in the prediction horizon (𝑘) up to a finite number of time steps (𝑛). The 

steering input in the original problem formulation by Funke et al. is front lateral tyre force, 

however in this study, steering angle (δ) is used, as in (Gray, Gao et al. 2013). 

The relationship between front lateral tyre force (𝐹௬) and steering angle (δ) is nonlinear. 

According to (Joa, Yi et al. 2019) depicts the relationship as follows:    

 

𝐹௬ = 

⎩
⎪
⎨

⎪
⎧−𝐶ఈ 𝑡𝑎𝑛 𝛼 +

஼ഀ
మ

ଷఓி೥

|𝑡𝑎𝑛 𝛼| 𝑡𝑎𝑛 𝛼

−
஼ഀ

య

ଶ଻ మி೥
మ 𝑡𝑎𝑛ଷ𝛼

−𝜇𝐹௭ 𝑠𝑖𝑛 𝛼 

     |𝛼| < 𝑡𝑎𝑛ିଵ(
ଷఓி೥

஼ഀ
)  ………. Equation ( 3.3) 

 

where slip angle (α) is the angle between the tyre heading and the tire's velocity vector, 𝑐ఈ is 

the tire's cornering stiffness, 𝜇 is the coefficient of friction, and 𝐹௭ is the tire's normal load. 

Using tiny angles and the vehicle model in Appendix - 18, the front slip angle (𝛼௙) for the front 

tyres may be stated as follows: 
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𝛼௙ =  𝑡𝑎𝑛ିଵ ቀ
௎೤ା௔௥

௎ೣ
ቁ −  𝛿 ≈  

௎೤ା௔௥

௎ೣ
−  𝛿   ……………Equation (3.4) 

 

Erlien, Funke, and Gerdes used an affine, time-varying model with consecutive linearization 

points to estimate the tyre curve for rear tyres to capture realistic behaviour while retaining the 

bicycle model's convexity. For the front tyres, a similar approach may be used: 

 

𝐹௬௙ =  
ఋி೤೑

ఋఈ೑
ฬ

ఈ೑,బ

൫𝛼௙ − 𝛼௙,଴൯ +  𝐹௬௙൫𝛼௙,଴൯ ………... Equation (3.5) 

 

This is essentially a Taylor expansion around an operational point (𝛼௙,଴), with 𝛼௙,଴ determined 

from the preceding optimization's solution at each time step on the prediction horizon. The 

system is described by linear differential equations as in (3.4) and steer angle as the controller 

input. 

A nonzero diagonal entry in the weighting matrix (𝑄) is associated with lateral deviation and 

heading deviation as these states are specified relative to a nominal or desired path. The 

following is the entire optimization problem: 

 

Minimize (u): ∑ 𝑣(௞)்௡
௞ୀ଴ 𝑅(௞)𝑥(௞) + ∑ 𝑥(௞)்௡

௞ୀଵ 𝑄(௞)𝑥(௞)  …………. Equation (3.6a) 

               Subject to: 𝑥(௞ାଵ) = 𝐴(௞)𝑥(௞) +  𝐵(௞)𝑢(௞)  + 𝐶(௞)  ………...…...…. Equation (3.6b) 

                                ห𝑢(௞)ห  ≤  𝑢௠௔௫
(௞)  …………………………………....………...Equation (3.6c) 

                                ห𝑣(௞)ห  ≤  𝑣௠௔௫
(௞)  …………………………………....………...Equation (3.6d) 

 
 

where 𝑣(௞) =  𝑢(௞) −  𝑢(௞ିଵ) is the change in front steer angle, weighting matrix (𝑅) penalizes 

changes in steer angle, and 𝑢௠௔௫
(௞)  and 𝑣௠௔௫

(௞)  are physical limits in the steering system. 

 

The optimization problem (3.6) is a quadratic programme with a sparse structure that can be 

solved in real time using an efficient solver. CVXGEN, created by (Mattingley, Boyd et al. 

2012) is utilised to solve for the input vector, 𝑢 =  [𝑢(0) … … 𝑢(𝑛)] but only the first solution 

in the vector (𝑢(0))  controls the steering system. The optimization task is executed at 100 

cycles per second on a single core of a ruggedized computer with an i9 CPU. To see if delay 
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compensation was essential, the performance of problem formulation (3.6) was compared to a 

baseline to validate all the problem formulations in the chapter.  

Despite the steering system’s delay, the self-driving vehicle effectively navigates around the 

obstacle, as seen in figure 3.2 (top) plot. The command and measurement of the hand wheel 

angle while the self-driving system performs the manoeuvre are shown in the centre plot in 

figure 3.2 at time t = 1.63s, it also depicts an open-loop prediction horizon for the steering 

command (scaled by steering ratio). The best solution does not anticipate future steering 

behaviour well at the end of the prediction horizon now, suggesting a model mismatch. Along 

the prediction horizon, the root mean squared (RMS) error between the closed-loop command 

and the open-loop forecast is 16.13, indicating that the open-loop forecast accurately predicts 

future behaviour. The vehicle yaw rate has substantial oscillations as shown in figure 3.2 

(bottom), indicating that the vehicle did not spin properly and had to correct its rotation during 

the manoeuvre. This happens because the delay prevents the proper amount of steer angle from 

being command when it's needed, necessitating more aggressive manoeuvring to avoid the 

disturbance occurring at a time step later than the predictive controller predicted. The yaw rate 

has an RMS error of 0.0638 rad/s. 
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Figure 3.2: Baseline trajectory overhead, diamond indicates start of manoeuvre at the top, command 
and measuring hand wheel angle with open-loop prediction at one time step in the middle, and yaw 

rate at the bottom due to lateral perturbation from the nominal path. 

 

3.4 Pure Delay Modelling 

The steering system's delay should be accounted for, based on the outcomes of the preceding 

sections. The MPC problem formulation in this part simply includes the pure time delay. 

 

3.4.1 Problem Formulation 

The actuated steering command (𝑢௔௖௧௨௔௟) follows the commanded steering command (𝑢) by a 

time delay as shown in equation (3.7) because of which the modelled state transition connection 

is formed as in equation (3.8). 
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𝑢௔௖௧௨௔௟(𝑡) = 𝑢൫𝑡 −  𝑇ௗ௘௟௔௬൯ ……………….. Equation (3.7) 

𝑥൫𝑡 + 𝑇௣௥௘ௗ൯ =  𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢൫𝑡 − 𝑇ௗ௘௟௔௬൯ ……….….. Equation (3.8) 

 

𝑇௣௥௘ௗ is the discretization time into the prediction horizon, where 𝑇ௗ௘௟௔௬ is the pure delay time 

and is known to be around 40𝑚𝑠, thus the problem formulation (3.6) is changed to account for 

that. For the small-time steps of the prediction horizon, 𝑇ௗ௘௟௔௬ = 𝑇௉௥௘ௗ, such that equation (3.8) 

may be discretized as  

 

𝑥(௞ାଵ) = 𝐴(௞)𝑥(௞) +  𝐵(௞)𝑢(௞ିଵ)  + 𝐶(௞),   𝑘 = 0, … 𝑛 − 1 …………. Equation (3.9) 

 

The optimal steering input calculated for 𝑇௣௥௘ௗ seconds previously determines the transition 

from 𝑥 (0) to 𝑥 (1). When 𝑇ௗ௘௟௔௬ = 𝑇௣௥௘ௗ is taken into consideration, the optimization problem 

may be stated as in equation (3.10) 

 

Minimize (u): ∑ 𝑣(௞)்௡
௜ୀ଴ 𝑅(௞)𝑥(௞) + ∑ 𝑥(௞)்௡

௜ୀ଴ 𝑄(௞)𝑥(௞) …………… Equation (3.10a) 

               Subject to: 𝑥(ଵ) = 𝐴(଴)𝑥(଴) +  𝐵(௞)𝑧ିௗ𝑢∗(଴)  + 𝐶(଴) ………….…… Equation (3.10b) 

                                𝑥(௞ାଵ) = 𝐴(௞)𝑥(௞) +  𝐵(௞)𝑢(௞ିଵ)  + 𝐶(௞) ……………… Equation (3.10c) 

                                ห𝑢(௞)ห  ≤  𝑢௠௔௫
(௞)  …………………………………....………...Equation (3.10d) 

                                ห𝑣(௞)ห  ≤  𝑣௠௔௫
(௞)  …………………………………....………...Equation (3.10e) 

 
 

The zeroth item of the optimal solution vector determined d control iterations preceding system 

is 𝑧ିௗ𝑢∗(଴). This solution should be identical to the 𝑇ௗ௘௟௔௬ seconds preceding solution. If the 

controller runs every 𝑇௖௢௡௧௥௢௟ seconds, 

                                    𝑑 = 𝑟𝑜𝑢𝑛𝑑 ቀ
்ௗ௘௟௔௬

்௖௢௡௧௥௢௟
ቁ ………………… Equation (3.11) 

 

Because of the delay formulation that leverages the prior control input in seeding equation 

(3.10b), the decision variable vector (𝑢) has been decreased from size (𝑛 + 1) to size (𝑛). 
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3.4.2 Simulation Results 

The open-loop prediction improves by just considering the pure time delay in the steering 

system, as seen in the centre plot of figure 3.3. This method reduces the hand wheel angle RMS 

throughout the prediction horizon by approximately by a factor of two to 7.87 at time 𝑡 = 1.63𝑠. 

This manoeuvre's yaw rate has a decreased RMS error of 0.0574 𝑟𝑎𝑑/𝑠, as seen in the bottom 

figure 3.3. The pure time delay problem formulation produces a trajectory that is comparable 

to the baseline trajectory. 

 

Figure 3.3: Pure time delay trajectory overhead, diamond indicates start of manoeuvre at the top, 
command and measuring hand wheel angle with open-loop prediction at one time step in the middle, 

and yaw rate at the bottom due to lateral perturbation from the nominal path. 
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3.5 Dynamic Lag Modelling 

The dynamic lag in the steering system, is included into the MPC problem formulation to 

improve the open-loop prediction even more. A first-order lag model with the pure time delay, 

a first-order lag model tuned to lump in the pure time delay, and a second-order lag model 

adjusted to lump in the pure time delay are all compared in the next section. 

 

3.5.1 First-Order Lag 

The state vector is appended with a fifth state 𝑓௢௟ to represent the steering input to the affine 

vehicle model after a first-order delay to accommodate for first-order dynamics. The new state 

vector is transformed into 

 

𝑥 =  [𝑈௬   𝑟   ∆𝜓   𝑒   𝛿௙௢௟]
் …………………..…… Equation (3.12) 

 

The affine vehicle model is also supplemented by 𝛿௙௢௟, which is written as 

𝛿௙௢௟
̇ (𝑡)  =  −

ଵ

ఛ
𝛿௙௢௟(𝑡) +

ଵ

ఛ
𝑢(𝑡) ………..………… Equation (3.13) 

 

where (𝜏) is the time constant. Both problem formulations (3.6) and (3.10) employ the five-

state vector, but with different values for the time constant. The step responses are as shown in 

figure 3.4 

 

 

3.5.2 Second Order Lag 

The steering delay is approximated as a second-order system, because there is a pure time delay 

with apparently first-order dynamics. In the same way as the first-order equation, 

 

𝑥 =  [𝑈௬   𝑟   ∆𝜓   𝑒   𝛿௦௢௟    𝛿௦௢௟
̇ ]் ………………………  Equation (3.14) 

 

The new states are linked to the actual steering input in the same way as the previous states 

were. 

𝛿௦௢௟
̈ (𝑡) =  −𝜔௡

ଶ𝛿௦௢௟(𝑡) − 2𝜁𝜔௡𝛿௦௢௟
̇ (𝑡) −  𝜔௡

ଶ𝑢(𝑡) ……………Equation (3.15) 
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This delay model is adjusted to have the step response shown in figure 3.4 since it is exclusively 

used for problem formulation (3.6). 

 

 

Figure 3.4: First- and Second-order models on median step response data. 

 

3.5.3 Simulation Results 

Because the steering system's real dynamics are unknown, several simulations were conducted 

to see which of the problem formulations allowing for dynamic lag worked as illustrated in 

figures 3.5, 3.6, and 3.7. of the RMS error for the hand wheel angle over the prediction horizon 

at 𝑡 = 1.63𝑠, as well as the RMS and maximum absolute yaw rate. Because of its connection 

to lateral acceleration in the inertial frame, the maximum absolute yaw rate is as shown in table 

3.1 below 

𝛼௬ =  𝑈̇ + 𝑟𝑈௫ ……………………..…… Equation (3.16) 
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Table 3.1: RMS of hand wheel angle (HWA) along prediction horizon, RMS of yaw rate, and 
maximum absolute yaw rate 

Simulation  Prediction horizon 

HWA RMS+ (0) 

Yaw rate RMS 

(rad/s) 

Max yaw rate* 

(rad/s) 

Baseline  16.13 0.0638 0.2259 

Pure time delay 7.87 0.0574 0.2024 

PTD + FOL 7.76 0.0536 0.1895 

Lumped + FOL 8.16 0.0555 0.1678 

Lumped + SOL 8.38 0.0562 0.1665 

+@ t = 1.63s *absolute value 

 

In comparison to the 𝑟𝑈௫ term, the vehicle frame's lateral acceleration (𝑉௫) is modest, and 

longitudinal velocity is stable throughout all trials. As a result, the maximum absolute yaw rate 

indicates how much lateral acceleration car passengers are exposed to throughout each 

manoeuvre. 

Because the corresponding models accurately capture the steering actuation, the open-loop 

prediction horizons in the central plots of figures (3.5), (3.6), and (3.7) appear qualitatively 

comparable. The measured response is smooth, the yaw rate response also reflects the overall 

smoothness of the manoeuvre. Compared to the baseline and pure time delay implementations, 

the RMS error and maximum of the yaw rate continue to improve quantitatively. 

A thorough investigation of the figures in table 3.1 reveals that there is a trade-off to be made 

when choosing the “best” delay modelling problem formulation to employ. The aggregated 

first order and second-order RMS errors, as well as the maximum absolute yaw rate, have 

minimal difference. The lumped second-order method offers a somewhat smoother yaw rate 

response at the cost of a wider state space in terms of computation. If the pure time delay is to 

be clearly simulated, extra information in-vehicle is required, such as the number of control 

time steps required to delay the first input to the optimization problem. Because of the 

comparable speed, smaller state space, and easier implementation, I decided to go with the 

lumped first-order method. 
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Figure 3.5: Pure time delay with first-order dynamics trajectory overhead, diamond indicates start of 
manoeuvre at the top, command and measuring hand wheel angle with open-loop prediction at one 
time step in the middle, and yaw rate at the bottom due to lateral perturbation from the nominal path. 
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Figure 3.6: Lumped first-order lag trajectory overhead, diamond indicates start of manoeuvre at the 
top, command and measuring hand wheel angle with open-loop prediction at one time step in the 

middle, and yaw rate at the bottom due to lateral perturbation from the nominal path. 
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Figure 3.7:Lumped Second-order lag trajectory overhead, diamond indicates start of manoeuvre at 
the top, command and measuring hand wheel angle with open-loop prediction at one time step in the 

middle, and yaw rate at the bottom due to lateral perturbation from the nominal path. 
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3.6 New Optimization Framework Formulation 

The given vehicle dynamics model and restrictions are used to build an optimization of ethical 

decision-making control in this part. The controller's goal function now includes the possible 

scope, road rules, obstacle avoidance, traffic regulation compliance, ethical consideration, 

ethical limitations, and related expenses. Based on the projected values, the new framework 

would be able to forecast the vehicle's reaction to a certain horizon and optimise vehicle 

dynamics, command tracking, obstacle avoidance, road laws, and ethical reasoning up to that 

horizon. The ethical restrictions were implemented as soft constraints that may be readily 

broken but are sanctioned when they are. To allow for certain violations, a slack variable was 

introduced to the constraint equation, as well as a penalty term in the objective function to 

punish the violation. The tyre force limits are supple. This is since the restrictions are 

simulations of the actual tyre limitations, which may differ from the actual limitations. 

Furthermore, the predicted state inaccuracies may result in constraint violations. To prevent 

infeasibility owing to constraint violation, the tyre restrictions are treated as soft constraints. 

 

3.6.1 Scenario Creation 

A basic, realistic driving scenario involving several elements, including accident avoidance, 

mobility concerns, and traffic rules is built to contextualise the link between ethics and 

engineering in self-driving vehicles. As in the case of a self-driven car moving at a steady speed 

down a two-lane highway as shown in figure 3.8 below. An obstruction in front of the car is 

blocking the present lane of the ego vehicle. This straightforward concept raises a slew of 

engineering considerations. Section 3.6.3 explains how the different elements from this 

scenario (collision avoidance, mobility, traffic regulations, and speed) are included into an 

MPC model. 

 

 

Figure 3.8: The shaded areas denote driving zones. The most secure sector is the vehicle's present 
lane, free of obstructions. As the car leaves the lane, the safety of the driving zone decreases. 

 



48 
 

Programming the vehicle's ability to continue going is one engineering design possibility. This 

would include moving into the opposite lane or onto the road shoulder to avoid the obstruction 

and continue their journey. If the car decides to join the opposite lane, the vehicle may be in 

violation of a traffic rule for a limited period. A double yellow line, for example, might be used 

as a lane divider. If the vehicle moves to the road shoulder to avoid the obstacle, it complies 

with the double yellow line traffic regulation and continues to travel; nevertheless, the road 

shoulder must be available and safe, and it is not intended for normal driving. When weighing 

these choices, it's clear that the contending demands of mobility, safety, and legality must be 

balanced. 

Another option, if mobility is a concern, is to set the self-driven car to closely adhere to traffic 

regulations. The fundamental principle is that traffic laws are strictly. However, if the vehicle 

is caught between the twin aims of avoiding the obstruction and following the double yellow 

line, it may stop and remain stopped indefinitely. This action may have an adverse effect on 

the mobility and safety of nearby cars. 

The possibility of engineering choices must be established not only in terms of the type of 

action to be taken, but also in terms of the degree of action to be taken. The amount of space 

between the vehicle and the obstacle, for example, is a design issue while crossing the double 

yellow line to manoeuvre around the obstruction and facilitate smooth traffic movement. If 

incoming traffic emerges, a small distance between the vehicle and the obstacle allows the 

vehicle to keep closer to its original allocated lane, but it increases the danger of brushing 

against the obstruction's side. A broader berth guarantees that the vehicle passes without 

colliding with the barrier, but it also positions the car further into the opposite lane, making it 

take longer to return to its original allocated lane. Another technical issue that demands 

significant ethical thought is the degree to which a vehicle is tuned to break a traffic rule. A 

layer of engineering design considerations, in addition to the kind and degree of action 

performed, incorporates the fact that various types of vehicles may be allocated varying traffic 

law permits depending on their projected function in society. This is shown subsequently with 

the example of an ambulance and a taxi, both of which transport passengers yet have 

significantly distinct road behaviour due to their respective missions. 

Deconstructing this basic and frequent driving situation demonstrates the wide range of vehicle 

behaviours that may be induced by various engineering design decisions, as well as the need 

of making those design decisions in a logical, rational, and unassailable manner. Not only 

engineers, but also other road users who will use the roads with autonomous cars, as well as 

regulators who oversee traffic safety, should be able to understand the judgments. Engineers 
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can use a reasoning tool to evaluate the ethical consequences of their engineering design 

decisions if they comprehend philosophical frameworks in the context of engineering. 

 

3.6.2 Design Alternatives 

Deontology and consequentialism are philosophical systems that have been the subject of 

significant investigation. These frameworks are utilised as reasoning tools to rationalise and 

explain design decisions in the programming of an autonomous vehicle because of their 

formative presence in philosophy. As previously discussed, there are several methods for 

programming an autonomous vehicle. Because the explicit consideration of constraints and 

costs in MPC translates well to the ideas of deontology and consequentialism, an MPC version 

of the problem is used in this chapter. The vehicle's actions are constrained by deontological 

constraints, and consequentialism is accomplished via the cost function, according to this 

philosophical argument. As a result, philosophical frameworks are applied to the design of this 

restricted optimization problem. 

The sections that follow show how using these two philosophical frameworks to address the 

problem leads to a logical investigation of the problem's many aims. Constraints are placed on 

the vehicle to ensure that it avoids collisions, follows dynamical equations, and steer within its 

capabilities. The cost function's goal is to get the vehicle to follow a predetermined course 

while maintaining adequate occupant comfort. In contrast to these other goals, it is less 

apparent if traffic regulations constitute a cost or a constraint, thus other representations are 

being investigated. 

 

3.6.2.1 Path Tracking 

Following a predetermined path is a fundamental goal of an autonomous vehicle. This goal 

implies that the reference path is provided by a higher-level planner and is not guaranteed to 

be free of obstacles. Because following a path is a physical condition based on a measure of 

position differences, path tracking might be ensured using a constraint derived from 

deontological reasoning. This might be in the form of a constraint that the vehicle's location on 

the path must be equal to the intended position. Following the path is not a rigorous necessity 

for preserving safety, according to additional investigation; if an impediment occurs on the 

path, the vehicle should have the choice to divert. Considering this logic, a cost function may 

be used to achieve the aim of path tracking through optimization, as shown in figure 3.9. As a 
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result of using a consequentialist framework for path tracking, the vehicle is given the 

flexibility to deviate; if path tracking were indicated as a rule in a deontological framework, 

rule conflict and problem feasibility would present a safety concern. For the specific purpose 

of path tracking, the more flexible principles of consequentialism are used instead of the core 

notion of deontology, which is that rules must be followed without exception. 

Path tracking's goal is converted into a mathematical framework from a consequentialist 

perspective. The vehicle must minimise lateral deviation from the path (e) and heading error 

(∆ψ) to follow the path using a cost function as in equation (3.17) 

 

𝐽௫ =  ∑ 𝑥(௞)்௡
௜ୀ଴ 𝑄(௞)𝑥(௞) ……………………… Equation (3.17) 

 

Where 𝑥 is the vehicle state vector encompassing 𝑒 and ∆ψ, 𝑘 is the discrete time step in the 

prediction horizon, and the weight matrix (𝑄) only contains diagonal, non-zero entries 

corresponding to 𝑒 and ∆ψ (explained in more detail in section 3.6.3.1 and Appendix -19). 

 

 

 

Figure 3.9: Calculating the cost based on the difference between the desired path (black) and the 
vehicle's actual path (blue with dots). 
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3.6.2.2 Steering Control 

There are several designs aims for vehicle steering. As part of mobility, the steering must 

function within the actuator's limitations, contribute to path tracking and obstacle avoidance, 

and be smooth. The first of these objectives, keeping the actuator within its limitations, may be 

expressed as a maximum slew rate constraint. Because this cap represents a physical restriction 

on an actuator, it was chosen for this design. Physical limitations are imposed as constraints in 

the deontological sense of rigorous rule compliance because they must be highly prioritised in 

the control system. It is simply not possible to implement a solution that necessitates control 

inputs that exceed physical constraints. As a result, the most acceptable classification for the 

slew rate limit is deontological. Furthermore, accepting the vehicle's physical boundaries is 

comparable to acknowledging natural laws, which can serve as guiding principles. The 

following is a mathematical representation of this limit:  

 

ቚ𝐹௬௙
(௞)

−  𝐹௬௙
(௞ିଵ)

ቚ  ≤  𝐹௬௙ 𝑚𝑎𝑥 𝑠𝑙𝑒𝑤 …………..… Equation (3.18) 

 
𝐹௬௙,௠௔௫௜௠௨௠ ௦௟௘௪  is the maximum slew rate of the steering system, and 𝐹௬௙, is the lateral front tyre force. 

 

Additional design goals for steering emerge when the limitation of maximum slew rate is 

followed. The steering smoothness, which is impacted by the change in input from time step to 

time step, is one of the most important goals. Because most riders anticipate a level of comfort 

when riding in a vehicle, steering smoothness is a utilitarian criterion to incorporate in the 

control algorithm. Occupant comfort is a desired feature, but like path tracking, might result in 

safety trade-offs if encoded as a hard and fast rule of matching a certain rate via an equality 

condition or remaining under a rate via an inequality constraint. If the vehicle must swerve 

rapidly to avoid an obstruction, it will be restricted by the need to maintain smooth steering 

and may not be able to steer and manoeuvre quickly enough to prevent a collision. A cost 

related with steering smoothness that the algorithm will decrease can, however, be included in 

the cost function when evaluated from a consequentialist perspective. If smoothness is 

subordinate to more highly valued criteria related to safety, I prefer to account for it in the cost 

function. As a result of the cost-benefit analysis, steering smoothness for occupant comfort is 

viewed as a cost. By linking a cost with the change in steering, or more accurately, the lateral 

front tyre force, the occupant comfort level is included into the objective function as in eq. 

(3.19) 
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𝐽௙௬௙ = 𝑅 ∑ ቛ𝐹௬௙
(௞)

−  𝐹௬௙
(௞ିଵ)

ቛ
ଶ

ଶ

௞  ……………….…. Equation (3.19) 

 

where R stands for the associated cost. The differential in front steering angle is reduced by limiting the lateral 

front tyre force difference over the prediction horizon. As a result of this term in the cost function, smooth steering 

implementation is achieved, which might affect occupant comfort. 

 

3.6.2.3 Obstacle Avoidance 

When it comes to driving highways, avoiding obstacles is a top consideration. As discussed in 

the previous sections, the potential of collisions and the need to preserve the capacity to avoid 

them is the reason for choosing consequentialist costs over deontological principles for path 

tracking and steering smoothness. Because collision avoidance is perhaps the most important 

feature of a self-driven car, therefore I decided to look at it through the lens of deontology and 

use it as a constraint. 

The deontological principles that control obstacle avoidance are derived from separating the 

environment into tubes through which the vehicle may safely pass and defining the envelope 

in which each tube lies. The self-driving vehicle can select from one of three options in the 

previous scenario illustrated in figure 3.8: pass the vehicle by joining the lane on the left, pass 

the vehicle by going onto the right shoulder, or stay in the lane. The limits of each tube in the 

environment may be built using a nominal path, which is essentially the centreline of the lane 

in which the vehicle travels in the situation described here. These envelopes are defined by a 

series of time-varying constraints on the maximum and lowest lateral offset from the nominal 

path (𝑒) required to stay in the tube. To guarantee the trajectory is collision-free, the vehicle's 

trajectory across the prediction horizon is limited to stay within this envelope. Because the 

nominal path does not have to be obstacle-free, the vehicle's environmental envelope may force 

it to deviate from it. 

Based on the constant longitudinal vehicle speed (𝑈௫) and the assumption that the distance 

along the path is exclusively a function of 𝑈௫, the environment is sampled at discrete positions 

along the nominal path. The vehicle's projected position as it approaches the prediction horizon 

is shown in figure 3.10b. The objects are expanded to fit the sample, as illustrated in figure 

3.10c, to correspond with discrete sampling. This expansion identifies possible gaps (defined 

as lengths bigger than the width of a car) between items. A graph search method creates tubes 

like the ones illustrated in figure 3.10d by connecting neighbouring viable gaps. For the vehicle 
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to avoid accidents, one tube must include the whole prediction horizon. This tube approach 

resembles LaValle's vertical cell decomposition (LaValle 2006), Suh and Bishop's tube 

feasibility for robotic arm motion planning (Suh and Bishop 1988), and Ziegler, Bender, Dang, 

and Stiller's driving corridors (Ziegler, Bender et al. 2014). 

 

 

 

Figure 3.10: Environmental envelope generation using two tubes examples. (a) starting with a set of 
obstacles along the nominal path, (b) discretization along the s direction, (c) extension of objects along 
that same s direction, which creates alignment with the discretization and from which feasible gaps 
between objects are identified, and (d) connecting adjacent gaps into tubes which define maximum (e 
(k) max) and minimum (e (k) min) lateral deviation from the nominal path at each time step (k). 
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Due to the characteristic that every linear combination of produced trajectories included within 

a tube will also be contained within that tube, the set of collision-free trajectories corresponding 

to a single tube is a convex set. This characteristic allows for the rapid identification of 

optimum trajectories with fast optimization techniques. The lateral deviation (𝑒) bound for each 

time step (𝑘) represented by each tube is given by the following linear inequality: 

 

𝐻௘௡௩𝑥(௞) =  𝐺௘௡
(௞)  …………………………. Equation (3.20) 

and,  

𝐻௘௡௩ =  ቂ
ு೐೙ೡ,೗೐೑೟

ு೐೙ೡ,ೝ೔೒೓೟
ቃ = ൣ଴

଴
଴
଴

଴
଴

ଵ
ିଵ

൧ ………………. Equation (3.21) 

 

𝐺௘௡௩ =  ቂ
ீ೐೙ೡ,೗೐೑೟

ீ೐೙ೡ,ೝ೔೒೓೟
ቃ =  ቈ

௘೘ೌೣ
(ೖ)

ି௘
೘೔೙
(ೖ)

ି
భ

మ
ௗ

ି
భ

మ
ௗ

ିௗ್ೠ೑೑೐ೝ

ିௗ್ೠ೑೑೐ೝ
቉ …………… Equation (3.22) 

 

The lateral deviation boundaries for time step k are provided as 𝑒௠௔௫
(௞)  and 𝑒௠௜௡

(௞) , the vehicle width is d, and the 

environmental envelope is represented by the subscript env. A buffer, which specifies a recommended minimum 

distance between barriers and the vehicle and may account for vehicle orientation changes in establishing 

minimum gaps between obstacles, can be used to further increase occupant comfort. 

 

3.6.2.4 Traffic Regulations 

The distinction between rule-based and cost-based design is most unclear in traffic legislation. 

This contradiction is exemplified by the case presented in section 3.6.1. Traffic regulations are 

deontological in nature since they impose structures and norms. Humans, on the other hand, 

are not necessarily deontological in their approach to traffic regulations. In the real world, 

drivers in section 3.6.1 scenario make decisions based on criteria including clearance from the 

obstruction, traffic in the opposing lane, and overtaking speed. After then, the motorist must 

decide whether to cross the double yellow line. Human compliance with traffic regulations 

appears to be less deontological and more like a consequentialist balancing of safety, mobility, 

and legality, given that people frequently choose to violate the line, notably when passing a 

cyclist. As a result, while transitioning from human driver activities to programming a self-

driven car, the option of whether to consider traffic regulations as deontological or 

consequentialist is critical. 

As discussed in Section 3.6.1, if traffic regulations are established as a rule, they can easily 

result in traffic gridlock. When laws are defined as a cost, it implies that they are designed to 
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be violated from the start. Given the problem, a "soft" constraint is used to encode traffic 

regulations in the MPC formulation by including a slack variable. The cost of a constraint 

violation is scaled using the slack variable. Because the slack variable augments the constraint 

to make it less stringent, the constraint is considered consequentialist when the cost is 

comparable to other objectives. Due to the substantial cost associated with making the slack 

variable value non-zero, a very high weight on the slack variable leads the constraint to 

dominate all other objectives in a deontological way. To translate the morally motivated design 

decisions into the algorithm, a cost for the slack variable is incorporated, which corresponds to 

either crossing the road divider (𝑆௟௘௧௙) or joining the road shoulder (𝑆௥௜௚௛௧). As shown in section 

3.7, treating traffic regulation compliance as deontological or consequentialist leads in 

considerably different vehicle behaviour. These many driving results highlight the necessity of 

aligning programming decisions with social expectations, and these philosophical frameworks 

aid in thinking and justifying the driving behaviour to use. 

 

3.6.3 Model Predictive Control Formulation 

The vehicle's optimal path is determined by the control algorithm, which considers the costs 

and limitations imposed on its motion. The vehicle divides the globe into many viable tubes, 

each representing a convex optimization problem. The vehicle then determines the most cost-

effective path through each tube, as shown in figure 3.11. The mathematics underlying 

determining the best path in each tube and its connected cost is described in the following 

sections. 

 

 

 

Figure 3.11: The three tubes define the generic manoeuvre options to avoid an obstacle. The left and 
right tubes are depicted in blue while stopping is depicted in red 
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3.6.3.1 Vehicle Model 

The MPC controller uses a four-state bicycle model as its vehicle model. Vehicle sideslip (β) 

and yaw rate (𝑟) are two velocity states, while heading deviation (∆ψ) and lateral deviation (𝑒) 

are two position states, all of which are detailed in Appendix -18. As a result, the vehicle state 

vector is given in equation (3.23) 

 

𝑥 =  [𝛽   𝑟   ∆𝜓   𝑒]ఛ ………………………. Equation (3. 23) 

 

The actuator is believed to be front steering in this chapter, and the vehicle is equipped with steer-by-wire 

technology. This allows the computer programme to control the lateral front tyre force that is wanted (𝐹௬௙). The 

findings are based on a constant longitudinal speed maintained by a PD cruise controller unless the car must 

stop, which isn't essential. 

 

3.6.3.2 Optimization Formulation 

The optimal path and control inputs for each tube in the environment are the result to the 

following optimization problem. 

 

Minimize: ∑ 𝑥(௞)்
௞ 𝑄(௞)𝑥(௞) ………………….……………… Equation (3.24a) 

                                                    +  𝑅 ∑ ቛ𝐹௬௙,௢௣௧
(௞)

− 𝐹௬௙,௢௣௧
(௞ିଵ)

ቛ
ଶ

ଶ

௞  ………………..…………. Equation (3.24b) 

                                                   +  ∑ [𝜎𝑒𝑛𝑣 𝜎𝑒𝑛𝑣]𝑆𝑒𝑛𝑣,𝑜𝑝𝑡
(𝑙)

𝑙   ………………………….… Equation (3.24 c) 

                                                  +  ∑ [𝜎𝑡𝑟𝑎 𝜎𝑡𝑟𝑎]𝑆𝑡𝑟𝑎,𝑜𝑝𝑡
(𝑙)

𝑙  ………………………….……. Equation (3.24d) 

 

                subject to: 𝑥(௞ାଵ) = 𝐴ௗ
(௞)

𝑥(௞) + 𝐵ௗ
(௞)

𝐹௬௙,௢௣௧
(௞)   + 𝑑ௗ

(௞)….……. Equation (3.24e) 

                                ቚ𝐹௬௙,௢௣௧
(௞)

 ቚ ≤ 𝐹௬௙, 𝑚𝑎𝑥 𝑠𝑙𝑒𝑤 ………………….……… Equation (3.24f) 

                                                                         𝑘 = 0 … … . (𝑇 − 1) 

                                 𝐻௘௡௩𝑥(௟) ≤ 𝐺௘௡௩
(௟)  + 𝑆௘௡௩,௢௣௧

(௟)  + 𝑆௧௥௔,௢௣௧
(௟)

 …….….. Equation (3.24g) 

                                                           𝑙 = ൫𝑇௦௣௟௜௧ + 1൯ … … 𝑇 

                                       ห𝐹𝑦𝑓,𝑜𝑝𝑡

(𝑖)
𝐹𝑦𝑓,𝑜𝑝𝑡

(𝑖−1)
ห  ≤  𝐹𝑦𝑓,𝑚𝑎𝑥 𝑠𝑙𝑒𝑤 ……………….…….… Equation (3.24h) 

                                                                       𝑖 = 0 … … . 𝑇  
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Where 𝑇௦௣௟௜௧ + 1 is defined as the case when the time steps for the environmental envelope are 

longer. The lateral front tyre forces (𝐹௬௙,௢௣௧), vehicle state (𝑥), slack variable on environmental 

constraint (𝑆௘௡௩,௢௣௧), and slack variable on traffic regulation, the variables to be optimised 

(𝑆௧௥௔,௢௣௧). The costs of vehicle states (𝑄), the cost of input change (𝑅), and the costs of slack 

variables (env & tra) are the adjustable factors in this optimization problem. 

The slack variables are used to create a hierarchy of deontological constraints and ensure that 

the problem always provides a viable solution. As a result, the unbounded slack variables exist. 

In a deontological paradigm, a slack variable with greater weights has a higher priority. The 

slack variables are utilised to make the constraint version of traffic regulations weighted lower 

than the obstacle avoidance version. They might also be used to include vehicle stability 

constraints like those in (Beal and Gerdes 2012) and (Bobier and Gerdes 2013) in a more 

complete form of a vehicle control system. In a deontological sense, as established by (Funke, 

Brown et al. 2017), the slack variable weights for such constraints should be put below those 

for collision avoidance. Other cost terms, such as those proposed by (Wei, Dolan et al. 2010), 

might be included into the cost function. 

The Optimization problem (3.6) is a quadratic programme with a very sparse structure that can 

be solved in real time using an efficient solution. In this work, CVXGEN, created by 

(Mattingley and Boyd 2012), is utilised to find the best lateral front tyre forces (𝐹௬௙,௢௣௧). The 

initial solution (𝐹(0)௬௙,௢௣௧), which is then translated to the required steering angle as stated in 

Appendix -18, provides the control input to the self-driven car for the next time step. Appendix-

19 shows a different problem formulation in which the road lane dividers and shoulders are 

added as additional constraints with a slack variable. 

 

3.7 Simulation Results 

The scenario from section 3.6.1 prepares the groundwork for showing an ethically driven 

automotive design in real-world simulations. The vehicle selects a different tube or a different 

trajectory inside that tube reliant on the driving condition and the engineering design decisions 

made in the algorithms. The weights are varied in these simulations to represent various 

interpretations of the traffic regulations. As a result, the philosophical argument of various 

goals may be transformed into the actual motion of the vehicle using mathematics. The weights' 

actual numerical values aren't important; rather, the relative values have an impact on the 
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optimization problem's solution. They can be determined by perceptual algorithms or 

developed as a function of geographic indications in practise. 

 

3.7.1 Driving Scenarios  

This section covered the simulation of dynamic complex systems and observing the emerging 

behaviour based on model-based driving scenarios where the entities of vehicles are separated 

and independent from the environment or scenario in which they operate. The content of the 

model will be dynamically changing, and model logic will determine when entities enter and 

leave the simulation. It involves many entities of different fidelity and properties. The 

simulation of the interaction of the environment and entities which are autonomous, 

heterogenous, parallel and with different life spans. The modelling approach is sectioned into 

three segments, namely, environment (simulation scenario where the agent resides, i.e., road, 

pedestrian etc), agent (heterogeneous agent with dynamics), and interface (data exchange 

among agents and the environment). 

The interface takes in either state of one of the outputs from the self-driven pool and fixes it 

into one of the chosen scenarios in the environment. These scenarios (single-lane curve, dual-

lane merge, dual-lane switch, three-lane merge & switch, three-lane curve & switch, and four-

lane merge & switch) are modelled in variance, which allows the system to make one block 

active at any given time during simulation. Each scenario has a sim-event road model 

subsystem where entities are generated, routed, terminated, and are connected to the driver 

strategy model of a self-driven agent pool through an interface that allows information flow 

between the subsystems. It’s a glue that combines two domains together. 

For instance, vehicles in any scenario can exit the system when they hit the crossing block, 

which shows that the position has hit a limit using information from the self-driven agent pool. 

In this case, the vehicle is removed from the simulation with the terminator block. The various 

simulation outputs are as shown in figures 3.12 – 3.17 below. With this flexible framework, it 

is easier to model ethical issues and other types of agents and the environment in which they 

operate. 
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Figure 3.12: Single-lane Curve 

 

 

 

Figure 3.13: Dual-lane Merge 
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Figure 3.14: Dual-lane Switch 

 

 

 

Figure 3.15: Three-lane Merge & Switch 
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Figure 3.16: Three-lane Curve & Switch 

 

 

Figure 3.17: Three-lane Curve & Switch 
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3.7.2 Consequentialist Costs of Traffic Regulations 

The decision to include traffic regulations as slack variables in the MPC formulation is 

explained in section 3.6.2. can have an impact on how the vehicle behaves when navigating the 

situation described in Section 3.6.1. A consequentialist method provides for greater flexibility 

in weighing road limits to reflect the strictness of the consequences of crossing it. Table 3.2 

depicts a set of weights in which the shoulder is effectively treated as a hard constraint by 

assigning a high cost to the slack variable (representing, for example, a curb on the side of the 

road), whereas the double yellow lane divider is treated more as a cost by assigning a lower 

weight to it. The car manoeuvres to the left of the obstruction and passes the divider, as shown 

in figure 3.18. The car does not cross far into the opposite lane, instead staying near to the 

obstruction, because to the comparatively high weight placed on the divider in comparison to 

the path tracking weight. 

After trading costs on the road shoulder and the road divider, the car travels to the right of the 

obstruction in figure 3.19. (representing stricter adherence to the regulation). The weights used 

for this case are shown in table 3.3. The trajectory and resultant steering angle are both mirrors 

of the initial instance, as the weights define basically a mirror copy of the prior simulations. 
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Table 3.2: weights resulting in a pass on the left 

Parameter Symbol Value Unit 
Lateral error 𝑄௘ 0.7 m-1 
Heading error Q 0.5 rad-1 
Smoothness R 0.1 kN-1 
Environmental slack σୣ୬୴ 500 m-1 
Road divider slack σ୪ୣ୤୲ 10 m-1 
Road shoulder slack σ୰୧୥୦୲ 150 m-1 

 
 

 
 

Figure 3.18: Vehicle manoeuvres to the left of the obstacle and crosses the divider (The left tube is 
chosen because the traffic lane divider is considered safe to cross). 
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Table 3.3: weights resulting in a pass on the right 

Parameter Symbol Value Unit 
Lateral error 𝑄௘ 0.7 m-1 
Heading error Q 0.5 rad-1 
Smoothness R 0.1 kN-1 
Environmental slack σୣ୬୴ 500 m-1 
Road divider slack σ୪ୣ୤୲ 150 m-1 
Road shoulder slack σ୰୧୥୦୲ 10 m-1 

 
 

 
 
Figure 3.19: Vehicle manoeuvres to the right of the obstacle (The right tube is chosen because 
evaluation of the scenario determined it is safer to pass around the obstacle via the road shoulder). 

 

3.7.3 Deontological Constraints in Traffic Regulations 

Deontologically describing traffic regulations as hard norms is another philosophical technique 

to accounting for traffic laws. The road boundary constraints begin to be like hard or 

deontological restrictions when the slack variable weights grow compared to the other weights. 

With this weight selection, the tubes to the left and right of the vehicle have unacceptably high 

costs, as indicated in table 3.4, thus the vehicle must remain in the tube that corresponds to the 

lane. The car must come to a complete pause since the tube is obstructed by the barrier. Figure 

3.20 depicts the course of the vehicle while a separate longitudinal PD controller directs a 

braking force to bring it to a stop before the tube's end. 
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Different treatments of environmental limits and accompanying traffic rules were integrated 

into the MPC formulation. Treating the double yellow lane line as a rigid, deontological 

restriction, on the other hand, removes a lot of freedom from the vehicle path and fails to reflect 

how humans drive. This implies that traffic regulations may need to be changed to provide 

programmers the same degree of freedom as human drivers. Without that choice, programmers 

must use a consequentialist method to decide how much to weight the traffic regulations. The 

relative values of the weights used for the traffic slack variables dictate how the car manoeuvres 

around obstacles in this MPC formulation. When a lane divider is a single, dashed yellow line 

or a double yellow line, these values can be affected by geographic indications. The weights 

can also be computed by a perception algorithm that uses data from lidars and cameras to assess 

the ground's safety in each tube. The MPC formulation's versatility in accounting for 

responsible decision-making is demonstrated by these findings. 

 
Table 3.4: weights resulting in a pass on the left 

Parameter Symbol Value Unit 
Lateral error 𝑄௘ 10 m-1 
Heading error Q 1 rad-1 
Smoothness R 0.1 kN-1 
Environmental slack σୣ୬୴ 500 m-1 
Road divider slack σ୪ୣ୤୲ 150 m-1 
Road shoulder slack σ୰୧୥୦୲ 150 m-1 

 
 

 
 

Figure 3.20: Vehicle remain in the tube corresponding to the lane (Since left and right path options 
are weighted equivalently, the tube is blocked and the vehicle brakes to a complete stop). 
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3.7.4 Costs, Constraints, and Weights 

The preceding illustrations show that depending on whether traffic regulations are interpreted 

deontologically or consequentially, self-driven cars might act quite differently. There are two 

advantages to mapping the costs and constraints of deontology and consequentialism. As 

shown in this chapter, it may be used to explain a design objective as a cost or constraint by 

utilising deontological or consequential reasoning. Also, if an engineer develops a cost or 

constraint-based method, this mapping might reveal what sort of behaviour the implementation 

might entail. 

To further grasp the consequences of this mapping, moral psychologist Greene proposes that 

deontological rationalisation occurs in sensitive circumstances, whereas consequential 

reasoning occurs in less severe situations (Greene and Sinnott-Armstrong 2008). This explain 

why, until the severity of the situation worsens, sticking to the double yellow line is best 

portrayed as a cost (i.e. oncoming traffic or erratic behaviour of the obstruction). Treating some 

traffic regulations as rules may be annoying, though not inherently restricting, when the 

circumstance is low risk.  

The choice of weights in the optimization problem eventually affected the vehicle's compliance 

with traffic rules, in addition to the costs and limitations (left and right). The weights used in 

the optimization problem eventually affected the vehicle's compliance with traffic regulations, 

in addition to the costs and constraints chosen (𝛿௟௘௙௧ and 𝛿௥௜௚௛௧). Path deviation (𝑄௘ and 𝑄∆ట), 

obstacle avoidance (𝛿௘௡௩), and even occupant comfort (𝑅) is all affected by the other weights 

in the cost function. Because some of these weights are just in the cost function (and therefore 

not a slack variable), they can only have a substantial impact on the vehicle's behaviour. 

Nevertheless, the concepts of deontology and consequentialism do not give insight into the 

selection of weights that may impact the vehicle's behaviour in other ways. 

 

3.8 Vehicle Behaviour 

Until now, the MPC formulation has been influenced by traffic circumstances for a single 

vehicle. The findings reveal the concepts that fortify consequentialism and deontology as 

ethical theories, as well as how the theories may be applied to different types of vehicle 

behaviour. These theories, on the other hand, do not clearly guide the selection of relative 

numerical weights, which has a significant influence on design objectives for self-driven cars 

beyond safety. As a result, this part is inspired by the introduction of virtue ethics, a third 
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normative ethical theory. As stressed by deontology and consequentialism, virtue ethics 

focuses ethical behaviour on character rather than right acts or consequences. A choice is 

ethical if it follows the inclination of a moral being, according to the virtue ethics paradigm. 

To put it another way, moral individuals act virtuously if they always do the right thing in the 

right moment, according to their character (Nay and Zagal 2017). 

The concept of an agent's character naturally leads to a more particular concept termed role 

morality, which will be used in this study. Role morality is the concept that behaviour that is 

acceptable within the framework of a certain professional role and circumstance may not be 

acceptable outside of that context (Evans 2017). In disciplines such as law and medicine, role 

morality is used to explain behaviour that would be considered unethical if it occurred outside 

of a professional setting. Samson, the Parisian executioner, is an extreme case, as (Applbaum 

2000) points out. A less severe example is a doctor providing medicine to someone who isn't 

his or her recognised patient. While it is permissible to write prescriptions within the 

professional boundaries of a doctor-patient relationship, it is not permitted outside of this 

position. These acceptable roles and codes of behaviour are founded on public expectations of 

the service given by experts in that specific area; thus, role morality is drawn from a collective 

decision on what is best for society (Nay and Zagal 2017), rather than from any individual in 

charge of establishing the rules. 

The kind of duty or character that various vehicles should have been thus a significant problem 

in the creation of self-driven. The function of a vehicle has an impact on how strictly it must 

adhere to traffic regulations. Figures 3.18 to 3.20 demonstrate how a self-driven car can decide 

whether to break the traffic regulation of respecting a double yellow line boundary for safety 

reasons. The degree of obedience or violation necessitates the use of a guiding principle, which 

might be influenced by role morality. Vehicles serve several functions in society. It is 

acceptable for an ambulance to run a red light when transporting a passenger to the hospital 

who is in a life-threatening condition: the function of an ambulance in society is to take patients 

to the hospital as fast as possible to save lives. A cab transporting a harried customer, on the 

other hand, may not speed through a red light to save time since its societal function does not 

justify it. While deontology and consequentialism allow vehicle aims to be justified as 

constraints or costs, morality can assist in determining the strength of the applied rules and 

costs for various vehicles. The background for why an ambulance might be programmed to 

contemplate breaching traffic regulations more freely than a taxi, for example, is set by role 

morality. 
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The nature of a vehicle that can acceptably breach rules, such as an ambulance, can be 

represented using the MPC formulation provided in section 3.6.2 by changing the weights for 

various purposes. The weight of tracking errors can be decreased when trying to replicate the 

desirable behaviour of an emergency response vehicle, for example. Because lateral and 

heading errors have smaller costs, the vehicle has more flexibility to depart from the path. 

figures 3.21 and 3.22 illustrate the simulation findings using the weights from tables 3.5 and 

3.6, respectively. The technique outlined in section 3.6.3 was used to calculate these relative 

weights. The emergency vehicle begins executing the manoeuvre sooner, as seen in figures 

3.21 and 3.22. This is due to the lower relative costs of lateral and heading error in terms of 

smoothness, allowing for higher path deviation. The smoothness of the manoeuvre might be 

beneficial to an injured passenger in this situation. 

While a vehicle may be programmed to weight traffic regulations and manoeuvre objectives 

based on its social function, having an engineering system that does not always follow the rule 

is a worrying prospect. This raises another moral question: should the engineers who build such 

a system supervise determining the rules' weights? Is adapting the regulation to the 

programming reality of self-driven systems a better option? While translating philosophical 

frameworks into technical terms does not provide a straightforward answer, it can assist in 

raising the relevant issues that must be answered to deploy self-driven cars. 

 
Table 3.5: weights resulting in a pass on the left 

Parameter Symbol Value Unit 
Lateral error 𝑄௘ 0.3 m-1 
Heading error Q 0.25 rad-1 
Smoothness R 0.1 kN-1 
Environmental slack σୣ୬୴ 500 m-1 
Road divider slack σ୪ୣ୤୲ 5 m-1 
Road shoulder slack σ୰୧୥୦୲ 200 m-1 
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Figure 3.21: The relatively lower costs on lateral and heading error allow the vehicle more freedom 
to deviate from the path (Reduction of the cost on path following allows the vehicle behaviour to 

model emergency response vehicle character). 

 
Table 3.6:  weights resulting in a pass on the left 

Parameter Symbol Value Unit 
Lateral error 𝑄௘ 0.3 m-1 
Heading error Q 0.25 rad-1 
Smoothness R 0.1 kN-1 
Environmental slack σୣ୬୴ 500 m-1 
Road divider slack σ୪ୣ୤୲ 200 m-1 
Road shoulder slack σ୰୧୥୦୲ 5 m-1 

 

 
 

Figure 3.22: The relatively lower costs on lateral and heading error allow the vehicle more freedom 
to deviate from the path (Reduction of the cost on path following allows the vehicle behaviour to 

model emergency response vehicle character). 
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3.9 Conclusion 

Deontology and consequentialism are normative ethical theories that help engineers 

comprehend the consequences of various design decisions while programming autonomous 

cars. Constraints and cost functions are examples of rule- and cost-based engineering 

approaches. By making these linkages, engineers working at the most critical levels of 

programming self-driven cars will be able to link their design decisions to wider social 

acceptability concerns. Engineers can utilise the mapping of philosophical principles to 

mathematical frameworks as a technique for thinking and reasoning about autonomous vehicle 

motion planning systems. Through an MPC formulation, this chapter looked at how to prioritise 

objectives like path tracking, vehicle occupant comfort, and traffic regulations in the cost 

function while constraining obstacles like vehicle slew rate restrictions. Different weighting 

systems within the control formulation, depending on the vehicle type and purpose, are based 

on the idea of role morality. Additional vehicle objectives may be required in more complicated 

circumstances. However, the basic obstacle avoidance manoeuvre described earlier in this 

chapter highlights some of the difficulties in combining legal compliance with the desire to 

coexist peacefully with human drivers in traffic. To reap the benefits of self-driven cars, legal 

and ethical issues must be better integrated into the control code. A formalisation of human 

values might aid society in better comprehending and trusting a self-driven car technology. 
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Chapter 4: Human-centred Decision Making 

4.1 Introduction 

Recognizing the similarities between normative philosophical and mathematical frameworks 

aids in the formulation and discussion of specific algorithms for self-driving vehicle decision 

making. The parallelism also aids in comprehending the consequences of different objective 

trade-offs on human worth. However, how can engineers know which values to include in the 

algorithms? Mobility, safety, and legality aren't the only human values. The formal, iterative 

process of value-sensitive design (VSD) is used in this chapter to develop ethical considerations 

that link values to technical specifications. 

Many stakeholders, such as pedestrians, bikers, and car occupants, use the roads, and they all 

have values that shape their expectations. Public perceptions of autonomous vehicle driving 

behaviour are expected to be shaped by similar human values. Some appropriate criteria to 

examine include mobility, safety, and legality (Point, by City et al. , Mehrara Molan and 

Ksaibati 2021). The difficulty for self-driving vehicle designers is to relate these human values 

to engineering standards. Integrating stakeholders and their values into the design process of 

algorithms for self-driving vehicle decision-making algorithms is one method to overcome this 

problem. 

Many design methods consider human values and requirements, as well as the demands of 

diverse stakeholders. Human-centred design (HCD) is a well-known design method (Maguire 

2001, Giacomin 2014). HCD techniques entail engaging with a group of stakeholders, most of 

whom are direct users of the technology, for the designers to receive feedback on how to 

enhance the design. Current HCD techniques, according to (Miller and Cushman 2018), lack 

an ethical perspective in terms of justifying designs or recognising their possible ethical 

consequences. Life-based design (LBD) (Leikas, Sigfrids et al. 2020) is another design method 

that incorporates an ethics investigation. LBD investigates the demands of stakeholders via 

their quality of life, taking a comprehensive and holistic approach to the design challenge. It 

begins with determining human needs in the design activity, then users and technology 

requirements, and finally whether the human quality of life improves because of the created 

technology. An ethical evaluation is clearly included in the investigation of the improvement 

in quality of life. LBD is justified by the fact that the technology must increase the users' quality 

of life. Both HCD and LBD are iterative design methods that aim to enhance technology design 

for their respective consumers. HCD is concerned with usability values, whereas LBD is 
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concerned with quality-of-life values. Numerous additional values must be examined when 

many stakeholders are affected by a proposed technology, especially when these values may 

clash. 

Another human design method that incorporates ethical concerns is value-sensitive design 

(VSD) (Umbrello and De Bellis 2018), which does so early in the design cycle by openly 

exploring values typically prioritising those with ethical significance (Borning and Muller 

2012) throughout the whole design process. VSD is a three-part technique that iterates through 

conceptual, technical, and empirical studies to solve any general design problem. Human 

values are linked to the devolved technology at every level of the design process. VSD is 

particularly useful in a design challenge if there are value conflicts concerning ethical problems 

according to (Friedman, Kahn et al. 2013) and (Manders-Huits 2011) show how identifying 

indirect stakeholders (a component of the conception process) revealed privacy issues for 

pedestrians in the design of an office space with a virtual window overlooking a public plaza. 

(Van Wynsberghe and Robbins 2014) utilise VSD to create a list of requirements that will 

guide future security system designs in implanted medical devices. Also, because of VSD's 

universality, it may be tweaked to fit specific design needs. (Van Wynsberghe 2013) adds the 

moral framework of care ethics to VSD to ensure that health care robots represent stakeholder 

values. 

Engineers consider some human values while developing algorithms for self-driving vehicle 

motion planning. As Paden, and Cap's assessment framework of a self-driving vehicle 

approaching an unsignalized pedestrian crossing (Paden, Čáp et al. 2016) shows, many 

algorithm designs prioritise safety and efficiency. In the development of the reward function 

of a partially observable Markov decision process (POMDP) for speed control in pedestrian 

settings (Bai, Cai et al. 2015) and (Bouton, Nakhaei et al. 2018) similarly focus on safety and 

efficiency. As did (Schratter, Bouton et al. 2019) in the development of a reward function for 

entering occluded junctions in a speed control POMDP. Engineers seek to relate human values 

to engineered technology, as seen by these instances. The assessment frameworks and motion 

planning rules' emphasis on safety and efficiency shows the difficulties of designing for two 

opposing criteria. (Pouya and Madni 2020) also include occupant comfort in the reward 

function and recommend that traffic restrictions might be added in future POMDP design 

iterations. Their conversation reveals a willingness to consider the many human values in 

question while designing a motion planning policy. To account for various values, a technique 

that can assist in selecting which values to include would be beneficial, because humans’ value 

more than simply safety and efficiency. Having a list of recognised values may also help you 
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figure out where there are conflicts between different stakeholders and morals. Value conflicts 

can be identified early in the design process, allowing engineers to create technology that 

expressly resolves them rather of relying on patchwork methods to manage value tensions after 

a system has been deployed. 

It is claimed that VSD can aid in the development of motion planning algorithms for self-

driving vehicles by filling in the gaps in the design process. VSD is used to validate the 

relationship between human values and engineering specifications by defining a more 

comprehensive list of human values at play in the design challenge and resolving value 

conflicts through design justification. The design task of a speed controller for the scenario of 

a pedestrian crosswalk is demonstrated in this chapter using a modified application of VSD for 

a self-driving vehicle decision making. The speed restriction is the only constraint on the path's 

pace. The self-driving vehicle will most likely need to slow down to properly negotiate the 

circumstance. Acceleration command from POMDP policies created with VSD govern the 

speed. The VSD speed controllers are first and second rounds of the design process, not final 

products. VSD's iterative approach aids in documenting how values are combined into the 

speed control design, as well as how tensions between values are addressed. 

 

4.2 Value-Sensitive Design 

VSD approach includes three stages: conceptual, technical, and empirical (Friedman, Kahn et 

al. 2013, Evans 2017) identifying the values included by the designed technology is a part of 

the approach at the conceptual phase. The direct and indirect stakeholders of the technology 

are also determined during the conception phase. Some technology implementations are more 

adapted to maintain some values than others, according to VSD. The technology being created 

is developed using the technical solutions that are most in accordance with the defined values 

(from the conceptual phase). Finally, the empirical phase allows for quantitative and qualitative 

assessments of the generated design, such as data analysis or findings from user research. 

During this time, you can check to see if the designed technology matches the concept. The 

designer iterates through the various phases of design development until all three are in sync. 

As they create new technology, engineers iterate implicitly through the conceptual, technical, 

and empirical phases. VSD is a tool that aids in the formalisation of the engineering process by 

recognising and monitoring values inherent in technology across iterations. 
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4.3 First Iteration 

Because of the variety of scenarios that a self-driving vehicle may experience on the road, 

designing a decision-making algorithm for it is an extensive design challenge. The list of 

stakeholders and values may be unsustainable to design for as a first iteration, given the 

potential for such a broad influence. This chapter will focus on a specific scenario as a case 

study to limit the stakeholder and value consideration area and simplify the design effort. 

Figure 4.1 illustrates a two-lane roadway with a single, dashed yellow line. The route also has 

a well designated pedestrian crossing. A big, illegally parked vehicle sits just in front of the 

crossing. The crossing is partially obstructed by the blocking van from the perspective of the 

autonomous car approaching the crosswalk. The steering controller from Chapter 3 will 

continue to guide the car in a lateral direction around the van while avoiding obstacles. The 

goal of the design task is to create a speed control algorithm that allows the self-driving vehicles 

to safely drive the scenario along the provided path. 

 

Figure 4.1: Scenario for an occluded pedestrian crosswalk 

 

4.3.1 Conceptualization 

The direct and indirect stakeholders engaged in the scenario and design challenge, as well as 

the human values, are identified to begin the VSD process. Engineers and programmers are 

forced to think more thoroughly about the repercussions and who is affected by the created 

technology when they identify both direct and indirect stakeholders. The self-driving vehicle, 

its occupants, any pedestrians who may cross the street, and the authority of traffic regulations 

are all direct stakeholders in this scenario. Because the autonomous car is expected to be able 

to pursue an obstacle-free path around the occlusion, the obstructing vehicle parked on the road 

is an indirect stakeholder. The focus of this initial iteration is on these stakeholders, although 

there are many others, including bicyclist and spectators. 
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VSD and the engineering process rely heavily on determining the human values at play in the 

scenario and design task. The human values of mobility, safety, and legality are all weighed in 

traffic scenarios. More values at risk can be discovered by examining the stakeholders. Human 

values to consider in this conception come from (Talhelm, Haidt et al. 2015, McNamara, 

Willard et al. 2019), rather than interacting with actual stakeholders. According to Haidt, 

human beings are born with a set of values (or moral foundations) such as care and respect for 

others, fairness and reciprocity, respect for authority, and individual autonomy, whereas Choi 

et al. believe that trust and transparency are critical for self-driving vehicle adoption. Because 

the way these moral values are articulated might lead to various technological solutions, more 

detailed definitions are offered by considering the stakeholders to explicitly describe what each 

value means in this scenario: 

 

 Individual autonomy: Individual autonomy of the vehicle's occupants recognises the 

desire to go quickly from one location to another with minimal obstruction. 

 Respect for authority: The autonomous vehicle's interaction with traffic regulations is 

based on respect for authority. 

 Care and respect for others: The desire to avoid harming other individuals 

demonstrates care and respect for others. 

 Trust and transparency: When a pedestrian think that an approaching vehicle will 

surrender to his or her right-of-way when crossing in a crosswalk, trust develops. While 

transparency occurs when the self-driving vehicle's activities help to build such 

confidence. 

 Fairness and reciprocity: Fairness and reciprocity affect both vehicle occupants and 

pedestrian stakeholders in the sense that the self-driving vehicle should not conduct 

biased or discriminating behaviours based on data about the stakeholders. All personnel 

engaged with the autonomous vehicle should be treated equally. 

 

Because these human values must be included in the decision-making algorithm, I link them 

all to an engineering specification for usage in the technical implementation phase as shown in 

Table 4.1. 
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Table 4.1: Human values mapping to engineering specifications for the first VSD iteration. 

Human value Engineering specification Representation 

Safety   

Legality  𝑣௧ 

Care and respect for others Safety and Legality 𝑑௧ 

Respect for authority  𝑐௧ 

Fairness and reciprocity    

Mobility Efficiency 𝑣௧ 

Individual autonomy   

Trust Smoothness 𝑎௧ 

transparency  ∆𝑡 

 

4.3.1.1 Legality and Safety 

The connection between legality and safety when crossing an obstructed pedestrian crosswalk 

is complicated. Pedestrians in crosswalks have the right-of-way, according to the (Navet and 

Simonot-Lion 2017). When approaching a crossing with the possibility of a pedestrian present, 

a car should slow down and be ready to stop, as required by Vehicle Code §21950: 

 Except as otherwise provided in this chapter, a driver of a vehicle must give the right-

of-way to a pedestrian crossing the street in a designated or unmarked crosswalk at an 

intersection. 

 A pedestrian's responsibility to use reasonable care for his or her safety is not relieved 

by this section. A pedestrian may not abruptly abandon a curb or other safe location 

and walk or run into the path of a vehicle that is so near that it poses an imminent threat. 

While in a designated or unmarked crosswalk, no pedestrian may unduly halt or delay 

traffic. 

 When approaching a pedestrian in a designated or unmarked crosswalk, the driver must 

take all reasonable precautions and lower the vehicle's speed or take any other measure 

required to ensure the pedestrian's safety. 

 (d) Subdivision (b) does not relieve a driver of a vehicle of the responsibility to exercise 

appropriate care for the safety of any pedestrian crossing a street in a designated or 

unmarked crosswalk. 
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Following the law and driving safely are tightly linked, as the vehicle code implies. For this 

iteration, I assume that legality and safety are the same engineering criteria for this scenario: if 

the self-driving car follows the law, it'll also perform safe actions. Vehicle speed (𝑣௧), distance 

to crosswalk (𝑑௧), and whether a pedestrian is crossing the roadway are the essential pieces of 

information required for safe and lawful decision-making (𝑐௧). Again, this ties up with the 

ethical principles of compassion and regard for others, respect for authority, and fairness and 

reciprocity. 

 

4.3.1.2 Mobility and Efficiency 

The human value of mobility is reflected in the time efficiency measure. The speed of the 

vehicle (𝑣௧) for a particular path has a direct relationship with time efficiency. The moral value 

of individual autonomy is central to this goal. 

 

4.3.1.3 The quality of smoothness 

Smooth driving improves passenger comfort and fosters stakeholder confidence and 

transparency. Smoothness may be measured in longitudinal control by measuring the change 

in vehicle speed, which is the same as knowing the acceleration command (𝑎௧) and the time 

change (t). 

 

4.3.2 Technical Implementation of Technology 

To handle the pedestrian occlusion problem, many decision-making techniques may be 

adapted. VSD contends that the choice of technology or algorithm implicates ethics, rather than 

just picking an approach at random. The longitudinal motion is selected to be controlled by a 

stochastic optimization problem, whereas the lateral motion is controlled by the formulation 

from Chapter 3. A stochastic optimization problem can balance the specified values while 

accounting for predicted uncertainty in the driving situation. The problem can also be expressed 

as an open-loop or closed-loop planning dilemma. Closed-loop planning considers future state 

information because it divides the planning problem into smaller sub-problems (i.e. dynamic 

programming), but open-loop planning such as stochastic MPC does not since it involves 

creating a static sequence of actions.  (Gray, Gao et al. 2013). A closed-loop planning technique 

is used, with the problem represented as a partially observable Markov decision process 
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(POMDP) (Sunberg and Kochenderfer 2018), to get an offline policy to examine and validate 

before placing on a self-driving vehicle. Every design decision made throughout the 

development of the POMDP is linked to values from the conceptualization phase to rationalise 

the engineering and openly document their embedding of these values. 

 

4.3.2.1 Markov Decision Process with Partially Observation 

An agent in a POMDP makes decisions depending on its previous observations. 𝑂ଵ, ……. 𝑂௧. 

The history is summarised in a belief state b, which is a distribution across the states, to 

decrease the amount of data kept. The best policy is represented by a series of alpha vectors 

that translate the belief state into a control input or action. The state vector captures the 

information needed to address each value in the goal function, given the values of safety and 

legality, efficiency and mobility, and smoothness. 

 

𝑥 = [𝑣௧   𝑑௧   𝑐௧]T …………………………. Equation (4.1) 

and the control input, 

𝑢௧= 𝑎௧ ……………………………………… Equation (4.2) 

 

where 𝑣௧ denotes vehicle speed, 𝑑௧ denotes vehicle distance from crosswalk, 𝑐௧ denotes 

pedestrian detection, and 𝑎௧ denotes longitudinal acceleration Appendix -20 has an alternate 

formulation that expresses the activities as desired speed. Because the roadway's peak speed is 

assumed to be 10m/s, the vehicle speed is constrained by the speed restriction to meet the safety 

and legality objectives. The pedestrian detection is a Boolean value since the pedestrian is 

either crossing or not, and the detection does not rely on additional information about the 

pedestrian that may be discriminatory to preserve the principles of fairness and reciprocity. The 

control input, or action, is set to a maximum of 3m/s2 to give pleasant acceleration and 

deceleration values, furthering the goal of smoothness for occupant comfort. 

The distance to the crosswalk and vehicle speed is calculated using a point mass model of the 

vehicle for the dynamics (or state transitions). Over time, the detection of a pedestrian crossing 

retains some ambiguity. When a pedestrian is spotted, there is a 90% chance that the pedestrian 

will be detected again at the following time step. This probability was chosen to reflect the high 

possibility that the pedestrian will stay in the crosswalk while he or she crosses the roadway, 

while also admitting that the pedestrian will not stay in the crosswalk indefinitely. When the 
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pedestrian is not identified, there is a 50% probability that he or she will continue to be 

undetected, capturing the occlusion's ambiguity. This probability was chosen to represent the 

chance of a pedestrian appearing. In the first iteration, the pedestrian state transition 

probabilities are set haphazardly to show the process. The state transition probabilities might 

be derived using event-based statistics or another model in practise. The control loop assumes 

that the distance to the crossing and vehicle speed are both ideal. However, there is observation 

uncertainty for pedestrian crossings, with a false positive rate of 5% for detecting and a false 

positive rate of 5% for not detecting the pedestrian, capturing sensor noise uncertainty. These 

false positive rates were selected arbitrarily low, although they would be caused by the 

perception system's capacity to identify pedestrians in practise. 

The aim is for the self-driving vehicle to seamlessly pass across the crosswalk in a safe and 

efficient manner while complying to all applicable traffic regulations. For each state and action, 

the reward function determines the stage cost 𝑔(𝑥௧, 𝑢௧), which ties the conception values to the 

technological implementation. The reward for a state action pair is calculated by summing the 

state and action's stage costs (4.4), (4.5), and (4.6). 

The stage cost for legality and safety is partly generated from physical characteristics, resulting 

in a computed reward that is a function of the amount of deceleration required to stop the 

vehicle at a particular condition. The constant deceleration needed to come to a complete stop 

given the distance to the crossing and vehicle speed is calculated using the constant acceleration 

point mass equation. 

at = - 𝑣௧
ଶ

2𝑑௧
൘  …………………………………… Equation (4.3) 

As a result, the following stage cost for safety and legality is calculated: 

𝑔௦௔௙௘(𝑥௧, 𝑢௧) = - (ζ 
௩೟

మ

ௗ೟శɛ 
+ η1(𝑑௧ = 0))1(𝑐௧) ………………… Equation (4.4) 

 

where ɛ > 0 is a denominator buffer to soften the constraint, ζ > 0 is a weight on the penalty 

incurred by driving quickly as the vehicle approaches the crosswalk, η > 0 is a terminal penalty 

independent of velocity to encourage the vehicle to stop when the pedestrian is crossing, and 

1(·) is a function that evaluates to 1 if the Boolean logic is true and 0 if it is false. 

The stage cost for efficiency and mobility is given by: 

 

𝑔௘௙௙௜௖௜௘௡௧(𝑥௧, 𝑢௧) = - λ𝑣௧1(¬𝑐௧) ……………………………… Equation (4.5) 
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When the pedestrian is not crossing, a reward weight of λ> 0 is used to promote a higher speed. 

The goal of achieving smoothness for occupant comfort is accomplished by imposing a penalty 

stage cost on the change in velocity: 

 

𝑔௦௠௢௢௧௛(𝑥௧, 𝑢௧) = −ξ (𝑣௧ − 𝑣௧ାଵ)2 = −ξ (𝑎௧∆t)2 ……………………… Equation (4.6) 

 
where ξ is the penalty weight for significant variations in velocity, and the cost of this stage is 

solely determined by the current input and the time step. 

 

The QMDP technique is utilised to estimate an optimal solution to solve the POMDP (Sunberg 

and Kochenderfer 2018). Although QMDP implies that the state will be completely observable 

at the next time step, it is well suited to this problem since the activities are not information 

gathering, meaning that they do not directly lower the scenario's uncertainty. Another reason 

to utilise QMDP is that it is an offline solution, which means that the policy may be examined 

ahead of time before being deployed on a vehicle in the following step (empirical analysis). 

The state and action spaces are discretized in this technique to solve the POMDP, but the state 

transitions are kept continuous using multilinear grid interpolations (Davies 1996). The vehicle 

speed is increased in 0.5𝑚/𝑠 increments, the vehicle distance to the crosswalk is increased by 

1m, and accelerations are measured at 0.1𝑚 𝑠ଶ⁄  intervals. The sizes of the state and action 

spaces of the POMDP were kept modest by using this discretization: 2,563 total states 

(including the terminal state) and 61 potential actions. Every design option in the POMDP is 

linked back to a value from the conceptualization phase as a method to record and justify the 

engineering of this technology throughout the technical execution. The next part demonstrates 

how well the conception is realised by this implementation. 

 

4.3.3 Empirical Research 

The qualitative and quantitative assessments are part of the third step of the VSD approach. To 

understand how the VSD process affects the design of a speed control algorithm, a 

deterministic proportional speed control is used as a baseline. The baseline and POMDP 

policies are compared in a qualitative debate. 

 



81 
 

4.3.3.1 Baseline 

The baseline is a deterministic proportional speed control. Once a pedestrian has been spotted, 

a constant deceleration is directed depending on the current vehicle velocity and distance to the 

crosswalk, as shown in eq. (4.7a), which also assumes a constant acceleration point mass 

model. If no pedestrians are spotted, the vehicle continues proportional cruise control with gain 

𝑘௣ and known desired velocity 𝑣ௗ௘௦, as shown in eq (4.7b). These reasoning is as shown below: 

If 𝑐௧  

𝑎௧ = - 𝑣௧
ଶ

2𝑑௧
൘   …………………………… Equation (4.7a) 

else 

𝑎௧ = 𝑘௣(𝑣ௗ௘௦ – 𝑣௧) …………………………... Equation (4.7b) 

 
Due to the small number of design choices explored in this baseline implementation, the 

baseline is purposefully basic to enable for analysis of design features. 

 

4.3.3.2 Comparison of Policies: 

Figure 4.2 depicts the baseline controller (4.7), which is a closed-loop strategy that maps every 

condition to an action. The vehicle speed is represented on the horizontal axis, while the 

distance to the crosswalk is represented on the vertical axis. The activity is indicated by the 

colours. Pedestrian detection cuts the policy amount in half. While a pedestrian is identified, 

the baseline policy appears to be safe, as shown by the vehicle coasting (zero acceleration) 

when it is further away from the crossing and increasing brake orders as it draws closer. 

However, while a pedestrian is crossing, this aspect of the regulation is ineffective. When the 

pedestrian is not recognised, on the other hand, it is efficient but not safe. Because of the 

uncertainty of a pedestrian crossing, this dichotomous behaviour shows the necessity to 

anticipate moving from one set of logic to the other. For the situation, the basic policy does not 

explicitly resolve the value conflict between safety and efficiency. 

The POMDP's closed-loop policy, which was created during the technical implementation 

phase, is represented as a set of alpha vectors, each of which corresponds to a different action. 

Figure 4.3 depicts the associated action based on the optimal anticipated utility for each state. 

The policy recommends a compromise between efficiency further away from the crosswalk 

and safety as the vehicle approaches while the pedestrian is crossing. While the pedestrian is 
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not crossing, there is a substantial gain in terms of safety while retaining some efficiency. The 

policy similarly suggests that measures will be carried out smoothly across the state area. 

Table 4.2 summarises the weights used in the reward function for this strategy. These weights 

were selected during simulation to create great combination of positive accelerations away 

from the crossing, negative accelerations near to it, and were fine-tuned to resolve the value 

tension between the pedestrian and the vehicle, as shown in the following section. With these 

weights, the term for continuous deceleration in 𝑔௦௔௙௘ yields a penalty of -2.5 when 𝑣௧ = 

10𝑚/𝑠, 𝑑௧ = 0𝑚, and 𝑐௧, whereas 𝑔௘௙௙௜௖௜௘௡௧ is 2.5 when ¬𝑐௧. The extra penalty η in 𝑔௦௔௙௘ 

implies that in this first implementation, safety and legality are emphasised.  The buffer's 

numerical value was set such that the numerator does not evaluate to zero and the size of the 

constant deceleration term is limited. Finally, ξ is used to generate smooth acceleration 

commands. 

The objective of this initial iteration is to figure out how to deal with value conflicts in the 

implementation. and for safety (ζ) and legality (η), efficiency (λ), and smoothness (ξ) are the 

special weights that are closely linked to human values. If the general design appears to be 

good, exact benefits can be fine-tuned using a Pareto, or multi-objective, optimization over 

these weights to better decide the value trade-off to make. This is shown in section 4.5. Though, 

in this situation, further weight adjustment is postponed until additional study indicates that the 

design is suitable. 

 

 

Figure 4.2: Baseline closed-loop policy mapping each state to an action. 
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Figure 4.3: Closed-loop policy depicting optimal action at that state assuming perfect state 
information. 

 

 

Table 4.2: Weights of the reward function 

Variable Weight Unit 

Safety and legality (ζ) 0.2 s2/m 

Safety and legality (η) 0.2 –  

Buffer (𝜖) 8 m 

Efficiency (λ) 0.25 s2/m 

Smoothness (ξ) 1 s2/m 

 

 

4.3.3.3 Simulation Results 

To demonstrate how effectively the VSD speed controller realises human values. Using a 

deterministic model predictive steering control, the vehicle is tasked with following an 

obstacle-free course around the occluding vehicle by simulation as described in Chapter 3. 

Observations of vehicle speed, vehicle distance to crosswalk, and detection of pedestrians are 

utilised to update the belief with a Bayesian filter for the POMDP policy execution. The 

approximate best course of action is then taken as in eq. 4.8 
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𝑎𝑟𝑔𝑚𝑎𝑥 ∝௔
் 𝑏 ………………………….…. Equation (4.8) 

where ∝௔ is an alpha vector for each action 𝑎 and 𝑏 is a vector representing the belief state. The 

POMDPs.jl package is used for both the policy solver and policy execution. 

 

On a two-lane highway, there is an obstructed pedestrian crossing in the simulation scenario. 

The car begins at the road's beginning, where it is halted. The person appears in the crosswalk 

from behind the occluding car as the vehicle approaches the crosswalk. The control algorithms 

have no idea when the pedestrian is going to emerge. The overhead driven trajectory, 

acceleration instructions, and speed profile for the baseline and POMDP policies are depicted 

in figures 4.4 and 4.5, respectively. The circles in figures 4.4 and 4.5 show when the intensity 

filter identified the pedestrian. The initial time step after detection in both techniques mandates 

a significant slowdown. The baseline control is unable to lawfully yield to the pedestrian since 

it is travelling at full speed when the pedestrian emerges. The POMDP strategy, on the other 

hand, causes the vehicle to descend significantly sooner and achieve a lower maximum speed. 

As a result, the autonomous agent can successfully halt the unexpected pedestrian. 

 

 

Figure 4.4: Baseline trajectory overhead, acceleration command, and speed profile using 
deterministic speed control (circle indicates when the pedestrian was detected). The vehicle 

decelerates upon detection of the pedestrian but does not yield. 
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Figure 4.5: POMDP trajectory overhead, acceleration command, and speed profile using belief about 
pedestrian detection (circle indicates when the pedestrian was detected). 

 

 

4.3.4 Observation 

The challenge of creating an algorithm in the face of conflicting values is seen in this initial 

iteration of the speed control concept. There are several aspects of the implementation that 

should be highlighted, as well as other areas that might be improved. 

 

4.3.4.1 Successful Outcomes 

 The self-driving vehicle was able to yield to the pedestrian after accounting for the 

pedestrian's uncertainty. Because the POMDP predicted future state information, the 

car approaching the crossing at an "acceptable pace" had a significant impact. 

 The only information on the pedestrian that was used was whether he or she had been 

discovered. Fairness and reciprocity were mostly preserved, but they should be made 

more apparent. 
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 The tension between safety, legality, and efficiency may be handled with the right 

weights. 

 The choice to represent the problem as a POMDP and solve for an offline policy aided 

in the investigation and balancing of some of the design task's value tensions. 

 

4.3.4.2 Improvements to be made 

 Remove the braking authority restriction, which leads to a priority of occupant comfort 

over safety. 

 Although the POMDP formulation was created with passenger communication in mind, 

it only optimised for velocity smoothness and ignored the shock that car occupants 

perceive because of irregular acceleration orders. Smoothness appears to be 

accomplished while just considering closed-loop rules, however it may not have been 

effectively accounted for with this first iteration. 

 This situation does not apply to non-obstructed crosswalks. 

 The value tension relies heavily on pedestrian modelling, thus additional attention is 

required there 

The next version will look at ways to keep these great qualities while also resolving some of 

the implementation's drawbacks. 

 

4.4 Second Iteration 

The value-sensitive design iterative approach may be used to re-evaluate the design work as 

well as identify ways to enhance the technical implementation. The scenario is changed in the 

second iteration to emphasise pedestrian behaviour unpredictability. The design job can 

explore how pedestrian intent influences self-driving vehicle behaviour and vice versa by 

removing the occluding vehicle from the equation. The presence of an occluding car obfuscates 

the pedestrian-vehicle interaction. As a result, the occlusion is eliminated, and a pedestrian is 

positioned on the roadside, as illustrated in figure 4.6. The designer should develop an 

improved familiarity of the pedestrian-vehicle interaction as the iterations proceed. The 

occlusion might then be re-introduced into the design task or utilised as a test case during the 

analysis phase. 
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Figure 4.6:The scenario of the pedestrian crosswalk with occlusion is eliminated. 

 

4.4.1 Conceptualization  

Various stakeholders are still involved in the design process, which touches on a wide range of 

human values. The autonomous vehicle's occupants, pedestrians who may cross the street, and 

the authority of traffic regulations are now the direct stakeholders. The values in question in 

the scenario are mobility, safety, legality, care and respect for others, fairness and reciprocity, 

respect for authority, trust and transparency, and individual liberty, even with the occluding 

vehicle removed. The values are defined in the same way as in section 4.3.1, but the way they 

are translated into technical specifications will be improved. 

Only human values connected to a technical objective were expressly evaluated in the previous 

phase. This iteration clarifies how each defined value should be represented in the technology. 

The Fairness and reciprocity are not easily translated into technical objective. Instead, it 

becomes a higher-level design constraint that restricts the information to be non-

discriminatory, such as no age or gender data. 

The remaining values are handled by connecting them to technical specifications that may be 

used to capture them as shown in table 4.3 below. 

 

4.4.1.1 Respect for Authority and Legality 

Safety and legality are not precisely the same criteria, according to the California Vehicle Code. 

To be safe, the vehicle code merely requires drivers to use "due care," which is not the same as 

being safe. The vehicle code also requires that the vehicle speed be reduced and that any 

required steps be taken to ensure pedestrian safety. Vehicle speed (𝑣௧), vehicle distance to 

crossing (𝑑௧), and pedestrian conduct are the most important pieces of information for making 

legal decisions. The self-driving vehicle must know if the pedestrian is transitioning from the 
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sidewalk to the crosswalk to protect the pedestrian. The non-discriminatory pedestrian position 

(𝑐௧) and pedestrian posture (𝑝௧) are believed to reflect pedestrian behaviour. 

 

4.4.1.2 Care, Safety, and Respect for others 

A stricter interpretation of the vehicle code reflects the importance of safety. The goal of safety 

is to minimise danger and injury. The same data as for legality is required to obtain this value: 

vehicle speed (𝑣௧), vehicle distance to crosswalk (𝑑௧), pedestrian position (𝑐௧), and pedestrian 

posture (𝑝௧). 

 

4.4.1.3 Efficiency and mobility 

The value of mobility still captures the measure of time efficiency, which is exactly 

proportional to the vehicle's speed (𝑣௧) on a straight road. 

 

4.4.1.4 Smoothness and Mobility 

Smooth driving is another component of mobility that impacts occupant comfort and fosters 

trust and sincerity among stakeholders. The value of mobility is meant to be increased in this 

iteration by employing both the previous acceleration command (𝑎௧ିଵ) and the present 

acceleration instruction (𝑎௧) for smooth actions adjustments. 

 

4.4.2 Technical Implementation of Technology 

An additional iteration gives you the option of using a different approach or algorithm that is 

more in line with the stated values. The POMDP is maintained in this iteration because it 

appears to provide possible resolution, and it helped to expose value conflicts in the prior 

iteration. The best policy for controlling the longitudinal acceleration of the vehicle based on 

the belief of a pedestrian crossing is computed using dynamic programming once more. 

Equation 4.9 below captures the information needed to address their respective values in the 

objective function given the technical specification of legality, safety, and mobility. 
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Table 4.3: A summary of human values mapped to engineering specifications for the second VSD iteration. 

Human value Engineering specification  Representation  

Fairness reciprocity  Do not use discriminatory information 

Legality  

Respect for authority 

Legality 𝑣௧ 

𝑑௧ 

𝑐௧ 

𝑝௧ 

Safety  

Care and respect for 

authority   

Safety 𝑣௧ 

𝑑௧ 

𝑐௧ 

𝑝௧ 

Mobility  

Individual autonomy 

Trust 

transparency 

Mobility 

 

𝑣௧ 

𝑎௧ିଵ 

𝑎௧ 

 

𝑥 = [𝑣௧   𝑑௧   𝑐௧  𝑝௧  𝑎௧ିଵ]T ……………………. Equation (4.9) 

and the control input, 

𝑢௧ = 𝑎௧ ………………………………… Equation (4.10) 

 

Where 𝑣௧ denotes vehicle speed, 𝑑௧ denotes vehicle distance from crosswalk, 𝑐௧ denotes 

pedestrian location, 𝑝௧ denotes pedestrian posture, and 𝑎௧ିଵ and 𝑎௧ denote prior and present 

longitudinal acceleration, respectively. Because the roadway's peak speed is 10m/s, the 

vehicle's top speed is constrained by the speed restriction to meet both legality and safety 

requirements. The pedestrian is either in a crosswalk or on the sidewalk, and his or her posture 

is either halted, inattentive, or in motion while making eye contact with the car. The pedestrian 

states do not rely on other potentially discriminating information about pedestrians to maintain 

the ideals of fairness and reciprocity. The control input was formerly limited to 3m/s2 to give 

pleasant acceleration levels; however, this hampered the vehicle's capacity to be safe. Allowing 

deceleration up to 10m/s2, the control algorithm allows the vehicle to utilise its maximum 

braking capability. 

To compute the distance to the crossing and vehicle speed, the dynamics (or state transitions) 

still rely on a point mass model of the vehicle. To further examine the value tensions for the 
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design task, a new model for pedestrians is built (table 4.4). The chance of a pedestrian moving 

from the sidewalk to a crosswalk is determined by their posture. When a pedestrian is 

preoccupied, the chance is 50%, and when the pedestrian is moving, the likelihood is 86.7% 

(Schroeder, Rouphail et al. 2014) and the statistics on yield and non-yield occurrences for an 

aggressive pedestrian at site B are used to compute the likelihood of 86.7%. The likelihood of 

transitioning is a function of the vehicle's distance from the crossing while the pedestrian is 

stopped while making eye contact with it. 

 

𝑝௥(𝑐௧|¬𝑐௧; 𝑝௧ = STOPPED) = (𝑝௫௜௡௚/𝑑௠௔௫) 𝑑௧, ………………………… Equation (4.11) 

 

where 𝑑௠௔௫ is the highest distance the vehicle is away from the crossing, and 𝑝௫௜௡௚ is the 

probability of 52.34% (Schroeder, Rouphail et al. 2014) and for a pedestrian waiting on the 

near side at site B, the data on yield and non-yield occurrences yielded a chance of 52.35%. 

The pedestrian is expected to remain in the crosswalk for the next time step once within the 

crosswalk. For the sake of simplicity, the control loop assumes complete knowledge on the 

vehicle's distance from the crossing, vehicle speed, and pedestrian posture. The pedestrian 

position, however, there is observation uncertainty for the pedestrian position, which captures 

sensor uncertainty with a false positive rate of 5%. These false positive rates were selected 

arbitrarily low but would derive from the perception system's capacity to recognise pedestrians 

in practice. 

The aim remains for the self-driving vehicle to travel across the crosswalk in a seamless, safe, 

and efficient manner while complying to all applicable traffic regulations. For each state and 

action, the reward function defines the stage cost g (𝑥௧, 𝑢௧), which links the conception values 

to the technological implementation once more. The reward for a state action pair is calculated 

by adding the state and action's stage costs (4.12), (4.13), and (4.16). 

 

Table 4.4: The pedestrian transition model for the second VSD iteration 

Pedestrian posture  Transition probability 𝑝௥(𝑐௧/¬𝑐௧) 

Distracted  0.5 

Stopped 0.523+ (𝑑௧/𝑑௠௔௫) 

Moving 0.867+ 
+computed using yield event statistics (Schroeder et al. 2011) 
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The following is the stage cost for legality, which is derived from the constant acceleration 

point mass formulae related to the constant deceleration required to come to a complete stop 

given the distance to the crosswalk and vehicle speed: 

𝑔௟௘௚௔௟௜௧௬(𝑥௧, 𝑢௧) = −ζ
௩೟

మ

ௗ೟ାɛ
 1(𝑐௧) ………………………………. Equation (4.12) 

where ζ > 0 is a weight on the penalty suffered by driving rapidly as the vehicle approaches the 

crossing, and ɛ > 0 is a buffer in the denominator to ease the restriction. 

the stage cost for safety is given by. 

𝑔௦௔௙௘௧௬(𝑥௧, 𝑢௧) = −η1(𝑐௧ ∧ 𝑑௧ < 0) ……………………. Equation (4.13) 

where η > 0 is a terminal penalty independent of the velocity to boost the vehicle to come to a 

complete stop while a pedestrian is crossing. 

The stage cost for mobility is divided into two components: 

 

𝑔௘௙௙௜௖௜௘௡௧(𝑥௧, 𝑢௧) = λ𝑣௧1(¬𝑐௧) ………………………………... Equation (4.14) 

and 

𝑔௦௠௢௢௧௛(𝑥௧, 𝑢௧) = −ξ (𝑎௧ିଵ − 𝑎௧)2 …………………………… Equation (4.15) 

 
As a result, the total cost of mobility at each stage is: 

 

𝑔௠௢௕௜௟௜௧௬(𝑥௧,𝑢௧) = 𝑔௘௙௙௜௖௜௘௡௧(𝑥௧,𝑢௧) + 𝑔௦௠௢ (𝑥௧,𝑢௧) = λ𝑣௧1(¬𝑐௧) −ξ (𝑎௧ିଵ − 𝑎௧)2 …. Equation (4.16) 

 
where λ> 0 is a reward weight to boost faster speed while the pedestrian is not crossing, and 

ξ> 0 is a penalty for excessive acceleration changes. 

 

The QMDP technique is utilised once more to estimate an optimum solution for the POMDP. 

Vehicle speed is increased by 0.5𝑚/𝑠, vehicle distance to crosswalk is increased by 1m, and 

accelerations are measured at 0.5𝑚/𝑠ଶ intervals in this iteration. The size of the state and action 

spaces of the POMDP was kept minimal by using these discretisation’s: 142,884 total states 

(including terminal states) and 27 potential actions. 

 

4.4.3 Empirical Research 

The simulation results are the subject of the empirical analysis in the second iteration. The state 

space of this POMDP, unlike the baseline, cannot be completely described in three dimensions, 
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therefore a policy comparison is not included in this study. Because the POMDP policies are 

based on the prior acceleration instruction. 

 

4.4.3.1 Simulation results 

In this simulation, pedestrian detection is used to identify whether the pedestrian is in the 

crosswalk influence area (the sidewalk) or in the crosswalk, using the specification of a static 

polygon for the form of the road. The self-driving car must follow a straight line down the road, 

using the same deterministic predictive steering control paradigm as Brown et al. in Chapter 3. 

A pedestrian crossing on a two-lane highway is used in the simulation scenario. When a 

pedestrian reaches the crosswalk influence area, the vehicle is travelling at a high speed, and 

the policy comes into play. The pedestrian may or may not shift into the crosswalk as the car 

approaches the intersection. The pedestrian's transition is unknown to the control algorithms. 

For comparison with the new POMDP policies, the baseline from the first iteration is employed 

once more. Because it will not surrender to the pedestrian until he or she has reached the 

crosswalk, it is termed an aggressive baseline. A cautious baseline, in which the vehicle begins 

to yield to the pedestrian once he or she reaches the crossing influence area, is also explored as 

an option. Except for the crosswalk influence area, which decides when to transition from 

cruise control to brakes, the rules are identical. They do not, however, take into consideration 

the position of the pedestrian. For the aggressive and cautious baselines, figures 4.7 and 4.8 

show the overhead driven trajectory, acceleration instructions, and speed profile, respectively. 

The circles represent the times when the computer vision system recognised the pedestrian in 

the crosswalk. The person never entered the crosswalk since the aggressive baseline has no 

circle. Because the pedestrian did not enter the crosswalk, the car continued to travel at the 

speed limit, never yielding to him. When the vehicle was 12.99𝑚 away from the crossing, the 

perception system identified the pedestrian in the crosswalk influence region, and the vehicle 

yielded to the pedestrian effectively. 
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Figure 4.7: Deterministic speed control is used to provide an aggressive baseline trajectory overhead, 
acceleration command, and speed profile. The pedestrian does not enter the crosswalk, thus there is 

no red circle. 

 

Figure 4.8: Overhead trajectory with a conservative baseline, acceleration instruction, and speed 
profile with deterministic speed control (circle shows when the pedestrian was spotted). 
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To update the belief using a Bayesian filter for the POMDP policy execution, an observation 

of the vehicle speed, vehicle distance to the crosswalk, pedestrian posture, and pedestrian 

position is utilised, much as the previous iteration. The overhead driven trajectory, acceleration 

instructions, and speed profile for POMDP policies are depicted in figures 4.9 to 4.12. The 

circles represent the times when the computer vision system recognised the pedestrian in the 

crosswalk. 

The pedestrian postures are independent of each other in this second POMDP implementation. 

As a result, the reward function for each position employs a distinct set of weights (table 4.5). 

This makes sense since each pedestrian stance is a discrete scenario that necessitates a different 

vehicle reaction. The buffer's numerical value is still arbitrary; it's set such that the numerator 

doesn't evaluate to zero and the constant deceleration term's magnitude is kept to a minimum. 

The remaining weights can be fine-tuned with more analysis and Pareto optimization (see 

section 4.5), but they're picked first to test if this design is suitable. 

 

Table 4.5: The reward function's weights in relation to pedestrian posture (𝑝௧) 

Variable Distracted weight (𝑝௧) Walking weight 

(𝑝௧) 

Stopped weight (𝑝௧) Unit 

Legality (ζ) 0.01 0 0.01 s2/m 

Buffer 8 8 8 m 

Safety (η) 0.5 0.5 0.5 - 

Mobility (λ) 0.05 0.01 0.03 s/m 

Mobility (ξ) 0.003 0.01 0.003 s2/m 

 

At the extreme states and actions where 𝑣௧ = 10𝑚/𝑠, 𝑑௧ = 0𝑚, and 𝑎௧ିଵ − 𝑎௧ = 13 𝑚 𝑠ଶ⁄ , the 

weights are set so that safety, efficiency, and smoothness are prioritised to identical normalised 

values: η௡ = 0.5, λ௡ = 0.5, and ξ௡ = 0.507. When 𝑣௧ = 10𝑚/𝑠 and 𝑑௧ = 0𝑚, the legality term 

is normalised to ζ௡ = 0.125, implying a lesser priority. Figure 4.9 shows that when a pedestrian 

approaches the crosswalk influence region, the policy applies modest negative accelerations to 

the vehicle, slowing it to about 1.5𝑚/𝑠 and allowing it to coast until the pedestrian enters the 

crosswalk. The vehicle comes to a complete stop after the pedestrian has entered the crosswalk. 

The parameters for efficiency and smoothness raise to normalised values of λ௡ = 1 and ξ௡ = 

1.69 when the pedestrian is walking as shown in figure 4.10. With more efficiency, the vehicle 



95 
 

travels along the road at a quicker pace, necessitating more smoothness to smoothly slow the 

vehicle from the faster speed if a pedestrian reaches the crosswalk. Because the pedestrian 

transitions to the crosswalk with a high likelihood, the pedestrian has a high conviction of 0.36 

that he or she is crossing. This indicates that the impact of the safety and legality parameters 

has a significant impact on self-driving vehicle behaviour long before the pedestrian enters the 

crosswalk physically. To decrease the huge influence of the safety and legality terms, one of 

them (legality in this case) is set to zero to enable the car to approach the crossing. The car 

coasts again with these weights until it detects the pedestrian. The car comes to a complete stop 

as it approaches the crossing. 

 

 

Figure 4.9: Overhead POMDP trajectory of a distracted pedestrian, acceleration command, and 
speed profile based on pedestrian crossing belief (circle indicates when the pedestrian was detected). 
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Figure 4.10: Overhead walking pedestrian POMDP trajectory, acceleration command, and speed 
profile based on pedestrian crossing belief (circle shows when the pedestrian was spotted). 

 

The normalised legality term returns to  ζ௡  = 0.125 for the halted pedestrian, but efficiency 

and smoothness fall to  λ௡ = 0.3 and ξ௡ = 0.507. Smoothness is critical in this situation for the 

self-driving vehicle to exhibit directness about its objectives to travel through the surroundings, 

therefore it is given the greatest priority. Two situations were examined using these weights. 

Because of the diminishing assumption that the pedestrian would cross the roadway, the vehicle 

shown in figure 4.11 accelerates progressively as it approaches the crosswalk. The pedestrian 

avoids entering the crosswalk because it does not want to create an immediate hazard. Figure 

4.12 shows a pedestrian crossing the roadway before the vehicle speeds up too fast in the 

second halted pedestrian scenario. The self-driving vehicle comes to a complete stop after the 

pedestrian enters the crosswalk. 



97 
 

 

Figure 4.11: Stopped pedestrian POMDP trajectory overhead, acceleration command, and speed 
profile utilising pedestrian crossing belief. There is no red circle since the pedestrian does not enter 

the crosswalk. 
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Figure 4.12: Stopped pedestrian POMDP trajectory overhead, acceleration command, and speed 
profile utilising pedestrian crossing belief (circle shows when the pedestrian was spotted). 

Pedestrians have the right of way. 

 

The situation automatically becomes more complicated around the value tension between the 

pedestrian's purpose and the self-driving vehicle's desire to drive along the road with this 

second iteration's focus on pedestrian behaviour. Over the value statements, the weights chosen 

are still arbitrary trade-offs. As a result, a further in-depth examination is likely necessary at 

this stage to evaluate whether a certain design point may address the value tensions. A Pareto 

optimization, for example, may be used to simulate many scenarios when weights are changed 

as shown in section 4.5. 
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4.4.4 Observation 

As the technical specifications clarify in terms of the recognised values, this second iteration 

of the speed control design shows advances in resolving value conflicts. Because this is not the 

final product, there are still certain aspects of the implementation to emphasise and other things 

to improve. 

 

4.4.4.1 Successful Outcomes 

 The car was able to successfully yield to the pedestrian in all circumstances by 

accounting for pedestrian uncertainty. Dynamic programming may be utilised to 

account for future state information in the policy since the problem was designed as a 

POMDP. 

 The main information on the pedestrian was whether he or she was in a crosswalk and 

what posture he or she was in. Fairness and reciprocity were upheld because of this. 

 The choice to represent the problem as a POMDP and solve for an offline policy was 

maintained throughout the design process, which helped to examine and balance some 

of the design task's value conflicts. Even though the weights were chosen at random, it 

revealed the possibility of resolving the value tensions. 

 The penalty on change in acceleration increased smoothness, and the effect was directly 

proportional to ξ. 

 Efficiency remained consistent with the term λ. 

 The pedestrian was modelled as a function of posture, which revealed information about 

pedestrian intent and crossing the roadway. 

 For the halted pedestrian, the car gradually raised its speed as it neared the 

crossing, signalling to the pedestrian that if he or she enters the crosswalk while 

simultaneously wanting to proceed down the road, the vehicle will yield. 

 The car approached the crossing at a very cautious pace because of the random 

likelihood of the inattentive pedestrian. 
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4.4.4.2 Improvements to be made 

 Pedestrian modelling must be enhanced further. 

 The pedestrian's stance and position did not appear to completely comprehend 

the pedestrian's desire to cross the roadway. Other factors might be examined 

while keeping the ideals of fairness and reciprocity in mind to reduce the 

vehicle's usage of biased information or discriminating behaviours. 

 For the pedestrian, there is likely to be a link between distraction and mobility, 

which might imply a higher chance of shifting for the distracted posture. Other 

pedestrian models might be used to investigate the better points of pedestrian 

posture and mobility. 

 When a pedestrian enters a crosswalk, the transitions presume that the person 

will remain within the crosswalk. This is not the case. There should be further 

research on simulating the transition from the crosswalk to the sidewalk (or a 

safe distance from the self-driving vehicle's moving lane). 

 The car tends to come to a standstill just outside the crosswalk. This might be due to 

poor weight selection, or the reward function could be tweaked, for example, by 

imposing a small penalty on significant decelerations so the vehicle only comes to a 

complete stop when absolutely required. This will aid in the designing of mobility and 

efficiency specifications. 

 The high possibility of transitioning in the case of the moving pedestrian enhanced the 

policy's effect on the parameters of safety and legality. These weights need to be 

reduced considerably, or a different formulation should be investigated to isolate the 

influence of safety and legality more effectively. 

 To establish how effectively mobility, safety, and legality can be accomplished with 

this implementation, more research into the choice of weights in the reward function is 

also required. For the first iteration, this may be accomplished using a Pareto, or multi-

objective, optimization over the weights, as shown in section 4.5. 
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4.5 Bridging the Gap on Human Values 

The policy comparison and experimental results show a speed control algorithm design that is 

possibly reasonable, but only for a certain set of weights. The choice of weights in the reward 

function can have a significant impact on the vehicle's behaviour. An analytical approach is 

required to assess how well more directly the planned technology matches with stakeholder 

values. To identify which set of weights best aligns with the values, one approach to do this 

analysis is to use the Pareto (or multi-objective) optimization technique. If one goal cannot be 

improved without affecting at least one other goal, the design is Pareto optimum. The design 

objectives are mapped to a criterion space using evaluation criteria to create a frontier of Pareto 

optimum locations. The identification of Pareto optima helps to shut the loop on the design 

process, where human values are translated into engineering objectives, engineering objectives 

are translated into evaluation criteria, and evaluation criteria are translated into human values. 

As a result, engineers may concentrate on Pareto optimum solutions without having to commit 

to a certain prioritisation of objectives ahead of time. After that, the Pareto frontier may be 

presented to a wider group of stakeholders to select the final design to implement. 

By changing the weights in the reward function that correspond to the engineering objectives, 

an example of a Pareto frontier for the first VSD iteration is produced. A separate optimum 

policy is created for each combination of weights in the reward function. Monte Carlo 

simulations are conducted for each specified optimal strategy, and the simulation results are 

compared to evaluation criteria. The vehicle velocity at the crossing is mapped to the objective 

of safety and legality. The criteria of average time to perform a manoeuvre corresponds to the 

objective of efficiency. The criteria of average maximum change in acceleration translates to 

the smoothness objective. When the self-driving car is within 20m of the crossing, the 

pedestrian appears from behind the occluding vehicle. The pedestrian takes roughly 4 seconds 

to cross the roadway, according to the simulations. 

The resultant Pareto frontier can then be presented to a broader group of stakeholders, such as 

politicians, policymakers, and public interest organisations, to decide which, set of weights to 

use on the self-driving vehicle. A slice of the Pareto frontier for safety and legality vs. mobility 

is shown in figure 4.13. The yield rate for the simulated suddenly emerging pedestrian 

scenarios also adds colour to the picture. Additional data, such as damage curves (Kröyer, 

Jonsson et al. 2014), user studies, emissions curves (Mo, Li et al. 2017) and congestion studies 

(Soriguera, Martínez et al. 2017), can be conferred on the Pareto boundaries by a broader set 

of stakeholders. 
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The Pareto optimization isn't the sole technique for bridging the gap between human values. A 

risk management or cost benefit analysis for a collection of outcomes [104] may be another 

utilitarian-like analysis technique. Perhaps a deontological approach, in which policymakers or 

stakeholders establish thresholds and circumstances, would be preferable. This Pareto analysis 

is the first step in illustrating how proper analytical technique may aid in determining how well 

a technological implementation incorporates the human values specified during the 

conceptualization phase. 

 

 

Figure 4.13: POMDP's Pareto frontier with different weights linked to evaluation criteria. 
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4.6 Summary 

Through the conception and technical implementation phases, this chapter illustrates the formal 

integration of human values into the design of a speed control algorithm. The empirical analysis 

step aids in the identification of areas for future iterations improvement. In the first iteration, a 

POMDP is selected to aid in the realisation of the objectives of safety and legality, efficiency 

and mobility, and smoothness in a situation involving a big vehicle parked in front of a 

pedestrian crossing. The POMDP assisted in capturing the situation's ambiguity and enabled 

the vehicle to be proactive by approaching the crossing at an acceptable speed, resulting in a 

successful yield to an unexpected pedestrian. The second iteration examines a minor 

adjustment in the situation by eliminating the occlusion and improving the pedestrian model to 

look more carefully at the value conflict between the pedestrian and self-driving vehicle. 

Likewise, the technological execution of the values of legality, safety, efficiency, and 

smoothness were refined. Additional analysis using Pareto optimization offers more 

information on how well a solution match with the values indicated. Engineers may think more 

thoroughly about how human values are mixed up in technology as it evolves by iterating using 

value sensitive design technique. 

Although the focus has been on engineers and programmers as designers, VSD allows other 

stakeholders, such as policymakers and civil society organisation, to participate in the design 

process. VSD is a useful tool for engineers, however, additional participants from third-party 

groups can be extensively included to assist guarantee that self-driving cars act in socially 

acceptable manners. 
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Chapter 5: Ethical Valence  

5.1 Introduction 

In the viewpoint of original equipment manufacturers, government organisations, and the 

public, self-driving vehicles are transitioning from a distant possibility to a near-term reality. 

This transition is not without threat, as recent and somewhat worrying events have 

demonstrated. Accidents will continue to happen even as technology advances. The ethics of a 

self-driving vehicles has thus quickly become a contentious topic, particularly considering the 

apparent diversity of moral preferences within a given society and the so-called "social 

dilemma" of choosing a general decisional maxim, even one as benevolent as "minimise 

casualties" (Hulse, Xie et al. 2018). While the dangers, weaknesses, and problems associated 

with the transition to a self-driving have been highlighted, a viable, implementable solution has 

yet to be discovered. What actions must be taken to ensure that the social advantages promised 

by self-driving cars are realised? 

Undoubtedly, the self-driving vehicle’s decision-making is an essential element of the 

response. The ability of a self-driving vehicles to eliminate human error from the stream of 

traffic situation is a significant premise and universal discussion in the self-driving vehicle 

deliberation: no more drunk-driving, texting, sleeping, or otherwise distracted drivers on the 

road. Furthermore, in inevitable collision scenarios, the self-driving vehicles is expected to 

make a deliberate decision about how it would crash, thereby replacing human drivers' 

inefficient and illogical reactions (Martinez, Heucke et al. 2017). This is a difficult task for any 

artificial decision process, not to mention the one that operates in a complex, dynamic, and 

unpredictable environment like present-day transportation system. Despite these obstacles, a 

workable solution for successful and acceptable self-driving vehicle decision making should 

be discovered. In this chapter, the Ethical Valence is suggested as a strategy for a self-driven 

vehicle decision making. The Ethical Valence concept describes a self-driving vehicle 

decision-making as a technique for claim mitigation, in which various road users hold diverse 

moral claims on the vehicle's conduct, and the vehicle must neutralise these claims as it makes 

judgments about its surroundings. It must identify an optimum response to these claims in the 

event of an unavoidable collision, or in so-called "dilemma situations," one that reflects the 

moral claims and relationships that exist inside the vehicle's decision environment and best fits 

with user expectations.  
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5.2 Risk Mitigation in Self-Driving vehicles 

Volatility, unpredictability, cultural relativism, and, in certain circumstances, fatality 

characterise the human trafficking situation. In fact, the number of persons killed or injured on 

the world's roads remains unacceptably high, with an estimated 1.35 million deaths and up to 

50 million injuries each year (Organization 2018). As a result, many stakeholders, institutions, 

and drivers have hailed autonomous vehicles (AVs) as the next, if not last, step toward 

accident-free roads. Even the most optimistic long-term predictions of the impact of self-

driving cars expect a 90% reduction in traffic-related incidents (Taiebat, Brown et al. 2018, 

Martínez-Díaz, Soriguera et al. 2019). While this figure is unparalleled and remarkable, the 

fact remains that fatal, serious, and near-accidents will continue to occur, although less 

regularly, once autonomous vehicles are on the road, particularly in the early stages of 

implementation when mixed-feet traffic forces autonomous vehicles to interact with human 

drivers. Given these projections, it seems irresponsible to think of autonomous cars as merely 

harmless road users. As self-driving vehicles deployment progresses, physical, if not fatal, 

damage will continue to be a component of the traffic situation. 

As a result of the ongoing existence of damage in mixed fleet traffic situations, the literature 

has produced two related reactions. First, these dilemma-type decision situations have been 

compared to the "trolley problem" (McGuire, Langdon et al. 2009, Christensen and Gomila 

2012), and second, there has been a plethora of dilemma scenario analysis as to the form of 

decisional or ethics policies that would encompass how morality requires the AV to act in these 

types of dilemmas. Obviously, the ideal ethical policy is a complex and open topic that involves 

numerous meta-ethical and interdisciplinary concerns. Because it appears that any robust 

decision about the moral content that underpins an ethical policy is implicitly supported by 

several meta-considerations, such as the source of moral content, whether public and 

participatory (Arntz, Gregory et al. 2016, Schulz and Dankert 2016), or traditional western 

ethical paradigms such as utilitarianism (Conway, Goldstein-Greenwood et al. 2018), Rawlsian 

theories of justice (Holden, Linnerud et al. 2017). The apparent absence of ground-truth ethical 

principles across various civilizations and the failure of user expectations to closely correspond 

with any pre-existing moral theory likely to worsen these arguments (Yilmaz and Saribay 

2017). Lastly, there are important questions of using the trolley problem as a persuasive policy 

instrument in the case of self-driving vehicle (König and Neumayr 2017, Kaur and Rampersad 

2018), and whether these individual decision-cases cannot be managed through the extensive 

ethical analysis of a self-driving vehicles as a disruptive technology (Epting 2019). 
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Consequently, expert discussion has spun an extremely immobilising web around cars whose 

wheels have already touched public roads in only a few short years, while the topic of the 

optimal ethical policy remains conspicuously open. 

Nevertheless, certain aspects of an ideal ethical policy emerge in this setting of moral ambiguity 

(Allam and Dhunny 2019). If we accept the assertion that widespread usage and adoption of 

self-driving cars is a precondition for the many social advantages these vehicles are said to 

bring (Dechesne, Dignum et al. 2019), then any fair ethical policy for a self-driving vehicle 

cannot ignore public acceptability. It appears that, for a self-driving car to really become a 

morally optimum means of transportation, their behaviour must be in line with the varied 

expectations of the people with whom they interact, as well as the broader communities in 

which they are deployed. In a nutshell, this constraint ensures the user's happiness and safety, 

as well as other important design ideals like trust, responsibility, and transparency (Perera, 

Hussain et al. 2019). However, in terms of the vehicle's ethical policy, this claim appears to 

provide either a strong reason to prefer moral theories that do not revise what is commonly 

referred to as "common sense morality," or, less strongly, a reason to reject any account of the 

moral good that fails to adequately capture widely held moral attitudes. Many popular theories 

of morality, including most kinds of deontological ethics, utilitarianism, and Rawlsian 

contractarianism, look to be in danger if this is accurate; and even if they survive, few will have 

kept the purity of their original structure, motives, and scope. Moral theory appears to be at 

least beholden to, if not restricted by, prevalent moral views from this standpoint, within the 

context of self-driving vehicle ethics. 

On the other hand, it appears to be just as ethically problematic to ignore moral theory entirely, 

relying solely on the (moral) "wisdom of the crowd" (Dignum 2019, Tronto 2020). Much of 

the support for this latter claim comes from a concern about the algorithmic consequences of 

human moral failure: whether it's due to bias, prejudice, ignorance, irrationality, or plain 

egoism, human behaviour provides (training) data that is at best morally sub-optimal, and at 

worst morally unacceptable (Dignum 2019). Some argue that artificial agents should not just 

avoid replicating these sorts of behaviours in their interactions, but that if they are intended to 

behave as pure moral reasoners, they may even provide a chance for human moral growth 

(Cushman, Young et al. 2006, Graham, Nosek et al. 2011, Lind and Wakenhut 2017). In this 

case, despite their mismatch with user expectations and the introduction of what Lind has 

dubbed "ethically superior robot villains" into our daily lives, ethics regulations based on pure 

descriptions of moral theory may be morally justifiable or even needed (Wong 2020). Then, 
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from this vantage point, public acceptance appears to be a non-issue, until it is enhanced by 

robotic technology such as driverless cars. 

As a result, an ideal ethical policy must resolve the inherent conflict between these two groups 

to some extent, finding a balance between public acceptability and moral standards. It appears 

that it must be just acceptable enough to gain human users' confidence and adoption, yet just 

moral enough to avoid repeating the most heinous of human desires. Similarly, an ideal ethical 

policy is better characterised as a collection of procedures that should be followed in sacrifice 

or dilemma circumstances, rather than a computer solution to the trolley problem. These 

scenarios frequently arise in areas where the law is silent, or where the vehicle cannot offer a 

comprehensive response to whom it should prioritise or sacrifice via its actions. The ethics of 

a self-driving cars therefore falls firmly inside these many gaps, and regardless of the ethical 

policy in place, it is critical that the surrounding decisional architecture reflect and support this 

complexity, rather than skirting or denying its depth. In this vain, the next section will aim to 

develop an architecture that is adaptable enough to accept a variety of different sorts of ethical 

rules while leaving the question of which ethical policy is the "correct" one open. 

 

5.3 The Ethical Valence Concept's Claims and Foundations 

The Ethical Valence conceptual approach is best understood as a type of moral claim 

mitigation. Every road user in the vehicle's surroundings has a claim on the vehicle's behaviour 

as a condition of existing in the decision context, in accordance with the underlying concept. 

To put it another way, every individual—from pedestrian to passenger—has a distinct 

expectation of how the car will treat them throughout its planning, which, when backed up by 

data on human well-being, provides the vehicle a reason to operate in a certain way. The ethical 

valence concept depicts self-driving cars as an ecological organism (Wilson 1993, Haidt and 

Joseph 2004, Gray, Young et al. 2012), whose agency is directly impacted by its surroundings' 

claims. The strength of a claim might vary. A pedestrian's claim to safety, for example, may be 

stronger than a passenger's claim if the former is more likely to be badly harmed because of a 

self-driving collision. As it drives through its surroundings, the self-driving vehicle's objectives 

is to (excellently) accomplish as many claims as possible, reacting in proportion to the strength 

of each claim. 

Individual claims might be regarded analytically as contributing or pro tanto causes for the 

vehicle's behaviour (Appiah 2008, Dempsey 2016). Each claim is a contributory "ought," 

which implies that the strength of a claim is proportional to how strongly its "ought" to respond 
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to the individual's claim, or his "moral pull" (Shapiro 2018). in normal driving conditions, for 

example, a self-driving car has every incentive to prioritise its passenger's claim to safety in its 

tactical decision-making. When a dilemma scenario develops and an inevitable collision is 

forthcoming, the vehicle will be confronted with extra reasons to prioritise the safety claims of 

other road users, such as pedestrians or bicycles, all things considered. Because both variables 

are antagonistic, the vehicle must choose which is the more powerful and act on that factor. 

Thus, by reacting to the strongest attraction in its surroundings, the vehicle is doing what its 

"ought" to do morally. 

The purpose of claim mitigation in the ethical valence concept is to capture the role of 

normative ethics in the decision-making of a self-driving car. In other words, claims allow the 

vehicle to decide what morality requires in critical situations by assessing how changes in road 

user welfare affect the rightness or wrongness of a self-driving car's actions. In many respects, 

this approach is influenced by the distributive ethics "competing claims" paradigm (Sovacool, 

Burke et al. 2017, Symons 2019), and when viewed in this perspective, the ethical valence 

notion appears to be fundamentally utilitarian. However, this perspective is flawed. In practise, 

because the EVT's main goal is to provide a public-acceptance-sensitive account of AV ethical 

decision-making, we must seriously consider the idea that other potentially normatively 

relevant factors, such as agent-relative constraints and options (Kalajtzidis 2019), should be 

included in the theory's foundational structure. We must also resist the seductive temptation to 

believe that this requires self-driving cars to have some form of moral status or to meet common 

definitions of personhood such as intentionality, subjectivity, or free will (Alfano, Loeb et al. 

2014, Frischmann and Selinger 2018). In this perspective, it's probable that if agent-relative 

constraints and choices are normatively significant in the setting of self-driving vehicles at all, 

it's because they reflect the expectations that certain road users may have about the partiality 

of the self-driving vehicle. In this light, the passenger is likely to expect her self-driving car to 

prioritise her and her family's needs, particularly when she is in danger of being badly hurt or 

killed (Nascimento, Vismari et al. 2019). 

The function of claim mitigation in the ethical valence concept is to capture the contribution 

that normative ethics might make to a self-driving vehicle's decision-making. In other words, 

claims enable the vehicle to determine what morality necessitates in crucial circumstances by 

measuring how changes in the welfare of road users impact the rightness or wrongness of a 

self-driving vehicle's conduct. In many ways, this approach is inspired by the "competing 

claims" paradigm prevalent in distributive ethics (Dignum 2017, Dogan, Costantini et al. 2020), 

and seen in this light, the ethical valence concept would appear to be foundationally utilitarian. 
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This vision, however, is imperfect. In practise, because the ethical valence concept’s primary 

objective is to provide an account of a self-driving vehicle ethical decision-making that is 

sensitive to public acceptance, we must seriously consider the idea that other potentially 

normatively relevant factors, such as agent-relative constraints and options (Kalajtzidis 2019), 

must be included in the model's foundational structure. We must also avoid the alluring 

temptation of supposing that this necessitates self-driving vehicles having some sort of moral 

position or possessing popular criteria for personhood like intentionality, subjectivity, or free 

choice (Talbot, Jenkins et al. 2017, Vanderelst and Winfield 2018). In this light, it's likely that 

if agent-relative restrictions and choices are normatively important in the context of self-

driving cars at all, it's because they mirror the expectations that some road users may have 

about the self-driving vehicle’s partiality. In this perspective, the passenger is likely to expect 

her self-driving vehicle to prioritise her and her family's interests, especially in situations when 

she is at risk of being seriously injured or killed (Keeling 2020). 

Because the self-driving car serves as a proxy or substitute for her practical activity in the road 

traffic scenario, it is possible that this assumption is accurate (Cunneen, Mullins et al. 2020, 

Keeling 2020). As a result, if her self-driving car fails to safeguard her and her loved ones from 

harm, it may behave in an unpleasant manner, i.e., as a "morally superior robot villain," 

disregarding the importance of the connections she has with her loved ones. Significantly, the 

inclusion of a form of morally admirable partiality on the part of the self-driving vehicle toward 

its passengers does not necessarily imply the adoption of a form of passenger-centric 

exclusivism, in which the passenger's interest is the only normatively relevant factor 

determining the rightness of the self-driving vehicle's actions, as is frequently implied in 

popular culture. The fact that a specific person is a passenger in a self-driving car is one 

normatively important aspect that must be handled together with information about the 

individual well-being of all road users is adequate, rather than going into detail. 

Due to this odd mixture at the factoral level of the EVT, we are moving away from 

utilitarianism and toward contractarian forms of foundational theory—and perhaps specifically 

Scanlonian contractualism—because these types of theory typically view the correct list of 

normatively relevant factors as those that would be agreed upon, consented to, or reasonably 

unobjectionable for suitably disposed and informed individuals in the first place (Scanlon 2000, 

Wallace 2019). To be sure, there are substantial disadvantages to utilising (Scanlonian) 

contractualism as the EVT's fundamental theory. Furthermore, the concept of claim mitigation 

as given in this chapter is predicated on the idea that an autonomous vehicle role in ethical 

decision-making is to directly assess the claims and interests of individual road users in its 
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surroundings. A contractualist explanation of moral deliberation, in which the agent evaluates 

the reasons people have for rejecting the agent's current motivating principles, then chooses a 

motivating principle that provides reasons for action that no one could possibly reject, contrasts 

with the agent's present motivating principles. The "focal point" of contractualist theories, 

rather than the acts they inspire, is norms and principles, and as a result, the viewpoint from 

which moral debate takes place is the standpoint from which contractualist theories take place 

(Habermas 2018). Although this step is not included in the actual choice procedure of the 

Ethical Valence Theory, it is carried out by the human decision-makers who are involved in 

the design process throughout the development of the theory. It is possible to interpret this 

divergence as a departure from Scanlon's original theory in this way, because it requires the 

division of cognitive labour between the designer and the machine, which is something that 

Scanlon's original thesis glaringly fails to provide. According to the Value Sensitive Design 

method (Friedman, Kahn et al. 2013), we may consider this deliberative step to be the major 

responsibility of the so-called "conceptual phase" of intelligent artefact design. As soon as it is 

installed in an autonomous vehicle, the EVT does not deliberate "across" principles to find the 

most acceptable (or least rejectable) option; rather, it simply acts on the principle that its human 

designers have chosen to implement, which may or may not satisfy the explicitly Scanlonian 

conditions of reasonable rejection. The following are the three most significant analogies 

between contractualism and the fundamental framework of Ethical Valence Theory: First and 

foremost, unlike contractualism, the EVT does not seek to alter common sense morality by 

providing a metric explanation of what constitutes moral worth. Instead, the EVT seeks to 

clarify what constitutes moral worth. As opposed to this, it is a pluralist account of morality, 

which includes space in its description of normatively significant components for both the 

quality of outcomes and the unique and universal duties of all individuals. A second constraint 

adhered to by the EVT, which is related to (Scanlonian) contractualism, is that "...in rejecting 

a moral principle, we cannot turn to assertions about the impersonal goodness or badness of 

occurrences" (Wallace 2019). In addition, both contractualism and the Ethical Valence Concept 

adhere to a further 'individualist' restriction, according to which all moral reasons for conduct 

"...must appeal entirely to the principle's implications for ourselves and other single 

individuals...." (Scanlon 2000, Wallace 2019) both suggest that They are advantageous to the 

EVT because they restrict the aggregation of claims in the vehicle's ethical deliberation, 

guaranteeing that the vehicle only considers direct changes in individual welfare or everyone’s 

degree of claim fulfilment, rather than aggregated claims. Essentially, we have something that 
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is similar in appearance to an ecumenical variation of action consequentialism that adheres to 

contractualist limitations and norms. 

 

5.3.1 Valence as a Concept 

It is argued that the contractualist motivations of Ethical Valence Concept serve primarily to 

track common sense morality as it applies to the case of autonomous vehicles, whereas the 

concept of "valence," as well as the theory's use of it, serve primarily to track (empirical) 

estimates of public acceptability. The strength of each road user's absolute right not to be hurt 

by an autonomous vehicle has already been established. The strength of this right grows in 

proportion to the severity of the injury experienced because of an accident, as previously 

established. The most important thing to remember about road users is that they each have a 

distinct valence, which fluctuates in strength in proportion to how that specific user's identity 

connects to several various sets of traits and behaviours. criteria outside of the technical 

limitations of identification, data collection, and processing, there are no specific criteria that 

should inform a valence, but they can include features such as different age groups, socio-

economic levels, or professions in the vein of the Moral Machines Experiment (Awad, Dsouza 

et al. 2018), or they can include forms of morally admirable partiality that might exist between 

the self-driving vehicle and its passenger(s) (Keeling 2020). Even though the bulk of the criteria 

used to identify valences remain controversial, it would be absurd to attempt to summarise the 

whole extent of the issue in this space. In our opinion, while attempts to define and define the 

moral limits of valence features fall squarely under the jurisdictional purview of moral 

philosophy, such efforts must also engage with the burgeoning world of so-called ethical design 

principles (Dignum 2019) and emerging ethico-legal doctrines from various political 

institutions (Bonnefon, Shariff et al. 2019), which taken together at the very least, may impose 

very strict limitations on the use of such In his 2017 article which points out that the German 

parliament's ethics commission on automated and connected driving expressly prohibits "...any 

distinction based on personal features (age, gender, physical or mental constitution)...", which 

appears to exclude all but a circumstantial categorization of individuals, discriminating only 

"cyclists" from "pedestrians" and other such "types" of road users. Accordingly, categorization 

of road users according to their relative 'vulnerability,' such as is commonly achieved in the 

subject of traffic psychology, may be successful in satisfying such stringent standards. 

Valences' attractiveness and function in nature may both appear to be questionable when 

confronted with such tight informational limitations. It is likely that two more issues provided 
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by the selection of valence criteria may lend greater credibility to this point of view. First and 

foremost, at least from the standpoint of acceptability, there is a clear relationship between 

decisional accuracy and robustness of information, which simply means that the finer the 

valence criteria are, the more closely the resulting decisions of the self-driving vehicle will be 

able to track public acceptability (Martin 2019). In an ideal world, valences would incorporate 

all the essential facts about a specific situation to enable for the best-informed decision 

possible. Various sources of information, including explicit input from the passenger, empirical 

studies, data retrieved from environmental perception, and vehicle-to-vehicle or vehicle-to-

device communication, are asserted to be available for gathering these facts. These facts are 

said to include several traits that are comparable across different road users including health 

status, age, income, and occupation. The inability to clearly distinguish between which 

qualities are significant adds to the already tough process of recognising which characteristics 

are relevant. Consider the idea of age, for example. In certain societies, the old are valued more 

highly than the young, for reasons like as knowledge, perspective, or other less utilitarian 

reasons, but others appear to worship the cult of youth, and as a result, may be more ready to 

sacrifice the young in the case of a self-driving vehicle crash. It is possible to record preferred 

gerontophobia in both scenarios by empirical investigation of the surrounding environment, 

and the valences will reflect these fluctuations because of the findings. When it comes to the 

complete examination of an individual's welfare (and, subsequently, his 'claim,' in the sense 

that the elderly is more likely than younger people to suffer damage or death because of a 

collision), age can be an important factor to consider (Liu, Hainen et al. 2019) When it comes 

to a complete examination of an individual's welfare (and, hence, his 'claim,') age might be an 

important factor to consider. As a result, it is essential to examine the nature of the facts that 

serve as the foundation for valences when formulating empirical research and surveys, as well 

as when interpreting the data, to avoid ambiguity. 

The unintended or collateral implications that the selection of certain characteristics may have 

on the overall traffic environment are a second hurdle that the concept of valence, as we have 

mentioned, must overcome before it can be deemed effective in its application. A vehicle that 

is designed to discriminate between motorcyclists who are wearing helmets and motorcyclists 

who are not wearing helmets in the vehicle's environment is an example of a self-driving 

vehicle that is designed to discriminate between motorcyclists who are not wearing helmets in 

the vehicle's environment, according to (Arkin 2016) in his paper on autonomous vehicle 

ethics. While it may be tough to sacrifice a helmet-wearing rider in an eventual accident, the 

vehicle lowers harm by basically targeting the most vulnerable road user on the highway. It is 
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possible that this will result in an unpleasant trade-off in the case of a motorbike collision. 

However, by doing so, it disincentivizes other motorcycle riders from wearing helmets, 

therefore indirectly raising the amount of danger in the overall traffic scenario. While choosing 

to sacrifice the motorcyclist who does not wear a helmet, the government makes another type 

of mistake: by placing a high value on the safety of helmet-wearing motorcyclists, the 

government unfairly targets illegal road users, displaying an uncomfortable form of 

technological paternalism that may appear to 'punish' those who do not adhere to the letter of 

the law. The government should reconsider its decision to sacrifice the illegal road user. This 

is another case in which the interplay between an impartial claim to safety and a valence may 

make the selection of a self-driving vehicles more difficult to comprehend. A "helmet or no-

helmet" criteria may be eliminated from consideration because of the detrimental implications 

that employing such a criterion might have on the traffic environment. This is even though it 

plainly violates the right to personal safety of road users. By the same token, if the problem is 

handled more broadly than as a concern of public safety, and more precisely as a question of 

public acceptability, empirical study may be able to absorb the consequences of this influence 

more effectively. So, it shouldn't be too surprising that the development of valence criteria is 

an extremely contentious topic, in part because it requires policymakers and engineers to 

determine which seemingly inconsequential information might one day turn out to be the 

deciding factor in a potentially life-threatening situation. Although it is feasible to alleviate 

some of this pressure by developing a deliberative process that does not rely solely on valence-

type considerations, this is especially true when moral claims and social acceptability are 

considered separately during the design process. 

 

5.3.2 An Ethical Profile 

In the ethical valence concept, the idea of an "ethical profile" refers to a specific decision 

method or strategy that mitigates the numerous claims and valences of road users and other 

road users. This is the final conceptual aspect of the theory. At its core, each moral profile 

provides a different criterion of rightness: a maxim or rule that decides whether a certain action 

option is right or wrong in the given circumstances. Accordingly, a moral profile describes 

which claims the self-driving vehicle is sensitive to, when those claims are sensitive to those 

claims, and how those claims are influenced by a given individual's valence strength. It is 

possible to organise the mitigation process between valences and claims in a variety of ways, 

but a preliminary categorical distinction between users who are within the self-driving vehicle 



114 
 

and those who are outside of it can be utilised to honour the unique duty the self-driving vehicle 

may have in relation to its passengers. To do this, claim mitigation should be conceptualised 

as the weighing of a passenger's claim against those in the self-driving vehicle's surrounding 

environment. We may then investigate a range of potential mitigations across these two areas 

of interest, including the following: A risk-averse altruist moral profile, for example, may 

prioritise the user who has the greatest valence in the event of a collision, provided that the 

threat to the s self-driving vehicle's passenger is not severe. In this sort of profile, it appears 

that the passenger in a self-driving vehicle may be prepared to endure some degree of injury to 

respond properly in the traffic environment, but not to the point that he or she would die or 

suffer significantly debilitating injuries because of his or her decisions. A profile like this might 

help to reduce public concern about so-called "killer cars" and to enhance user confidence in 

autonomous vehicles by reducing public anxiety. However, a self-driving vehicle's passenger 

would be prioritised by a threshold egoist type profile if there is no considerable threat of 

damage to another user who has a greater valence than the passenger, which is unlikely. 

Perhaps a profile like this could increase public acceptance of autonomous vehicles if the 

criteria for their use were designed to address (and eventually prioritise) the needs of especially 

vulnerable road users such as children under the age of six and people with disabilities who are 

unable to walk or stand on their own. 

There will never be a single profile that will be able to resolve the moral and societal problem 

that autonomous automobiles offer once and for all, since there is no such thing. The selection 

of a moral profile, as well as the selection of valence criteria, are available as multiple entry 

points for human control in an autonomous machine, although this is not the case with 

autonomous machines. The public is also given a say in the choices made by a self-driving 

vehicle, which is crucial because it guarantees, among other things, that the self-driving vehicle 

is sensitive to moral urgency and that its deliberation process is fair and well-organized on the 

side of the public. By focusing on flexibility rather than rigidity, we can assure that the actions 

of an autonomous vehicle are both acceptable and moral, rather than merely moral. 

As previously mentioned, the validity of the Ethical Valence Theory is jeopardised by a well-

known computational weakness: the theory's reliance on computations of the degree of harm 

that is expected to be suffered by certain road users. Since many ethics policies that aim at 

damage or risk minimization do not have the informational certainty necessary to successfully 

predict the harmfulness of individual accidents this has become a recurring source of concern 

in the literature on robot ethics (Arkin 2016, Lin, Abney et al. 2017). As a result, the Ethical 

Valence Theory is susceptible to similar objections in this regard as well. Because of a lack of 
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specific knowledge about elements such as the posture of people or the structural integrity of 

individual cars, estimating the possibility of injury to road users will remain approximative and 

imprecise. This is exacerbated by ambiguity in the vehicle's assessment of the road itself. 

Although it has this shortcoming, the ethical valence concept has the advantage of not relying 

on the possibility of harm in a disproportionate amount when making ethical decisions. There 

are a variety of elements that impact what the vehicle will do, including the potential for injury 

and the possibility of an impartial claim being filed against it, among other considerations. 

The ability of the ethical valence concept to anticipate and respond to the emergence of a 

second dilemma scenario that may arise because of its original morally optimal action choice 

is one last theoretical difficulty. For autonomous cars, this relates to the problem of temporal 

horizons in the decision-making process, and as a result, it constitutes both a technology barrier 

for self-driving vehicles and a fundamental theoretical error in consequentialist ethics. If the 

self-driving vehicles has perfect foresight, it should be able to anticipate and mitigate any 

negative externalities that may arise because of its ethical decision-making in the future. 

Indeed, it's likely that this is one of the implicit assumptions that underpin the concept of 

autonomous vehicles behaving as superhuman drivers, as has been suggested by some. Because 

‘short-sighted' autonomous vehicles may appear to be immoral in comparison, it may appear 

that designers have a techno-ethical duty to incorporate lengthy time horizons into vehicle 

decision-making. When elucidating appropriate moral profiles, the moral significance of a 

temporal discount rate and the ostensibly relevant characteristics of that rate become important 

considerations. This is especially true if these considerations are seen to be important when it 

comes to public acceptability in a contractualist spirit. However, these considerations are not 

the only considerations. In the absence of such information, it is not abundantly clear that the 

functional moral agency of autonomous vehicles will be required to extend much further into 

the future than is currently anticipated, particularly if this process threatens the real-time 

performance of the decision-making algorithm. If an autonomous vehicle is confronted with 

these types of issues, the boundary between its decisional ethics policy and its larger society 

policy for autonomous vehicles is usually blurred, if not completely erased. Two terrains exist 

inside the action space of unavoidable accidents that do not necessarily have to be completely 

consistent with one another to function properly. Briefly stated, when faced with a dilemma, it 

is critical that the vehicle make the ethically optimal choice within its environment, and in an 

ideal world, it would also account for any additional harm that it might cause. However, it is 

possible that the need for optimization will extend beyond this horizon in the case of 

autonomous vehicles due to wishful thinking. 
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Because of this, ethical valence concept is meant to serve as an adaptive response to the many 

types of uncertainty that are characteristic of the early stages in the adoption of self-driving 

vehicles from a theoretical viewpoint. ethical valence theory, which was developed in response 

to moral ambiguity and a lack of universal ethical consensus, presents customizable and 

flexible moral profiles in a claim-based framework that is not closely linked to traditional moral 

theory or any one idea of what is right or wrong. ethical valence concept are used to help 

vehicles in deciding on which facts and features should be considered when making decisions 

in ambiguous situations. This information has been backed up by empirical investigation and 

is available when the vehicle is operating in ambiguous situations. While it does not want to 

create "morally superior robot villains" or to replicate criminal behaviour in human drivers, it 

does not rule out the possibility. Instead, it seeks to provide a satisfactory solution to the moral 

and societal issues posed by self-driving vehicle, as well as a practical tool for engineers to 

utilise in their daily job. 

 

5.4 Ethical Valence Theory Computational Implementation 

Described in this section is the process of putting the ethical valence concept into practise. The 

topics mentioned in the preceding sections will be examined again, but this time from the 

perspective of computational standpoint. As it drives the thousands of kilometres it will 

traverse, a self-driving vehicle will encounter problematic scenarios on public highways at 

various points along the way. In these situations, every potential response will result in the 

harm (perhaps fatal) of a road user. We found that the emergence of a dilemma situation 

triggers the activation of an ethically constrained deliberation model, the ethical valence 

concept, which is a deliberation model with ethical restrictions in our self-driving vehicle's 

simulation. To distinguish between this model and the one that is used in regular settings, where 

performance and efficiency constraints impact the decision-making process, it is necessary to 

distinguish between them. 

 

5.4.1 The MDP Algorithms 

It will be addressed in further depth in this section about the various components of a Markov 

Decision Process (MDP). A brief and abbreviated introduction will be provided; however, 

comprehending this introduction will be necessary for understanding the future sections. 
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According to (Sigaud and Buffet 2013), the technique is composed of five components, which 

are as follows: 

 

Figure 5.1: Self-driving vehicle’s state representation 

 
 The state space (𝒔𝒊  ∈ 𝑺): collection of all possible self-driving vehicle configurations, 

and the behaviour of the system is described by a series of states that are repeated 

throughout time. 

 The action set (𝒂𝒊 ∈ 𝑨): collection of all possible actions available to the self-driving 

vehicle. It is responsible for initiating the shift from one state to another in the self-

driving vehicle’s internal state transition system. 

 Transition probability (𝑻): whenever a self-driving vehicle is in one state, the transition 

probability (T) represents the likelihood that performing an action will result in the self-

driving vehicle shifting to another state; it is represented by the formula 𝑝(s୲ାଵ |s୲, a୲) 

when the self-driving vehicle is in another state. 

 The reward function (𝑹): the performance of a function in relation to the global goal 

can be quantified. 

 The discount constant (𝜸): is a variable that may be used to change the value of utility 

between time (t + 1) and the present time (t). It is described as between the numbers 

[0, 1]. 

 

According to the example that will be used in the application section, the state may be defined 

as (𝑥, 𝑦, 𝜃, 𝑣, ∅), with the only source of information being the self-driving vehicle's 

configuration (the configuration of all other road users is already accounted for in the reward 
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function). Each of the variables in the equation (𝑥, 𝑦) represents the position of the centre point 

of the rear-axis, as well as the direction of the vehicle, the scalar velocity, and the steering 

angle. 

The outcome of a MDP algorithm is a policy (𝜋∗) that, for each state, identifies the most 

optimal action to be performed and then implements that action in that state. As shown in 

eq.5.1, when this action is done at the state 𝑠௧, it increases the value V (𝑠௧, 𝑎௧) at the state 𝑠௧ to 

the greatest extent possible. 

 

V*(s) = 𝔼గ [ ∑ ϒ௜ஶ
௜ୀ଴  ∙  𝑟௜  (s, 𝑎) |𝑠଴ = 𝑠௜ ] = 𝑚𝑎𝑥௔∈஺ [ 𝑟 (s, 𝑎) + ∑ 𝑝(𝑠ᇱ|𝑠, 𝑎)𝑉(𝑠ᇱ)௦ᇲ∈ௌ ] ………… Equation (5.1) 

 

By simply creating a connection between the actions that maximise 𝑉(𝑠௜) and 𝑠௜, then the policy is retrieved 

from eq.5.1 as shown in eq.5.2 

 

𝜋 (𝑠) ∈ 𝑎𝑟𝑔𝑚𝑎𝑥௔∈஺ [ 𝑟 (s, 𝑎) + ∑ 𝑝(𝑠ᇱ|𝑠, 𝑎)𝑉(𝑠ᇱ)௦ᇲ∈ௌ ] …………. Equation (5.2) 

 

5.4.2 Dilemma Situations classifications 

During each stage of the self-driving vehicle's trip, it should be possible to assess whether a 

circumstance poses a moral problem that should be investigated and contemplated in further 

depth. It is necessary to categorise circumstances to determine if the self-driving is required to 

act in line with ethical limitations or just to achieve certain objectives. Self-driving vehicles 

are expected to comply to three principles that explain their responsibilities towards other road 

users in their near area. These rules are as follows: One or more of these rules may be violated 

across all possible actions, indicating that the non-dilemma portion of the Self-driving vehicle’s 

decision-making will be unable to cope with the consequences of all possible actions and that 

ethical deliberation will be required for the Self-driving vehicle to act in an acceptable manner. 

Harm is defined as the unpleasant consequences that a person experiences because of colliding 

with another road user, regardless of the type of collision that occurred. Below are the 

responsibilities of Self-driving vehicles in relation to other road users: 

 It is critical that the lives of the passengers are not jeopardised in any way. 

 It is not acceptable to put the lives of road users and those in the surrounding 

environment at danger. 

 It is essential to follow all traffic regulations. 
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It is important to note that both the first and second criterion apply to interactions between 

other road users and the self-driving vehicle in question. Vehicles are represented as rectangles, 

whilst humans are represented as squares, to make their implementation as simple as possible. 

It is judged that a collision has occurred if these structures come into touch with one another 

because of the performance of a certain activity. Based on the findings of (de Moura et al 2010), 

a safe border may be established around the self-driving vehicle to prohibit the execution of 

actions that would eliminate the possibility of breaking without swerving to avoid an accident 

from occurring. This circumstance would not necessarily be deemed a conundrum that needed 

to be resolved since there are other viable choices available. 

So far, there has been no concern given to the compliance with traffic rules and regulations. 

The vehicle, on the other hand, should be cognizant of the interplay between ethical and legal 

activity, which is a desirable characteristic in this context. Another way of putting it is that 

where there is an inherent conflict between preventing human injury on the one hand and 

complying to traffic laws on the other, it is better to prioritise avoiding the former over the 

latter. Therefore, it is important to describe the MDP algorithm such that this priority may be 

stated in a manner that is independent of the effect of the temporal discount rate on the priority 

expression. Nevertheless, following a violation, the self-driving vehicle must return to a 'safe' 

state to prevent a second collision from occurring as a direct result of the action it performed 

in the first place. All activities result in a collision if this is the case, as determined by the 

decision-making process of the self-driving vehicle. 

Compliance with traffic rules from the outset of the self-driving vehicle's development is an 

issue that has gotten little attention in the literature. Put another way, legal conformity presents 

challenges related to the interpretation of laws that may be ambiguous, allow for exceptions, 

or be internally inconsistent, and the resolution of all these challenges may necessitate the 

application of common sense thinking to be successfully resolved (Rizaldi and Althoff 2015, 

Prakken 2017). As a result of complying to traffic rules, it is important to include somewhat 

abstract criteria, which are used in legislation to map real-world behaviour, into a self-driving 

vehicle and, more broadly, into an autonomous system to ensure that it operates safely (Leenes 

and Lucivero 2014, Boden, Bryson et al. 2017). In certain cases, such as (Esterle, Gressenbuch 

et al. 2020), researchers have already attempted to incorporate some aspects of various traffic 

codes particularly those relating to circulation and behaviour into a self-driving vehicle. Most 

of these endeavours have been carried out utilising logic-based techniques to simulate 

restrictions, with logic-based approaches representing just the procedural demands that are 

commonly included in traffic regulations, as opposed to other approaches. 
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Consequently, while the obligation requiring traffic code observance is properly specified, it 

may not be required to fully apply the whole traffic code to its full extent because of these 

factors. To avoid going beyond the scope of this thesis and discussing the methods by which 

all traffic codes should be implemented within a self-driving vehicle, a set of logical rules will 

be used to represent the procedural rules that are present in each traffic code. This will avoid 

going beyond the scope of this thesis and discussing the methods by which all traffic codes 

should be implemented within a self-driving vehicle. If this set of criteria is followed, the self-

driving vehicle should be able to cruise in a legal way virtually all the time. In this part, we 

will not discuss exceptions to the code or how to settle disagreements amongst rules, as they 

are considered ethical decisions rather than legal decisions (even if ideally the procedures to 

solve conflicts between rules present in traffic codes should be used where possible). 

Consider the following logic rules in a straight-line domain, with no pedestrian strips or 

semaphores, and a solid double line between each of the logic rules: 

 Do not cross into the opposite lane of traffic unless necessary. 

 Avoid parking your vehicle on the sidewalk. 

 Drivers are not permitted to exceed the specified speed limit. 

It should be noted that the previous example contains a simplification that is only valid in a 

small number of unique instances. In general, the self-driving vehicle should be intended to 

target the 4th or 5th level of automation in typical contexts, thus the real set of rules will be 

considerably wider in scope than these three rules. 

 

5.4.3 An Algorithm for Ethical Deliberation 

All action that the self-driving vehicle can do is evaluated considering the collection of tasks 

that have been specified. The ethical valence concept must still decide on which action to take 

and which action to carry out if, at a certain point, there is no acceptable alternative available. 

Specifically, it accomplishes this using two variables: valence and injury. It is comparable in 

general terms to that of (Mittelstadt 2019) in that it takes into consideration world states as well 

as decisions (formerly referred to as 'acts') and the repercussions of those decisions, as well as 

the consequences of those decisions. For its part, our method differs somewhat from the others 

in that it provides a quantification of the effects of prospective actions as well as the inclusion 

of uncertainties in the execution of those acts, which is particularly essential. 
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5.4.3.1 Injury  

It is necessary to take "injury" into account in ethical reasoning to estimate the danger for self-

driving vehicle occupants and other road users engaged in a hypothetical collision, and 

therefore to establish whether they have a legal claim against the vehicle. To determine the 

severity of an accident, for many years, the difference in velocity between two involved road 

users (∆𝑣) has served as the key variable (Evans 1994, Evans 2001, Jurewicz, Sobhani et al. 

2016, Organization 2017). 

It is the bulk of vehicle crash research performed in the field of accident data that is used to 

establish the function of (∆𝑣)  in collision outcomes. This is because historical accident data is 

easier to get by than current accident data. There are two metrics that may be used to evaluate 

injury: the risk of fatality (as calculated by the risk of death calculator) and the Abbreviated 

Injury Scale (AIS) (MacKenzie, Shapiro et al. 1985, Hsu, Wu et al. 2019). It is necessary to 

consider not only fatal collisions but also collisions that can result in severe injury (referred to 

as MAIS3+, which indicates that at least one injury in some region of the body is greater than 

AIS3, on a scale that ranges from zero to six) in this context, so we will use the latter term. 

Whenever the European Union measures road traffic accidents, this number is used as a 

baseline to compare performance between member states (Weijermars, Bos et al. 2018). 

 

Table 5.1: The collision threshold that is utilised in fatality collisions (∆𝑣) 

Classification Contact point ∆𝒗 value (m/s) source 

Pedestrian collision  –  6.94 (Kröyer 2015) 

Vehicle collision  Rear 10.56 (Jurewicz, Sobhani et al. 

2016) 

 Front 7.78 (Jurewicz, Sobhani et al. 

2016) 

 Far side 6.39 (Jurewicz, Sobhani et al. 

2016) 

 Near side 5.56 (Jurewicz, Sobhani et al. 

2016) 

 

There are several different types of severe injury thresholds, all of which are included in table 

5.1 above. Typically, an injury is deemed "severe" if it reflects an MAIS3+ injury risk of 10% 

or more. Injury severity was calculated using definition of severe injury, which is more than 9 
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(defined as the squared sum of AIS for the three most seriously damaged body areas). This 

definition is tougher than MAIS3+ and was used to compute the ISS for the pedestrian instance 

as well. Insurance policies cover both the near-side (driver's side) and far-side (passenger's 

side) of a lateral collision. It is applied the same penalty that is used for collisions between 

vehicles when a single vehicle collides with another single vehicle. The data presented in 

(Jurewicz, Sobhani et al. 2016) was collected by the National Highway Traffic Safety 

Administration (NHTSA) and was previously published in (Bahouth, Graygo et al. 2014). It 

considered injuries in the front seat, with a seat belt, without rollover, with a passenger age 

ranging from 16 to 55, involving passenger vehicles and heavy vehicles, and it considered 

injuries in the front seat, with a seat belt, without rollover, with a passenger age ranging from 

16 to 55, Retrospective analysis has certain drawbacks, as will be discussed below. (Rosen, 

Stigson et al. 2011) feel that the data is biased because it is being collected from a limited 

number of nations. Aside from that, age is a key component in the pedestrian scenario (Kröyer 

2015), and as a result, the distribution of age in the investigated population plays a role in the 

resultant curve that is not considered in the analysis. In addition, underreporting of non-

dilemma cases (Hyder, Paichadze et al. 2017), estimation of collision velocities (Rosen, 

Stigson et al. 2011), neglect of a vehicle's mass and geometry (Mizuno and Kajzer 1999, Martin 

and Wu 2018), and the use of different methodologies to evaluate AIS scores (Weijermars, Bos 

et al. 2018) all reduce the precision of this approach (Rosen, Stigson et al. 2011). Taking into 

consideration contextual information is important since the preceding technique has limits 

when applied to specific situations (even though it generalises well across a population). This 

type of system may be used to simulate the collision interaction between two vehicles, where 

the starting velocity of each vehicle is projected onto the axes n (normal to the contact plane 

between the two vehicles) and t (tangential to the contact plane). 

Evaluating the collision velocity was accomplished using the conservation of linear 

momentum, which is represented in eq.5.3. It is represented by the variable 𝑣௙ , which reflects 

the collision velocity for both road users (k and l), as expressed by the variable 𝑣௙. The masses 

𝑚௞  and 𝑚௟  correspond to the entire mass of the road user (if it is a vehicle, then the vehicle's 

mass plus the passengers' mass), while the velocities and impacts of k and l are represented by 

𝑣௟
௜ and 𝑣௞

௜  respectively. 

 

𝑚௞𝑣௞
௜  + 𝑚௟𝑣௞

௜  = (𝑚௞ + 𝑚௟) 𝑣௙ …………………………………… Equation (5.3) 
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Because a vehicle's mass is far greater than that of any pedestrians, we assume that there is no 

change in the self-driving vehicle's velocity in accidents with those involved. Considering that 

the most common factors used to predict damage for pedestrians are the kind of vehicle 

involved (due to the height of bonnet leading edge) (Mizuno and Kajzer 1999, Lefler and 

Gabler 2004) and the vehicle's collision velocity (Mizuno and Kajzer 1999), this simplification 

was made. As a result, the ultimate velocity of the pedestrian is regarded to be identical to the 

self-driving vehicles. It is the same rationale that is used for vehicle-to-vehicle collisions that 

is used when a vehicle collides with a static object, with the exception that 𝑣௙ is set to zero 

instead of one. 

Eq.5.4 below defines harm as the quantification of the severity of an accident, which is the 

result of the accident (Esterle, Gressenbuch et al. 2020). It is computed for each road user based 

on the velocity variation caused by the collision, with the velocity at contact for the road user 

𝑘, 𝑣௞
௜ , and the forward velocity 𝑣௙ as inputs. The coefficient of structural vulnerability (𝑣௩௨௟

௞ ,), 

which is determined later in eq.5.4, is taken into consideration. This arrangement takes into 

consideration the impact force as well as the structural susceptibility to such a force, among 

other things. 

 

ℎ௞ (𝑠௧, 𝑠௧
ᇱ, 𝑎௧) = 𝑣௩௨௟

௞  ∙ (ฮ𝑣௙ −  𝑣௞
௜ ฮ) …………………………… Equation (5.4) 

 
Whether or not two vehicles with varying dimensions and masses give the same level of 

protection to their occupants is defined as compatibility (Mizuno and Kajzer 1999). In the 

opinion of (Mizuno and Kajzer 1999, Petzoldt, Schleinitz et al. 2018), sport utility vehicles, for 

example, are designed to protect their occupants while being hostile against other cars. For 

pedestrians, the height of the bonnet leading edge explains why some cars are more dangerous 

for pedestrians than others. This is because the site of harm is determined by whatever portion 

of the body the vehicle contacts when it hits a person. According to (Crocetta, Piantini et al. 

2015) pedestrian can impact the hood in a variety of locations, which alters the way they are 

projected onto the ground, resulting in either more or lesser damage. 𝑐௩௨௟ is a constant that 

reflects all the intrinsic features of a system or item (including its state). Preferably, one would 

calculate ℎ௞ (𝑠௧, 𝑠௧
ᇱ, 𝑎௧) using the same process used to determine the probability of MAIS3+ 

injury versus ∆𝑣 plot (logistic regression with weighting), but velocities at the impact 𝑣௞
௜  are 

not available in publicly available databases of vehicle collisions, which makes this an 

impractical option. Aside from that, it would be beneficial to categorise collisions according to 
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the type of vehicle involved (SUV, sedan, minivan, etc.) as well as the direction of the collision 

(frontal collisions, near side collisions, far side collisions, against a static object, etc), which 

are not always available in public databases. Because the determination of 𝑣௞
௜  for collisions is 

the topic of itself, it is beyond the scope of this thesis to go into greater detail about it. A linear 

function was used to simplify the ℎ௞ (𝑠௧, 𝑠௧
ᇱ, 𝑎௧) = 𝑓 (𝑐௩௨௟, ∆𝑣௞)  equation, and 𝑐௩௨௟ will be 

estimated in the application section because of this. 

 

5.4.3.2 Ethical Valences 

The goal of a valence is to indicate the degree of social acceptability that is associated to the 

claims of road users in the vehicle's surroundings, as stated in earlier sections. In this way, 

certain road users' claims may be more or less "acceptable" to fulfil through the vehicle's action 

option. The valences track various physical characteristics that are seen to carry social 

importance, such as height, age, gender, helmet-wearing-cyclist, or stroller-pushing-adult, all 

of which are detectable by the self-driving vehicle’s object classification algorithms in the 

sense that they are rooted in the phenomenal signature of individuals. Importantly, the intensity 

of these valences is determined by a sort of ranking or hierarchisation, as shown in table 5.2 

below, which ties a road user's claim with a certain class or category of valence.  

 

Table 5.2: Potential valence hierarchical structure 

1st Highlight 2nd Highlight Categorization 

Young (0 – 18) years Pedestrian  A 

Adult (18 – 65) years Pedestrian B  

Old (65+) years Pedestrian C  

Young  Vehicle passenger D  

Adult Vehicle passenger E  

Old Vehicle passenger F  

 

As a result, there might be more or fewer valence groups depending on the amount or detail of 

the valence traits under examination. Two characteristics are utilised in this example: age and 

road user type. According to new study, western cultures prefer to protect the young and 

vulnerable (as indicated by their susceptibility to injury) in self-driving vehicle collisions 

(Awad, Dsouza et al. 2018). Considering the findings, the category was devised. When there 
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are a lot of people, automobiles, or pedestrians, the entity with the most users and highest 

categorisation gets priority. When comparing a self-driving vehicle with passengers D and E 

to one with passengers D and F, the latter has a higher valence. When the valence factors are 

limited to a bare minimum or are clear (as in the example above), the likelihood of numerous 

road users having the same valence but competing claims increases dramatically. In this sense, 

there may be situations when determining the level of harm is the most important factor in 

selecting what action to take. In these cases, the vehicle satisfies the strongest claim in its 

surroundings, protecting the person whose welfare is jeopardised the greatest, either because 

of a dangerous situation (high velocity difference) or because of a vehicle vulnerability 

(detected by the structural vulnerability constant). The operational moral profile, which 

governs the claim mitigation method between passengers in cars and road users outside of 

them, complicates this basic maximisation of welfare. Table 5.3 shows two possible moral 

profiles for achieving this aim. The danger is deemed substantial if the value of ∆𝑣 exceeds the 

limits set out in table 5.1. 

 

Table 5.3: Potential moral profiles for a self-driving vehicle 

Moral profiles Interpretation  

Altruism with a low risk 

tolerance 

If the risk to the self-driving vehicle occupant is not 

extreme, then protects the road user with the highest 

valence. 

Egoism at the threshold If the risk to the road user with the highest valence is not 

extreme, then protects the self-driving vehicle occupant. 

 

These profiles don't quite match any established moral theories, and they reflect a wider range 

of egoistic rationality perspectives than any traditional moral theories (Hedden 2015). These 

compromises are meant to represent differing degrees of agreement between the claims and 

valences of self-driving vehicle occupant and those of other agents operating inside the self-

driving vehicle's environment. These profiles typically confirm the view that a certain degree 

of morally praiseworthy bias in self-driving vehicle behaviour is conceivable, and possibly 

even desirable, to best correspond with user expectations or earn user confidence, according to 

(Lin 2016, Martin 2019). Furthermore, the profiles in table 5.3 are not exhaustive, and they 

depict somewhat factually confusing interpretations of the numerous different profile types that 

the Ethical Valence Concept may accommodate. In these versions, the damage calculation is 
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the major element that informs the different repercussions of the self-driving vehicle's actions, 

which are based on trade-offs between the passenger's claims and those of other actors in the 

vehicle's surroundings. 

 

5.4.3.3 Consideration of Ethical Issues 

After being informed on the values and hazards, the self-driving vehicle can decide on what to 

do. The operational moral profile, which is discussed in further detail below, influences this 

decision greatly. Each moral profile, as shown in the example, reflects a different style of 

deliberation, as in table 5.4 below. It's worth repeating that the moral profiles and, for that 

matter, ethical deliberation itself appear in the vehicle's tactical planning only when it's in a 

dilemma situation; otherwise, they're missing. Aside from that, clear, goal-oriented planning is 

in place, with standard decision-making criteria being used. Each profile calls for a different 

approach to implementation.  

 

Table 5.4: Technique for optimization depending on the selected moral profile. 

Moral profiles Consideration  

Altruism with a low risk 

tolerance 

Reduce the projected injury from the highest-valence road 

user until the self-driving vehicle's collision becomes 

serious. 

Egoism at the threshold Reduce the projected injury to the self-driving vehicle 

occupant until the risk to the highest-valence road user 

becomes serious. 

 

The implementation process considers the self-driving vehicle state (𝑠௜, which is represented 

by (𝑥௜, 𝑦௜) position, 𝜃௜ direction, 𝑣௜ velocity, and ∅௜ steering angle), the environment state (𝑒, 

which includes the location and velocity of all agents in the environment), the highest road user 

valence (η), and the maximum ∆𝑣 as the input. The action that should be performed (𝑎஗) is the 

output in this example using the altruism with a low risk tolerance as a case study. To begin, 

calculate all damage measures for all potential actions and subsequent states (represented by 

the state space 𝑠ᇱ, which is made up of states reached following a single transition). The 

decisional horizon is comparable to one transition in this situation because the accident will 

occur shortly afterward. Using equations 5.3 & 5.44 as the first step. The self-driving vehicle 

is solely responsible for the behaviour of one road user in an ideal accident. Transition 
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uncertainty, represented as, 𝑝(𝑠௜
ᇱ|𝑠௜, 𝑎୨), is used to account for all other road users, given the 

current state (𝑠௜) and an action (𝑎୨). 

 

 

1st algorithm: Estimation of all potential damages 

 

If all possible outcomes result in a velocity differential larger than ∆𝑣 (the road user's velocity 

minus the self-driving vehicle's expected velocity), the accident is regarded extreme, and the 

self-driving vehicle's passenger's safety takes precedence over the road user's safety. In the 

setting of the profile under evaluation, the selected action decreases the expected damage to 

the self-driving vehicle. The value of (∆𝑣) varies based on the sort of collision, to emphasise 

(as seen by the values in table 5.1). The expected harm (ℎ௘௫௣(𝑠௜, 𝑎୨), 𝑎𝑠 𝑖𝑛 𝑒𝑞. 5.5) is derived 

using the transition probability, which provides a mean harm value for a road user - k, given 

that many states 𝑠௜
ᇱ might be reached for a single state 𝑠௜ and action 𝑎௝, resulting in distinct 

collisions. In this case, it is thought that the position of all road users, as well as the surveillance 

of the self-driving vehicle's state, are optimal (no uncertainty in these measures). 

 

ℎ௘௫௣
௞ (𝑠௜, 𝑎௝) =  ∑ 𝑝(𝑠௜

ᇱ|𝑠௜, 𝑎௝)ℎ(𝑠௜, 𝑠௜
ᇱ, 𝑎௧)௦೔

ᇲ∈௦೔
 …………………………… Equation (5.5) 

 
It's likely that the transition probability indicates uncertainty in assessing other road users' 

behaviour, among other sources of uncertainty in the circumstance. The transition probability 

will have static values that are dependent on the action and the current situation since the MDP 

approach given here does not bother itself with such calculations. Each action has an 80% 

probability of success and a 20% risk of moving the self-driving vehicle to one of the 

neighbouring states (10% for each). The expectation of r (𝑠, 𝑎, 𝑠ᇱ, 𝑜) over all 𝑠ᇱ and 𝑜 is needed 

to make optimal decisions. 

 

 

1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑖  ∈ 𝐴 do 

2       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑖
′  ∈  𝑆′  do 

3              𝑣𝑓  ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑓𝑖𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠 (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 5.3) 
4                ℎ𝑘 (𝑠𝑖, 𝑠𝑖

′ , 𝑎𝑡 )  ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 ℎ𝑎𝑟𝑚 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟𝑜𝑎𝑑 𝑢𝑠𝑒𝑟𝑠  
(𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 − 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5.4) 

5        𝑒𝑛𝑑  
6 𝑒𝑛𝑑 
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Figure 5.2: State transition uncertainty for POMDP 

 
For extreme activities, success is more likely than failure, with a probability of 90% versus a 

probability of 10% (as seen in figure 5.1). If the set of allowed actions according to ∆𝑣, 𝐴஗ is 

not empty, the selected action is the one that minimises the anticipated harm to the road user 

while maintaining the maximum valence for the actions ∈  𝐴஗. When there are several minimal 

actions to choose from, the one that decreases the self-driving vehicle's expected harm is chosen 

as shown in below in the 2nd algorithm. 

 

 

2nd algorithm: Decision Making 

 

While this position may look severe when compared to other options, such as the possibility of 

minimising both values, it is quite reasonable. The goal of achieving both damage reduction 

and road user harm minimising at the same time is not difficult to attain. However, in our 

1 𝐴η  ← 𝑎𝑙𝑙 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝐴 𝑡ℎ𝑎𝑡 (ฮ𝑣𝑓 −  𝑣𝑖
𝐴𝑉 ฮ ≤  ∆𝑣 ) 

2 𝑖𝑓 𝐴η =  ∅  𝑡ℎ𝑒𝑛 
3        𝑎η = 𝑎𝑟𝑔𝑚𝑖𝑛𝑎∈𝐴 ℎ𝑒𝑥𝑝

𝐴𝑣 (𝑠𝑖 ,   𝑎𝑗 ) 
4 𝑒𝑙𝑠𝑒  
5        𝑎c ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑎∈𝐴η

 ℎ𝑒𝑥𝑝
𝑅𝑈 (𝑠𝑖 ,   𝑎𝑗 ) 

6        𝑖𝑓 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒  𝑎𝑐  𝑒𝑥𝑖𝑠𝑡𝑠 𝑡ℎ𝑒𝑛 
7              𝑎η = 𝑎𝑟𝑔𝑚𝑖𝑛𝑎c

 ℎ𝑒𝑥𝑝
𝐴𝑣 (𝑠𝑖,   𝑎𝑐 ) 

8        𝑒𝑙𝑠𝑒  
9              𝑎η =  𝑎c 
10      𝑒𝑛𝑑 
11 𝑒𝑛𝑑 
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scenario, both moral profiles are in direct conflict with one another to maximise the safety of 

one road user over the other, even though there are an endless number of compromises that 

may be foreseen between the self-driving vehicle and road users. When considering the profile 

of egoism at the threshold, the only difference between it and the other profiles would be the 

action deliberation process represented by the 2nd algorithm. 

 

 

5.4.3.4 Ethical Valence Concept in a Hypothetical Situation 

A simplified dilemma situation in an urban context is shown in figure 5.2, which demonstrates 

how to cope with it. In comparison to the other options, three acts stand out: swerving to the 

left and colliding with a yellow vehicle; continuing straight and colliding with a pedestrian; 

and swerving to the right and colliding with the wall. This is accomplished by searching the 

action space, and in this case just three actions have statistically significant differences in their 

consequences. Therefore, to aid in the decision-making process, the ethical valence concept 

must be turned on and engaged. 

Scenario 1 displays the collision simulation while the self-driving vehicle is in its initial 

condition (10, 3.25, 0, 15, 0). The collision simulation is as shown in figure 5.3 

(𝑥, 𝑦 coordinates of the vehicle, direction, longitudinal velocity, and steering angle). For 

simulating the self-driving vehicles' behaviour, a non-holonomic single-track model developed 

by (Qian et al. 2016) was used. The collision happens during a decision iteration, which divides 

the self-driving vehicle's trajectory into periods of 0.5seconds. 

To estimate the vulnerability constant, 𝑐௩௨௟, the data from (Kröyer 2015, Jurewicz, Sobhani et 

al. 2016) are combined with eq. 5.6 below, 𝑝𝑟𝑜𝑏ெ஺ூௌଷା (∆𝑣), where ProbMAIS3+ (∆𝑣) is the 

probability of MAIS3+ injury given a ∆𝑣, or the difference between the starting and ending 

velocities prior to the collision, respectively. As previously stated in the preceding sections, 

this is an ineffective approach of accounting for such circumstances, but it will suffice for the 

purposes of the example being offered. 

 

𝑐௩௨௟ =  
ଵ

ଵି ௣௥௢௕ಾಲ಺ೄయశ (∆௩) 
 ……………………… Equation (5.6) 

 

The preference order is shown in table 5.5, based on the valences for each road user in fig. 

5.3. In scenario 1, ∆𝑣 equals 23.1m/s for a self-driving vehicle-vehicle (frontal collision), 
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14.1m/s for a self-driving vehicle-pedestrian (pedestrian collision), and 14.2m/s for a self-

driving vehicle-wall (frontal collision). 

 

 

 

Figure 5.3: Potential dilemma situation 

 

 

 

Figure 5.4: Simulation of a collision in scenario 1. 
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Comparing these values to the constraints established in table 5.1, it is possible to infer that all 

acts pose a significant danger to the self-driving vehicle as well as to other road users on the 

highway. Due to the altruism with a low risk tolerance profile being followed, the pedestrian 

would be run over, since the self-driving vehicle must be prioritised (∆𝑣 is over the limit, 

therefore the self-driving vehicle's damage is decreased, choosing the value highlighted in red 

from table 5.6; such an approach is seen in the 2nd algorithm), and the pedestrian would be 

murdered in the process. Every possible collision scenario is illustrated in table 5.6, along with 

the resulting damage and expected damage (total of damages weighted by transition probability 

as in equation 5.5) that were computed for each self-driving vehicle’s potential collision. 

 

Table 5.5: Valence Classification 

Road user  Valences  Classification 

Self-driving vehicle C, F, F 3° 

Vehicle C, D 2° 

Pedestrian  A 1° 

 

Table 5.6: The harm to self-driving vehicle for each potential collision in scenario 1 

Collision type  Self-driving vehicle’s harm Self-driving vehicle’s expected 

harm 

Vehicle collision  8.77 7.02 

Pedestrian collision 0 2.46 

Wall collision  15.80 12.64 

 

As demonstrated in table 5.5, if the self-driving vehicle is programmed to have egoism at the 

threshold as its operational moral profile, a collision with a wall would be the favoured choice 

since the valences of both the pedestrian and the vehicle are greater than they are for a collision 

with another object (because both ∆𝑣 are above the limit, the expected harm of road users with 

valences higher than the self-driving vehicle is minimised, as shown in red values from table 

5.7). For instance, as demonstrated in table 5.7, the nominal road user's harm is provided in the 

first column, while the predicted vehicle harm and pedestrian harm are provided in the second 

and third columns, respectively. The predicted vehicle harm and pedestrian harm are attained 

using the transition probability from equation 5.5 and shown in the first and second columns, 

respectively. Considering that the wall is a static object, both the actual harm it does and the 
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expected harm it causes are equal to zero (only human safety is considered; historical, cultural, 

or affective values of a static object such as a tree or a monument are ignored). The relative 

locations of road users are shown in figure 5.3, and table 5.11 demonstrates that in scenario 2, 

where the initial self-driving vehicle's state is (10, 3.25, 0, 7.5, 0), damages and velocity 

variations would cause the selected actions to become unintended consequences. Collisions 

involving pedestrians result in velocity differences of 14.87m/s, 5.63m/s, and 6.07m/s. This 

shows that in this case, neither the pedestrian nor the wall would result in a serious threshold 

crash. 

However, using altruism with a low risk tolerance as the operative moral profile results in the 

wall collision action being executed (in this case, the expected harm of the road user with the 

highest valence is minimised), resulting in the action highlighted in red value of table 8, while 

using egoism at the threshold as the operative moral profile results in the pedestrian collision 

action being executed (in this case, the expected harm of the self-driving vehicle is minimised), 

resulting in the action highlighted in red value of table 8 and using the tables 5.8 and 5.9 are 

structurally similar to tables 5.6 and 5.7, respectively, in terms of their organisation. 

 

Table 5.7: The harm to road users for each potential collision in scenario -1 

Collision type Road user’s h Vehicle’s ℎ௘௫௣ Pedestrian  ℎ௘௫௣ 

Vehicle collision  16.80 15.12 1.57 

Pedestrian collision 15.71 1.68 12.57 

Wall collision 0 0 1.57 

 

 

Table 5.8: Quantification of collisions for scenario -2  

Collision type  Self-driving vehicle’s harm Self-driving vehicle’s expected 

harm 

Vehicle collision  5.10 4.08 

Pedestrian collision 0 1.12 

Wall collision  6.07 4.86 
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Table 5.9: Quantification of collisions for other road users in scenario-2 

Collision type Road user’s h Vehicle’s ℎ௘௫௣ Pedestrian  ℎ௘௫௣ 

Vehicle collision  10.85 9.76 0.56 

Pedestrian collision 5.63 1.08 4.51 

Wall collision 0 0 0.56 

 

 

 

Table 5.10: The initial state of road users 

Road user States Scenario 1 Scenario 2 

Vehicle  (𝑥, 𝑦, 𝜃, 𝑣, ∅) (25, 6.75, 180, 15, 0) (22, 6.75, 180, 7.5, 0) 

Pedestrian  (𝑥, 𝑦, 𝜃, 𝑣) (17, 3, 90, 1.5) (17, 3, 90, 1.5) 

Wall  (𝑥, 𝑦, 𝜃, 𝑣) (15, 0.75, 0, 0) (15, 0.75, 0, 0) 

 

 

 

 

Figure 5.5: Simulation of a collision for scenario 2. 
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5.5 Summary  

While the research detailed in this chapter, as well as the moral and computational approach 

that reinforces it, should not be the "ultimate" normative answer to the problem of behaviour 

in self-driving vehicles, they really constitute that solution. However, as will be described 

further below, there are a variety of reasons why the ethical valence concept may fall short of 

the expectations of some stakeholders involved in the development of a self-driving vehicles. 

The ethical valence concept distinguishes between various road users in several ways. For 

example, it distinguishes between "passengers" and other vulnerable road users, or it 

distinguishes between the types of vehicles that might be involved in an ethical dilemma 

situation. It is possible that this positioning will be viewed negatively by some because it does 

not adhere to some of the prominent normative doctrines that have been proposed in recent 

years, the majority of which condemn the practise of discrimination between potential victims 

of a self-driving vehicle's actions (Luetge 2017). The ambiguity around the valences in question 

may serve to increase this concern even further. In what ways can we ensure that the 

information they get is accurate and representative of the information we collect? So, what 

should we do in the case that the information we've obtained threatens to jeopardise civic or 

human rights? In the future years, it is projected that the design of the decision process for 

highly autonomous systems, such as self-driving vehicles, would continue to be a heated topic 

of discussion. As a result, a high degree of interdisciplinary cooperation between scientific 

fields that have traditionally enjoyed independence will be required, as will a steep learning 

curve on the part of users, governments, and other institutions in the societies in which these 

technologies will be implemented. Although it appears that when technology makes 

autonomous decisions that have implications for human lives and well-being, designers have 

an additional responsibility to ensure that the outcomes are acceptable, ethical, and respectful 

rather than just efficient. It is possible to handle a component of this problem through the 

application of law, and a bigger percentage of the problem can be addressed through ethical 

considerations and moral philosophy. However, the final judgments must be representative of 

the people who will be affected by them, as well as their views, claims, and perceptions of what 

is right. To address this multi-disciplinary and urgent requirement for public engagement and 

acceptance, the Ethical Valence Concept seeks to provide the foundation for the development 

of an ethical and acceptable self-driving vehicle for use on the world's highways and other 

public transportation systems. The major goal of this theory is to do just that. 



135 
 

Chapter 6: Conclusion and Further work   

6.1 Conclusion 

Self-driving vehicle decision-making algorithms are a common design choice that many 

engineers overlook because of the ethical ambiguity they introduce into the process. For 

platooning autonomous cars, the following distance appears to be an easy decision. But it could 

affect fuel efficiency, response time, and even the flow of nearby traffic. For engineers, this 

thesis provides a framework for understanding how these factors and various algorithm 

implementations might impact vehicle behaviour and society in general. 

As a result, in many circumstances, engineering decisions are centred on a single objective, 

such as safety. To ensure the safety of the vehicle when driving laterally, Chapter 3 focuses on 

modelling steering system delays in a decision-making algorithm. Various technical trade-offs, 

such as algorithm complexity and implementation overhead, must be considered in this 

endeavour. 

The two techniques proposed in this thesis for a self-driving vehicle decision-making process 

that take ethical issues into account are milestones in the direction of better engineers and better 

self-driving vehicle decision-making algorithms. The first technique goes straight to 

philosophy, using connections between philosophical and mathematical frameworks to support 

design decisions for a self-driving vehicle steering control system. The use of rule-based 

mathematical techniques such as set theory and constraints may be justified using deontological 

reasoning, a philosophy founded on rules. 

The use of cost-based mathematical paradigms, such as optimization, can be explained using 

consequential reasoning, a cost-based philosophy. Model predictive control (MPC), which 

solves a constrained optimization problem, is one strategy for leveraging the benefits of both 

deontology and consequentialism, according to chapter 3. Because the choice of weights might 

lead to a range of vehicle behaviours, a third philosophy known as virtue ethics is used to gain 

a better understanding of the situation. Engineers can use this mapping to justify their design 

decisions in terms of cost, constraint, and weight when building a self-driving vehicle decision-

making algorithm. 

Engineers may be better qualified to ethically programme a self-driving vehicle decision-

making algorithm if a diverse range of stakeholders (preferably representative of a society) and 

explicit consideration of human values are included in the design process. The stakeholders 

and the values that have been established give advice to the engineers and bring viewpoints to 
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the table that they may not have considered at the outset in isolation. In Chapter 4, a modified 

value-sensitive design technique is used to link human values with engineering standards. To 

help in the accomplishment of the stated human values, many analysis approaches might be 

used. This method is demonstrated with an example design challenge of a self-driving vehicle 

speed control system for travelling over a pedestrian crossing. Even if the implementation is 

ethically designed, there may be a variety of design possibilities to choose from. Extra analysis, 

such as Pareto optimization, can help with communication to a larger set of stakeholders, as 

well as additional rationale resources, when deciding which design point to deploy. 

 

6.1.1 Contributions 

This thesis contributes the following: 

 An MPC formulation to account for steering actuation latency on a self-driving 

vehicle platform. The formulation made use of straightforward, computationally 

efficient models to enhance a self-driving vehicle's capability (Chapter 3). 

 Incorporation of traffic regulations governing lane dividers and crosswalks in an 

MPC and POMDP respectively. The traffic regulation (§21460) is incorporated into 

the formulation of the model predictive steering control to examine the adherence of an 

autonomous vehicle to double yellow lines when manoeuvring around an obstacle 

(Chapter 3). The speed of an autonomous vehicle passing over a crosswalk is controlled 

by the traffic regulation (§21950), which is integrated in the model of a POMDP 

(Chapter 4). 

 A mathematical mapping of philosophical principles. The philosophical principles of 

deontology, consequentialism, and virtue ethics are mapped to the mathematical 

concepts of constraints, costs, and choice of weights (Chapter 3). Engineers can better 

understand the consequences of using a cost, constraint, or even weights by using this 

method. 

 Designing ethical decision-making algorithms using a modified value sensitive 

design technique. VSD is used to identify human values that may be involved in the 

design of a speed controller for crossing scenarios. Iterating through the design task 

reveals conflicts between the values until the technology is created to match with the 

specified human values. 

 Implementation of an ethical valence concept for claim mitigation in a self-driving 

decision-making algorithm. Ethical valence concept describes self-driving vehicle 
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decision-making as a sort of claim mitigation where various road users hold different 

moral claims on the vehicle's behaviour, and the vehicle must mitigate these claims as 

it makes judgments about its surroundings. Actions' consequent damage and 

uncertainty are assessed and accounted for, leading to an ethical implementation that is 

realistic. These algorithms are designed to accommodate a variety of "moral 

perspectives" regarding what morality needs and what road users may anticipate, 

providing an evaluation tool for a self-driving vehicle's ethical decision-making 

process. 

 

6.2 Further work  

Ethical implications should be addressed at every stage of the self-driving vehicle development 

process, from sensors to perception algorithms to testing and deployment. While this thesis 

focuses on the decision layer of the self-driving vehicle stack, human values may be influenced 

at all levels of the stack. 

 

6.2.1 Generalizability 

Scenarios were used to show the effectiveness of the methodologies discussed in the thesis. It 

is thus unknown how successfully these techniques will scale or generalise to the actual world 

since, as discussed in Chapter 5, summary, the real world contains an infinite number of 

possibilities to deal with. Scalability and generalizability are expected to be essential 

considerations for those building self-driving vehicles and integrating them into the design 

process might assist in explaining the viability of such a concept. 

Some strategies exist for scaling single-user problem formulations, even if scalability was not 

considered at the outset of the design. For instance, a speed control POMDP for an autonomous 

vehicle to travel along a roadway with a single pedestrian nearby with an uncertain purpose 

has been proposed by (Christensen and Gomila 2012, Sigaud and Buffet 2013). For each 

pedestrian encountered in the experiment, they launched a new instance of the POMDP. Each 

instance produces a result. The final course of action was the most cautious of the bunch. Utility 

fusion (Martinez, Heucke et al. 2017) is another method in which the utilities of each 

encountered pedestrian are added together or decreased. The policy's final action is taken after 

the utilities are reconciled. 
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6.2.2 Utilizing VSD to Quantify Engineering Improvements 

Engineers' engineering practises might be transformed through value-sensitive design. So, the 

programmers are compelled to evaluate how the conditional statement or reward function they 

are coding will contribute to achieving goals outlined in the conceptualization. There are no 

quantitative measurements here. Such an approach should be evaluated by a user research done 

by engineers. The identical design task might be undertaken by two different teams of 

engineers: one that is taught about VSD, the other that is not. An interview with engineers can 

be conducted after completing a design task so that their thoughts and justifications can be 

documented. 

 

6.2.3 VSD and Philosophical Principles 

The philosophical framework technique, despite its limitations in Chapter 3, might nevertheless 

be useful in the engineering process. Even though the focus of Chapter 4 was on engineering 

analysis, a more thorough philosophical investigation may be presented as well. An engineer 

who understands the link between these philosophical and mathematical frameworks can 

perform some exploratory analysis or assess basic design consequences. Philosophers, on the 

other hand, are individuals who are genuinely trained to make moral judgments. Therefore, 

VSD might be a fantastic approach to further involving them in the design process by allowing 

them to do a philosophical analysis concurrently with the technical study. (For a legal analysis, 

a similar argument may be made.) 

 

6.2.4 Strategy 

Government authorities recognise the critical role of ethical considerations in the development 

of autonomous vehicle technology (Lin, Abney et al. 2017, Organization 2017). This thesis 

asserts that a technique such as VSD may assist policymakers and regulators. This is primarily 

due to a conversation focused on human values. However, it is critical to involve policymakers 

directly to ascertain if they find this approach effective. 
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6.2.5 Prospects 

Society must be able to participate in the discussion about self-driving vehicle technology 

before it can reap the advantages of it. Engaging a wider set of stakeholders allows for more 

diverse viewpoints to be incorporated into the design process. As a result, everyone will benefit 

from enhanced technological capabilities. 
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Appendixes 

Appendix-1: Source code for simulation Id 
classdef getSimId < matlab.System & matlab.system.mixin.Propagates 
    % Get Simulation Id 
     
    % Public, tunable properties 
    properties 
        %NumberOfVehicles Maximum number of vehicles 
        NumberOfVehicles = 0; 
         
        %NumEachVehicle Maximum number of each type of vehicles 
        NumEachVehicle = zeros (6, 1); 
    end 
  
    properties (DiscreteState) 
  
    end 
     
    % Pre-computed constants 
    Properties (Access = private) 
        adasData_; 
    end 
  
    methods (Access = protected) 
        function Id = getAvaiableId(obj, vehType) 
            for i = 1: obj.NumberOfVehicles 
                if ((obj.adasData_(i).Type == vehType) && ... 
                        (obj.adasData_(i).Id <= 0)) 
                    Id = i; 
                    return; 
                end 
            end 
            disp('Too many vehicles'); 
            return; 
        end 
        function setupImpl(obj) 
            % Perform one-time calculations, such as computing constants 
            obj.adasData_(obj.NumberOfVehicles).Type = VehType.None; 
            obj.adasData_(obj.NumberOfVehicles).Id = 0; 
            for i = obj.NumberOfVehicles : -1 : 1 
                obj.adasData_(i) = obj.adasData_(end); 
                if i <= obj.NumEachVehicle(1) 
                    obj.adasData_(i).Type = VehType(1); 
                elseif i <= sum (obj.NumEachVehicle(1 : 2)) 
                    obj.adasData_(i).Type = VehType(2); 
                end 
            end 
             
        end 
  
        function y = stepImpl (obj, vehType, vehId) 
            % Implement algorithm. Calculate y as a function of input u and 
            % discrete states. 
            if (vehId < 0) 
                idx = -vehId; 
                obj.adasData_(idx).Id = -idx; 
                y = idx; 
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            else 
                idx = obj.getAvaiableId(vehType); 
                obj.adasData_(idx).Id = idx; 
                y = idx; 
            end 
        end 
         
        function sz = getOutputSizeImpl(obj) 
            sz = 1; 
        end 
         
        function c = isOutputFixedSizeImpl(obj) 
            c = true; 
        end 
         
        function c = isOutputComplexImpl(obj) 
            c = false; 
        end 
         
        function c = getOutputDataTypeImpl(obj) 
            c = 'double'; 
        end 
  
        function resetImpl(obj) 
            % Initialize / reset discrete-state properties 
        end 
    end 
end 
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Appendix-2: Source code for vehicle type 
classdef VehType < Simulink.IntEnumType 
  enumeration 
    None (0) 
    Veh1(1) 
    Veh2(2) 
  end 
end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



161 
 

Appendix-3: Source code for safety check 
classdef SafetyCheck < matlab.System & matlab.system.mixin.Propagates 
    & matlab.system.mixin.CustomIcon 
     
    % This template includes the minimum set of functions required 
    % to define a System object with discrete state. 
    % Public, tunable properties 
    properties 
        % Safety Distance [m] 
        safeDistance = 75; 
         
        % Average Vehicle Length [m] 
        aveVehLength = 6; 
         
        % Max Accelerating Rate [m/s^2] 
        maxAccelRate = 3; 
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        % Max Deaccelerating Rate [m/s^2] 
        maxDeaccelRate = 10; 
         
        % Lane Width [m] 
        LaneWidth = 7; 
    end 
  
    properties (DiscreteState) 
  
    end 
  
    % Pre-computed constants 
    properties (Access = private) 
  
    end 
     
    methods (Access = protected, Static) 
        function header = getHeaderImpl 
            % Define header panel for System block dialog 
            header = matlab.system.display.Header( ... 
                'Title', "Safety Check", ... 
                'Text','Check whether it is safe to change lane.'); 
        end 
    end 
     
    methods (Access = protected) 
         
        function flag = supportsMultipleInstanceImpl(obj) 
            flag = true; 
        end 
         
        function icon = getIconImpl(~) 
            icon = {"Safety Check"}; 
        end 
         
        function setupImpl(obj) 
            % Perform one-time calculations, such as computing constants 
        end 
  
        function y = stepImpl(obj, u) 
            % Implement algorithm. Calculate y as a function of input u and 
            % discrete states. 
                         
            if (u.exist == false) 
                y = 0; 
                return; 
            end 
             
            y = 1; 
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            % If can switch lane, the time needed is about 
            % Assume ay = 1/3*a; 
            t_est = sqrt(3*obj.LaneWidth/obj.maxAccelRate); 
             
            %% check front vehicle 
            if (u.frontDistance < obj.safeDistance) 
                %false if front vehicle exists 
                a_front_mx = 2*(u.frontDistance + u.frontVelocity*t_est - 
obj.safeDistance/5)/t_est^2; 
                if a_front_mx < -obj.maxDeaccelRate/1 || u.frontDistance < 
1.5*obj.aveVehLength 
                    % if current vehicle does not have enough brake 
                    y = 0; 
                    return; 
                end 
            end 
             
            %% check rear vehicle 
            if (u.rearDistance < obj.safeDistance) 
                % if rear vehicle exists 
                a_rear_mn = 2*(-u.rearDistance + u.rearVelocity*t_est + 
obj.safeDistance/5)/t_est^2; 
                if a_rear_mn > obj.maxAccelRate/1.5 || u.rearDistance < 
1.5*obj.aveVehLength 
                    % if current vehicle does not have enough power 
                    y = 0; 
                    return; 
                end 
            end 
             
        end 
         
        function sz_1 = getOutputSizeImpl(obj) 
            sz_1 = 1; 
        end 
         
        function c1 = isOutputFixedSizeImpl(obj) 
            c1 = true; 
        end 
         
        function c1 = isOutputComplexImpl(obj) 
            c1 = false; 
        end 
         
        function c1 = getOutputDataTypeImpl(obj) 
            c1 = 'double'; 
        end 
  
        function resetImpl(obj) 
            % Initialize / reset discrete-state properties 
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        end 
    end 
end 
 
 
 
 
 
 
 
 
 
 
  



165 
 

Appendix-4: Source code for change lane 
classdef ChangeLane < Simulink.IntEnumType 
  enumeration 
    None (0) 
    Left (1) 
    Right (2) 
  end 
end 
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Appendix-5: Source code for helper plot lane curve 
classdef (StrictDefaults)helperPlotLaneCurve < matlab.System & 
matlab.system.mixin.CustomIcon 
    % This is a helper block and may be modified in the future. 
         
    %#codegen 
     
    Properties (Nontunable, SetAccess = immutable) 
        %XLim X range 
        XLim = [0 200] 
         
        %YLim Y range 
        YLim = [-100 50] 
    end 
     
    properties (Nontunable, Logical) 
        %ShowVelocity Display Velocity 
        showVelocity = false 
         
        %ShowAcceleration Display Acceleration 
        showAcceleration = false 
    end 
     
    properties (Access=private) 
        hFig 
        hAxis 
        hGlyph 
        hText 
        hTexta 
         
        basicPos = [-2.5, 2.5, 2.5, -2.5; -1.5, -1.5, 1.5, 1.5] 
    end 
     
    methods 
        function obj = helperPlotLaneCurve(varargin) 
            % Constructor 
            setProperties(obj,nargin,varargin{:}); 
        end 
    end 
     
    methods (Access=protected) 
        function setupImpl(obj,varargin) 
            obj.hFig = figure; 
            obj.hAxis = axes; 
            set(obj.hFig, 'position', [100 100 840 640]) 
            hold on; 
            axis equal 
            xlim(obj.XLim); 
            ylim(obj.YLim); 
             
            theta = linspace(pi/2, 3*pi/4, 1000); 
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            radius = 100; 
            laneWidth = 7; 
            center = [100, -100]; 
             
            plot (obj.hAxis, center(1) + (radius - laneWidth/2)*cos(theta), 
center(2) + (radius - laneWidth/2)*sin(theta), 'linewidth', 2, 'color', 
'k'); 
            plot (obj.hAxis, center(1) + (radius + laneWidth/2)*cos(theta), 
center(2) + (radius + laneWidth/2)*sin(theta), 'linewidth', 2, 'color', 
'k'); 
            plot (obj.hAxis, [100 200], [-laneWidth/2 -laneWidth/2], 
'linewidth', 2, 'color', 'k') 
            plot (obj.hAxis, [100 200], [laneWidth/2 laneWidth/2], 
'linewidth', 2, 'color', 'k') 
             
            mPosition_X = varargin{1}; 
                         
            for i = length(mPosition_X): -1: 1 
                obj.hGlyph(i) = patch('XData', [0, 5, 5, 0], 'YData', [-1.5 
-1.5 1.5 1.5], 'visible', 'off'); 
                 
                markerFaceColor = 'g'; 
                 
                set(obj.hGlyph(i), 'FaceColor', markerFaceColor); 
                obj.hText(i) = text(0, 0, '0', 'visible', 'off'); 
                obj.hTexta(i) = text(0, 0, '0', 'visible', 'off'); 
            end 
        end 
                 
        function stepImpl(obj,varargin) 
            %Update the Simulink control toolbar 
  
            mPosition_X = varargin{1}; 
            mPosition_Y = varargin{2}; 
            mVelocity_X = varargin{3}; 
            mVelocity_Y = varargin{4}; 
            mAcceleration_X = varargin{5}; 
            mAcceleration_Y = varargin{6}; 
            mId = varargin{7}; 
            mType = varargin{8}; 
             
            % Update the plot if it is visible 
            if strcmp(get(obj.hFig,'Visible'),'on') 
                for i = 1: length(mPosition_X) 
                    if (mId(i) <= 0) 
                        set(obj.hGlyph(i), 'XData', obj.basicPos(1, :) + 
mPosition_X(i), ... 
                            'YData', obj.basicPos(2, :) + mPosition_Y(i), 
'visible', 'off'); 
                        set(obj.hText(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 5 0], ... 



168 
 

                            'String', [num2str(round(mVelocity_X(i), 2)), ' 
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'off'); 
                        set(obj.hTexta(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 10 0], ... 
                            'String', [num2str(round(mAcceleration_X(i), 
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'off'); 
                        continue; 
                    end 
                     
                    if (sqrt(mVelocity_X(i)^2 + mVelocity_Y(i)^2) < 5e-2) 
                        continue; 
                    end 
                     
                    curPosition = zeros (2, 1); 
                    curPosition(1) = mPosition_X(i) - 5/2; 
                    curPosition(2) = mPosition_Y(i) - 3/2; 
                     
                    cosTheta = mVelocity_X(i)/sqrt(mVelocity_X(i)^2 + 
mVelocity_Y(i)^2); 
                    sinTheta = mVelocity_Y(i)/sqrt(mVelocity_X(i)^2 + 
mVelocity_Y(i)^2); 
                    rotationMatrix = [cosTheta, -sinTheta; sinTheta, 
cosTheta]; 
                     
                    mbasicPos = rotationMatrix * obj.basicPos; 
                     
                    markerFaceColor = 'g'; 
                     
                    switch mType(i) 
                        case VehType(1) 
                            markerFaceColor = 'b'; 
                        case VehType(2) 
                            markerFaceColor = 'r'; 
                    end 
                     
                    set(obj.hGlyph(i), 'XData', mbasicPos(1, :) + 
mPosition_X(i), ... 
                        'YData', mbasicPos(2, :) + mPosition_Y(i), 
'visible', 'on', 'FaceColor', markerFaceColor); 
                     
                    if obj.showVelocity 
                        set(obj.hText(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 5 0], ... 
                            'String', [num2str(round(mVelocity_X(i), 2)), ' 
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'on'); 
                    end 
                     
                    if obj.showAcceleration 
                        set(obj.hTexta(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 10 0], ... 
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                            'String', [num2str(round(mAcceleration_X(i), 
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'on'); 
                    end 
                end 
            end 
        end 
    end 
     
    % Simulink interface 
    methods(Access=protected) 
        function str = getIconImpl(~) 
            str = sprintf('Simulation\n\nVisualization'); 
        end 
         
        function num = getNumInputsImpl(obj) 
            num = 8; 
        end 
         
        function varargout = getInputNamesImpl(obj) 
            varargout = {}; 
             
            varargout = {varargout{:} 'Position_X'}; 
            varargout = {varargout{:} 'Position_Y'}; 
            varargout = {varargout{:} 'Velocity_X'}; 
            varargout = {varargout{:} 'Velocity_Y'}; 
            varargout = {varargout{:} 'Acceleration_X'}; 
            varargout = {varargout{:} 'Acceleration_Y'}; 
            varargout = {varargout{:} 'Id'}; 
            varargout = {varargout{:} 'Type'}; 
        end 
    end 
  
    methods (Access = protected, Static) 
        function header = getHeaderImpl 
            % Define header panel for System block dialog 
            header = matlab.system.display.Header(... 
                'Title', 'SimulationVisualization’, ... 
                'Text', getHeaderText()); 
        end 
  
        function simMode = getSimulateUsingImpl 
            % Return only allowed simulation mode in System block dialog 
            simMode = 'Interpreted execution'; 
        end 
  
        function flag = showSimulateUsingImpl 
            % Return false if simulation mode hidden in System block dialog 
            flag = false; 
        end 
    end 
end 
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function str = getHeaderText 
str = sprintf([... 
    'Plot simulation results.']); 
end 
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Appendix-6: Source code for helper plot lane merge 
classdef (StrictDefaults)helperPlotLaneMerge < matlab.System & 
matlab.system.mixin.CustomIcon 
    % 
    % This is a helper block and may be removed or modified in the future. 
         
    %#codegen 
     
    properties(Nontunable, SetAccess = immutable) 
        %XLim X range 
        XLim = [0 300] 
         
        %YLim Y range 
        YLim = [-150  100] 
    end 
     
    properties(Nontunable, Logical) 
        %ShowVelocity Display Velocity 
        showVelocity = false 
         
        %ShowAcceleration Display Acceleration 
        showAcceleration = false 
    end 
     
    properties(Access=private) 
        hFig 
        hAxis 
        hGlyph 
        hText 
        hTexta 
         
        basicPos = [-2.5, 2.5, 2.5, -2.5; -1.5, -1.5, 1.5, 1.5] 
    end 
     
    methods 
        function obj = helperPlotLaneMerge(varargin) 
            % Constructor 
            setProperties(obj,nargin,varargin{:}); 
        end 
    end 
     
    methods (Access=protected) 
        function setupImpl(obj,varargin) 
            obj.hFig = figure; 
            obj.hAxis = axes; 
            set (obj.hFig, 'position', [100 100 840 640]) 
            hold on; 
            axis equal 
            xlim(obj.XLim); 
            ylim(obj.YLim); 
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            plot (obj.hAxis, [0, 173 - 7], [0 0], 'linewidth', 2, 'color', 
'k') 
            plot (obj.hAxis, [173 + 7 300], [0 0], 'linewidth', 2, 'color', 
'k') 
            plot (obj.hAxis, [173 - 7 173 + 7], [0 0], 'linewidth', 2, 
'color', 'k', 'linestyle', '--') 
            plot (obj.hAxis, [0 300], [7 7], 'linewidth', 2, 'color', 'k') 
            plot (obj.hAxis, [0 173 - 7], [-100 + 7/sqrt(3) 0], 
'linewidth', 2, 'color', 'k') 
            plot (obj.hAxis, [0 173 + 7], [-100 - 7/sqrt(3) 0], 
'linewidth', 2, 'color', 'k') 
            mPosition_X = varargin{1}; 
                         
            for i = length(mPosition_X) : -1 : 1 
                obj.hGlyph(i) = patch('XData', [0, 5, 5, 0], 'YData', [-1.5 
-1.5 1.5 1.5], 'visible', 'off'); 
                 
                markerFaceColor = 'g'; 
                 
                set(obj.hGlyph(i), 'FaceColor', markerFaceColor); 
                obj.hText(i) = text(0, 0, '0', 'visible', 'off'); 
                obj.hTexta(i) = text(0, 0, '0', 'visible', 'off'); 
            end 
        end 
                 
        function stepImpl(obj,varargin) 
            %Update the Simulink control toolbar 
  
            mPosition_X = varargin{1}; 
            mPosition_Y = varargin{2}; 
            mVelocity_X = varargin{3}; 
            mVelocity_Y = varargin{4}; 
            mAcceleration_X = varargin{5}; 
            mAcceleration_Y = varargin{6}; 
            mId = varargin{7}; 
            mType = varargin{8}; 
             
            % Update the plot if it is visible 
            if strcmp(get(obj.hFig,'Visible'),'on') 
                for i = 1 : length(mPosition_X) 
                    if (mId(i) <= 0) 
                        set(obj.hGlyph(i), 'XData', obj.basicPos(1, :) + 
mPosition_X(i), ... 
                            'YData', obj.basicPos(2, :) + mPosition_Y(i), 
'visible', 'off'); 
                        set(obj.hText(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 5 0], ... 
                            'String', [num2str(round(mVelocity_X(i), 2)), ' 
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'off'); 
                        set(obj.hTexta(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 10 0], ... 



173 
 

                            'String', [num2str(round(mAcceleration_X(i), 
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'off'); 
                        continue; 
                    end 
                     
                    if (sqrt(mVelocity_X(i)^2 + mVelocity_Y(i)^2) < 5e-2) 
                        continue; 
                    end 
                     
                    curPosition = zeros(2, 1); 
                    curPosition(1) = mPosition_X(i) - 5/2; 
                    curPosition(2) = mPosition_Y(i) - 3/2; 
                     
                    cosTheta = mVelocity_X(i)/sqrt(mVelocity_X(i)^2 + 
mVelocity_Y(i)^2); 
                    sinTheta = mVelocity_Y(i)/sqrt(mVelocity_X(i)^2 + 
mVelocity_Y(i)^2); 
                    rotationMatrix = [cosTheta, -sinTheta; sinTheta, 
cosTheta]; 
                     
                    mbasicPos = rotationMatrix * obj.basicPos; 
                     
                    markerFaceColor = 'g'; 
                     
                    switch mType(i) 
                        case VehType(1) 
                            markerFaceColor = 'b'; 
                        case VehType(2) 
                            markerFaceColor = 'r'; 
                    end 
                     
                    set(obj.hGlyph(i), 'XData', mbasicPos(1, :) + 
mPosition_X(i), ... 
                        'YData', mbasicPos(2, :) + mPosition_Y(i), 
'visible', 'on', 'FaceColor', markerFaceColor); 
                     
                    if obj.showVelocity 
                        set(obj.hText(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 5 0], ... 
                            'String', [num2str(round(mVelocity_X(i), 2)), ' 
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'on'); 
                    end 
                     
                    if obj.showAcceleration 
                        set(obj.hTexta(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 10 0], ... 
                            'String', [num2str(round(mAcceleration_X(i), 
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'on'); 
                    end 
                end 
            end 
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        end 
    end 
     
    % Simulink interface 
    Methods (Access=protected) 
        function str = getIconImpl(~) 
            str = sprintf('Simulation\n\nVisualization'); 
        end 
         
        function num = getNumInputsImpl(obj) 
            num = 8; 
        end 
         
        function varargout = getInputNamesImpl(obj) 
            varargout = {}; 
             
            varargout = {varargout{:} 'Position_X'}; 
            varargout = {varargout{:} 'Position_Y'}; 
            varargout = {varargout{:} 'Velocity_X'}; 
            varargout = {varargout{:} 'Velocity_Y'}; 
            varargout = {varargout{:} 'Acceleration_X'}; 
            varargout = {varargout{:} 'Acceleration_Y'}; 
            varargout = {varargout{:} 'Id'}; 
            varargout = {varargout{:} 'Type'}; 
        end 
    end 
  
    methods (Access = protected, Static) 
        function header = getHeaderImpl 
            % Define header panel for System block dialog 
            header = matlab.system.display.Header(... 
                'Title', 'SimulationVisualization’, ... 
                'Text', getHeaderText()); 
        end 
  
        function simMode = getSimulateUsingImpl 
            % Return only allowed simulation mode in System block dialog 
            simMode = 'Interpreted execution'; 
        end 
  
        function flag = showSimulateUsingImpl 
            % Return false if simulation mode hidden in System block dialog 
            flag = false; 
        end 
    end 
end 
 
function str = getHeaderText 
str = sprintf([... 
    'Plot simulation results.']); 
end 
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Appendix-7: Source code for helper plot lane switch 
classdef (StrictDefaults)helperPlotLaneSwitch < matlab.System & 
matlab.system.mixin.CustomIcon 
    % 
    % This is a helper and may be removed or modified in the future. 
        
    %#codegen 
     
    properties (Nontunable, SetAccess = immutable) 
        %XLim X range 
        XLim = [0 120] 
         
        %YLim Y range 
        YLim = [-50 50] 
    end 
     
    properties (Nontunable, Logical) 
        %ShowVelocity Display Velocity 
        showVelocity = false 
         
        %ShowAcceleration Display Acceleration 
        showAcceleration = false 
    end 
     
    properties (Access=private) 
        hFig 
        hAxis 
        hGlyph 
        hText 
        hTexta 
         
        basicPos = [-2.5, 2.5, 2.5, -2.5; -1.5, -1.5, 1.5, 1.5] 
    end 
     
    methods 
        function obj = helperPlotLaneSwitch(varargin) 
            % Constructor 
            setProperties(obj,nargin,varargin{:}); 
        end 
    end 
     
    methods(Access=protected) 
        function setupImpl(obj,varargin) 
            obj.hFig = figure; 
            obj.hAxis = axes; 
            set (obj.hFig, 'position', [100 100 840 640]) 
            hold on; 
            axis equal 
            xlim(obj.XLim); 
            ylim(obj.YLim); 
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            plot (obj.hAxis, [0 120], [-7 -7], 'linewidth', 2, 'color', 
'k') 
            plot (obj.hAxis, [0 120], [0 0], 'linewidth', 2, 'color', 'k', 
'linestyle', '--') 
            plot (obj.hAxis, [0 120], [7 7], 'linewidth', 2, 'color', 'k') 
             
            mPosition_X = varargin{1}; 
                         
            for i = length(mPosition_X) : -1 : 1 
                obj.hGlyph(i) = patch('XData', [0, 5, 5, 0], 'YData', [-1.5 
-1.5 1.5 1.5], 'visible', 'off'); 
                 
                markerFaceColor = 'g'; 
                 
                set(obj.hGlyph(i), 'FaceColor', markerFaceColor); 
                obj.hText(i) = text(0, 0, '0', 'visible', 'off'); 
                obj.hTexta(i) = text(0, 0, '0', 'visible', 'off'); 
            end 
        end 
                 
        function stepImpl(obj,varargin) 
            %Update the Simulink control toolbar 
  
            mPosition_X = varargin{1}; 
            mPosition_Y = varargin{2}; 
            mVelocity_X = varargin{3}; 
            mVelocity_Y = varargin{4}; 
            mAcceleration_X = varargin{5}; 
            mAcceleration_Y = varargin{6}; 
            mId = varargin{7}; 
            mType = varargin{8}; 
             
            % Update the plot if it is visible 
            if strcmp(get(obj.hFig,'Visible'),'on') 
                for i = 1 : length(mPosition_X) 
                    if (mId(i) <= 0) 
                        set(obj.hGlyph(i), 'XData', obj.basicPos(1, :) + 
mPosition_X(i), ... 
                            'YData', obj.basicPos(2, :) + mPosition_Y(i), 
'visible', 'off'); 
                        set(obj.hText(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 5 0], ... 
                            'String', [num2str(round(mVelocity_X(i), 2)), ' 
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'off'); 
                        set(obj.hTexta(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 10 0], ... 
                            'String', [num2str(round(mAcceleration_X(i), 
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'off'); 
                        continue; 
                    end 
                     
                    if (sqrt(mVelocity_X(i)^2 + mVelocity_Y(i)^2) < 5e-2) 
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                        continue; 
                    end 
                     
                    curPosition = zeros(2, 1); 
                    curPosition(1) = mPosition_X(i) - 5/2; 
                    curPosition(2) = mPosition_Y(i) - 3/2; 
                     
                    cosTheta = mVelocity_X(i)/sqrt(mVelocity_X(i)^2 + 
mVelocity_Y(i)^2); 
                    sinTheta = mVelocity_Y(i)/sqrt(mVelocity_X(i)^2 + 
mVelocity_Y(i)^2); 
                    rotationMatrix = [cosTheta, -sinTheta; sinTheta, 
cosTheta]; 
                     
                    mbasicPos = rotationMatrix * obj.basicPos; 
                     
                    markerFaceColor = 'g'; 
                     
                    switch mType(i) 
                        case VehType(1) 
                            markerFaceColor = 'b'; 
                        case VehType(2) 
                            markerFaceColor = 'r'; 
                    end 
                     
                    set(obj.hGlyph(i), 'XData', mbasicPos(1, :) + 
mPosition_X(i), ... 
                        'YData', mbasicPos(2, :) + mPosition_Y(i), 
'visible', 'on', 'FaceColor', markerFaceColor); 
                     
                    if obj.showVelocity 
                        set(obj.hText(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 5 0], ... 
                            'String', [num2str(round(mVelocity_X(i), 2)), ' 
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'on'); 
                    end 
                     
                    if obj.showAcceleration 
                        set(obj.hTexta(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 10 0], ... 
                            'String', [num2str(round(mAcceleration_X(i), 
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'on'); 
                    end 
                end 
            end 
        end 
    end 
     
    % Simulink interface 
    methods (Access=protected) 
        function str = getIconImpl(~) 
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            str = sprintf('Simulation\n\nVisualization'); 
        end 
         
        function num = getNumInputsImpl(obj) 
            num = 8; 
        end 
         
        function varargout = getInputNamesImpl(obj) 
            varargout = {}; 
             
            varargout = {varargout{:} 'Position_X'}; 
            varargout = {varargout{:} 'Position_Y'}; 
            varargout = {varargout{:} 'Velocity_X'}; 
            varargout = {varargout{:} 'Velocity_Y'}; 
            varargout = {varargout{:} 'Acceleration_X'}; 
            varargout = {varargout{:} 'Acceleration_Y'}; 
            varargout = {varargout{:} 'Id'}; 
            varargout = {varargout{:} 'Type'}; 
        end 
    end 
  
    methods (Access = protected, Static) 
        function header = getHeaderImpl 
            % Define header panel for System block dialog 
            header = matlab.system.display.Header(... 
                'Title', 'SimulationVisualization’, ... 
                'Text', getHeaderText()); 
        end 
  
        function simMode = getSimulateUsingImpl 
            % Return only allowed simulation mode in System block dialog 
            simMode = 'Interpreted execution'; 
        end 
  
        function flag = showSimulateUsingImpl 
            % Return false if simulation mode hidden in System block dialog 
            flag = false; 
        end 
    end 
end 
  
function str = getHeaderText 
str = sprintf([... 
    'Plot simulation results.']); 
end 
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Appendix-8: Source code for helper plot lane switch and merge 
classdef (StrictDefaults)helperPlotLaneSwitchAndMerge < matlab.System & 
matlab.system.mixin.CustomIcon 
     
    % This is a helper block and may be removed or modified in the future. 
        
    %#codegen 
     
    Properties (Nontunable, SetAccess = immutable) 
        %XLim X range 
        XLim = [0 300] 
         
        %YLim Y range 
        YLim = [-150 100] 
    end 
     
    properties (Nontunable, Logical) 
        %ShowVelocity Display Velocity 
        showVelocity = false 
         
        %ShowAcceleration Display Acceleration 
        showAcceleration = false 
    end 
     
    properties (Access=private) 
        hFig 
        hAxis 
        hGlyph 
        hText 
        hTexta 
         
        basicPos = [-2.5, 2.5, 2.5, -2.5; -1.5, -1.5, 1.5, 1.5] 
    end 
 
    methods 
        function obj = helperPlotLaneSwitchAndMerge(varargin) 
            % Constructor 
            setProperties(obj,nargin,varargin{:}); 
        end 
    end 
     
    methods (Access=protected) 
        function setupImpl(obj,varargin) 
            obj.hFig = figure; 
            obj.hAxis = axes; 
            set(obj.hFig, 'position', [100 100 840 640]) 
            hold on; 
            axis equal 
            xlim(obj.XLim); 
            ylim(obj.YLim); 
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            plot (obj.hAxis, [0 173 - 7], [0 0], 'linewidth', 2, 'color', 
'k') 
            plot (obj.hAxis, [173 + 7 300], [0 0], 'linewidth', 2, 'color', 
'k') 
            plot (obj.hAxis, [173 - 7 173 + 7], [0 0], 'linewidth', 2, 
'color', 'k', 'linestyle', '--') 
            plot (obj.hAxis, [0 300], [7 7], 'linewidth', 2, 'color', 'k', 
'linestyle', '--') 
            plot (obj.hAxis, [0 300], [14 14], 'linewidth', 2, 'color', 
'k') 
            plot (obj.hAxis, [0 173 - 7], [-100 + 7/sqrt(3) 0], 
'linewidth', 2, 'color', 'k') 
            plot (obj.hAxis, [0 173 + 7], [-100 - 7/sqrt(3) 0], 
'linewidth', 2, 'color', 'k') 
             
            mPosition_X = varargin {1}; 
                         
            for i = length(mPosition_X): -1: 1 
                obj.hGlyph(i) = patch('XData', [0, 5, 5, 0], 'YData', [-1.5 
-1.5 1.5 1.5], 'visible', 'off'); 
                 
                markerFaceColor = 'g'; 
                 
                set(obj.hGlyph(i), 'FaceColor', markerFaceColor); 
                obj.hText(i) = text(0, 0, '0', 'visible', 'off'); 
                obj.hTexta(i) = text(0, 0, '0', 'visible', 'off'); 
            end 
        end 
                 
        function stepImpl(obj,varargin) 
            %Update the Simulink control toolbar 
  
            mPosition_X = varargin{1}; 
            mPosition_Y = varargin{2}; 
            mVelocity_X = varargin{3}; 
            mVelocity_Y = varargin{4}; 
            mAcceleration_X = varargin{5}; 
            mAcceleration_Y = varargin{6}; 
            mId = varargin{7}; 
            mType = varargin{8}; 
             
            % Update the plot if it is visible 
            if strcmp(get(obj.hFig,'Visible'),'on') 
                for i = 1: length(mPosition_X) 
                    if (mId(i) <= 0) 
                        set(obj.hGlyph(i), 'XData', obj.basicPos(1, :) + 
mPosition_X(i), ... 
                            'YData', obj.basicPos(2, :) + mPosition_Y(i), 
'visible', 'off'); 
                        set(obj.hText(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 5 0], ... 



181 
 

                            'String', [num2str(round(mVelocity_X(i), 2)), ' 
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'off'); 
                        set(obj.hTexta(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 10 0], ... 
                            'String', [num2str(round(mAcceleration_X(i), 
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'off'); 
                        continue; 
                    end 
                     
                    if (sqrt(mVelocity_X(i)^2 + mVelocity_Y(i)^2) < 5e-2) 
                        continue; 
                    end 
                     
                    curPosition = zeros (2, 1); 
                    curPosition(1) = mPosition_X(i) - 5/2; 
                    curPosition(2) = mPosition_Y(i) - 3/2; 
                     
                    cosTheta = mVelocity_X(i)/sqrt(mVelocity_X(i)^2 + 
mVelocity_Y(i)^2); 
                    sinTheta = mVelocity_Y(i)/sqrt(mVelocity_X(i)^2 + 
mVelocity_Y(i)^2); 
                    rotationMatrix = [cosTheta, -sinTheta; sinTheta, 
cosTheta]; 
                     
                    mbasicPos = rotationMatrix * obj.basicPos; 
                     
                    markerFaceColor = 'g'; 
                     
                    switch mType(i) 
                        case VehType(1) 
                            markerFaceColor = 'b'; 
                        case VehType(2) 
                            markerFaceColor = 'r'; 
                    end 
                     
                    set(obj.hGlyph(i), 'XData', mbasicPos(1, :) + 
mPosition_X(i), ... 
                        'YData', mbasicPos(2, :) + mPosition_Y(i), 
'visible', 'on', 'FaceColor', markerFaceColor); 
                     
                    if obj.showVelocity 
                        set(obj.hText(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 5 0], ... 
                            'String', [num2str(round(mVelocity_X(i), 2)), ' 
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'on'); 
                    end 
                     
                    if obj.showAcceleration 
                        set(obj.hTexta(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 10 0], ... 
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                            'String', [num2str(round(mAcceleration_X(i), 
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'on'); 
                    end 
                end 
            end 
        end 
    end 
     
    % Simulink interface 
    Methods (Access=protected) 
        function str = getIconImpl(~) 
            str = sprintf('Simulation\n\nVisualization'); 
        end 
         
        function num = getNumInputsImpl(obj) 
            num = 8; 
        end 
         
        function varargout = getInputNamesImpl(obj) 
            varargout = {}; 
             
            varargout = {varargout{:} 'Position_X'}; 
            varargout = {varargout{:} 'Position_Y'}; 
            varargout = {varargout{:} 'Velocity_X'}; 
            varargout = {varargout{:} 'Velocity_Y'}; 
            varargout = {varargout{:} 'Acceleration_X'}; 
            varargout = {varargout{:} 'Acceleration_Y'}; 
            varargout = {varargout{:} 'Id'}; 
            varargout = {varargout{:} 'Type'}; 
        end 
    end 
  
    methods (Access = protected, Static) 
        function header = getHeaderImpl 
            % Define header panel for System block dialog 
            header = matlab.system.display.Header(... 
                'Title', 'SimulationVisualization’, ... 
                'Text', getHeaderText()); 
        end 
  
        function simMode = getSimulateUsingImpl 
            % Return only allowed simulation mode in System block dialog 
            simMode = 'Interpreted execution'; 
        end 
  
        function flag = showSimulateUsingImpl 
            % Return false if simulation mode hidden in System block dialog 
            flag = false; 
        end 
    end 
end 
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function str = getHeaderText 
str = sprintf([... 
    'Plot simulation results.']); 
end 
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Appendix-9: Source code for helper plot lane curve-1 
classdef (StrictDefaults)helperPlotLaneCurve1 < matlab.System & 
matlab.system.mixin.CustomIcon 
     
    % This is a helper block and may be removed or modified in the future. 
         
    %#codegen 
     
    Properties (Nontunable, SetAccess = immutable) 
        %XLim X range 
        XLim = [-220, 220] 
         
        %YLim Y range 
        YLim = [-200, 130] 
    end 
     
    properties (Nontunable, Logical) 
        %ShowVelocity Display Velocity 
        showVelocity = false 
         
        %ShowAcceleration Display Acceleration 
        showAcceleration = false 
    end 
     
    properties (Access=private) 
        hFig 
        hAxis 
        hGlyph 
        hText 
        hTexta 
         
        basicPos = [-2.5, 2.5, 2.5, -2.5; -1.5, -1.5, 1.5, 1.5] 
    end 
     
    methods 
        function obj = helperPlotLaneCurve1(varargin) 
            % Constructor 
            setProperties(obj,nargin,varargin{:}); 
        end 
    end 
     
    methods (Access=protected) 
        function setupImpl(obj,varargin) 
            obj.hFig = figure; 
            obj.hAxis = axes; 
            set(obj.hFig, 'position', [100 100 840 640]) 
            hold on; 
            axis equal 
            xlim(obj.XLim); 
            ylim(obj.YLim); 
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            theta = linspace (0, pi, 1000); 
            radius = 100; 
            laneWidth = 7; 
             
            center1 = [-radius - laneWidth, 0]; 
            center2 = [radius + laneWidth, 0]; 
             
            plot (obj.hAxis, center1(1) + (radius - 
laneWidth/2)*cos(theta), center1(2) + (radius - laneWidth/2)*sin(theta), 
'linewidth', 2, 'color', 'k'); 
            plot (obj.hAxis, center1(1) + (radius + 
laneWidth/2)*cos(theta), center1(2) + (radius + laneWidth/2)*sin(theta), 
'linewidth', 2, 'color', 'k'); 
            plot (obj.hAxis, center2(1) + (radius - 
laneWidth/2)*cos(theta), center2(2) + (radius - laneWidth/2)*sin(theta), 
'linewidth', 2, 'color', 'k'); 
            plot (obj.hAxis, center2(1) + (radius + 
laneWidth/2)*cos(theta), center2(2) + (radius + laneWidth/2)*sin(theta), 
'linewidth', 2, 'color', 'k'); 
             
            plot (obj.hAxis, [-laneWidth/2 -laneWidth/2], [0 120], 
'linewidth', 2, 'color', 'k') 
            plot (obj.hAxis, [laneWidth/2 laneWidth/2], [0 120], 
'linewidth', 2, 'color', 'k') 
            plot (obj.hAxis, [-laneWidth/2 -laneWidth/2], [-200 0], 
'linewidth', 2, 'color', 'k', 'linestyle', '--') 
            plot (obj.hAxis, [laneWidth/2 laneWidth/2], [-200 0], 
'linewidth', 2, 'color', 'k', 'linestyle', '--') 
            plot (obj.hAxis, [-3*laneWidth/2 -3*laneWidth/2], [-200 0], 
'linewidth', 2, 'color', 'k') 
            plot (obj.hAxis, [3*laneWidth/2 3*laneWidth/2], [-200 0], 
'linewidth', 2, 'color', 'k') 
             
            mPosition_X = varargin{1}; 
                         
            for i = length(mPosition_X): -1: 1 
                obj.hGlyph(i) = patch('XData', [0, 5, 5, 0], 'YData', [-1.5 
-1.5 1.5 1.5], 'visible', 'off'); 
                 
                markerFaceColor = 'g'; 
                 
                set(obj.hGlyph(i), 'FaceColor', markerFaceColor); 
                obj.hText(i) = text(0, 0, '0', 'visible', 'off'); 
                obj.hTexta(i) = text(0, 0, '0', 'visible', 'off'); 
            end 
        end 
                 
        function stepImpl(obj,varargin) 
            %Update the Simulink control toolbar 
  
            mPosition_X = varargin{1}; 
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            mPosition_Y = varargin{2}; 
            mVelocity_X = varargin{3}; 
            mVelocity_Y = varargin{4}; 
            mAcceleration_X = varargin{5}; 
            mAcceleration_Y = varargin{6}; 
            mId = varargin{7}; 
            mType = varargin{8}; 
             
            % Update the plot if it is visible 
            if strcmp(get(obj.hFig,'Visible'),'on') 
                for i = 1: length(mPosition_X) 
                    if (mId(i) <= 0) 
                        set(obj.hGlyph(i), 'XData', obj.basicPos(1, :) + 
mPosition_X(i), ... 
                            'YData', obj.basicPos(2, :) + mPosition_Y(i), 
'visible', 'off'); 
                        set(obj.hText(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 5 0], ... 
                            'String', [num2str(round(mVelocity_X(i), 2)), ' 
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'off'); 
                        set(obj.hTexta(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 10 0], ... 
                            'String', [num2str(round(mAcceleration_X(i), 
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'off'); 
                        continue; 
                    end 
                     
                    if (sqrt(mVelocity_X(i)^2 + mVelocity_Y(i)^2) < 5e-2) 
                        continue; 
                    end 
                     
                    curPosition = zeros (2, 1); 
                    curPosition (1) = mPosition_X(i) - 5/2; 
                    curPosition (2) = mPosition_Y(i) - 3/2; 
                     
                    cosTheta = mVelocity_X(i)/sqrt(mVelocity_X(i)^2 + 
mVelocity_Y(i)^2); 
                    sinTheta = mVelocity_Y(i)/sqrt(mVelocity_X(i)^2 + 
mVelocity_Y(i)^2); 
                    rotationMatrix = [cosTheta, -sinTheta; sinTheta, 
cosTheta]; 
                     
                    mbasicPos = rotationMatrix * obj.basicPos; 
                     
                    markerFaceColor = 'g'; 
                     
                    switch mType(i) 
                        case VehType(1) 
                            markerFaceColor = 'b'; 
                        case VehType(2) 
                            markerFaceColor = 'r'; 
                    end 
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                    set(obj.hGlyph(i), 'XData', mbasicPos(1, :) + 
mPosition_X(i), ... 
                        'YData', mbasicPos(2, :) + mPosition_Y(i), 
'visible', 'on', 'FaceColor', markerFaceColor); 
                     
                    if obj.showVelocity 
                        set(obj.hText(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 5 0], ... 
                            'String', [num2str(round(mVelocity_X(i), 2)), ' 
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'on'); 
                    end 
                     
                    if obj.showAcceleration 
                        set(obj.hTexta(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 10 0], ... 
                            'String', [num2str(round(mAcceleration_X(i), 
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'on'); 
                    end 
                end 
            end 
        end 
    end 
     
    % Simulink interface 
    methods(Access=protected) 
        function str = getIconImpl(~) 
            str = sprintf('Simulation\n\nVisualization'); 
        end 
         
        function num = getNumInputsImpl(obj) 
            num = 8; 
        end 
         
        function varargout = getInputNamesImpl(obj) 
            varargout = {}; 
             
            varargout = {varargout{:} 'Position_X'}; 
            varargout = {varargout{:} 'Position_Y'}; 
            varargout = {varargout{:} 'Velocity_X'}; 
            varargout = {varargout{:} 'Velocity_Y'}; 
            varargout = {varargout{:} 'Acceleration_X'}; 
            varargout = {varargout{:} 'Acceleration_Y'}; 
            varargout = {varargout{:} 'Id'}; 
            varargout = {varargout{:} 'Type'}; 
        end 
    end 
  
    methods (Access = protected, Static) 
        function header = getHeaderImpl 
            % Define header panel for System block dialog 
            header = matlab.system.display.Header(... 



188 
 

                'Title', 'SimulationVisualization’, ... 
                'Text', getHeaderText()); 
        end 
  
        function simMode = getSimulateUsingImpl 
            % Return only allowed simulation mode in System block dialog 
            simMode = 'Interpreted execution'; 
        end 
  
        function flag = showSimulateUsingImpl 
            % Return false if simulation mode hidden in System block dialog 
            flag = false; 
        end 
    end 
end 
  
function str = getHeaderText 
str = sprintf([... 
    'Plot simulation results.']); 
end 
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Appendix-10: Source code for helper plot lane switch and merge-2 
classdef (StrictDefaults)helperPlotLaneSwitchAndMerge2 < matlab.System & 
matlab.system.mixin.CustomIcon 
   
    % This is a helper block and may be removed or modified in the future. 
        
    %#codegen 
     
    Properties (Nontunable, SetAccess = immutable) 
        %XLim X range 
        XLim = [0 300] 
         
        %YLim Y range 
        YLim = [-150 100] 
    end 
     
    properties (Nontunable, Logical) 
        %ShowVelocity Display Velocity 
        showVelocity = false 
         
        %ShowAcceleration Display Acceleration 
        showAcceleration = false 
    end 
     
    properties (Access=private) 
        hFig 
        hAxis 
        hGlyph 
        hText 
        hTexta 
         
        basicPos = [-2.5, 2.5, 2.5, -2.5; -1.5, -1.5, 1.5, 1.5] 
    end 
     
    methods 
        function obj = helperPlotLaneSwitchAndMerge2(varargin) 
            % Constructor 
            setProperties(obj,nargin,varargin{:}); 
        end 
    end 
     
    methods (Access=protected) 
        function setupImpl(obj,varargin) 
            obj.hFig = figure; 
            obj.hAxis = axes; 
            set (obj.hFig, 'position', [100 100 840 640]) 
            hold on; 
            axis equal 
            xlim(obj.XLim); 
            ylim(obj.YLim); 
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            plot (obj.hAxis, [0 173 - 7], [0 0], 'linewidth', 2, 'color', 
'k') 
            plot (obj.hAxis, [173 + 7 300], [0 0], 'linewidth', 2, 'color', 
'k') 
            plot (obj.hAxis, [173 - 7 173 + 7], [0 0], 'linewidth', 2, 
'color', 'k', 'linestyle', '--') 
            plot (obj.hAxis, [0 300], [7 7], 'linewidth', 2, 'color', 'k', 
'linestyle', '--') 
            plot (obj.hAxis, [0 300], [14 14], 'linewidth', 2, 'color', 
'k') 
            plot (obj.hAxis, [0 173 - 7], [-100 + 7/sqrt(3) 0], 
'linewidth', 2, 'color', 'k') 
            plot (obj.hAxis, [0 173 + 7], [-100 - 7/sqrt(3) 0], 
'linewidth', 2, 'color', 'k') 
            plot(obj.hAxis, [30/tan(pi/6) 30/tan(pi/6) + 70/tan(pi/9) + 
7/(2*sin(pi/9))], [-70 - 7/(2*cos(pi/9)) 0], 'linewidth', 2, 'color', 'k') 
            plot (obj.hAxis, [88.085 30/tan(pi/6) + 70/tan(pi/9) - 
7/(2*sin(pi/9))], [-53.127 0], 'linewidth', 2, 'color', 'k') 
             
            mPosition_X = varargin{1}; 
                         
            for i = length(mPosition_X): -1: 1 
                obj.hGlyph(i) = patch('XData', [0, 5, 5, 0], 'YData', [-1.5 
-1.5 1.5 1.5], 'visible', 'off'); 
                 
                markerFaceColor = 'g'; 
                 
                set(obj.hGlyph(i), 'FaceColor', markerFaceColor); 
                obj.hText(i) = text(0, 0, '0', 'visible', 'off'); 
                obj.hTexta(i) = text(0, 0, '0', 'visible', 'off'); 
            end 
        end 
                 
        function stepImpl(obj,varargin) 
            %Update the Simulink control toolbar 
  
            mPosition_X = varargin{1}; 
            mPosition_Y = varargin{2}; 
            mVelocity_X = varargin{3}; 
            mVelocity_Y = varargin{4}; 
            mAcceleration_X = varargin{5}; 
            mAcceleration_Y = varargin{6}; 
            mId = varargin{7}; 
            mType = varargin{8}; 
             
            % Update the plot if it is visible 
            if strcmp(get(obj.hFig,'Visible'),'on') 
                for i = 1: length(mPosition_X) 
                    if (mId(i) <= 0) 
                        set(obj.hGlyph(i), 'XData', obj.basicPos(1, :) + 
mPosition_X(i), ... 
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                            'YData', obj.basicPos(2, :) + mPosition_Y(i), 
'visible', 'off'); 
                        set(obj.hText(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 5 0], ... 
                            'String', [num2str(round(mVelocity_X(i), 2)), ' 
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'off'); 
                        set(obj.hTexta(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 10 0], ... 
                            'String', [num2str(round(mAcceleration_X(i), 
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'off'); 
                        continue; 
                    end 
                     
                    if (sqrt(mVelocity_X(i)^2 + mVelocity_Y(i)^2) < 5e-2) 
                        continue; 
                    end 
                     
                    curPosition = zeros (2, 1); 
                    curPosition(1) = mPosition_X(i) - 5/2; 
                    curPosition(2) = mPosition_Y(i) - 3/2; 
                     
                    cosTheta = mVelocity_X(i)/sqrt(mVelocity_X(i)^2 + 
mVelocity_Y(i)^2); 
                    sinTheta = mVelocity_Y(i)/sqrt(mVelocity_X(i)^2 + 
mVelocity_Y(i)^2); 
                    rotationMatrix = [cosTheta, -sinTheta; sinTheta, 
cosTheta]; 
                     
                    mbasicPos = rotationMatrix * obj.basicPos; 
                     
                    markerFaceColor = 'g'; 
                     
                    switch mType(i) 
                        case VehType(1) 
                            markerFaceColor = 'b'; 
                        case VehType(2) 
                            markerFaceColor = 'r'; 
                    end 
                     
                    set(obj.hGlyph(i), 'XData', mbasicPos(1, :) + 
mPosition_X(i), ... 
                        'YData', mbasicPos(2, :) + mPosition_Y(i), 
'visible', 'on', 'FaceColor', markerFaceColor); 
                     
                    if obj.showVelocity 
                        set(obj.hText(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 5 0], ... 
                            'String', [num2str(round(mVelocity_X(i), 2)), ' 
', num2str(round(mVelocity_Y(i), 2))], 'visible', 'on'); 
                    end 
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                    if obj.showAcceleration 
                        set(obj.hTexta(i), 'Position', [mPosition_X(i) 
mPosition_Y(i) + 10 0], ... 
                            'String', [num2str(round(mAcceleration_X(i), 
2)), ' ', num2str(round(mAcceleration_Y(i), 2))], 'visible', 'on'); 
                    end 
                end 
            end 
        end 
    end 
     
    % Simulink interface 
    Methods (Access=protected) 
        function str = getIconImpl(~) 
            str = sprintf('Simulation\n\nVisualization'); 
        end 
         
        function num = getNumInputsImpl(obj) 
            num = 8; 
        end 
         
        function varargout = getInputNamesImpl(obj) 
            varargout = {}; 
             
            varargout = {varargout{:} 'Position_X'}; 
            varargout = {varargout{:} 'Position_Y'}; 
            varargout = {varargout{:} 'Velocity_X'}; 
            varargout = {varargout{:} 'Velocity_Y'}; 
            varargout = {varargout{:} 'Acceleration_X'}; 
            varargout = {varargout{:} 'Acceleration_Y'}; 
            varargout = {varargout{:} 'Id'}; 
            varargout = {varargout{:} 'Type'}; 
        end 
    end 
  
    methods (Access = protected, Static) 
        function header = getHeaderImpl 
            % Define header panel for System block dialog 
            header = matlab.system.display.Header(... 
                'Title', 'SimulationVisualization’, ... 
                'Text', getHeaderText()); 
        end 
  
        function simMode = getSimulateUsingImpl 
            % Return only allowed simulation mode in System block dialog 
            simMode = 'Interpreted execution'; 
        end 
  
        function flag = showSimulateUsingImpl 
            % Return false if simulation mode hidden in System block dialog 
            flag = false; 
        end 
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    end 
end 
  
function str = getHeaderText 
str = sprintf([... 
    'Plot simulation results.']); 
end 
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Appendix-11: Source code for utilities forcing step 
function MinimalDistance = fcn(u) 
  
idx = 1; 
tx = zeros(length(u), 1); 
ty = zeros(length(u), 1); 
  
for i = 1: length(u) 
    if (u(i). Id > 0) 
        tx(idx) = u(i). Position(1); 
        ty(idx) = u(i). Position(2); 
        idx = idx + 1; 
    end 
end 
  
x = tx(1:idx - 1); 
y = ty(1:idx - 1); 
  
if (isempty(x)) 
    MinimalDistance = 0; 
    return; 
end 
  
len = length(x); 
distance = zeros(len*(len-1)/2,1); 
  
idx = 1; 
for i = 1: len 
    for j = i + 1: len 
        distance(idx) = sqrt((x(i) - x(j))^2 + (y(i) - y(j))^2); 
        idx = idx + 1; 
    end 
end 
  
if isempty(distance) 
    MinimalDistance = 1000; 
else 
    MinimalDistance = min(distance); 
end 
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Appendix-12: Source code of sensor model for single lane curve scenario 
% 
% Sensor model for single lane curve scenario 
  
LaneWidth = 7; 
  
centerPoint = [100; -100]; 
radius = 100; 
  
if mCurVehInfo.Id <= 0 
    % Vehicle is disabled 
    return; 
end 
  
curId = abs(mCurVehInfo.Id); 
  
%% VehglobalInfoInput.dynamicInfo 
  
if mCurVehInfo.Position(1) <= 100 
    mLocalVehInfo.dynamicInfo.lateralDeviation = norm(mCurVehInfo.Position 
- centerPoint) - radius; 
    tRelPos = mCurVehInfo.Position - centerPoint; 
    tRelPos = tRelPos/norm(tRelPos); 
    mLocalVehInfo.curLane.curvature = [tRelPos(2); -tRelPos(1)]; 
else 
    mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(2) - 
0; 
    mLocalVehInfo.curLane.curvature = [1; 0]; 
end 
  
%% VehInput.curLane/leftLane/rightLane 
  
mCurRadian = atan2(mCurVehInfo.Position(2) - centerPoint(2), 
mCurVehInfo.Position(1) - centerPoint(1)); 
  
for i = 1: length(mGlobalInfo) 
    if mGlobalInfo(i). Id <= 0 
        % Vehicle is disabled 
        continue; 
    end 
     
    if mGlobalInfo(i).Position(1) <= radius && mCurVehInfo.Position(1) <= 
radius 
         
        mSensoredRadian = atan2(mGlobalInfo(i).Position(2) - 
centerPoint(2), mGlobalInfo(i).Position(1) - centerPoint(1)); 
         
        if mSensoredRadian < mCurRadian ... 
                && radius*(mCurRadian - mSensoredRadian) < 
mLocalVehInfo.curLane.frontDistance 
            % Sensored vehicle is in front of the current vehicle & with a 
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            % smaller distance 
            mLocalVehInfo.curLane.frontDistance = radius*(mCurRadian - 
mSensoredRadian); 
            mLocalVehInfo.curLane.frontVelocity = 
norm(mGlobalInfo(i).Velocity) - norm(mCurVehInfo.Velocity); 
             
        elseif mSensoredRadian > mCurRadian ... 
                && radius*(mSensoredRadian - mCurRadian) < 
mLocalVehInfo.curLane.rearDistance 
            % Sensored vehicle is in rear of the current vehicle and with a 
            % smaller distance 
            mLocalVehInfo.curLane.rearDistance = radius*(mSensoredRadian - 
mCurRadian); 
            mLocalVehInfo.curLane.rearVelocity = 
norm(mGlobalInfo(i).Velocity) - norm(mCurVehInfo.Velocity); 
             
        end 
    elseif mGlobalInfo(i).Position(1) > radius && mCurVehInfo.Position(1) > 
radius 
        if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
                && (mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1)) < 
mLocalVehInfo.curLane.frontDistance 
            % Vehicle in front of current vehicle and with a smaller 
            % distance 
            mLocalVehInfo.curLane.frontDistance = 
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1); 
            mLocalVehInfo.curLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
        elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                && (mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1)) < 
mLocalVehInfo.curLane.rearDistance 
            % Vehicle in rear of current vehicle and with a smaller 
            % distance 
            mLocalVehInfo.curLane.rearDistance = mCurVehInfo.Position(1) - 
mGlobalInfo(i).Position(1); 
            mLocalVehInfo.curLane.rearVelocity = mGlobalInfo(i).Velocity(1) 
- mCurVehInfo.Velocity(1); 
        end 
    end 
     
end 
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Appendix-13: Source code of sensor model for two lane merge scenarios 
% 
% Sensor model for two lane merge scenarios 
  
LaneWidth = 7; 
  
mergePoint = [173 + LaneWidth/2*cos(pi/6); LaneWidth/2*sin(pi/6)]; 
mergeRange = 173 + LaneWidth/2/sin(pi/6)*[-1, 1]; 
  
if mCurVehInfo.Id <= 0 
    % Vehicle is disabled 
    return; 
end 
  
curId = abs(mCurVehInfo.Id); 
  
%% VehglobalInfoInput.dynamicInfo 
if mCurVehInfo.Destination > 0 
    % Vehicle's destination is the first lane 
    if mCurVehInfo.Position(2) < 0 
        % Vehicle is in the side lane -> change left 
        mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left; 
    else 
        mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None; 
    end 
end 
  
if mCurVehInfo.Position(2) >= 0 
    % Vehicle is in the main lane 
    mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(2) - 
LaneWidth/2; 
else 
    % Vehicle is in the side lane 
    % assume side lane is 30 degree with main lane 
    mLocalVehInfo.curLane.curvature = [cos(pi/6); sin(pi/6)]; 
     
    vNormal = [-mLocalVehInfo.curLane.curvature(2); 
mLocalVehInfo.curLane.curvature(1)]; 
    vLateralDeviation = dot(mCurVehInfo.Position - mergePoint, 
vNormal)*vNormal; 
    temp = cross([mLocalVehInfo.curLane.curvature; 0], [vLateralDeviation; 
0]); 
    mLocalVehInfo.dynamicInfo.lateralDeviation = 
norm(vLateralDeviation)*temp(3); 
end 
  
%% VehInput.curLane/leftLane/rightLane 
if mCurVehInfo.Position(2) < 0 && mCurVehInfo.Position(2) > -LaneWidth ... 
        && mCurVehInfo.Position(1) >= mergeRange(1) && 
mCurVehInfo.Position(1) <= mergeRange(2) 
    mLocalVehInfo.leftLane.exist = true; 
end 
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for i = 1: length(mGlobalInfo) 
    if mGlobalInfo(i). Id <= 0 
        % Vehicle is disabled 
        continue; 
    end 
     
    if mCurVehInfo.Position(2) >= 0 
        % Vehicle is in the first lane 
        if mGlobalInfo(i).Position(2) >= 0 
            % Sensored vehicle is in the first lane too 
            if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
                    && (mGlobalInfo(i).Position(1) - 
mCurVehInfo.Position(1)) < mLocalVehInfo.curLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.frontDistance = 
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1); 
                mLocalVehInfo.curLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                    && (mCurVehInfo.Position(1) - 
mGlobalInfo(i).Position(1)) < mLocalVehInfo.curLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.rearDistance = 
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1); 
                mLocalVehInfo.curLane.rearVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            end 
        else 
            % Comment below codes because vehicles on main lane only 
            % consider those on the main lane 
        end 
    else 
        % Vehicle in the second lane 
         
        % treat the mergePoint as front objection(vehicle) with 0 velocity 
  
        if norm(mCurVehInfo.Position - mergePoint) < 
mLocalVehInfo.curLane.frontDistance 
            mLocalVehInfo.curLane.frontDistance = norm(mCurVehInfo.Position 
- mergePoint); 
            mLocalVehInfo.curLane.frontVelocity = -
norm(mCurVehInfo.Velocity); 
        end 
         
        if mGlobalInfo(i).Position(2) >= 0 
            % Sensored vehicle is in the first lane 
             
            sensoredVehToMerge = mGlobalInfo(i).Position(1) - 
mergePoint(1); 
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            curVehToMerge = -norm(mCurVehInfo.Position - mergePoint); 
             
            if sensoredVehToMerge > curVehToMerge ... 
                    && (sensoredVehToMerge - curVehToMerge) < 
mLocalVehInfo.leftLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.leftLane.frontDistance = sensoredVehToMerge - 
curVehToMerge; 
                mLocalVehInfo.leftLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - dot(mCurVehInfo.Velocity, 
mLocalVehInfo.curLane.curvature); 
            elseif sensoredVehToMerge < curVehToMerge ... 
                    && (curVehToMerge - sensoredVehToMerge) < 
mLocalVehInfo.leftLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.leftLane.rearDistance = curVehToMerge - 
sensoredVehToMerge; 
                mLocalVehInfo.leftLane.rearVelocity = 
mGlobalInfo(i).Velocity(1) - dot(mCurVehInfo.Velocity, 
mLocalVehInfo.curLane.curvature); 
            end 
        else 
            % Sensored vehicle is in the second lane too 
             
            if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
                    && norm(mGlobalInfo(i).Position - mCurVehInfo.Position) 
< mLocalVehInfo.curLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.frontDistance = 
norm(mGlobalInfo(i).Position - mCurVehInfo.Position); 
                mLocalVehInfo.curLane.frontVelocity = 
dot(mGlobalInfo(i).Velocity - mCurVehInfo.Velocity, 
mLocalVehInfo.curLane.curvature); 
            elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                    && norm(mCurVehInfo.Position - mGlobalInfo(i).Position) 
< mLocalVehInfo.curLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.rearDistance = 
norm(mCurVehInfo.Position - mGlobalInfo(i).Position); 
                mLocalVehInfo.curLane.rearVelocity = 
dot(mGlobalInfo(i).Velocity - mCurVehInfo.Velocity, 
mLocalVehInfo.curLane.curvature); 
            end 
        end 
    end 
end 
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Appendix-14: Source code of sensor model for two lane switch scenarios 
% 
% Sensor model for two lane switch scenarios 
  
LaneWidth = 7; 
  
if mCurVehInfo.Id <= 0 
    % Vehicle is disabled 
    return; 
end 
  
curId = abs(mCurVehInfo.Id); 
  
%% VehglobalInfoInput.dynamicInfo 
if mCurVehInfo.Destination > 0 
    if mCurVehInfo.Destination == 1 
        % Vehicle's destination is the first lane 
        if mCurVehInfo.Position(2) < 0 
            % Vehicle is in the second lane -> change right 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left; 
        else 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None; 
        end 
    else 
        % Vehicle's destination is the second lane 
        if mCurVehInfo.Position(2) > 0 
            % Vehicle is in the first lane -> change right 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Right; 
        else 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None; 
        end 
    end 
end 
  
if mCurVehInfo.Position(2) >= 0 
    mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(2) - 
LaneWidth/2; 
else 
    mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(2) + 
LaneWidth/2; 
end 
  
%% VehInput.curLane/leftLane/rightLane 
if mCurVehInfo.Position(2) >= 0 
    mLocalVehInfo.rightLane.exist = true; 
else 
    mLocalVehInfo.leftLane.exist = true; 
end 
  
for i = 1: length(mGlobalInfo) 
    if mGlobalInfo(i). Id <= 0 
        % Vehicle is disabled 
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        continue; 
    end 
     
    if mCurVehInfo.Position(2) >= 0 
        % Vehicle is in the first lane 
        if mGlobalInfo(i).Position(2) >= 0 
            % Sensored vehicle is in the first lane too 
            if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
                    && (mGlobalInfo(i).Position(1) - 
mCurVehInfo.Position(1)) < mLocalVehInfo.curLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.frontDistance = 
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1); 
                mLocalVehInfo.curLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                    && (mCurVehInfo.Position(1) - 
mGlobalInfo(i).Position(1)) < mLocalVehInfo.curLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.rearDistance = 
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1); 
                mLocalVehInfo.curLane.rearVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            end 
        else 
            % Sensored vehicle is in the second lane 
            if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
                    && (mGlobalInfo(i).Position(1) - 
mCurVehInfo.Position(1)) < mLocalVehInfo.rightLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.rightLane.frontDistance = 
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1); 
                mLocalVehInfo.rightLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                    && (mCurVehInfo.Position(1) - 
mGlobalInfo(i).Position(1)) < mLocalVehInfo.rightLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.rightLane.rearDistance = 
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1); 
                mLocalVehInfo.rightLane.rearVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            end 
        end 
    else 
        % Vehicle in the second lane 
        if mGlobalInfo(i).Position(2) >= 0 
            % Sensored vehicle is in the first lane 
            if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
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                    && (mGlobalInfo(i).Position(1) - 
mCurVehInfo.Position(1)) < mLocalVehInfo.leftLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.leftLane.frontDistance = 
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1); 
                mLocalVehInfo.leftLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                    && (mCurVehInfo.Position(1) - 
mGlobalInfo(i).Position(1)) < mLocalVehInfo.leftLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.leftLane.rearDistance = 
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1); 
                mLocalVehInfo.leftLane.rearVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            end 
        else 
            % Sensored vehicle is in the second lane too 
            if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
                    && (mGlobalInfo(i).Position(1) - 
mCurVehInfo.Position(1)) < mLocalVehInfo.curLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.frontDistance = 
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1); 
                mLocalVehInfo.curLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                    && (mCurVehInfo.Position(1) - 
mGlobalInfo(i).Position(1)) < mLocalVehInfo.curLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.rearDistance = 
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1); 
                mLocalVehInfo.curLane.rearVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            end 
        end 
    end 
end 
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Appendix-15: Source code of sensor model for three lane switch and lane merge scenarios 
% 
% Sensor model for three lane switch and lane merge scenarios 
  
LaneWidth = 7; 
  
mergePoint = [173 + LaneWidth/2*cos(pi/6); LaneWidth/2*sin(pi/6)]; 
mergeRange = 173 + LaneWidth/2/sin(pi/6)*[-1, 1]; 
  
if mCurVehInfo.Id <= 0 
    % Vehicle is disabled 
    return; 
end 
  
curId = abs(mCurVehInfo.Id); 
  
%% VehglobalInfoInput.dynamicInfo 
if mCurVehInfo.Destination > 0 
    if mCurVehInfo.Destination == 1 
        % Vehicle's destination is the first lane 
        if mCurVehInfo.Position(2) < LaneWidth 
            % Vehicle is in the second/third lane -> change left 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left; 
        else 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None; 
        end 
    elseif mCurVehInfo.Destination == 2 
        % Vehicle's destination is the second lane 
        if mCurVehInfo.Position(2) >= LaneWidth 
            % Vehicle is in the first lane -> change right 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Right; 
        elseif mCurVehInfo.Position(2) < 0 
            % Vehicle is in the third lane -> change left 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left; 
        else 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None; 
        end 
    end 
end 
  
if mCurVehInfo.Position(2) >= LaneWidth 
    mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(2) - 
3*LaneWidth/2; 
elseif mCurVehInfo.Position(2) >= 0 
    mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(2) - 
LaneWidth/2; 
else 
    % assume side lane is 30 degree with main lane 
    mLocalVehInfo.curLane.curvature = [cos(pi/6); sin(pi/6)]; 
     
    vNormal = [-mLocalVehInfo.curLane.curvature(2); 
mLocalVehInfo.curLane.curvature(1)]; 
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    vLateralDeviation = dot(mCurVehInfo.Position - mergePoint, 
vNormal)*vNormal; 
    temp = cross([mLocalVehInfo.curLane.curvature; 0], [vLateralDeviation; 
0]); 
    mLocalVehInfo.dynamicInfo.lateralDeviation = 
norm(vLateralDeviation)*temp(3); 
end 
  
%% VehInput.curLane/leftLane/rightLane 
if mCurVehInfo.Position(2) >= LaneWidth 
    mLocalVehInfo.rightLane.exist = true; 
elseif mCurVehInfo.Position(2) >= 0 
    mLocalVehInfo.leftLane.exist = true; 
elseif mCurVehInfo.Position(2) < 0 && mCurVehInfo.Position(2) > -
LaneWidth ... 
        && mCurVehInfo.Position(1) >= mergeRange(1) && 
mCurVehInfo.Position(1) <= mergeRange(2) 
    mLocalVehInfo.leftLane.exist = true; 
end 
  
for i = 1: length(mGlobalInfo) 
    if mGlobalInfo(i). Id <= 0 
        % Vehicle is disabled 
        continue; 
    end 
     
    if mCurVehInfo.Position(2) >= LaneWidth 
        % Vehicle is in the first lane 
        if mGlobalInfo(i).Position(2) >= LaneWidth 
            % Sensored vehicle is in the first lane too 
            if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
                    && (mGlobalInfo(i).Position(1) - 
mCurVehInfo.Position(1)) < mLocalVehInfo.curLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.frontDistance = 
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1); 
                mLocalVehInfo.curLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                    && (mCurVehInfo.Position(1) - 
mGlobalInfo(i).Position(1)) < mLocalVehInfo.curLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.rearDistance = 
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1); 
                mLocalVehInfo.curLane.rearVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            end 
        elseif mGlobalInfo(i).Position(2) >= 0 
            % Sensored vehicle is in the second lane 
            if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
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                    && (mGlobalInfo(i).Position(1) - 
mCurVehInfo.Position(1)) < mLocalVehInfo.rightLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.rightLane.frontDistance = 
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1); 
                mLocalVehInfo.rightLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                    && (mCurVehInfo.Position(1) - 
mGlobalInfo(i).Position(1)) < mLocalVehInfo.rightLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.rightLane.rearDistance = 
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1); 
                mLocalVehInfo.rightLane.rearVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            end 
        end 
    elseif mCurVehInfo.Position(2) >= 0 
        % Vehicle in the second lane 
        if mGlobalInfo(i).Position(2) >= LaneWidth 
            % Sensored vehicle is in the first lane 
            if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
                    && (mGlobalInfo(i).Position(1) - 
mCurVehInfo.Position(1)) < mLocalVehInfo.leftLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.leftLane.frontDistance = 
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1); 
                mLocalVehInfo.leftLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                    && (mCurVehInfo.Position(1) - 
mGlobalInfo(i).Position(1)) < mLocalVehInfo.leftLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.leftLane.rearDistance = 
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1); 
                mLocalVehInfo.leftLane.rearVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            end 
        elseif mGlobalInfo(i).Position(2) >= 0 
            % Sensored vehicle is in the second lane too 
            if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
                    && (mGlobalInfo(i).Position(1) - 
mCurVehInfo.Position(1)) < mLocalVehInfo.curLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.frontDistance = 
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1); 
                mLocalVehInfo.curLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
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            elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                    && (mCurVehInfo.Position(1) - 
mGlobalInfo(i).Position(1)) < mLocalVehInfo.curLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.rearDistance = 
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1); 
                mLocalVehInfo.curLane.rearVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            end 
        end 
    else 
        % Vehicle in the third lane 
         
        % treat the mergePoint as front objection(vehicle) with 0 velocity 
  
        if norm(mCurVehInfo.Position - mergePoint) < 
mLocalVehInfo.curLane.frontDistance 
            mLocalVehInfo.curLane.frontDistance = norm(mCurVehInfo.Position 
- mergePoint); 
            mLocalVehInfo.curLane.frontVelocity = -
norm(mCurVehInfo.Velocity); 
        end 
         
        if mGlobalInfo(i).Position(2) >= LaneWidth 
            % Sensored vehicle is in the first lane 
            % Do nothing 
        elseif mGlobalInfo(i).Position(2) >= 0 
            % Sensored vehicle is in the second lane 
             
            sensoredVehToMerge = mGlobalInfo(i).Position(1) - 
mergePoint(1); 
            curVehToMerge = -norm(mCurVehInfo.Position - mergePoint); 
             
            if sensoredVehToMerge > curVehToMerge ... 
                    && (sensoredVehToMerge - curVehToMerge) < 
mLocalVehInfo.leftLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.leftLane.frontDistance = sensoredVehToMerge - 
curVehToMerge; 
                mLocalVehInfo.leftLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - dot(mCurVehInfo.Velocity, 
mLocalVehInfo.curLane.curvature); 
            elseif sensoredVehToMerge < curVehToMerge ... 
                    && (curVehToMerge - sensoredVehToMerge) < 
mLocalVehInfo.leftLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.leftLane.rearDistance = curVehToMerge - 
sensoredVehToMerge; 
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                mLocalVehInfo.leftLane.rearVelocity = 
mGlobalInfo(i).Velocity(1) - dot(mCurVehInfo.Velocity, 
mLocalVehInfo.curLane.curvature); 
            end 
        else 
            % Sensored vehicle is in the third lane too 
             
            if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
                    && norm(mGlobalInfo(i).Position - mCurVehInfo.Position) 
< mLocalVehInfo.curLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.frontDistance = 
norm(mGlobalInfo(i).Position - mCurVehInfo.Position); 
                mLocalVehInfo.curLane.frontVelocity = 
dot(mGlobalInfo(i).Velocity - mCurVehInfo.Velocity, 
mLocalVehInfo.curLane.curvature); 
            elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                    && norm(mCurVehInfo.Position - mGlobalInfo(i).Position) 
< mLocalVehInfo.curLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.rearDistance = 
norm(mCurVehInfo.Position - mGlobalInfo(i).Position); 
                mLocalVehInfo.curLane.rearVelocity = 
dot(mGlobalInfo(i).Velocity - mCurVehInfo.Velocity, 
mLocalVehInfo.curLane.curvature); 
            end 
        end 
    end 
end 
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Appendix-16: Source code of sensor model for three lane curve and lane switch scenarios 
% 
% Sensor model for three lane curve and lane scenarios 
  
LaneWidth = 7; 
radius = 100; 
  
centerPoint1 = [-radius - LaneWidth; 0]; 
centerPoint2 = [radius + LaneWidth; 0]; 
  
if mCurVehInfo.Id <= 0 
    % Vehicle is disabled 
    return; 
end 
  
curId = abs(mCurVehInfo.Id); 
  
%% VehglobalInfoInput.dynamicInfo 
if mCurVehInfo.Destination > 0 
    if mCurVehInfo.Destination == 1 
        % Vehicle's destination is the first lane 
        if mCurVehInfo.Position(1) > -LaneWidth/2 
            % Vehicle is in the second/third lane -> change left 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Right; 
        else 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None; 
        end 
    elseif mCurVehInfo.Destination == 2 
        % Vehicle's destination is the second lane 
        if mCurVehInfo.Position(1) < -LaneWidth/2 
            % Vehicle is in the first lane -> change left 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left; 
        elseif mCurVehInfo.Position(1) > LaneWidth/2 
            % Vehicle is in the third lane -> change right 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Right; 
        else 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None; 
        end 
    else 
        % Vehicle's destination is the third lane 
        if mCurVehInfo.Position(1) < LaneWidth/2 
            % Vehicle is in the first/second lane -> change left 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left; 
        else 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None; 
        end 
    end 
end 
  
if mCurVehInfo.Position(1) <= -LaneWidth/2 
    % Vehicle is in the left lane 
    if mCurVehInfo.Position(2) >= 0 
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        mLocalVehInfo.dynamicInfo.lateralDeviation = 
norm(mCurVehInfo.Position - centerPoint1) - radius; 
        tRelPos = mCurVehInfo.Position - centerPoint1; 
        tRelPos = tRelPos/norm(tRelPos); 
        mLocalVehInfo.curLane.curvature = [tRelPos(2); -tRelPos(1)]; 
    else 
        mLocalVehInfo.dynamicInfo.lateralDeviation = 
mCurVehInfo.Position(1) + LaneWidth; 
        mLocalVehInfo.curLane.curvature = [0; -1]; 
    end 
elseif mCurVehInfo.Position(1) >= LaneWidth/2 
    % Vehicle is in the right lane 
    if mCurVehInfo.Position(2) >= 0 
        mLocalVehInfo.dynamicInfo.lateralDeviation = radius - 
norm(mCurVehInfo.Position - centerPoint2); 
        tRelPos = mCurVehInfo.Position - centerPoint2; 
        tRelPos = tRelPos/norm(tRelPos); 
        mLocalVehInfo.curLane.curvature = [-tRelPos(2); tRelPos(1)]; 
    else 
        mLocalVehInfo.dynamicInfo.lateralDeviation = 
mCurVehInfo.Position(1) - LaneWidth; 
        mLocalVehInfo.curLane.curvature = [0; -1]; 
    end 
else 
    % Vehicle is in the center lane 
    mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(1) - 
0; 
    mLocalVehInfo.curLane.curvature = [0; -1]; 
end 
  
%% VehInput.curLane/leftLane/rightLane 
  
if mCurVehInfo.Position(1) <= -LaneWidth/2 
    if mCurVehInfo.Position(2) < 0 
        mLocalVehInfo.leftLane.exist = true; 
        mLocalVehInfo.leftLane.curvature = [0; -1]; 
    end 
elseif mCurVehInfo.Position(1) >= LaneWidth/2 
    if mCurVehInfo.Position(2) < 0 
        mLocalVehInfo.rightLane.exist = true; 
        mLocalVehInfo.rightLane.curvature = [0; -1]; 
    end 
else 
    if mCurVehInfo.Position(2) < 0 
        mLocalVehInfo.leftLane.exist = true; 
        mLocalVehInfo.rightLane.exist = true; 
        mLocalVehInfo.leftLane.curvature = [0; -1]; 
        mLocalVehInfo.rightLane.curvature = [0; -1]; 
    end 
end 
  
for i = 1 : length(mGlobalInfo) 
    if mGlobalInfo(i).Id <= 0 
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        % Vehicle is disabled 
        continue; 
    end 
     
    if mCurVehInfo.Position(1) <= -LaneWidth/2 
        % Vehicle is in the left lane 
        if mGlobalInfo(i).Position(1) <= -LaneWidth/2 
            % Sensored vehicle is in the left lane 
            if mCurVehInfo.Position(2) >= 0 && 
mGlobalInfo(i).Position(2) >= 0 
                % Both current vehicle and sensored vehicles are in the  
                % circle section 
                mCurRadian = atan2(mCurVehInfo.Position(2) - 
centerPoint1(2), mCurVehInfo.Position(1) - centerPoint1(1)); 
                mSensoredRadian = atan2(mGlobalInfo(i).Position(2) - 
centerPoint1(2), mGlobalInfo(i).Position(1) - centerPoint1(1)); 
                 
                if mSensoredRadian < mCurRadian ... 
                        && radius*(mCurRadian - mSensoredRadian) < 
mLocalVehInfo.curLane.frontDistance 
                    % Sensored vehicle is in front of the current vehicle 
and with a 
                    % smaller distance 
                    mLocalVehInfo.curLane.frontDistance = 
radius*(mCurRadian - mSensoredRadian); 
                    mLocalVehInfo.curLane.frontVelocity = 
norm(mGlobalInfo(i).Velocity) - norm(mCurVehInfo.Velocity); 
                     
                elseif mSensoredRadian > mCurRadian ... 
                        && radius*(mSensoredRadian - mCurRadian) < 
mLocalVehInfo.curLane.rearDistance 
                    % Sensored vehicle is in rear of the current vehicle 
and with a 
                    % smaller distance 
                    mLocalVehInfo.curLane.rearDistance = 
radius*(mSensoredRadian - mCurRadian); 
                    mLocalVehInfo.curLane.rearVelocity = 
norm(mGlobalInfo(i).Velocity) - norm(mCurVehInfo.Velocity); 
                     
                end 
            elseif mCurVehInfo.Position(2) < 0 && 
mGlobalInfo(i).Position(2) < 0 
                % Both current vehicle and sensored vehicles are in the 
                % straight section 
                if mGlobalInfo(i).Position(2) < mCurVehInfo.Position(2) ... 
                        && (mCurVehInfo.Position(2) - 
mGlobalInfo(i).Position(2)) < mLocalVehInfo.curLane.frontDistance 
                    % Vehicle in front of current vehicle and with a 
smaller 
                    % distance 
                    mLocalVehInfo.curLane.frontDistance = 
mCurVehInfo.Position(2) - mGlobalInfo(i).Position(2); 
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                    mLocalVehInfo.curLane.frontVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2)); 
                elseif mGlobalInfo(i).Position(2) > 
mCurVehInfo.Position(2) ... 
                        && (mGlobalInfo(i).Position(2) - 
mCurVehInfo.Position(2)) < mLocalVehInfo.curLane.rearDistance 
                    % Vehicle in rear of current vehicle and with a smaller 
                    % distance 
                    mLocalVehInfo.curLane.rearDistance = 
mGlobalInfo(i).Position(2) - mCurVehInfo.Position(2); 
                    mLocalVehInfo.curLane.rearVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2)); 
                end 
                 
            end 
        elseif mGlobalInfo(i).Position(1) >= LaneWidth/2 
            % Sensored vehicle is in the right lane 
             
            % do nothing since the two vehicles are seperated by the middle 
            % lane 
             
        else 
            % Sensored vehicle is in the middle lane 
            if mCurVehInfo.Position(2) < 0 
                if mGlobalInfo(i).Position(2) < mCurVehInfo.Position(2) ... 
                        && (mCurVehInfo.Position(2) - 
mGlobalInfo(i).Position(2)) < mLocalVehInfo.leftLane.frontDistance 
                    % Vehicle in front of current vehicle and with a 
smaller 
                    % distance 
                    mLocalVehInfo.leftLane.frontDistance = 
mCurVehInfo.Position(2) - mGlobalInfo(i).Position(2); 
                    mLocalVehInfo.leftLane.frontVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2)); 
                elseif mGlobalInfo(i).Position(2) > 
mCurVehInfo.Position(2) ... 
                        && (mGlobalInfo(i).Position(2) - 
mCurVehInfo.Position(2)) < mLocalVehInfo.leftLane.rearDistance 
                    % Vehicle in rear of current vehicle and with a smaller 
                    % distance 
                    mLocalVehInfo.leftLane.rearDistance = 
mGlobalInfo(i).Position(2) - mCurVehInfo.Position(2); 
                    mLocalVehInfo.leftLane.rearVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2)); 
                end 
            end 
             
        end 
    elseif mCurVehInfo.Position(1) >= LaneWidth/2 
        % Vehicle is in the right lane 
         
        if mGlobalInfo(i).Position(1) <= -LaneWidth/2 
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            % Sensored vehicle is in the left lane 
             
            % do nothing since the two lanes are seperated by the middle 
            % lane 
             
        elseif mGlobalInfo(i).Position(1) >= LaneWidth/2 
            % Sensored vehicle is in the right lane 
             
            if mCurVehInfo.Position(2) >= 0 && 
mGlobalInfo(i).Position(2) >= 0 
                % Both current vehicle and sensored vehicles are in the  
                % circle section 
                mCurRadian = atan2(mCurVehInfo.Position(2) - 
centerPoint2(2), mCurVehInfo.Position(1) - centerPoint2(1)); 
                mSensoredRadian = atan2(mGlobalInfo(i).Position(2) - 
centerPoint2(2), mGlobalInfo(i).Position(1) - centerPoint2(1)); 
                 
                if mSensoredRadian > mCurRadian ... 
                        && radius*(mSensoredRadian - mCurRadian) < 
mLocalVehInfo.curLane.frontDistance 
                    % Sensored vehicle is in front of the current vehicle 
and with a 
                    % smaller distance 
                    mLocalVehInfo.curLane.frontDistance = 
radius*(mSensoredRadian - mCurRadian); 
                    mLocalVehInfo.curLane.frontVelocity = 
norm(mGlobalInfo(i).Velocity) - norm(mCurVehInfo.Velocity); 
                     
                elseif mSensoredRadian < mCurRadian ... 
                        && radius*(mCurRadian - mSensoredRadian) < 
mLocalVehInfo.curLane.rearDistance 
                    % Sensored vehicle is in rear of the current vehicle 
and with a 
                    % smaller distance 
                    mLocalVehInfo.curLane.rearDistance = radius*(mCurRadian 
- mSensoredRadian); 
                    mLocalVehInfo.curLane.rearVelocity = 
norm(mGlobalInfo(i).Velocity) - norm(mCurVehInfo.Velocity); 
                     
                end 
                 
            elseif mCurVehInfo.Position(2) < 0 && 
mGlobalInfo(i).Position(2) < 0 
                % Both current vehicle and sensored vehicles are in the 
                % straight section 
                if mGlobalInfo(i).Position(2) < mCurVehInfo.Position(2) ... 
                        && (mCurVehInfo.Position(2) - 
mGlobalInfo(i).Position(2)) < mLocalVehInfo.curLane.frontDistance 
                    % Vehicle in front of current vehicle and with a 
smaller 
                    % distance 



213 
 

                    mLocalVehInfo.curLane.frontDistance = 
mCurVehInfo.Position(2) - mGlobalInfo(i).Position(2); 
                    mLocalVehInfo.curLane.frontVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2)); 
                elseif mGlobalInfo(i).Position(2) > 
mCurVehInfo.Position(2) ... 
                        && (mGlobalInfo(i).Position(2) - 
mCurVehInfo.Position(2)) < mLocalVehInfo.curLane.rearDistance 
                    % Vehicle in rear of current vehicle and with a smaller 
                    % distance 
                    mLocalVehInfo.curLane.rearDistance = 
mGlobalInfo(i).Position(2) - mCurVehInfo.Position(2); 
                    mLocalVehInfo.curLane.rearVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2)); 
                end 
                 
            end 
             
        else 
            % Sensored vehicle is in the middle lane 
            if mCurVehInfo.Position(2) < 0 
                if mGlobalInfo(i).Position(2) < mCurVehInfo.Position(2) ... 
                        && (mCurVehInfo.Position(2) - 
mGlobalInfo(i).Position(2)) < mLocalVehInfo.rightLane.frontDistance 
                    % Vehicle in front of current vehicle and with a 
smaller 
                    % distance 
                    mLocalVehInfo.rightLane.frontDistance = 
mCurVehInfo.Position(2) - mGlobalInfo(i).Position(2); 
                    mLocalVehInfo.rightLane.frontVelocity = 
mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2); 
                elseif mGlobalInfo(i).Position(2) > 
mCurVehInfo.Position(2) ... 
                        && (mGlobalInfo(i).Position(2) - 
mCurVehInfo.Position(2)) < mLocalVehInfo.rightLane.rearDistance 
                    % Vehicle in rear of current vehicle and with a smaller 
                    % distance 
                    mLocalVehInfo.rightLane.rearDistance = 
mGlobalInfo(i).Position(2) - mCurVehInfo.Position(2); 
                    mLocalVehInfo.rightLane.rearVelocity = 
mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2); 
                end 
            end 
             
        end 
         
    else 
        % Vehicle is in the middle lane 
        if mGlobalInfo(i).Position(1) <= -LaneWidth/2 
            % Sensored vehicle is in the left lane 
            if mGlobalInfo(i).Position(2) < 0 
                % Sensored vehicle is in the straight section 
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                if mGlobalInfo(i).Position(2) < mCurVehInfo.Position(2) ... 
                        && (mCurVehInfo.Position(2) - 
mGlobalInfo(i).Position(2)) < mLocalVehInfo.rightLane.frontDistance 
                    % Vehicle in front of current vehicle and with a 
smaller 
                    % distance 
                    mLocalVehInfo.rightLane.frontDistance = 
mCurVehInfo.Position(2) - mGlobalInfo(i).Position(2); 
                    mLocalVehInfo.rightLane.frontVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2)); 
                elseif mGlobalInfo(i).Position(2) > 
mCurVehInfo.Position(2) ... 
                        && (mGlobalInfo(i).Position(2) - 
mCurVehInfo.Position(2)) < mLocalVehInfo.rightLane.rearDistance 
                    % Vehicle in rear of current vehicle and with a smaller 
                    % distance 
                    mLocalVehInfo.rightLane.rearDistance = 
mGlobalInfo(i).Position(2) - mCurVehInfo.Position(2); 
                    mLocalVehInfo.rightLane.rearVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2)); 
                end 
            end 
        elseif mGlobalInfo(i).Position(1) >= LaneWidth/2 
            % Sensored vehicle is in the right lane 
            if mGlobalInfo(i).Position(2) < 0 
                if mGlobalInfo(i).Position(2) < mCurVehInfo.Position(2) ... 
                        && (mCurVehInfo.Position(2) - 
mGlobalInfo(i).Position(2)) < mLocalVehInfo.leftLane.frontDistance 
                    % Vehicle in front of current vehicle and with a 
smaller 
                    % distance 
                    mLocalVehInfo.leftLane.frontDistance = 
mCurVehInfo.Position(2) - mGlobalInfo(i).Position(2); 
                    mLocalVehInfo.leftLane.frontVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2)); 
                elseif mGlobalInfo(i).Position(2) > 
mCurVehInfo.Position(2) ... 
                        && (mGlobalInfo(i).Position(2) - 
mCurVehInfo.Position(2)) < mLocalVehInfo.leftLane.rearDistance 
                    % Vehicle in rear of current vehicle and with a smaller 
                    % distance 
                    mLocalVehInfo.leftLane.rearDistance = 
mGlobalInfo(i).Position(2) - mCurVehInfo.Position(2); 
                    mLocalVehInfo.leftLane.rearVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2)); 
                end 
            end 
        else 
            % Sensored vehicle is in the middle lane 
            if mGlobalInfo(i).Position(2) < mCurVehInfo.Position(2) ... 
                    && (mCurVehInfo.Position(2) - 
mGlobalInfo(i).Position(2)) < mLocalVehInfo.curLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
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                % distance 
                mLocalVehInfo.curLane.frontDistance = 
mCurVehInfo.Position(2) - mGlobalInfo(i).Position(2); 
                mLocalVehInfo.curLane.frontVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2)); 
            elseif mGlobalInfo(i).Position(2) > mCurVehInfo.Position(2) ... 
                    && (mGlobalInfo(i).Position(2) - 
mCurVehInfo.Position(2)) < mLocalVehInfo.curLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.rearDistance = 
mGlobalInfo(i).Position(2) - mCurVehInfo.Position(2); 
                mLocalVehInfo.curLane.rearVelocity = -
(mGlobalInfo(i).Velocity(2) - mCurVehInfo.Velocity(2)); 
            end 
             
        end 
         
    end 
     
end 
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Appendix-17: Source code of sensor model for four lane switch and lane merge scenarios 
% 
% Sensor model for four lane switch and lane merge scenarios 
  
LaneWidth = 7; 
  
mergePoint = [173 + LaneWidth/2*cos(pi/6); LaneWidth/2*sin(pi/6)]; 
mergeRange = 173 + LaneWidth/2/sin(pi/6)*[-1, 1]; 
mergePoint2 = [70/tan(pi/9) + 30/tan(pi/6) + 0*7/(2*sin(pi/9)); 0*3.5]; 
mergeRange2 = 70/tan(pi/9) + 30/tan(pi/6) + LaneWidth/2/sin(pi/9)*[-1, 1]; 
  
if mCurVehInfo.Id <= 0 
    % Vehicle is disabled 
    return; 
end 
  
curId = abs(mCurVehInfo.Id); 
  
%% VehglobalInfoInput.dynamicInfo 
if mCurVehInfo.Destination > 0 
    if mCurVehInfo.Destination == 1 
        % Vehicle's destination is the first lane 
        if mCurVehInfo.Position(2) < LaneWidth 
            % Vehicle is in the second/third lane -> change left 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left; 
        else 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None; 
        end 
    elseif mCurVehInfo.Destination == 2 
        % Vehicle's destination is the second lane 
        if mCurVehInfo.Position(2) >= LaneWidth 
            % Vehicle is in the first lane -> change right 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Right; 
        elseif mCurVehInfo.Position(2) < 0 
            % Vehicle is in the third lane -> change left 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left; 
        else 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None; 
        end 
    else 
        % Vehicle's destination is the third lane 
        if mCurVehInfo.Position(2) < 0 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.Left; 
        else 
            mLocalVehInfo.dynamicInfo.changeLane = ChangeLane.None; 
        end 
    end 
end 
  
if mCurVehInfo.Position(2) >= LaneWidth 
    mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(2) - 
3*LaneWidth/2; 
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elseif mCurVehInfo.Position(2) >= 0 
    mLocalVehInfo.dynamicInfo.lateralDeviation = mCurVehInfo.Position(2) - 
LaneWidth/2; 
elseif mCurVehInfo.Destination == 2 
    % Vehicle is in the first side lane 
    % assume side lane is 30 degree with main lane 
    mLocalVehInfo.curLane.curvature = [cos(pi/6); sin(pi/6)]; 
     
    vNormal = [-mLocalVehInfo.curLane.curvature(2); 
mLocalVehInfo.curLane.curvature(1)]; 
    vLateralDeviation = dot(mCurVehInfo.Position - mergePoint, 
vNormal)*vNormal; 
    temp = cross([mLocalVehInfo.curLane.curvature; 0], [vLateralDeviation; 
0]); 
    mLocalVehInfo.dynamicInfo.lateralDeviation = 
norm(vLateralDeviation)*temp(3); 
else 
    % Vehicle is in the second side lane 
     
    if mCurVehInfo.Position(2) < -70 
        mLocalVehInfo.curLane.curvature = [cos(pi/6); sin(pi/6)]; 
        vNormal = [-mLocalVehInfo.curLane.curvature(2); 
mLocalVehInfo.curLane.curvature(1)]; 
        vLateralDeviation = dot(mCurVehInfo.Position - mergePoint, 
vNormal)*vNormal; 
        temp = cross([mLocalVehInfo.curLane.curvature; 0], 
[vLateralDeviation; 0]); 
        mLocalVehInfo.dynamicInfo.lateralDeviation = 
norm(vLateralDeviation)*temp(3); 
    else 
        mLocalVehInfo.curLane.curvature = [cos(pi/9); sin(pi/9)]; 
        vNormal = [-mLocalVehInfo.curLane.curvature(2); 
mLocalVehInfo.curLane.curvature(1)]; 
        vLateralDeviation = dot(mCurVehInfo.Position - mergePoint2, 
vNormal)*vNormal; 
        temp = cross([mLocalVehInfo.curLane.curvature; 0], 
[vLateralDeviation; 0]); 
        mLocalVehInfo.dynamicInfo.lateralDeviation = 
norm(vLateralDeviation)*temp(3); 
    end 
     
end 
  
%% VehInput.curLane/leftLane/rightLane 
if mCurVehInfo.Position(2) >= LaneWidth 
    mLocalVehInfo.rightLane.exist = true; 
elseif mCurVehInfo.Position(2) >= 0 
    mLocalVehInfo.leftLane.exist = true; 
elseif mCurVehInfo.Position(2) < 0 && mCurVehInfo.Position(2) > -
LaneWidth ... 
        && mCurVehInfo.Position(1) >= mergeRange(1) && 
mCurVehInfo.Position(1) <= mergeRange(2) 
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    mLocalVehInfo.leftLane.exist = true; 
elseif mCurVehInfo.Position(2) < 0 && mCurVehInfo.Position(2) > -
LaneWidth ... 
        && mCurVehInfo.Position(1) >= mergeRange2(1) && 
mCurVehInfo.Position(1) <= mergeRange2(2) 
    mLocalVehInfo.leftLane.exist = true; 
end 
  
for i = 1 : length(mGlobalInfo) 
    if mGlobalInfo(i).Id <= 0 
        % Vehicle is disabled 
        continue; 
    end 
     
    if mCurVehInfo.Position(2) >= LaneWidth 
        % Vehicle is in the first lane 
        if mGlobalInfo(i).Position(2) >= LaneWidth 
            % Sensored vehicle is in the first lane too 
            if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
                    && (mGlobalInfo(i).Position(1) - 
mCurVehInfo.Position(1)) < mLocalVehInfo.curLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.frontDistance = 
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1); 
                mLocalVehInfo.curLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                    && (mCurVehInfo.Position(1) - 
mGlobalInfo(i).Position(1)) < mLocalVehInfo.curLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.rearDistance = 
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1); 
                mLocalVehInfo.curLane.rearVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            end 
        elseif mGlobalInfo(i).Position(2) >= 0 
            % Sensored vehicle is in the second lane 
            if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
                    && (mGlobalInfo(i).Position(1) - 
mCurVehInfo.Position(1)) < mLocalVehInfo.rightLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.rightLane.frontDistance = 
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1); 
                mLocalVehInfo.rightLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                    && (mCurVehInfo.Position(1) - 
mGlobalInfo(i).Position(1)) < mLocalVehInfo.rightLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
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                mLocalVehInfo.rightLane.rearDistance = 
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1); 
                mLocalVehInfo.rightLane.rearVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            end 
        end 
    elseif mCurVehInfo.Position(2) >= 0 
        % Vehicle in the second lane 
        if mGlobalInfo(i).Position(2) >= LaneWidth 
            % Sensored vehicle is in the first lane 
            if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
                    && (mGlobalInfo(i).Position(1) - 
mCurVehInfo.Position(1)) < mLocalVehInfo.leftLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.leftLane.frontDistance = 
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1); 
                mLocalVehInfo.leftLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                    && (mCurVehInfo.Position(1) - 
mGlobalInfo(i).Position(1)) < mLocalVehInfo.leftLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.leftLane.rearDistance = 
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1); 
                mLocalVehInfo.leftLane.rearVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            end 
        elseif mGlobalInfo(i).Position(2) >= 0 
            % Sensored vehicle is in the second lane too 
            if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
                    && (mGlobalInfo(i).Position(1) - 
mCurVehInfo.Position(1)) < mLocalVehInfo.curLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.frontDistance = 
mGlobalInfo(i).Position(1) - mCurVehInfo.Position(1); 
                mLocalVehInfo.curLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                    && (mCurVehInfo.Position(1) - 
mGlobalInfo(i).Position(1)) < mLocalVehInfo.curLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.rearDistance = 
mCurVehInfo.Position(1) - mGlobalInfo(i).Position(1); 
                mLocalVehInfo.curLane.rearVelocity = 
mGlobalInfo(i).Velocity(1) - mCurVehInfo.Velocity(1); 
            end 
        end 
    elseif mCurVehInfo.Destination == 2 
        % Vehicle in the third lane (the first side lane) 
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        % treat the mergePoint as front objection(vehicle) with 0 velocity 
  
        if norm(mCurVehInfo.Position - mergePoint) < 
mLocalVehInfo.curLane.frontDistance 
            mLocalVehInfo.curLane.frontDistance = norm(mCurVehInfo.Position 
- mergePoint); 
            mLocalVehInfo.curLane.frontVelocity = -
norm(mCurVehInfo.Velocity); 
        end 
         
        if mGlobalInfo(i).Position(2) >= LaneWidth 
            % Sensored vehicle is in the first lane 
            % Do nothing 
        elseif mGlobalInfo(i).Position(2) >= 0 
            % Sensored vehicle is in the second lane 
             
            sensoredVehToMerge = mGlobalInfo(i).Position(1) - 
mergePoint(1); 
            curVehToMerge = -norm(mCurVehInfo.Position - mergePoint); 
             
            if sensoredVehToMerge > curVehToMerge ... 
                    && (sensoredVehToMerge - curVehToMerge) < 
mLocalVehInfo.leftLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.leftLane.frontDistance = sensoredVehToMerge - 
curVehToMerge; 
                mLocalVehInfo.leftLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - dot(mCurVehInfo.Velocity, 
mLocalVehInfo.curLane.curvature); 
            elseif sensoredVehToMerge < curVehToMerge ... 
                    && (curVehToMerge - sensoredVehToMerge) < 
mLocalVehInfo.leftLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.leftLane.rearDistance = curVehToMerge - 
sensoredVehToMerge; 
                mLocalVehInfo.leftLane.rearVelocity = 
mGlobalInfo(i).Velocity(1) - dot(mCurVehInfo.Velocity, 
mLocalVehInfo.curLane.curvature); 
            end 
        else 
            % Sensored vehicle is in the third lane too 
             
            if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
                    && norm(mGlobalInfo(i).Position - mCurVehInfo.Position) 
< mLocalVehInfo.curLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.frontDistance = 
norm(mGlobalInfo(i).Position - mCurVehInfo.Position); 
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                mLocalVehInfo.curLane.frontVelocity = 
dot(mGlobalInfo(i).Velocity - mCurVehInfo.Velocity, 
mLocalVehInfo.curLane.curvature); 
            elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                    && norm(mCurVehInfo.Position - mGlobalInfo(i).Position) 
< mLocalVehInfo.curLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.rearDistance = 
norm(mCurVehInfo.Position - mGlobalInfo(i).Position); 
                mLocalVehInfo.curLane.rearVelocity = 
dot(mGlobalInfo(i).Velocity - mCurVehInfo.Velocity, 
mLocalVehInfo.curLane.curvature); 
            end 
        end 
    else 
        % Vehicle in the second side lane 
         
        % treat the mergePoint2 as front objection(vehicle) with 0 velocity 
  
        if norm(mCurVehInfo.Position - mergePoint2) < 
mLocalVehInfo.curLane.frontDistance 
            mLocalVehInfo.curLane.frontDistance = norm(mCurVehInfo.Position 
- mergePoint2); 
            mLocalVehInfo.curLane.frontVelocity = -
norm(mCurVehInfo.Velocity); 
        end 
         
        if mGlobalInfo(i).Position(2) >= LaneWidth 
            % Sensored vehicle is in the first lane 
            % Do nothing 
        elseif mGlobalInfo(i).Position(2) >= 0 
            % Sensored vehicle is in the second lane 
             
            sensoredVehToMerge = mGlobalInfo(i).Position(1) - 
mergePoint2(1); 
            curVehToMerge = -norm(mCurVehInfo.Position - mergePoint2); 
             
            if sensoredVehToMerge > curVehToMerge ... 
                    && (sensoredVehToMerge - curVehToMerge) < 
mLocalVehInfo.leftLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.leftLane.frontDistance = sensoredVehToMerge - 
curVehToMerge; 
                mLocalVehInfo.leftLane.frontVelocity = 
mGlobalInfo(i).Velocity(1) - dot(mCurVehInfo.Velocity, 
mLocalVehInfo.curLane.curvature); 
            elseif sensoredVehToMerge < curVehToMerge ... 
                    && (curVehToMerge - sensoredVehToMerge) < 
mLocalVehInfo.leftLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
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                % distance 
                mLocalVehInfo.leftLane.rearDistance = curVehToMerge - 
sensoredVehToMerge; 
                mLocalVehInfo.leftLane.rearVelocity = 
mGlobalInfo(i).Velocity(1) - dot(mCurVehInfo.Velocity, 
mLocalVehInfo.curLane.curvature); 
            end 
        else 
            % Sensored vehicle is in the side lane too 
             
            if mGlobalInfo(i).Position(2) > -70 && ... 
                    mGlobalInfo(i).Position(1) < 
(mGlobalInfo(i).Position(2) + 100 + 7/sqrt(3))*sqrt(3) 
                % Sensored vehicle is in the first side lane and passes the 
                % switching point, ignore 
                 
                continue; 
            end 
             
             
            if mGlobalInfo(i).Position(1) > mCurVehInfo.Position(1) ... 
                    && norm(mGlobalInfo(i).Position - mCurVehInfo.Position) 
< mLocalVehInfo.curLane.frontDistance 
                % Vehicle in front of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.frontDistance = 
norm(mGlobalInfo(i).Position - mCurVehInfo.Position); 
                mLocalVehInfo.curLane.frontVelocity = 
dot(mGlobalInfo(i).Velocity - mCurVehInfo.Velocity, 
mLocalVehInfo.curLane.curvature); 
            elseif mGlobalInfo(i).Position(1) < mCurVehInfo.Position(1) ... 
                    && norm(mCurVehInfo.Position - mGlobalInfo(i).Position) 
< mLocalVehInfo.curLane.rearDistance 
                % Vehicle in rear of current vehicle and with a smaller 
                % distance 
                mLocalVehInfo.curLane.rearDistance = 
norm(mCurVehInfo.Position - mGlobalInfo(i).Position); 
                mLocalVehInfo.curLane.rearVelocity = 
dot(mGlobalInfo(i).Velocity - mCurVehInfo.Velocity, 
mLocalVehInfo.curLane.curvature); 
            end 
        end 
    end 
end 
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Appendix -18: Vehicle Model 
 

 
 

Figure 18.1: The bicycle model's schematic illustration 

 

Velocity States 

The velocity states in the vehicle model are the sideslip angle 𝛽 and yaw rate 𝑟. The angle of 

the sideslip is given by: 

 

𝛽 = 𝑡𝑎𝑛(
𝑈௬

𝑈௫
൘ )  ≈  

𝑈௬
𝑈௫

൘   ………….. Equation (78.1) 

 

In the body-fixed frame, the lateral and longitudinal velocities are indicated as 𝑈௬ and 𝑈௫. It 

was assumed for simplicity 𝑈௫ > 𝑈௬ as a convenience and that 𝑈௫ is constant. For the sideslip 

and yaw rates, the equations of motion are as follows. 

 

𝛽̇ =  
ி೤೑ା ி೤ೝ

௠௎ೣ
− 𝑟 …………………….….. Equation (18.2) 

𝑟̇ =  
௔ி೤೑ି ௕ி೤ೝ

ூ೥೥
  ………………………….... Equation (18.3) 

 

The lateral tyre force on the front and rear axles is indicated by 𝐹௬௙ and 𝐹௬௥, the vehicle mass 

is denoted by 𝑚, the yaw inertia is denoted by 𝐼௭௭, and the distances between the vehicle's 
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centre of gravity and the front and rear axles are marked by 𝑎 and 𝑏, respectively. The slip 

angle of the front tyre, 𝛼௙, and the rear tyre, 𝛼௥, may be stated as follows: 

 

𝛼௙ =  𝑡𝑎𝑛ିଵ ቀ𝛽 +
௔௥

௎ೣ
ቁ −  𝛿 ≈  𝛽 +

௔௥

௎ೣ
−  𝛿 ………….. Equation (18.4) 

𝛼௥ =  𝑡𝑎𝑛ିଵ ቀ𝛽 −
௕௥

௎ೣ
ቁ ≈  𝛽 −

௕௥

௎ೣ
  ……………Equation (18.5) 

 

Small-angle approximations result in linear expressions. Fialas’ brush tyre model, as described 

by Pacejka, provides the link between lateral tyre forces and tyre slip angles as follows: 

 

𝐹௬ = 

⎩
⎪
⎨

⎪
⎧−𝐶ఈ 𝑡𝑎𝑛 𝛼 +

஼ഀ
మ

ଷఓி೥
|𝑡𝑎𝑛 𝛼| 𝑡𝑎𝑛 𝛼

−
஼ഀ

య

ଶ଻ మி೥
మ 𝑡𝑎𝑛ଷ𝛼

−𝜇𝐹௭ 𝑠𝑖𝑛 𝛼 

     |𝛼| < 𝑡𝑎𝑛ିଵ(
ଷఓ ೥

஼ഀ
) 

Otherwise 

𝐹௬ =  𝑓௧௜௥௘(𝛼)   ……………………………….…….. Equation (18.6) 

 

The surface coefficient of friction is provided here as 𝜇, the normal load as 𝐹௭௙ and 𝐹௭௥, and 

the tyre cornering stiffness as 𝐶ఈ.  

The MPC controller's vehicle model uses the front tyre force to maintain the problem linear in 

terms of input. Equations (18.4) and (18.6) provide the following steering angle: 

 

 

𝛿 =  𝛽 +  
௔௥

௎ ௫
−  𝑓௧௜௥௘

ିଵ (𝐹௬௙) ……………….… Equation (18.7) 

 

To handle the nonlinearity of the rear tyres, the brush tyre model is linearized at a given rear 

tyre slip angle (∝ഥ௥), and the rear tyre force (𝐹௬௥) is therefore treated as an affine function of 

∝௥. 

 

𝐹௬௥ =  𝐹ത௬௥ −  𝐶∝̅ഥೝ
(𝛼௥ −  𝛼ത௥) …………………….. Equation (18.8) 
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The comparable cornering stiffness at 𝛼ത௥ is 𝐶ఈ̅ഥೝ
, and 𝐹ത௬௥ = 𝑓௧௜௥௘(𝛼ത௥). The current rear slip angle, 

𝛼௥, is selected to be 𝛼ത௥ in the prediction horizon's first-time steps. This enables the MPC 

controller to take rear tyre saturation into account in the short-term prediction. This enables the 

MPC controller to explicitly account for rear tyre saturation in short-term prediction. 

The velocity state equations of motion may now be expressed as affine functions of the states 

and inputs, 𝐹௬௥: 

 

𝛽̇ =  
ி೤೑ା ிത೤ೝ ି  ஼̅ഥഀೝ(ఉି

್ೝ

ೆೣ
 ି ఈഥೝ)

௠௎ೣ
− 𝑟  ………………..….. Equation (18.9) 

𝑟̇ =  
௔ி೤೑ି௕[ிത೤ೝ ି  ஼̅ഥഀೝ(ఉି

್ೝ

ೆೣ
 ି ఈഥೝ)]

ூ೥೥
  …………………….… Equation (18.10) 

 

Position States 

The vehicle's position states, the heading deviation (∆ψ) and lateral deviation (𝑒), are expressed 

in terms of a nominal route that does not have to be obstacle-free. The heading deviation and 

lateral deviation have the following equations of motion:  

 

∆̇𝜓 = 𝑟 …………………………………………………..…….. Equation (18.11) 

𝑒̇ =  𝑈௫ 𝑠𝑖𝑛(∆𝜓) +  𝑈௬ 𝑐𝑜𝑠(∆𝜓) …………………. Equation (18.12) 

 

Small angle assumptions for ((∆ψ) and (𝛽) are used to approximate the following nonlinear 

equations as linear functions of the vehicle states, yielding: 

 

𝑒̇ ≈  𝑈௫∆𝜓 +  𝑈௫𝛽 …………………………… Equation (18.13) 

 

As a result of combining equations (18.9), (18.10), (18.11), and (18.13), a continuous state-

space representation of the vehicle model is obtained as: 

 

𝑥̇ ≈  𝐴௖(𝛼ത௥) +  𝐵௖𝐹௬௙ +  𝑑௖(𝛼ത௥) ……………..….. Equation (18.14) 

 

and,  
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𝑥 =  [𝛽    𝑟    ∆𝜓    𝑒]் 

 

𝐴௖(𝛼ത௥) =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡−

𝐶ఈ̅ഥೝ

𝑚𝑈௫

𝑏𝐶ఈ̅ഥೝ

𝑚𝑈௫
ଶ

− 1 0 0

𝑏𝐶ఈ̅ഥೝ

𝐼௭௭

𝑏ଶ𝐶ఈ̅ഥೝ

𝐼௭௭𝑈௫

0 0

0 1
𝑈௫ 0

0
𝑈௫

0
0⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

𝐵௖ =  ൤
1

𝑚𝑈௫
    

𝑎

𝐼௭௭
    0    0൨

்

 

 

𝑑௖(𝛼ത௥) =  ቈ
𝐹ത௬௙ − 𝛼ത௥𝐶ఈ̅ഥೝ

𝑚𝑈௫
   −

𝑏(𝐹ത௬௙ − 𝛼ത௥𝐶ఈ̅ഥೝ
)

𝐼௭௭
    0    0቉

்

 

 

A continuous-time model is denoted by the letter c. 𝐴௖(𝛼ത௥) denotes 𝐴௖ 's linearization around 

𝛼ത௥. 
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Appendix -19: Alternative MPC Formulation for Lane Dividers 

An affine vehicle model is used to determine the vehicle input for lateral tyre force using a 

model predictive control (MPC) technique. A 4-state bicycle dynamic model with a constant 

speed assumption is employed in the MPC formulation. The vehicle sideslip angle, yaw rate r, 

heading deviation, and lateral deviation e make up the state vector:  

 

𝑥 = [𝑈௬  𝑟  ∆𝜓  𝑒]் 

 

The lateral tyre force, which is nonlinearly related to the steering angle, is the vehicle model 

u's control input. When the vehicle input is represented as a lateral tyre force, however, the 

vehicle states have a linear relationship: 

 

𝑥(௞ାଵ) =  𝐴(௞)𝑥(௞) +  𝐵(௞)𝑢(௞) +  𝑐(௞)   𝑘 = 1 … . 𝑇 ………… Equation (19.1) 

At each time step in the forecast horizon k, up to a fixed period T. 

 

A nonzero diagonal element in the weighting matrix Q is associated with lateral deviation and 

heading deviation as these states are defined relative to a nominal route. The following 

limitation represents the safe driving space in which a vehicle may travel in the environment:  

 

𝐻௘௡௩
௞ 𝑥(௞) =  𝐺௘௡௩

(௞)
  𝑘 = 1 … . . 𝑇 …………………………. Equation (19.8) 

 

Vehicle states must operate in an obstacle-free environment. The limits of a roadway's traffic 

lanes are encoded using: 

 

𝐻௧௥௔
௞ 𝑥(௞) =  𝐺௧௥௔

(௞)
  𝑘 = 1 … . . 𝑇  …………………………. Equation (19.3) 

 

 

 

 

 



228 
 

where the subscript "tra" denotes traffic-related regulation. The following summarises the 

optimization problem: 

 

Minimize (u): ∑ 𝑥(௞)்்
௞ୀଵ 𝑄(௞)𝑥(௞) +  𝑣(௞)்𝑅(௞)𝑣(௞) +  𝑊𝑒𝑛𝑣

𝑘 𝜎𝑒𝑛𝑣
𝑘 +  𝑊𝑡𝑟𝑎

𝑘 (𝜎𝑡𝑟𝑎
𝑘 )2   …. Equation (19.4a) 

      Subject to: 𝑥(௞ାଵ) = 𝐴(௞)𝑥(௞) +  𝐵(௞)𝑢(௞)  + 𝐶(௞)  ………...…....................…. Equation (19.4b)      

                                 𝐻௘௡௩
௞ 𝑥(௞) =  𝐺௘௡௩

(௞)  ………………………………………………………. Equation (19.4c) 

                                 𝐻௧௥௔
௞ 𝑥(௞) =  𝐺௧௥௔

(௞)
  ………………………………………………………. Equation (19.4d) 

                        ห𝑢(௞)ห  ≤  𝑢௠௔௫
(௞)  ……………………………………………....………...Equation (19.4e) 

                        ห𝑣(௞)ห  ≤  𝑣௠௔௫
(௞)  ………………………………….…………....………...Equation (19.4f) 

 

where 𝑣(௞) =  𝑢(௞) −  𝑢(௞ିଵ) represents the change in lateral tyre force, 𝜎𝑒𝑛𝑣 and 𝜎𝑡𝑟𝑎  are slack 

variables on the restrictions enforcing the safe environment and traffic lanes, respectively, and 

𝑣௠௔௫
(௞)

 and 𝑢௠௔௫
(௞)

 are physical limitations in the steering system and tyre forces.  

 

The weight given to changes in steering inputs is determined by the cost (𝑅). Cost 𝑊𝑒𝑛𝑣 decides 

how much emphasis should be paid on staying inside the safe environmental envelope, i.e., 

avoiding collisions with objects. Cost of the weight given to following traffic regulations, such 

as not crossing a double yellow line, is determined by 𝑊𝑡𝑟𝑎. The higher the priority of 

environmental envelope and/or traffic law violation in the list of restrictions, the more weight 

is given to cost terms with a slack variable. The environmental slack variable 𝜎𝑒𝑛𝑣 is linear, but 

the traffic law slack variable 𝜎𝑡𝑟𝑎 is quadratic in the cost function to avoid penalising relatively 

minor lane boundary violations. 
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Appendix – 20: Formulation of the POMDP Speed Scale 

The vehicle's acceleration values are directly controlled by the Markov decision process 

(POMDP) formulation presented in Chapter 4. Since the acceleration orders vary with each 

time step, the steering MPC is unable to forecast how the speed will change along the prediction 

horizon during the prediction horizon. As a result, Chapter 4 assumes that the speed remains 

constant over the prediction horizon. A speed profile, such as that proposed by Funke et al., 

might be used as an alternate method of speed prediction for steering MPC. Instead of 

commanding acceleration directly, an alternative POMDP formulation would scale the desired 

speed profile rather than commanding acceleration directly to reconcile POMDP speed control 

with MPC speed profile predictions. This appendix illustrates the speed scaling POMDP 

formulation by using the scenario of a pedestrian crosswalk on a two-lane roadway with a huge 

vehicle occluding the event of a pedestrian crossing, as illustrated in figure 4.1. 

The state space is represented as a low-dimensional subspace that contains information about 

the vehicle's behaviour and velocity, as well as information about its perception. The following 

components of the state are taken into consideration in this work: the vehicle's velocity (𝑣௧), 

the vehicle's distance along the path (𝑑௧), and the occurrence of a pedestrian crossing (𝑐௧). 

Continuous states exist for speed and distance along the course. States vt and dt are discretized 

to minimise the size of the problem even further. The maximum speed taken into consideration 

for the scenario is 10𝑚/𝑠, with discretization intervals of 1𝑚/𝑠 between each frame. For a 

path that is 60𝑚 long, the distance along the path is discretized into intervals of 0.5𝑚. State 

(𝑐௧) has previously been discretized as a binary occurrence in the previous state. 

The longitudinal acceleration of the vehicle is the type of actuation considered in this case. 

Proportional speed control is used to determine the commanded longitudinal acceleration of 

the vehicle. Consequently, the POMDP action space may be thought of as a speed scaling factor 

that can be applied to the desired speed in longitudinal control. Following the discretization of 

the action space, the actions are denoted by 𝐴 =

 0, 10%, 20%, 30%, 50%, 60%, 70%, 80%, 90%, 100%, respectively. 

The observation space stores data that the agent observes because of performing an action. The 

number of unobservable tiles (𝑛௧) and the detection of a pedestrian crossing are the two sorts 

of observations that are taken into consideration (𝑐௧). Since the number of unobservable tiles 

has been reduced to ten discretized bins that are linearly spaced between 0 and 1800 

unobservable tiles, the problem size has been simplified. The identification of a pedestrian 
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crossing is done by a separate algorithm that has been particularly created to identify 

pedestrians on the road. 

Specifically, the reward function in this POMDP formulation is meant to achieve the following 

goals: 

 Encourage the vehicle to continue driving until it reaches the end of the route. 

 If the vehicle detects a pedestrian, it must surrender to the pedestrian. Thus, when a 

pedestrian crossing event occurs, non-zero scale factors are penalised. 

 Furthermore, when the vehicle cannot see the pedestrian, it should not travel at a high 

rate of speed. 

To accomplish the described objectives, the reward function is provided with the following two 

costs: 

 Complete path reward: The vehicle that drives all the way to the end of the path will 

receive a +100 bonus. 

 Not yielding cost: The cost of not yielding is -50 if the vehicle fails to yield to a 

pedestrian crossing. 

 Too fast cost: The cost of deterring the car from rushing around the occlusion because 

to its proximity to a pedestrian crossing is set at -5, which is orders of magnitude lower 

than the cost of a collision. The penalty for exceeding 6 m/s when a pedestrian crossing 

is not visible is simply applied in this case by penalising the vehicle for exceeding the 

speed limit. 

For all other states, it is presumed that the reward is equal to zero. The system's dynamics are 

not genuinely stochastic; rather, uncertainty is injected into the system's dynamics because of 

the rough discretization of the state space. A pedestrian crossing is also represented as a random 

process in the case of a collision. The state transition model is defined by the following 

parameters: 

 Because the vehicle simulation is closer to continuous time than state space 

discretization, speed scaling and changes in speed are not instantly realised in the state 

space discretization. 

 It is presumed that the vehicle is either halted or going ahead (does not reverse 

direction). 

 It is presumed that if a pedestrian is present within the crosswalk, that person is standing 

immobile. 
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Although the state in a POMDP is a belief state, the state transition function for a POMDP is 

the identical as the state transition function for an MDP (assuming no state uncertainty). While 

the state contains the facts about a pedestrian crossing event, the problem merely keeps a belief 

about whether a pedestrian crossing event occurred based on observations. The observation 

model in a typical POMDP problem is described as the conditional probability of witnessing 

each observation given the current state (𝑠) and the action (𝑎) done to get there: 𝑃𝑟(𝑜|𝑠, 𝑎). It 

is assumed for the purposes of this research that the activity does not add to the observation 

(𝑜) made. As a result, the observation model is no longer dependent on a and merely needs to 

define 𝑃𝑟(𝑜|𝑠).  𝑃𝑟(𝑜𝑛, 𝑜𝑐|𝑠), which is the probability of having a few unobservable tiles and 

detecting a pedestrian given the present state, is the observation model using the observation 

space mentioned above. If the situation of a pedestrian not crossing is noticed, a basic 

observation model with uniform distribution is implemented. Given a state in which a 

pedestrian is crossing, the observation distribution shifts 30% in favour of identifying a 

pedestrian crossing. 

 

 


