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ABSTRACT: Inspired by simulating duct thermal processing of novel functional polymers, 

a novel mathematical model is developed for buoyancy-driven heat transfer in non-

Newtonian Williamson fluid flow in a vertical parallel plate duct containing a permeable 

medium, under mutually orthogonal electrical and magnetic fields. The momentum equation 

features electrical and magnetic body force terms and the Darcy-Brinkman-Forchheimer 

mode is used for non-Darcy effects. The energy balance equation includes thermal buoyancy 

(natural convection body force) and a modified viscous dissipation term. The conservation 

equations with associated boundary conditions are re-framed into a system of coupled non-

linear ordinary differential equations via appropriate similarity transformations. The 

emerging dimensionless boundary value problem is then solved with a differential transform 

method (DTM). Validation of DTM solutions with the bvp4c MATLAB collocation solver 

is included.  The influence of key parameters on velocity, temperature and average Nusselt 

number, are computed and illustrated graphically. With elevation in Weissenberg (non-

Newtonian) number, velocity and temperature are reduced. Velocity is suppressed with 

increasing non-Darcian parameter (Forchheimer effect) whereas it is enhanced with 

increment in buoyancy convection parameter. With increasing Forchheimer, Darcy number 

and Hartmann number, the average Nusselt number is boosted whereas it is decreased with 

higher values of buoyancy convection parameter, Brinkman number, and Weissenberg 

number. A strong reduction in temperature is computed with increment in ratio of Joule 

electrical heating to heat conduction parameter. DTM is shown to be an exceptionally 

accurate and versatile approach for simulating non-Newtonian electromagnetohydrodynamic 

transport in ducts.  
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1. INTRODUCTION 

Natural convection [1] is driven by thermal buoyancy forces and features in multiple 

technological and environmental systems including heat exchangers, granular and fiber 

insulation, petroleum reservoirs, enclosure fire dynamics, geothermal systems, nuclear waste 

repositories, packed beds, porous insulation, energy efficient drying, food processing, grain 

storage, and chemical catalytic reactors. Many emerging applications simultaneously feature 

natural convection in both Newtonian and non-Newtonian flows, for example, in thermal duct 

processing and chemical engineering [2, 3]. Non-Newtonian fluids exhibit complex material 

(stress-strain) characteristics which cannot be simulated with a conventional Newtonian 

model. Important phenomena include shear-thinning (pseudoplastic) behaviour, stress 

relaxation, retardation etc [4]. Porous media may also be deployed to control heat and flow 

characteristics in natural convection systems. Shenoy [5] has described many models of non-

Newtonian buoyancy-driven convection flows in porous media in areas including 

biomechanics, chemical engineering, geophysics, industrial engineering, petroleum 

engineering, ceramic engineering, food technology, groundwater hydrology, mechanical 

engineering and soil mechanics. Newtonian natural convection studies include Haghighi et 

al. [6] investigated natural convection using a new plate-fin design with heat sinks. Dutta et 

al. [7] explored the entropy generation by natural convection in a quadrilateral enclosure with 

non-isothermal heating at the lower wall. Ma et al. [8] used a Lattice Boltzmann method and 

water-based nanofluids to examine the positional impact of a heated obstacle on natural 

convection and heat transmission in a U-shaped enclosure. Nia et al. [9] investigated natural 

convection in an L-shaped enclosure with baffles using the Lattice Boltzmann method. Jha 

and Samaila [10] derived similarity solutions for natural convection flow over a vertical plate 

under the influence of thermal radiation. Dash and Dash [11] used a computational approach 

to investigate natural convection in a vertical thick hollow cylinder, under the influence of 

non-uniform heating, Dutta et al. [12] investigated the entropy generation and heat 

transmission mechanism with natural connection through a rhombic enclosure. Non-

Newtonian natural convection studies have utilized many different rheological constitutive 

equations to simulate a variety of industrial liquids. Lee [13] deployed the Ostwald-deWaele 

power-law model and asymptotic methods to investigate thermal buoyancy effects in 

transport in non-Newtonian polymers in a vertical channel. Srinivas and Bég [14] utilized the 

Eringen micropolar model, homotopy analysis and second law thermodynamic approaches 

to compute the entropy generation in fully developed flow and heat transfer in a vertical 

channel under thermal buoyancy effects. Singh et al. [15] applied the short memory Walters-

B viscoelastic fluid model to study combined free and forced convective in reactive 

electrically conducting vertical channel transport. Further studies have implemented the 

Saffman dusty fluid-particle model [16], Bingham viscoplastic model [17], a third grade 

viscoelastic Reiner-Rivlin fluid [18] and more recently the Johnson-Segalman elastic-viscous 

model [19]. All these studies identified a significant modification in heat and momentum 

transfer characteristics with non-Newtonian effects and substantial deviation from 

Newtonian results.  

In real-world applications, viscous dissipation often arises. This involves local thermal 

energy generation through kinetic energy dissipation and frequently occurs in non-

Newtonian transport and also viscous flows through porous materials. Viscous heating can 
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therefore exert a significant modification to temperature and velocity distributions. Unlike 

other thermal influences on fluid motion (such as buoyancy forces caused by cooled or heated 

walls, and localized heat sources/sinks), the impact of heat produced owing to viscous 

dissipation can be prominent both in forced convection and natural or mixed convection 

flows. Gebhart [20] conducted a pioneering study of viscous heating in the presence of 

thermal buoyancy effects, noting that it contributes significantly when the induced kinetic 

energy is of similar magnitude to the amount of heat transferred. He deployed perturbation 

methods to show that viscous heating also strongly modifies thermal characteristics under 

both isothermal and uniform-flux wall surface conditions. Martin [21] used an integral profile 

procedure is used to compute viscous heating effects on laminar flow development in a 

uniform pipe under adiabatic conditions and strong thermal buoyancy. Further studies of 

viscous dissipative convection with buoyancy effects include El-Din [22] (who deployed a 

Brinkman number to characterize dissipation), Umavathi and Bég [23] (who also considered 

dual species diffusion in addition to natural convection and mixed wall boundary conditions), 

Mishra et al. [24] (who examined squeezing natural convection in a magnetic sensor channel 

with non-Fourier heat flux) and Ajibade and Umar [25] (who used a homotopy perturbation 

method to study wall thickness heat conduction and heat source/sink effects). These studies 

generally showed that temperatures are strongly elevated whereas Nusselt numbers are 

reduced with viscous heating effects. In the context of non-Newtonian fluids, polymeric 

flows have been confirmed to produce much greater viscous heating effects than Newtonian 

fluids. It has been emphasized in several studies including Cox and Macosko [26] and Winter 

[27] that substantial viscous heating is produced even at very low Reynolds numbers in die 

flows, molten polymer shear flows and thermal duct systems. More recently Hassan et al. 

[28] have further identified that viscous heating in polymer injection mould filling in vertical 

channels acts as an energy source. They used a Cross viscoelastic model and a finite volume 

numerical technique to study the dissipative buoyancy-driven transport of liquid polystyrene 

(PS) and polypropylene (PP) polymers in a vertical channel. Several investigators have also 

considered alternative rheological models to examine non-Newtonian dissipative convection 

in channel flows. Akbar et al. [29] employed the Casson viscoplastic model and MATLAB 

software to study metachronal propulsion in a vertical channel of magnetized polymeric 

fluids including wall hydrodynamic slip and thermal jump effects. Ragueb and Mansouri [30] 

applied a power-law (pseudoplastic/dilatant) model and Alternating Direction Implicit an to 

investigate dissipative natural convection flow in a vertical isothermal elliptic cross-section 

duct. Again, all these studies confirmed the marked modifications in thermal distributions 

computed when viscous dissipation is present.  

In many industrial duct systems [31], as noted earlier, porous media are also utilized. 

They provide an inexpensive mechanism for controlling velocity and heat transfer in natural 

convection flows. They can be synthesized from foams, fibrous materials, packed spheres 

and other materials. Both isotropic (constant permeability) and anisotropic (variable 

permeability) systems are deployed. For low Reynolds number (viscous dominated) 

scenarios, to simulate the pressure drop across the porous medium, the classical model used 

is the Darcy model, as elaborated by Shenoy [5]. This provides a reasonable approximation 

when inertial effects are neglected. However, at higher velocities, inertial drag cannot be 

ignored. The inertial effects are particularly prominent when the medium has high porosity 
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or when the flow rate is large; the linear Darcy model breaks down and does not achieve good 

accuracy. Higher flow velocities characterize certain industrial transport processes in porous 

medium ducts, including filtration, thermal management and slurry dynamics. The 

divergence from linearity utilized in the momentum equation for porosity effects must be 

accounted for in such problems. The Forchheimer terms, which represent quadratic drag is 

significant for larger particle Reynolds numbers as noted by Nakayama et al. [32]. Owing to 

greater filtration velocities, quadratic drag develops in the momentum equation for porous 

media, and the drag form due to solid obstacles becomes comparable to surface drag due to 

friction [33]. Since Reynolds number is related to the particle diameter, Bear and Braester 

[13] have emphasized that the flow becomes non-Darcian when the Reynolds number 

exceeds very low values (typically about 10). Physically, flow deviates inside the medium, 

whereas theoretically, the velocity and pressure gradient have a non-linear relationship. Non-

Darcy models are therefore also required for non-Newtonian flows [34-36]. Muskat [37] 

investigated porous inertial effects using the Forchheimer component in the momentum 

equation. Brinkman [38] proposed a viscous diffusion model to consider boundary frictional 

drag which also characterizes vorticity diffusion near the wall. Collectively when both 

approaches are combined the resulting model is known as the Darcy-Brinkman-Forchheimer 

nonlinear porous medium model. When Brinkman friction is neglected, the relevant model 

is the Darcy-Forchheimer nonlinear model. When Forchheimer inertial (second order) drag 

is neglected the Darcy-Brinkman model is deployed. All four models i.e. Darcian, Darcy-

Forcheimmer, Darcy-Brinkman and Darcy-Brinkman-Forchheimer models have proven 

extremely popular in recent years. Non-Newtonian Darcy flow in transient natural convection 

of viscoelastic fluids has been examined by Zhao et al. [39]. Tripathi and Bég [40] utilized 

the Darcy-Brinkman model to quantify the periodic peristaltic propulsion of Maxwell 

viscoelastic fluids through a porous medium. The Darcy-Forcheimmer model was 

implemented by Alomar et al. [41] to simulate the natural convection in a two-dimensional 

porous enclosure It has also been deployed by Bég et al. [42] in unsteady rotating channel 

flows and by Bég et al. [43] for two-phase natural convection in biofluid transport in non-

Darcian porous media. However, these models of non-Darcy flow neglected the influence of 

Forccheimer effect on viscous heating. More recently it has been shown that the Forchheimer 

quadratic drag term contributes to the dissipation, despite the fact, that, the viscosity does not 

enter explicitly. This idea has been implemented by Al-Hadhrami et al. [44] for variable 

permeability scenarios. Their non-Darcy dissipative formulation reduces to that for a fluid 

clear of solid material in the case where the Darcy number (dimensionless permeability 

parameter) tends to infinity. Umavathi et al. [45] has elaborated on how the Brinkman term 

be treated in the same way as the Darcy and Forchheimer terms, so that the total viscous 

dissipation remains equal to the power of the total drag force. The modified non-Darcy model 

is therefore required to properly characterize viscous dissipation effects in porous media 

transport.  

 In recent years, a new generation of intelligent fluent media have emerged which 

respond to electrical and /or magnetic fields and also possess rheological properties. 

Examples include electroconductive polymers (ECPs) [46], functional gels [47] and ferro-

rheological fluids [48]. Such smart fluids with multi-functionality also have potential 

application for electrical devices, actuators, sensors and biomedical devices [49]. These 
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developments have motivated interest in mathematical modelling of electrohydrodynamic 

(EHD), magnetohydrodynamic (MHD) and also combined electromagnetohydrodynamic 

(EMHD) flows of non-Newtonian media in duct and other systems, of relevance to materials 

processing and biomedical transport, both with and without porous media. To simulate the 

flows of such fluids, electromagnetohydrodynamic body forces must be considered in 

addition to non-Newtonian characteristics. The nonlinear nature of electro/magnetic 

rheological flows generally require numerical or powerful analytical methods to derive robust 

solutions. Manzoor et al. [50] deployed the Adomian decomposition solution to study 

magnetohydrodynamic (MHD) viscoelastic flow in a ciliated vertical channel containing a 

Darcian porous medium with viscous heating. Tripathi et al. [51] used perturbation methods 

to compute the electro-osmotic pumping of second order viscoelastic fluids in a biological 

channel under an axial electrical field. Bhatti et al. [52] investigated bio-inspired pumping of 

electromagnetic two-phase non-Newtonian (Jefferys) viscoelastic liquids in a porous medium 

channel with the Darcy model, under a transverse magnetic field and axial electrical field. 

Further investigations include Umavathi and Bég [53] who considered electromagnetic 

nanofluid dissipative flow with natural convection heat and mass transfer in a vertical duct 

[53], Tripathi et al. [54] (who examined polar couple stress pumping in electromagnetic flow 

in a vertical micro-channel, and Tripathi et al. [55] (who studied Debye electrical double 

layer effects in combined electro-magnetic transient wavy flow in a vertical channel). These 

studies have identified different effects are produced via magnetic and electrical body forces 

in thermal transport in duct flows and that judicious selection of electrical and magnetic field 

strengths are required to optimize performance.  

In the present work, we consider the electro-magneto-hydrodynamic non-Newtonian 

natural convection through a vertical parallel plate duct containing an isotropic, homogenous 

non-Darcian porous medium. The Williamson model is deployed for the rheology. In the 

Williamson model [56-58], the apparent viscosity varies gradually between µ0 at zero shear 

rate, and µ∞ as the shear rate tends to infinity. This model provides an excellent 

approximation for certain electroconductive polymers [46]. The study is motivated by 

developing a more comprehensive model of functional electromagnetic rheological liquids 

which are increasingly being deployed in thermal processing. These provide enhanced 

features for improving working fluid performance and can be manipulated to adjust heat and 

momentum transfer rates. A Williamson model is deployed to represent the non-Newtonian 

characteristics. The modified Darcy-Brinkman-Forchheimer model in the energy equation 

additionally considers the effect of viscous dissipation. The solutions to the nonlinear coupled 

differential equations are obtained using a numerical technique known as the Differential 

transform Method (DTM) [59]. The novelty of the present study is the simultaneous 

consideration of electrical and magnetic field effects, thermal buoyancy, a modified non-

Darcy model and non-Newtonian characteristics. The impact of key control parameters (e. 

g. Weissenberg number, buoyancy convection parameter, Forchheimer parameter etc) on 

momentum and heat transfer characteristics is evaluated in detail and visualized graphically. 

Tables are also included for validation of the DTM solutions with a MATLAB bvp4c solver. 

The present study to the authors’ knowledge constitutes a novel contribution to the 

thermofluid dynamics of non-Newtonian functional materials processing. The simulations 
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will be useful to thermal process duct design using advanced intelligent electromagnetic 

rheological liquids.   

 
2. MATHEMATICAL MODEL FOR ELECTROMAGNETIC NON-NEWTONIAN THERMAL TRANSPORT 

The regime under consideration comprises steady-state buoyancy driven (natural 

convection) electromagnetic functional non-Newtonian Williamson polymer flow upwards 

in a vertical parallel plate channel, with the walls located at finite distance apart. The 

walls at x b= − and x b= hold a constant temperatureT− andT+ , whereT T− + . A Cartesian 

coordinate system is considered (as shown in Figure 1).  

 

 

Figure 1: Geometrical model for natural convection Williamson fluid flow through a vertical 

duct containing a non-Darcy permeable medium.  

 

The medium betwneen two vertical plates is considered to be an isotropic, non-

deformable permeable medium and simulated via the dissipation modified Darcy-Brinkman-

Forchheimer drag force model [44]. At the left wall, x = -b and at the right wall, x = b. The 

electroconductive polymer is subjected to an axial electrical field and transverse magnetic 

field i.e. mututally orthogonal fields. Electro-magnetohydrodynamic (EMHD) flow is 

therefore mobilized in the channel. Hall current, ionslip and magnetic induction effects are 

Electromagnetic Non-

Newtonian fluid 

O 
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neglected since magnetic Reynolds numebr is too small for magnetic field distortion. The 

velocity field and the temperature field are considered as follows:  

( ) ( ),     ,Tv x T x= =v j         (1) 

In view of the proposed assumptions, the continuity, momentum, and the energy equations 

in vectorial form, are defined as [60-62]: 

0,V =            (2) 

( )1/2
,

d

d
m

Fc

t
p J B g T T

 
  


=  −  + − − + −χ

v
× v v v     (3) 

𝜌𝑆ℎ
𝑑�̃�

𝑑�̃�
−

𝐽⋅𝐽

𝜎
= 𝜉:grad 𝐯 +

𝜌𝑐𝐹

𝜅1/2
|𝐯|𝐯2 +

𝜇

𝜅
𝐯2 − ∇ ⋅ �⃑⃑�,

     

(4) 

Here g is gravity, p  stands for the pressure,  is the thermal expansion coefficient, stands 

for the permeability (hydraulic conductivity of the porous medium), Fc denotes Forchheimer 

(quadratic porous drag) coefficient,  denotes density of the electroconductive polymer, t

stands for time, ( )
1

2
mT T T− += + represents mean reference temperature, ( )J V B E  = + ×

vector represents the local ion current density,  represents the electrical conductivity, B is 

the static magnetic field, E is the electric field, 
d

dt
the material derivative, the symbol “:” 

indicate the double dot product,T represents the temperature, hS denotes the specific heat, and

Q is the heat flux vector. The stress tensor χ  is for an incompressible non-Newtonian 

Williamson fluid, is defined as: 

inf
1inf ,

1
R

 




 −
= + 

−  
χ

        

(5) 

Here
1R represents the first Rivlin-Erickson tensor, represents the dynamic viscosity, inf  

represents the dynamic viscosity at infinity shear rate,  is the time constant, and  i.e. shear 

rate is defined as 

( )
2

1, trace ,
2

R


=  =

        

(6) 

where represents the second invariant tensor. By virtue of Eqns. (2-4), the pressure is 

assumed constant, and the reduced conservation equations for momentum and energy for the 

case inf 0, = and 1   now take the form:   

( )2

2

2 2

1/

d d d
0,

d d d2
m

Fcv v
B v BE

x
Tv v Tg

x x

 
   

 

   
+ − + − − + =  

 
−

      

(7) 
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( )
22

2 2 2 3 2

2 1/2

d d d
2 0.

d d d2

F
c

cT v v v
T E B v EBv v v

x x x x

 
 

 

     
+ + + + − + + =    

        

 (8) 

Here cT is the thermal conductivity of the electromagnetic polymer fluid. In Eqn. (8), the 

second term on the left-hand side indicates the volumetric heat production due to viscous 

dissipation, and the third composite electromagnetic term includes the axial electrical body 

force, transverse magnetic body force and the Joule heating term. 

Their boundary conditions are defined at the left and right walls of the duct as follows: 

( )

( )

( )

( )

0,
   at     ,

0,
   at     ,

v

T

x
x b

x

v x
x b

T x

T

T

+

−

=
=

= 

=
= −

= 

         

(9) 

Eqns. (7,8) with boundary conditions (9) constitute a nonlinear, multi-degree boundary value 

problem. To facilitate a robust semi-numerical (DTM) solution and introduce scaling, it is 

judicious to define the following non-dimensional parameters:  

0

, , ,mT Tv x
v x T

V b T T− +

−
= = =

−
         

(10) 

Here 0V is a reference velocity. Implementing Eqn. (10) into Eqns. (7-9), yields the following 

dimensionless model:  
2 2

2 2

2 2

d d d
0,

dd d
L a r r

v v v
We M v E D v F v G T

xx x

 
+ − + − − + = 

 
   

 

(11) 

22
2 2 2 3

2

d d d d
0,

d d d d
r m r a r r r

T v v v
B We E v B M v E D B v B F v

x x x x

    
+ + − + + + + =    

     

 (12) 

The boundary conditions become: 

( )

( )

1
, 0,    at     1,

2

1
, 0,    at     1,

2

T v x x

T v x x

= = = −

= − = =          

(13) 

It is important to note that the porous medium terms feature also in the energy balance eqn. 

(12) owing to the contribution of viscous dissipation in the modified non-Darcy formulation 

[44, 45]. Furthermore, T the dimensionless temperature, aD represents the Darcy number 

(non-dimensional permeability of the porous medium), F represents the Forchheimer 

number (the non-Darcian second order drag parameter for porous media), M denotes a 

Hartmann number (ratio of Lorentz magnetic body force to viscous hydrodynamic force), 

LE represents the dimensionless parameter related with the electrical field strength and is an 

electrical Hartmann number (ratio of electrical body force to viscous hydrodynamic force), 
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tGr is thermal Grashof number, rG is the buoyancy convection parameter due to temperature 

gradient, Re is the Reynolds number,
rB represents the Brinkman number (expresses the ratio 

of heat produced due to viscous dissipation in heat transfer owing to molecular conduction); 

mE  specifies the ratio of Joule heating to heat conduction, E quantifies the influence of heat 

generation due to the interaction of electric and magnetic fields on heat conduction and We 

is the Weissenberg viscoelastic material parameter. These parameters are defined as follows: 

 𝐷𝑎 =
𝑏2

𝜅
, 𝐹𝑟 =

𝑐𝑓𝑉0𝑏2

𝜐√𝜅
, 𝑀2 =

𝜎

𝜇
𝐵2𝑏2, 𝐸𝐿 =

𝜎𝑏2𝐸𝐵

𝑉0𝜇
, 𝐺𝑟 =

𝐺𝑟𝑡

𝑅𝑒𝑡
𝛽𝑔𝑏3(�̃�−−�̃�+)

𝜐2

 

𝐵𝑟 =
𝜇𝑉0

2

𝑇𝑐(�̃�−−�̃�+)
, 𝐸𝑚 =

2𝜎𝐸𝐵𝑉0𝑏2

𝑇𝑐(�̃�−−�̃�+)
, 𝐸 =

𝜎𝐸2𝑏2

𝑇𝑐(�̃�−−�̃�+)
, 𝑊𝑒 =

√2𝑉0Λ

𝑏
, 𝑅𝑒 =

𝑏𝑉0

𝜐
.
   

(14) 

The Nusselt number, which measures the convective heat transfer relative to conduction heat 

transfer at the walls (channel plates), is written as follows: 

( ) ( )
ave

1 1
.

2

T T
Nu

 + − 
= − 

         

 (15) 

3. DIFFERENTIAL TRANSFORM METHOD (DTM) SOLUTIONS: 

The dimensionless, coupled nonlinear boundary value problem defined by Eqns. (11) to (13) 

has been solved by the differential transform method (DTM). This is a powerful, rapidly 

convergent semi-analytical approach originally developed to solve nonlinear differential 

equations in electrical engineering circuit analysis. Later, DTM has been deployed to 

simulate many complex multi-physical nonlinear fluid dynamics problems including rotating 

biomagnetic flows [63], viscoelastic squeezing flows [64], non-Newtonian coating flows [65] 

and electromagnetic viscoplastic stretching sheet flows [66]. DTM is distinct from the more 

conventional higher-order Taylor series method by the fact that it involves extensive 

computations at higher orders. Iteratively, DTM achieves a polynomial series solution. It is 

a different procedure for locating analytic Taylor series solutions. A brief description of this 

approach is now given. Let us consider a function ( )y t  which is analytic in domain T and 

consider t = t0 represents any point in T. The function ( )y t is described by a power series for 

which t0 is the allocated center point. The differential transform of the function ( )y t is given 

by:  

( )
( )

0

d1
,

! d

L

L

t t

y t
Y L

L t
=

 
=  

         

 (16) 

Here ( )y t represents the original function and ( )Y L represents the transformed function. The 

inverse transformation is defined as: 

( ) ( )
0

,L

L

y t t Y L


=

=
       

 (17) 

It follows that: 
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( )
( )

0
0

d
,

! d

LL

L
L

t

y tt
y t

L t



=
=

 
=  

 


       

 (18) 

Eqn. (18) describes the concept of the differential transform which is obtained via the Taylor 

series method. However, in this technique, derivatives are not evaluated symbolically. 

Therefore, the function ( )y t can be expressed in terms of finite series as follows: 

 ( ) ( )
0

,
N

L

L

y t t Y L
=


       

 (19) 

This shows that ( ) ( )
1

L

L N
y t t Y L



= +
 is small enough. The values of N help to determine 

the convergence rate of the series coefficient. In the next section, we will apply this technique 

to the formulated nonlinear differential equations. Further details of DTM are given in refs. 

[59,63-66]. 

4. SOLUTIONS USING DIFFERENTIAL TRANSFORM METHOD:  

Nonlinear coupling exists between the transformed dimensionless differential equations 

(11-12) and their relevant boundary conditions (13). To find the solutions to these differential 

equations, we define the differential transformation for the formulated equations:  

( )( ) ( ) ( )( )( ) ( ) ( )

( ) ( ) ( ) ( )

0

22

1 2 2 1 2 1 1 2

+ 0,

s

L a r r

H We s k s s s H r

E M H D H F H G



     

    

=

+ + + + + − + − + + + −

− − − + =



 

 (20) 
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1
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1 1

0 0

1 1

2 2 32

1 1 1 1

1 2 2 1 1 1

1 1 1

0,

s

s

r

s s

m r r a r r

s s H s H s We

B H s H s s H s

s s s s

E H B M H E B D H B F H





 

 



   

=

= =

 
+ + − + − + + 

 
 

+ + + + + − + − + 
 
  + − + − +
 
 

− + + + + =





 

 (21) 

where ( ) ( )&H    are the differential transforms of the functions ( ) ( )&v x T x . The 

function transformation is a key stage in DTM. The boundary conditions for the current 

simulation are specified as follows:  

( ) ( )

( ) ( )

1
1 0,       1 ,

2

1 ,    1 ,

U

U  



  

− = − =

 − = − =         

 (22) 

Following the differential transform procedure, the boundary conditions in the preceding 

equations become:  

( ) ( )

( ) ( )

1
1 0,       1 ,

2

1 ,    1 .

H

H  



  

− = − =

 − = − =         

 (23) 
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Introducing Eqn. (23) in Eqns. (20-21) and invoking a recursive scheme, we can obtain other 

values of ( ) ( ) and .H     With the help of boundary conditions ( ) ( )1 0, 1 0,H = = one 

may determine & .    The following are the possible final solutions: 

( ) ( )
0 0

,     .
i i

k kv H x T x
 

  
= =

  
       

 (24) 

All the computations have been performed in Mathematica software.  

5. VALIDATION WITH MATLAB BVP4C 

To validate the DTM solutions, an alternative numerical procedure known as bvp4c has also 

been deployed. This method employs collocation formula in the Matlab bvp4c software [67-

68]. An appropriate convergence criterion is used, and excellent correlation is achieved with 

the DTM solutions for the average Nusselt number, for a variety of emerging parameter 

values, as documented in Table 1. Confidence in the present DTM solutions is therefore 

justifiably very high.  

 

Table 1: Comparison of DTM and Matlab bvp4c results for average Nusselt number with 

selected parameters for 0.1,aD = 0.3,rF = 7,rB = 𝑊𝑒 = 0.2, 𝑀 = 0.5, 𝐺𝑟 = 0.1, 𝐸𝐿 =

1, 𝐸𝑚 = 1, 𝐸 = 1 unless otherwise indicated.   

  

aD  rF  M  Gr  rB  We  mE  E  
aveNu  

(DTM) 

aveNu  

(MATLAB 

bcp4c) 

0        0.14486079 0.14487001 

1        0.31576534 0.31578210 

 0       0.13704600 0.13704600 

 0.5       0.18861026 0.18864212 

  0      0.10225558 0.102257053 

  0.4      0.14748864 0.147496393 

   0.1     0.26912537 0.269135487 

   0.15     0.22430119 0.224300312 

    6    0.23242452 0.232431001 

    6.5    0.20212672 0.202130519 

     0   0.43489232 0.434910436 

     0.5   -0.13198822 -0.13197981 

      0.6  0.17283961 0.17284102 

      0.7  0.17561053 0.17560994 

       0.6 0.19520738 0.19520624 

       0.7 0.18905662 0.18905814 
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Table 1. also shows that increment in Darcy number (Da), Forchheimer number (Fr), 

and all three electromagnetic parameters (M, Em and E) all increase the average Nusselt 

number profile, whereas the Grashof number (Gr), the Weissenberg viscoelastic number 

(We), and the Brinkman number (Br) i. e. dissipation parameter, all reduce magnitudes of the 

average Nusselt number profile. Clearly therefore heat transfer rate to the duct wall is 

elevated with stronger electromagnetic and greater permeability and non-Darcy effects 

whereas it is suppressed with stronger thermal buoyancy, viscoelasticity and viscous heating 

effects (since these parameters increase temperatures in the core flow in the duct). 

6. GRAPHICAL AND NUMERICAL ANALYSIS 

The graphical and numerical results of velocity, temperature, and average Nusselt 

number profile for selected parameters are presented in this section. The parametric values  

have been selected based on [30] as follows: 0.1,aD = 0.3,rF = 7,rB =

0.2, 0.5, 0.1, 1, 1, 1.r L mWe M G E E E= = = = = =  These correspond to realistic practical values 

for electromagnetic polymers with weak thermal buoyancy effects, in highly permeable 

porous media, with strong viscous dissipation and intermediate electrical and magnetic field 

strengths [46, 47].  

Figures 2-4 visualize the average Nusselt number distributions on the duct wall with 

selected parameters.  

 

Figure 2. Average Nusselt number profile versus Brinkman number against multiple values 

of Em. 
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Figure 3. Average Nusselt number profile versus Hartmann magnetic number against 

multiple values of Da. 

 

Figure 4. Average Nusselt number profile versus buoyancy convection parameter against 

multiple values of Fr. 
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Figure 5. Temperature profile across channel for multiple values of Br. 

 

 

Figure 6. Temperature profile across channel for multiple values of Em. 
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Figure 7. Temperature profile across channel for multiple values of Fr. 

 

Figure 8. Temperature profile across channel for multiple values of Gr. 
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Figure 9. Temperature profile across channel for multiple values of Da. 

 

 

Figure 10. Temperature profile across channel for multiple values of M. 
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Figure 11. Temperature profile across channel for multiple values of We. 

 

 

Figure 12. Velocity profile across channel for multiple values of Fr. 
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Figure 13. Velocity profile across channel for multiple values of Gr. 

 

 

Figure 14. Velocity profile across channel for multiple values of Da. 
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Figure 15. Velocity profile across channel for multiple values of M. 

 

Figure 16. Velocity profile across channel for multiple values of We. 
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The average Nusselt number profile vs the Brinkman number Br for various Em values is 

presented in Figure 2. As the Brinkman number is growing, the average Nusselt number 

magnitude steadily decreases; nevertheless, increment in Em improves the average Nusselt 

number values. Brinkman number 𝐵𝑟 =
𝜇𝑉0

2

𝑇𝑐(�̃�−−�̃�+)
 features in multiple terms in the energy 

eqn. (12), namely 𝐵𝑟 (
𝑑𝑣

𝑑�̄�
) [

𝑑𝑣

𝑑�̄�
+ 𝑊𝑒 (

𝑑𝑣

𝑑�̄�
)

2

] , the electromagnetic Joule heating term, 

𝐵𝑟𝑀2𝑣2 and the porous medium terms, 𝐷𝑎𝐵𝑟𝑣2 + 𝐵𝑟𝐹𝑟𝑣3. It evidently exerts a significant 

effect on temperature (and velocity) distributions in realistic polymer flows. Larger 

Brinkman number (which is also the product of Prandtl number and Eckert number) implies 

a greater proportion of viscous heat generation relative to external heating. This energizes 

the electroconductive polymer and enhances temperatures in the bulk fluid. The rate of heat 

transfer to the duct walls is therefore reduced and manifests in a reduction in Nusselt number. 

The decay is approximately linear. Clearly neglection of viscous dissipation in simulations 

of polymer heat transfer leads to an over-prediction in Nusselt numbers. The increment in 

mE  implies a greater contribution in Joule heating relative to thermal conduction. This 

encourages heat diffusion to the duct walls and elevates average Nusselt number magnitudes.  

 The impact of Hartmann magnetic number, M and the Darcy number Da on average 

Nusselt number profiles is depicted in Figure 3. It is noticed that there is a sustained 

increment in average Nusselt number with greater M values. Convection heat transfer 

therefore dominates conduction heat transfer with stronger Lorentz magnetic body force. The 

intensity of magnetic field growing therefore leads to an intensification in heat transferred to 

the duct wall. At weak magnetic field levels (low M), the average Nusselt number profile 

increases first due to an increase in Darcy number. However, when magnetic fields become 

stronger (e.g., M > 3.5), the influence of Darcy number on the average Nusselt number profile 

becomes much less prominent. Larger Darcy number implies greater permeability of the 

porous medium and an associated decrease in solid matrix fibers. This stifles thermal 

conduction but encourages thermal convection leading to greater heat transferred to the walls 

of the duct and higher Nusselt number. Similar effects have been reported by Shenoy [5]. 

Inspection of Figure 4 reveals that greater values of the Grashof number Gr distinctly reduce 

the average Nusselt number values. Stronger thermal buoyancy relative to viscous 

hydrodynamic force in the regime therefore inhibits noticeably the transfer of thermal energy 

to the duct boundaries. This is due to the energizing of the polymer bulk fluid regime which 

elevates temperatures. Transfer of heat therefore is intensified from the boundaries to the 

internal regime. With increment in Forchheimer number Fr augments the average number 

profile. Stronger inertial drag decelerates the bulk flow in the channel via the quadratic 

resistance generated by the term, −𝐹𝑟𝑣2, in the momentum eqn. (11). This inhibits both 



21 

 

 

upward motion of the polymer and induces a cooling effect. Forchheimer number Fr also 

features in the modified viscous heating term, +𝐵𝑟𝐹𝑟𝑣3 in the energy eqn. (12). Effectively 

greater Forchheimer drag in the porous medium encourages heat transfer to the duct walls 

and produces greater average Nusselt numbers.  

Figures 5-11 illustrate the temperature evolution across the channel (duct) i. e. with x-

coordinate and key parameters. As seen in Figure 5, the temperature profile increases as the 

Brinkman number Br increases. When the Brinkman number is increased, greater kinetic 

energy is converted to thermal energy via molecular collisions in the electro-conductive 

polymer flow. Convection is amplified with respect to thermal conduction, and the 

temperatures are boosted across the channel. The asymmetric parabolic profiles are due to 

different wall temperature prescribed at the left and right walls. Peak temperature is closer to 

the left hot wall and is slightly displaced further from it with increasing Brinkman number. 

In Figure 6, we see that the temperature profile has been greatly lowered as a result of the 

increased influence of Em. 𝐸𝑚 =
2𝜎𝐸𝐵𝑉0𝑏2

𝑇𝑐(�̃�−−�̃�+)
 and as noted before symbolizes the ratio of Joule 

heating to heat conduction. It features only in the resistive body force term, −𝐸𝑚𝑣, in the 

energy eqn. (10) which is coupled to the momentum eqn. (11). As this term is increased in 

magnitude, thermal conduction is suppressed, and the regime is cooled. This is distinct from 

the classical Hartmann number in which temperatures are elevated with stronger magnetic 

field. The interaction of electrical and magnetic fields, as in the present simulations, produces 

a different effect. Asymmetry is again observed in the temperature curves and the peak 

temperature again migrates towards the right wall of the duct with stronger Em values.  

Figure 7 indicates that with increment in Forchheimer parameter, Fr temperature profile 

increases significantly when x > -0.3, whereas it is weakly reduced when x < -0.3. Here, x = 

-0.3 is a critical point in the whole domain. The inertial quadratic drag therefore produces a 

different behaviour near the left wall compared with the core region of the duct. This may be 

related to the distribution of solid matrix fibres in the porous medium and furthermore to the 

packing of material near the boundary where vorticity diffusion (Brinkman friction) is more 

prominent. As illustrated in Figure 8, elevation in the buoyancy convection parameter Gr 

boosts the temperature profile equally over the whole region. The Grashof number denotes 

the ratio of buoyancy to viscous forces acting on a working fluid. Physically, it demonstrates 

that buoyancy forces dominate the viscous forces, and energize the regime via more intensive 

natural convection currents. For the case of Gr = 0, thermal buoyancy vanishes and forced 

convection is present in the regime. This produces minimal temperatures. Profiles are 

strongly skewed towards the left duct wall and maximum temperature in this case are shifted 

closer to this boundary with greater values of buoyancy convection parameter. In Figure 9, 

it is apparent that elevation in the Darcy number Da strongly reduces temperature magnitudes 
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when x < -0.2, but in the remaining interval it weakly enhances the temperature profile. 

Modification in permeability therefore exerts a variable effect across the channel on the 

temperature distribution. Closer to the left wall, a cooling effect is induced with greater 

permeability whereas in the core region a heating effect is produced. The asymmetry in 

temperature profiles is again clearly observed. Figure 10 demonstrates that with an increase 

in the Hartmann number M, there is a strong decrement in temperatures across the channel 

width. Stronger magnetic field therefore generates a cooling effect, which is distinct from 

classical Hartmann flow where electrical field is absent. Maximum temperature is computed 

in the left half space, near the left wall for the non-magnetic case (M = 0), although in the 

right half space this scenario also produces low temperatures. Magnetic field therefore exerts 

an inconsistent influence across the channel, which is complex due to the interplay with 

electrical field applied in the axial direction and collective effects of Joule dissipation and 

thermal buoyancy. This has also been identified in other studies including Yamaguchi et al. 

[46] and Tripathi et al. [54]. Figure 11 shows that with greater values of the Weissenberg 

number We, temperature magnitudes are initially slightly enhanced near the left duct region 

whereas they are substantially depleted in the core region of the channel and towards the right 

duct wall. As the Weissenberg number increases, elastic forces become more substantial than 

viscous forces. 𝑊𝑒 =
√2𝑉0𝛬

𝑏
 and features both in the momentum eqn. (10) and in the energy 

eqn. (11) in the terms, +𝑊𝑒
𝑑2𝑣

𝑑𝑥2 (
𝑑𝑣

𝑑𝑥
) and 𝐵𝑟 (

𝑑𝑣

𝑑�̄�
) [𝑊𝑒 (

𝑑𝑣

𝑑�̄�
)

2

], respectively. This produces 

a complex response in which boundary layer development at the duct walls is strongly 

influenced. There is therefore a delay in the transfer of heat with greater elastic forces as one 

progresses across the channel, which explains the initial slight increase in temperatures which 

is eventually dominated by a strong reduction in temperatures further into the duct towards 

the core zone. Stress relaxation is also described by the Weissenberg number. It may also be 

considered as the ratio of stress relaxation time to the process time, under shearing. The black 

line in this Figure depicts the Newtonian fluid obtained by assuming We = 0 in Eqs (11-12). 

This special case achieves the maximum temperatures for the majority of the span of the 

channel. Clearly when non-Newtonian effects are neglected, temperatures are over-predicted. 

The deployment of a good rheological model i. e. Williamson model, as in the current study, 

achieves more realistic computations for polymer thermofluid mechanical simulations. In 

turn, these provide engineers with better approximations of the actual thermal transport in 

electro-conductive rheological duct flows. 

Figures 12-16 depict the evolution in fluid velocity across the channel width as a 

function of several key parameters. Figure 12 shows that when the Forchheimer parameter 

Fr grows, the velocity profile decreases dramatically. The quadratic drag is amplified with 

an increase in this parameter as inertial effects dominate viscous effects. Stronger damping 
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forces are generated to the percolation of the polymeric fluid in the porous medium as a result 

of higher Fr values, generating significant deceleration in the flow. This effect is sutained 

across the channel. The classical Darcian case is retrieved for Fr = 0 and clearly achieves the 

maximum velocity. Neglection of Forchheimer effect therefore leads to a marked over-

prediction in velocity in the duct. Figure 13 indicates the impact of the buoyancy convection 

parameter Gr on the velocity profile. It can be observed that an accentuation in thermal 

buoyancy force therefore substantially accelerates the flow across the channel width. Natural 

convection currents are intensified with thermal buoyancy forces which aids in momentum 

development in the regime. Figure 14 shows that increment in Darcy number Da 

considerably restricts fluid flow over the whole channel, while the highest fluid velocity is 

recorded at the center of the parallel plates. Increasing permeability therefore produces a very 

different effect with the non-Darcy formulation used here, compared with conventional 

models in which greater permeability will produce flow acceleration. The presence of Darcy 

number in other terms e.g. +𝐷𝑎𝐵𝑟𝑣2  in eqn. (11) contributes to the overall retardation 

induced in the flow. Figure 15 depicts the effect of the Hartmann (magnetic) parameter, M 

on the velocity profile. It can be seen here that the magnetic field has a considerable effect 

on the fluid velocity. The presence of a stronger magnetic field damps the velocity i.e. induces 

deceleration. This effect is sustained across the channel. aids in the control of fluid 

movements. With greater M values the Lorentz magnetic drag dominates the viscous force in 

the regime. For the case M = 1 both forces contribute equally. Maximum velocity is achieved 

in the absence of transverse magnetic field (M = 0). Figure 16 depicts the influence of the 

Weissenberg number We on velocity profile. When We = 0, this case corresponds to 

Newtonian behavior. We can observe that when the Weissenberg number grows, the velocity 

profile drops, indicating that elastic forces exceed the viscous forces. The polymer therefore 

flows with reduced resistance in the duct and experiences strong acceleration.    

 

7.  CONCLUSIONS  

A mathematical model has been developed for natural convection electro-magneto-

hydrodynamic non-Newtonian Williamson flow between vertical parallel plates containing a 

permeable medium. The effects of viscous dissipation and natural convection have been 

included in the energy equation. The momentum equation features a modified Darcy-

Brinkman-Forchheimer model in which viscous dissipation terms are refined for the effect 

of viscous heating. Mutually orthogonal electrical and magnetic fields are considered. Joule 

heating is also addressed. The conservation equations with associated boundary conditions 

are re-framed into a system of coupled non-linear ordinary differential equations via 

appropriate similarity transformations. The emerging dimensionless boundary value problem 
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is then solved with a differential transform method (DTM). Validation of DTM solutions 

with the bvp4c MATLAB collocation solver is included. The influence of key parameters on 

velocity, temperature and average Nusselt number, are computed and illustrated graphically. 

The key findings of the present simulation may be summarized as follows: 

(i)With elevation in Weissenberg (non-Newtonian) number, velocity is significantly 

suppressed across the channel.  

(ii)Velocity is suppressed with increasing non-Darcian parameter (Forchheimer number) 

whereas it is enhanced with increment in buoyancy convection parameter.  

(iii)With increasing Forchheimer, Darcy number and Hartmann (magnetic) number, the 

average Nusselt number is boosted whereas it is decreased with higher values of buoyancy 

convection parameter, Brinkman number, and Weissenberg number. 

(iv) A strong reduction in temperature is computed with increment in ratio of Joule electrical 

heating to heat conduction parameter.  

(v) With increasing Forchheimer (non-Darcian) and Darcy number, there is a strong 

reduction in temperatures near the duct left wall but a significant elevation in the core region 

of the duct. 

(vi)With greater Weissenberg number, temperatures are initially increased near the left wall 

of the duct and then substantially reduced in the core region and towards the right wall of the 

duct.  

(vii)Temperatures are significantly enhanced across the duct width with increment in 

Brinkman number (viscous heating parameter). 

(viii) The inclusion of a modified non-Darcy model and robust Williamson viscoelastic 

model is shown to more accurately capture the characteristics of electroconductive polymer 

duct heat transfer flows.  

(ix) DTM is demonstrated to be an exceptionally accurate and versatile methodology for 

solving nonlinear boundary value problems appropriate to non-Newtonian 

electromagnetohydrodynamic transport in ducts.  

The present study has neglected mass (species) diffusion effects. These may be considered 

in future investigations using both Fickian and non-Fickian models.  

 

FUNDING: Lijun Zhang and M. M. Bhatti are supported by the National Natural Science 

Foundation of China No. 12172199. 

 

REFERENCES  

[1] Y. Jaluria, Natural Convection: Heat and Mass Transfer, 326pp, Elsevier Science & 

Technology, USA (1980).  



25 

 

 

[2] Yovanovich, M. M., Teertstra, P., & Muzychka, Y. S. (2002). Natural convection inside 

vertical isothermal ducts of constant arbitrary cross section. Journal of thermophysics and 

heat transfer, 16(1), 116-121.  

[3] Gonzalez-Hidalgo, C. T., Herrero, J., & Puigjaner, D. (2012). Mixing intensification by 

natural convection with application to a chemical reactor design. Chemical engineering 

journal, 200, 506-520.  

[4] Chhabra, R.; Richardson, J. Non-Newtonian Flow and Applied Rheology: Engineering 

Applications, 2nd ed.; Butterworth-Heinemann: Oxford, UK (2008).  

[5] Shenoy, A. V. (1994). Non-Newtonian fluid heat transfer in porous media. In Advances 

in Heat transfer, 24, 101-190.  

[6] Haghighi, S. S., Goshayeshi, H. R., & Safaei, M. R. (2018). Natural convection heat 

transfer enhancement in new designs of plate-fin based heat sinks. International Journal of 

Heat and Mass Transfer, 125, 640-647. 

[7] Dutta, S., Biswas, A. K., & Pati, S. (2018). Natural convection heat transfer and entropy 

generation inside porous quadrantal enclosure with non-isothermal heating at the bottom 

wall. Numerical Heat Transfer, Part A: Applications, 73(4), 222-240. 

[8] Ma, Y., Mohebbi, R., Rashidi, M. M., & Yang, Z. (2019). Effect of hot obstacle position 

on natural convection heat transfer of MWCNTs-water nanofluid in U-shaped enclosure 

using lattice Boltzmann method. International Journal of Numerical Methods for Heat & 

Fluid Flow. 29(1), 223-250. 

[9] Nia, S. N., Rabiei, F., Rashidi, M. M., & Kwang, T. M. (2020). Lattice Boltzmann 

simulation of natural convection heat transfer of a nanofluid in a L-shape enclosure with a 

baffle. Results in Physics, 19, 103413. 

[10] Jha, B. K., & Samaila, G. (2020). A similarity solution for natural convection flow near 

a vertical plate with thermal radiation. Microgravity Science and Technology, 32(6), 1031-

1038. 

[11] Dash, M. K., & Dash, S. K. (2020). Natural convection heat transfer and fluid flow 

around a thick hollow vertical cylinder suspended in air: a numerical approach. International 

Journal of Thermal Sciences, 152, 106312. 

[12] Dutta, S., Goswami, N., Pati, S., & Biswas, A. K. (2021). Natural convection heat 

transfer and entropy generation in a porous rhombic enclosure: influence of non-uniform 

heating. Journal of Thermal Analysis and Calorimetry, 144(4), 1493-1515. 

[13] Lee, S. R., Irvine Jr, T. F., & Greene, G. A. (1998). A Computational Analysis of Natural 

Convection in a Vertical Channel with a Modified Power Law Non-Newtonian Fluid. 

In International Heat Transfer Conference Digital Library. Begel House Inc. 

[14] Jangili, S., & Bég, O. A. (2018). Homotopy study of entropy generation in magnetized 

micropolar flow in a vertical parallel plate channel with buoyancy effect. Heat Transfer 

Research, 49(6), 529-553. 

[15] Singh, J. K., Seth, G. S., Joshi, N., & Srinivasa, C. T. (2020). Mixed convection flow of 

a viscoelastic fluid through a vertical porous channel influenced by a moving magnetic field 

with Hall and ion‐slip currents, rotation, heat radiation and chemical reaction.  Bulgarian 

Chemical Communications, 52(1), 147-158.  



26 

 

 

[16] Bég, O. A., Takhar, H. S., Bég, T. A., Bhargava, R., & Rawat, S. (2008). Nonlinear 

magneto-heat transfer in a fluid-particle suspension flowing in a non-Darcian channel with 

heat source and buoyancy effects: numerical study. Engineering Sciences, 19(1). 

[17] Yang, W. J., & Yeh, H. C. (1965). Free convective flow of Bingham plastic between 

two vertical plates, Trans. ASME, Journal of Heat Transfer, 87, 319. 

[18] Rajagopal, K. R., & Na, T. Y. (1985). Natural convection flow of a non-Newtonian fluid 

between two vertical flat plates. Acta Mechanica, 54(3), 239-246. 

[19] Manzoor, N., Bég, O. A., Maqbool, K., & Shaheen, S. (2019). Mathematical modelling 

of ciliary propulsion of an electrically-conducting Johnson-Segalman physiological fluid in 

a channel with slip. Computer methods in biomechanics and biomedical engineering, 22(7), 

685-695. 

[20] Gebhart, B. (1962). Effects of viscous dissipation in natural convection. Journal of fluid 

Mechanics, 14(2), 225-232. 

[21] Martin, B. W. (1973). Viscous heating and varying viscosity effects on developing 

laminar flow in a circular pipe. Proceedings of the Institution of Mechanical 

Engineers, 187(1), 435-445. 

[22] Salah El-Din, M. M. (2002). Effect of viscous dissipation on laminar mixed convection 

in a horizontal channel. Proceedings of the Institution of Mechanical Engineers, Part E: 

Journal of Process Mechanical Engineering, 216(3), 167-172. 

[23] Umavathi, J. C., & Anwar Bég, O. (2020). Mathematical Modelling of Triple Diffusion 

in Natural Convection Flow in a Vertical Duct with Robin Boundary Conditions, Viscous 

Heating, and Chemical Reaction Effects. Journal of Engineering Thermophysics, 29(2), 348-

373. 

[24] Shamshuddin, M. D., Mishra, S. R., Bég, O. A., & Kadir, A. (2019). Viscous dissipation 

and joule heating effects in non-Fourier MHD squeezing flow, heat and mass transfer 

between Riga plates with thermal radiation: variational parameter method solutions. Arabian 

Journal for Science and Engineering, 44(9), 8053-8066. 

[25] Ajibade, A. O., & Umar, A. M. (2020). Effects of viscous dissipation and boundary wall 

thickness on steady natural convection Couette flow with variable viscosity and thermal 

conductivity. International Journal of Thermofluids, 7, 100052. 

[26] Cox, H. W., & Macosko, C. W. (1974). Viscous dissipation in die flows. AIChE 

Journal, 20(4), 785-795. 

[27] Winter, H. H. (1977). Viscous dissipation in shear flows of molten polymers. 

In Advances in Heat Transfer (Vol. 13, pp. 205-267). Elsevier. 

[28] Hassan, H., Regnier, N., Pujos, C., & Defaye, G. (2008). Effect of viscous dissipation 

on the temperature of the polymer during injection molding filling. Polymer Engineering & 

Science, 48(6), 1199-1206. 



27 

 

 

[29] Akbar, N. S., Tripathi, D., Bég, O. A., & Khan, Z. H. (2016). MHD dissipative flow and 

heat transfer of Casson fluids due to metachronal wave propulsion of beating cilia with 

thermal and velocity slip effects under an oblique magnetic field. Acta Astronautica, 128, 1-

12.   

[30] Ragueb, H., & Mansouri, K. (2013). A numerical study of viscous dissipation effect on 

non-Newtonian fluid flow inside elliptical duct. Energy Conversion and Management, 68, 

124-132. 

[31] Umavathi, J. C., & Bég, O. A. (2021). Augmentation of heat transfer via nanofluids in 

duct flows using Fourier-type conditions: Theoretical and numerical study. Proceedings of 

the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical 

Engineering, 09544089211052025. 

[32] Nakayama, A., Kokudai, T., & Koyama, H. (1990). Non-Darcian boundary layer flow 

and forced convective heat transfer over a flat plate in a fluid-saturated porous medium. 

ASME Journal of Heat Transfer. 112, 157–162. 

[33] Bear, J., & Braester, C. (1972). On the flow of two immiscible fluids in fractured porous 

media. In Developments in Soil Science (Vol. 2, pp. 177-202). Elsevier. 

[34] Nield, D. A., & Bejan, A. (2006). Convection in Porous Media (Vol. 3). New York: 

springer. 

[35] L. Royon and G. Guiffant, Forced convection heat transfer with slurry of phase change 

material in circular ducts: A phenomenological approach, Energy Conversion and 

Management, 49, 928-932 (2008). 

[36] Nazari, S., Ellahi, R., Sarafraz, M. M., Safaei, M. R., Asgari, A., & Akbari, O. A. (2020). 

Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a 

two lid-driven square cavity. Journal of Thermal Analysis and Calorimetry, 140(3), 1121-

1145. 

[37] Muskat, M. (1946). The Flow of Homogeneous Fluids through Porous Media. JW 

Edwards. Ann Arbor, Mich, USA. 

[38] Brinkman, H. C. (1949). On the permeability of media consisting of closely packed 

porous particles. Flow, Turbulence and Combustion, 1(1), 81-86. 

[39] Zhao, J., Zheng, L., Zhang, X., Liu, F., & Chen, X. (2017). Unsteady natural convection 

heat transfer past a vertical flat plate embedded in a porous medium saturated with fractional 

Oldroyd-B fluid. Journal of Heat Transfer, 139(1). 

[40] Tripathi, D., & Bég, O. A. (2012). A numerical study of oscillating peristaltic flow of 

generalized Maxwell viscoelastic fluids through a porous medium. Transport in porous 

media, 95(2), 337-348. 

[41] Alomar, O. R., Basher, N. M., & Yousif, A. A. (2020). Analysis of effects of thermal 

non-equilibrium and non-Darcy flow on natural convection in a square porous enclosure 

provided with a heated L shape plate. International Journal of Mechanical Sciences, 181, 

105704.  

https://www.sciencedirect.com/science/article/abs/pii/S0196890407003731?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S0196890407003731?via%3Dihub#!


28 

 

 

[42] Bég, O. A., Takhar, H. S., Zueco, J., Sajid, A., & Bhargava, R. (2008). Transient Couette 

flow in a rotating non-Darcian porous medium parallel plate configuration: network 

simulation method solutions. Acta Mechanica, 200(3), 129-144.  

[43] Bég, T. A., Rashidi, M. M., Bég, O. A., & Rahimzadeh, N. (2013). Differential transform 

semi-numerical analysis of biofluid-particle suspension flow and heat transfer in non-Darcian 

porous media. Computer methods in biomechanics and biomedical engineering, 16(8), 896-

907. 

[44] Al-Hadhrami, A.K., Elliott, L., Ingham, D.B.: A new model for viscous dissipation in 

porous media across a range of permeability values. Transp. Porous Media 53, 117–122 

(2003). 

[45] Umavathi, J. C. (2013). Analysis of flow and heat transfer in a vertical rectangular duct 

using a non-Darcy model. Transport in porous media, 96(3), 527-545. 

[46] Yamaguchi, H., Zhang, X. R., Higashi, S., & Li, M. (2008). Study on power generation 

using electro-conductive polymer and its mixture with magnetic fluid. Journal of Magnetism 

and Magnetic Materials, 320(7), 1406-1411. 

[47] Castro-Gutiérrez, J., Palaimiene, E., Macutkevic, J., Banys, J., Kuzhir, P., Schaefer, S., 

Fierro, V. and Celzard, A., (2019). Electromagnetic properties of carbon 

gels. Materials, 12(24), p.4143. 

[48] Shliomis, M., Krekhov, A., & Kamiyama, S. (2006, May). Non‐Newtonian Ferrofluid 

Flow in Oscillating Magnetic Field. In AIP Conference Proceedings (Vol. 832, No. 1, pp. 

403-411). American Institute of Physics. 

[48] Xu, Y., Patsis, P.A., Hauser, S., Voigt, D., Rothe, R., Günther, M., Cui, M., Yang, X., 

Wieduwild, R., Eckert, K. and Neinhuis, C., (2019). Cytocompatible, injectable, and 

electroconductive soft adhesives with hybrid covalent/noncovalent dynamic 

network. Advanced Science, 6(15), p.1802077. 

[49] Bhatti, M. M. (2021). Biologically inspired intra-uterine nanofluid flow under the 

suspension of magnetized gold (Au) nanoparticles: applications in 

nanomedicine. Inventions, 6(2), 28. 

[50] Manzoor, N., Maqbool, K., Bég, O. A., & Shaheen, S. (2019). Adomian decomposition 

solution for propulsion of dissipative magnetic Jeffrey biofluid in a ciliated channel 

containing a porous medium with forced convection heat transfer. Heat Transfer—Asian 

Research, 48(2), 556-581.   

[51] Tripathi, D., Yadav, A., & Bég, O. A. (2017). Electro-kinetically driven peristaltic 

transport of viscoelastic physiological fluids through a finite length capillary: mathematical 

modeling. Mathematical Biosciences, 283, 155-168.  

[52] Bhatti, M. M., Zeeshan, A., Ijaz, N., Bég, O. A., & Kadir, A. (2017). Mathematical 

modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of 



29 

 

 

viscoelastic dusty fluid through a porous medium duct. Engineering science and technology, 

an international journal, 20(3), 1129-1139. 

[53] Umavathi, J. C., & Bég, O. A. (2021). Double-diffusive convection in a dissipative 

electrically conducting nanofluid under orthogonal electric and magnetic fields: a numerical 

study. Nanoscience and Technology: An International Journal, 12(2), 59-90.  

[54] Tripathi, D., Jhorar, R., Bég, O. A., & Kadir, A. (2017). Electro-magneto-hydrodynamic 

peristaltic pumping of couple stress biofluids through a complex wavy micro-

channel. Journal of Molecular Liquids, 236, 358-367.  

[55] Tripathi, D., Bhushan, S., & Bég, O. A. (2016). Transverse magnetic field driven 

modification in unsteady peristaltic transport with electrical double layer effects. Colloids 

and Surfaces A: Physicochemical and Engineering Aspects, 506, 32-39.  

[56] Vajravelu, K., Sreenadh, S., Rajanikanth, K., & Lee, C. (2012). Peristaltic transport of 

a Williamson fluid in asymmetric channels with permeable walls. Nonlinear Analysis: Real 

World Applications, 13(6), 2804-2822. 

[57] Amanulla, C. H., Nagendra, N., Subba Rao, A., Anwar Bég, O., & Kadir, A. (2018). 

Numerical exploration of thermal radiation and Biot number effects on the flow of a non‐

Newtonian MHD Williamson fluid over a vertical convective surface. Heat Transfer—Asian 

Research, 47(2), 286-304.  

[58] Subba Rao, A., Amanulla, C. H., Nagendra, N., Anwar Beg, O., & Kadir, A. (2017). 

Hydromagnetic flow and heat transfer in a Williamson Non-Newtonian fluid from a 

Horizontal circular cylinder with Newtonian Heating. International Journal of Applied and 

Computational Mathematics, 3(4), 3389-3409. 

[59] Zhou, J. K. (1986). Differential Transformation and its Applications for Electrical 

Circuits. Huazhong Science & Technology University Press, China. 

[60] Faraz, N., Khan, Y., Lu, D. C., & Goodarzi, M. (2019). Integral transform method to 

solve the problem of porous slider without velocity slip. Symmetry, 11(6), 791. 

[61] Maleki, H., Alsarraf, J., Moghanizadeh, A., Hajabdollahi, H., & Safaei, M. R. (2019). 

Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary 

conditions. Journal of Central South University, 26(5), 1099-1115. 

[62] Maleki, H., Safaei, M. R., Alrashed, A. A., & Kasaeian, A. (2019). Flow and heat 

transfer in non-Newtonian nanofluids over porous surfaces. Journal of Thermal Analysis and 

Calorimetry, 135(3), 1655-1666. 

[63] Zhang, L., Arain, M. B., Bhatti, M. M., Zeeshan, A., & Hal-Sulami, H. (2020). Effects 

of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating 

circular plates filled with nanofluids. Applied Mathematics and Mechanics, 41(4), 637-654. 

DTM  



30 

 

 

[64] Arain, M. B., Bhatti, M. M., Zeeshan, A., & Alzahrani, F. S. (2021). Bioconvection 

Reiner-Rivlin nanofluid flow between rotating circular plates with induced magnetic effects, 

activation energy and squeezing phenomena. Mathematics, 9(17), 2139. 

[65] Kumar, M., Reddy, G. J., Kumar, N. N., & Bég, O. A. (2019). Application of differential 

transform method to unsteady free convective heat transfer of a couple stress fluid over a 

stretching sheet. Heat Transfer—Asian Research, 48(2), 582-600. 

[66] Pourhoseini, S. H. (2017). A comparative exploration of enhancing thermal 

characteristics of natural gas flame by synchronous combustion technique. Heat Transfer—

Asian Research, 46(3), 237-250. 

[67] Dey, D., & Chutia, B. (2022). Two‐phase fluid motion through porous medium with 

volume fraction: An application of MATLAB bvp4c solver technique. Heat Transfer, 51(2), 

1778-1789. 

[68] Humane, P. P., Patil, V. S., Patil, A. B., Shamshuddin, M. D., & Rajput, G. R. (2022). 

Dynamics of multiple slip boundaries effect on MHD Casson-Williamson double-diffusive 

nanofluid flow past an inclined magnetic stretching sheet. Proceedings of the Institution of 

Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 

09544089221078153. 

 

 


