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ABSTRACT 10T sensors and deep learning models can widely be applied for fault prediction. Although
deep learning models are considerably more potent than many conventional machine learning models, they
are not transparent. This paper first examines different deep learning techniques to carry out univariate time
series analysis based on vibration sensors installed on four industrial bearings to predict a fault occurring in
a predefined time window. Several recurrent neural networks are used to develop fault prediction models.
An empirical evaluation of these models shows that all models perform well; however, hybrid models
outperform other models when the time window increases. Then, instance-wise feature selection has been
considered to highlight the most contributing features for its outputs regarding any input. In this problem,
the main challenge is to propose a trainable feature selection model with the minimum number of selected
features whilst its performance is close to the baseline model. This paper develops a novel explainable method
called the Gumbel-Sigmoid eXplanator (GSX) to tackle these problems. In a nutshell: (i) we have developed
a differentiable and trainable selector, and (ii) we utilize regularization to control the number of features for
each instance flexibly. The proposed method is model agnostic, and empirical evaluations on two datasets
show that GSX can not only solve the problems identified with two other state-of-the-art methods but also

outperform them in terms of accuracy and run-time.

INDEX TERMS Deep learning, explainable Al, fault prediction, predictive preventive maintenance.

I. INTRODUCTION

Nowadays, in light of emerging technologies such as 5G,
cloud computing, and fast-growing sensor manufacturing
technologies, the Internet of Things is getting more popular.
Among a wide variety of applications, condition monitor-
ing is a demanding IoT application [1], [2]. In this use
case, different sensors are installed on equipment to mon-
itor various aspects to identify their condition or conduct
analytical methods to predict a fault in the future [3], [4].
The vibration signals are measured almost in all equip-
ment in power plants; therefore, they are available in
most systems [5]. Moreover, measuring vibration signals
can lead to retrieving valuable insight into the condi-
tion of the equipment and fault prediction by recogniz-
ing the underlying patterns [4]. Therefore, vibration signals
are common sources for monitoring equipment conditions
[4]-[11]. There are two major approaches to fault predic-
tion, including physics-based and data-driven models [12],
[13]. Physics-based models mostly use the knowledge of
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domain experts and the logic behind measured data to con-
struct a mathematical model [12]. This approach suffers
from two main problems; first, its performance depends on
the accuracy of the available domain knowledge, and sec-
ond, it cannot be promptly updated [13]. Contrary, data-
driven models concentrate on extracting underlying patterns
among the online data fetched from sensors by machine learn-
ing and analytical techniques. Therefore, they can automati-
cally extract the knowledge from data, and their parameters
can be updated instantly when the value of incoming data
streams changes [12], [13]. So, among various techniques
to carry out predictive preventive maintenance, data-driven
approaches, including statistical and machine learning meth-
ods, are gaining popularity [12]. In conventional machine
learning, feature selection is the primary challenge. To tackle
this problem, most reported works have combined a wavelet
transformation with other techniques such as self-organizing
maps [14], neural networks [15], [16], and SVMs [5]. Evolu-
tionary computing also has been deployed for equipment fault
prediction [17], [18].

Although, statistical and conventional machine learning
methods are comparably more transparent than deep learning
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methods, in recent years, deep learning has shown break-
throughs in fault prediction [3]. Easier feature extraction,
more power in pattern extraction, and multi-modal analysis
make deep learning more widespread [19], [20]. Their popu-
larity and success have led to their pervasive use in predictive
preventive maintenance. [21] proposed a deep belief networks
ensemble algorithm by incorporating several training tech-
niques for predicting equipment’s remaining useful life. [22]
reported the use of deep fuzzy echo state networks and deep
hybrid state networks for equipment fault detection. [18] also
proposed a batch-normalized deep neural network to extract
fault features.

Among deep learning models, Recurrent Neural Net-
work (RNN), Long Short-Term Memory (LSTM) [23], and
Gated Recurrent Units (GRU) [24], have become popular
time-series processing methods [3], [25], [26].

For vibration analysis, LSTM analyzes the inherent cor-
relation of vibration signals in the processing of time series
data, so it is increasingly adopted in data-driven fault pre-
diction [1], [3], [12], [27], [28]. [12] proposed a Convolu-
tional Bi-directional LSTM to predict machinery faults using
sensor data. [2] used the orthogonal experimental design
method to optimize the model parameters and a feature engi-
neering to remove outliers in the fault prediction. In [3],
the authors proposed a method by incorporating multiple
sparse auto-encoders with LSTM for predicting mechanical
faults. [1] also used vibration sensors and LSTM for fault
prediction. Some research works tried to improve the perfor-
mance of LSTM by adding a Convolutional Neural Network
(CNN). They have shown that the combination can boost the
feature selection capability of LSTM. [29] proposed a system
schema that integrates programmable logic controller signals
with sensor signals for real-time prediction of remaining use-
ful life in machining tools; they added a one-dimensional
CNN to LSTM. [13] introduced a hybrid model that combines
a CNN with a stacked bi-directional and unidirectional LSTM
network to address sequence data in the task of tool remaining
useful life prediction.

Despite the success of deep learning in many applica-
tions, they are often criticized for being black-box and lack-
ing transparency due to their non-linear multilayer struc-
tures [30]-[33]. When a model is considered a black box,
its internal processes are either unknown or are known but
uninterpretable by humans. In this situation, Explainable
Artificial Intelligence (XAI) methods are usually adopted to
explain such black-box machine learning models [34]. XAI
methods aim to interpret how a deep neural network oper-
ates through techniques highlighting some model parts [32].
To interpret means providing the meaning or explaining and
demonstrating a complex concept to a human [31], [35].
Interpretability has different aspects, including the neces-
sity of interpretation, complete versus partial understanding,
user’s availability time to adopt, and the user’s background
knowledge [31]. To assess the performance of an interpreting
model, several aspects should be taken into consideration,
including interpretability: how much the model or its results
are understandable by humans [36]; accuracy: to what extent
the model precisely predicts unseen instances; fidelity: how
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much the model can imitate the results of a black-box baseline
predictor [31].

Post hoc explanation techniques can be categorized as
text explanations, visualizations, local explanations, expla-
nations by example, explanations by simplification, and
feature relevance [30]. Text explanations provide inter-
pretability for an opaque model by learning to generate
explaining texts. Visualization inclines to depict the model’s
behavior. Local explanations segregate the solution space
and explain less complex subspaces relevant to the whole
model. Explanations by example consider extracting data
examples that relate to the result generated by a model.
Explanations by simplification highlight those methods in
which an entirely new system is recreated upon the base-
line model [30]. Finally, feature relevance highlights the
relation between the model output and most contributing
features [30], [33], [37].

As the approach of this paper is to explain a black-box
model through an instance-wise feature selection, these tech-
niques have been described in more depth. Although finding
a global subset of relevant features is a well-studied problem
and has existing solutions [38], [39], they consider the same
features for all samples [33]. On the other hand, instance-
wise feature selection highlights essential features for each
individual separately. Therefore, it is not as straight forward
as the global feature selection techniques. In the literature,
two streams deal with instance-wise feature selection. The
first category computes the gradient of the output of the
correct class concerning the input vector for the given model
and uses it as a saliency map for highlighting the relevant
features of the input [40]-[43]. For example, [40] proposed a
method using a Parzen window approximator to compute the
gradient of an opaque classifier. In [41], the authors provided
“visual explanations™ for decisions from a class of CNN-
based models. Their method Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) applies the gradients of any target
class sent through the final convolutional layer to produce a
coarse localization map denoting the critical regions in the
image.

The other group approximates the model to be interpreted
via a locally additive model to explain the difference between
the model output and some “reference” output in terms
of the difference between the input and some “‘reference”
input [33], [37], [44]-[48]. [44] proposes Layer wise Rele-
vance Propagation (LRP). LRP is a model-dependent tech-
nique that redistributes the predictions to each neural network
layer until assigning a particular relevance score to each
neuron. Although it is model dependent, [49] proposed an
LRP-based model to select the most participating features in
LSTM. [47] introduced an algorithm called LIME, which can
explain predictions of any model by approximation with more
straightforward and more interpretable linear local models
around a data point. [48] presented DeepLIFT, a method
designed specifically for neural networks, which decomposes
the output on a specific input by backpropagating the contri-
bution to every feature. [46] used Shapley values to measure
the importance of the features of a given input and proposed
a sampling-based method, ‘‘kernel SHAP” for estimating
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TABLE 1. Comparison between instance wise feature selection methods

from three different aspects. Efficiency assesses the computational times
during a single explanation [37]; model free indicates whether a method

is generic [37]; and number of relevant features shows whether a model

requires a predefined number of features [33].

Method Key ideas Efficiency| Model | Predefined
free feature
number
Parzen [33] | Parzen window approx- | High Yes Yes
imation of the original
model.
Salient The gradient of the cor- | High No Yes
map [43] | rect class’s output regard-
ing the input.
LRP [37] |Tracking the backpropaga- | High No Yes
tion reversely.
Lime [40] |Locally linear approxima- | Low Yes Yes
tions
Kernel Shapley values to quantify | Low Yes Yes
SHAP [39] | the importance of features.
DeepLIFT | Unpacking the output of a | High No Yes
[41] neural network on a spe-
cific input by backpropa-
gating the contribution to
features.
L2X [30] |Mutual Information max- | High Yes Yes
imization with Gumbel-
SoftMax trick.
INVASE Minimize KL using deep | High Ye No
[26] NN influenced by actor-
critic model.
GSX (pro- | Minimizing the error with | High Yes No
posed) a Gumbel-Sigmoid layer.

Shapley values to estimate the finite difference between an
input vector and a reference vector.

[37] came up with a different approach and introduced
learning to explain (L2X). Their method is based on learning
a distinct function to extract a subset of the most informa-
tive features for each given example. This feature selector is
trained to maximize the mutual information between selected
features and the response variable. [33] reformulated the
problem by adopting an actor-critic model to harness the
problem of backpropagating through subset sampling. Their
solution consists of three neural networks, a black-box base-
line model, a selector to segregate a feature subset, and an
evaluator which accepts a sparse input and generates the same
conditional distribution as the baseline. The cost function
adopted in this work is the Kullback-Leibler (KL) divergence
between the full conditional distribution and the selected-
features-only [33]. Table 1 compares the instance-wise expla-
nation techniques.

In several use cases, there will undoubtedly be applica-
tions where methods such as HMM or Bayesian methods
will work well or even be better than use of deep neural
networks. Our focus is on those cases where deep neural net-
works are adopted and where greater transparency is needed.
To this end the current work evaluates several recurrent deep
learning models for fault prediction in disintegrated bearings
using vibration sensor readings. This is a type of univari-
ate time series analysis problem. The model aims to predict
the next condition fault/normal of the bearings within the
time window ahead. After building and evaluating the pre-
dictors, a novel model agnostic instance-wise interpretation
method has been presented. The proposed model uses the
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Gumbel-Sigmoid trick [50], namely GSX, to identify the
most important readings in a particular input sequence for
the baseline model’s prediction. In GSX, we embedded an
automated instance-wise feature selection with deep learn-
ing models. Therefore, in addition, to comparing some deep
learning models for fault prediction, the most important nov-
elty of this paper is on providing further explanation for deep
learning models. We compared GSX with two state-of-the-
art techniques. In addition to the research dataset, a public
dataset is used to validate results of the models and tech-
niques. To the best of our knowledge, it is the first time that
such a method has been adopted.

The remaining paper is organized as follows. Section II
provides the research framework and presents GSX.
Section III describes the models’ configurations, the dataset,
and the given experimental results. Section IV concludes the
paper and provides new directions to continue this research.

Il. FRAMEWORK

The first goal of this research is to predict a machine fault
within the time window ahead. This binary classification task
predicts whether a sequence of vibration readings leads to a
fault or a normal condition. Therefore, the annotated dataset
D is as follows:

D = {(x1,y1), -+ » (Xn, yn)}

In this dataset x; € RT is the input sequence, T is the
time window size. And y; € {0, 1} is the binary label in
which O denotes the normal condition and 1 as the fault.
The prediction model f¥ : x — [0, 1] parametrized by y,
as the baseline, is a deep learning model which undertakes
the binary classification. This model will be trained using a
subset of D and tested using the rest.

The second goal is to explain the baseline model fV
through a proposed instance-wise feature selection. Let’s con-
sider m (in this paper, we use m and T interchangeably as the
number of features and the size of time window respectively)
as the number of original features; the aim is to identify which
features d C m contribute most to the baseline output for
each instance. Regarding the generic form of the model’s
input and output, let x € R™ be an m dimensional input and

y € {l,---, C} be the related discrete labels containing C
classes. The goal is to find S € {0, 1} as the selection vector
in which s; = 1 indicates the ith feature has been selected,

and s; = 0 demonstrates it is omitted. Applying this selection
vector on the original input x, leads to x° as the suppressed
feature vector:

s Jxi ifsi=1
! * if S;i = 0
Asterix (*) denotes the feature is not selected. Therefore,

if the output of the baseline is y|x, the goal can be summarized
to find the smallest selected features, S, so that:

EG@Ix®) = EGlx) (1

Equation (1) denotes the conditional distribution of y given
the selected features x5 be as close as possible to § having all
features.
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FIGURE 1. The main process of the instance-wise feature selection in
which a selector learns to select the most important features for any
individual input, and an evaluator assesses the performance of the new
feature subset against the baseline model, which uses the all features.

One way to estimate and evaluate the selection vector S for
each instance is to provide two auxiliary models [33], [37].
The selector model (2), parametrized by 6, accepts an input
and generates m independent probabilities with the same size
as the input features.

7 1 x —> [0, 11™ ()

So far, P € [0, 1]™ is the output of 7y and shows the
importance of each feature, yet a selection method is needed
to make it sparse to have the selection vector S. One can
simply consider these m probabilities as success rates and
apply Bernoulli: [0,1]" — {0, 1} to estimate S. The
evaluator (3), parametrized by ¢, accepts x5 (the dot product
of the input and the selection vector resulted by 7y, x ©S) and
undertakes the same task as the baseline, aiming to evaluate
the selector’s performance and generating C (as many as the
number of classes) probabilities.

£ x5 — 10, 11€ (3)

An appropriate loss function L should be considered to
measure the difference between the evaluator and the baseline
outputs. A method is also needed to hold the cardinality of
S as minimum as possible. Fig 1 summarizes the described
process for instance-wise feature selection.

The selector, the evaluator, and the baseline can be any
model such as CNN, LSTM, etc. The evaluator and the base-
line models can be trained with a cross-entropy or binary
cross-entropy loss function and optimization algorithms such
as gradient descent. The problem is to train mp concerning
the L (the loss function measuring the difference between
f? and f7). The connection between my and L has been
discretized by the sampling mechanism; consequently, it is
non-differentiable, and the gradient Vy L cannot be calculated
and backpropagated to train y.

Wrapping all the above together, to come up with an appro-
priate solution, one needs to find; (i) an appropriate loss
function to satisfy (1), (ii) a way to train the selection model,
and (iii) a technique to minimize the number of selected
features.

Since the proposed solution takes advantage of L2X [37]
and INVASE [33], before going ahead with the proposed
method, these two state-of-the-art techniques are described
in the below.

[37] used a variational lower bound of the mutual infor-
mation between the output distribution of the baseline and
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the evaluator.
Iga(lpx Eyx y,c[logg,(V(0,¢) O x, )] 4

In (4) x and y are model’s input and output, respectively,
8y(.) parametrized by ¢ is the proposed evaluator, which
accepts the x5 containing the selected features and generating
the given result in a conditional distribution. In the original
works [37] the evaluator is a neural network. The cardinality
of V(6, ¢) which is the selector part, in this work is fixed.
In L2X, researchers applied the Gumbel-SoftMax trick [51]
to make V (6, ¢) concrete as a representation for the selection
vector S, yet differentiable. Empirically this trick has shown
a lower variance than REINFORCE applied in works such
as [33], [52]. Gumbel-SoftMax applies the concrete distri-
bution from a categorical distribution [53] as a continuously
differentiable approximation to the categorical distribution.
So, it could be a candidate solution for the problem with
the selector model mg. When one wants to approximate a
categorical random variable with category probability P =
(1,p2, - - -, pm), an independent random perturbation from a
Gumbel(0, 1) distribution can be generated as (5).

G; = —log[— log(u;)],

Then this Gumbel noise will be added to the log probability
of each category and have a temperature-dependent SoftMax
over an m dimensional vector. It should be noted that t > 1
is the temperature and a hyperparameter to control the level
of concreteness in the resulted vector.

u; ~ Uniform(0, 1) 5)

log pi+G;
e T
Ki=— (6)

1 i+G;
o "g"++f
j=1¢

The resulting random vector K = (ky, k2, ..., ky) from
(6) is the concrete transformation of P. Therefore, in L2X,
they applied this trick to approximate the subset sampling,
aimed to select d features from m ones and to calculate § =
{si € {0,1}">_s; = d}. Concretely mp : R™ —> R™ has
been defined to map the input with the same dimensional
vector, where the ith entry of my(x) denotes the importance
score of the ith feature. They sampled a single feature out of
m features independently for d times through the mentioned
trick. Such a scheme samples most important d features and
is easier to approximate by a continuous relaxation. Finally,
a d-dimensional random vector V has been defined that is the

element-wise maximum of C!, ..., C¥:
K/ ~ Concrete(mg), j=1,...,d
V=Wi....Vw), Vi=maxKk!
j

The random vector V'is then used to approximate the d-hot
random vector S during training. So, the authors transformed
7 to V(0,¢) as Vis a function of 8 and a collection of
auxiliary random variables ¢ sampled independently from
the Gumbel distribution. Then they applied the elementwise
product V(6,¢) © x as an approximation of x5 [37]. The
performance of L2X is good both during the training and
the explanation [37]. However, due to the Gumbel-SoftMax,
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the number of selected features must be fixed in advance
as an extra hyperparameter and is necessarily fixed for all
instances, whereas in reality, every example has a different
number of essential features [33].

Authors of [33] continued the work of L2X and tackled
its mentioned problem by proposing INVASE. They used KL
divergence between the conditional distributions y|x and $[x%
to satisfy equation (1) instead of the mutual information used
in [37]. They proposed an actor-critic model [54] to bypass
backpropagation through the sampling and instead used the
predictor network to provide a reward to the selector network.
Instead of a fixed number of features for all instances, the
authors used an [y regularization term for the selector’s out-
puts controlled by a hyperparameter (A > 0) [33]. The bigger
(A results to fewer selected features and vice versa. Finally,
they train three distinct models as follows.

Such as (2), the selector is 7y : R, —> R™ followed
by a Bernoulli sampler to estimate S or the selection vector.
x5 (S © x) is the input of the evaluator model g(/,(xs, ¥).
As mentioned, they train all three models (selector, evaluator,
and baseline) together.

(¢) = —Egyyps~meoly_vilngf )] (D)
1(y) = —Egypl Y yilnf ()] ®)

Equations (7) and (8) are cross-entropy loss functions to
train the evaluator and the baseline, respectively. To prepare
the selector model, they considered a reward, which is the KL
difference between the evaluator and the baseline (9).

I(x, s) = —[l(g) — ()] )

The authors combined a binary cross-entropy function
between the output of my and the selection vector S, mul-
tiplied by the reward 2(x, s)), along with the /o norm of the
selector output came up with (10).

10) = B[ _xf InS) + x5 In(1 — S/ )(ACx, s)) + A 1| S )]
(10)

This technique is still model agnostic and could resolve the
fixed number of selected features problem with L2X. Its per-
formance during the explanation is good; however, since it is
a Reinforcement learning model, its convergence time during
the training is high, and it is sensitive to hyper-parameters
such as learning rates [37].

In the proposed method, we have considered the prob-
lems with L2X (fixed selected features number) and INVASE
(performance) and developed solutions to both. In order
to articulate the selector and evaluator with a continuous
but still concrete connection, instead of using Gumbel-
SoftMax, we used the Gumbel-Sigmoid proposed in [50].
The Gumbel-Sigmoid implementation is like Gumbel-
SoftMax [51] to select a subset of features from all features
contributing more to the final prediction. However, there
are two differences between these two methods; in Gumbel-
Sigmoid (i) there are two uniform noises (11), and (ii) these
noises are added to the sigmoid function (12) instead of a
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FIGURE 2. The GSX workflow. During the training, data passes through
GSX and the baseline model simultaneously to calculate the error. Then,
the error and a regularization penalty backpropagate through GSX. In this
model, the selector, followed by a Gumbel-Sigmoid layer (concrete layer),
and the evaluator, forms an integrated deep learning model. During the
explanation, GSX provides two outputs, the prediction result and a sparse
vector denoting the essential features of the given instance.

SoftMax function.

G I logu} | .
i = —log( 5),  uj,up ~ Uniform(0, 1)  (11)
log u;
1
Ki= ——F=57 (12)
! 1+ —(pt-";Gl)

In equation (12), the level of concreteness is controlled by
the temperature hyperparameter (z > 1) in which 7 = 1
makes it to a simple Sigmoid, whereas a higher value of ,
leads to a more concrete result. Therefore, the output of 775 (X)
passes through a layer of Gumbel-Sigmoid units of the same
size.

V(, ¢, &) - x —> Concrete™ (13)

Equation (13) denotes the new selector parametrized by 6
and a collection of two set auxiliary random variables ¢; and
¢» sampled independently from the Gumbel distribution. The
dot product of the selector’s output and the input features
passes through the next part as the evaluator (14).

go(V(©#,0,0) 00X, Y): x5 — [0,1]° (14)

Finally, such as INVASE, a [y regularization term of
the output of (13) is added; therefore, the loss function
becomes (15).

Iga('px Ex,y,g'],{z [10gg¢(V(9, é‘ls ;2) © X, )’)
+AIVE, a1 A5

In this loss function, A > 0 controls the number of selected
features (such as INVASE, bigger A means fewer selected
features and vice versa). It should be noted that, during the
training, data pass through the model, and the error is back-
propagated using the concrete transformation. But the selec-
tor (13) output will be rounded to provide the given selection
vector during the explanation. Fig 2 summarizes the GSX
training and explanation process.

Ill. EXPERIMENTS
We conducted experiments on two datasets. The first dataset
is provided through the project of this research. And the
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second one is a public dataset for electrical fault detec-
tion and classification [55], [56] through which we vali-
dated the models of the research. We carried out empirical
experiments to examine RNN, LSTM, GRU, CNN, LSTM-
GMP, CNN-LSTM, and CNN-GRU on both datasets. Then
by selecting one of the trained models as the baseline, the
performance of GSX is compared with L2X and INVASE.
We use ADAM [57] for all experiments with the default
hyper-parameters. The temperature for Gumbel-SoftMax and
the Gumbel-Sigmoid approximation are fixed to be 0.1 [37].
Codes and the dataset are available in the following:

o GSX: https://github.com/tahamsi/gsx.

o INVASE: https://github.com/jsyoon0823/ INVASE.

o L2X: https://github.com/Jianbo-Lab/L2X.

All codes have been run on a machine with the following
specifications:

o OS: Microsoft Windows 10 Pro X64.

o Processor: Intel® Core 17, CPU 1.8 GHz.

o Memory: 16 GB.

A. INVISIBLE SYSTEMS LTD DATASET

We received four months of vibration readings from four
industrial bearings extracted from Invisible Systems Ltd’s
web platform to prepare the dataset. All bearings have the
same size, class, and category (Size: 0.55 KW, Class: I, and
Category B2). Based on ISO 10816, the vibration thresh-
old for this type is 0.5. One of these bearings was disinte-
grated and has been faulty many times, and the others were
in respectively better condition having either no or a few
faults. Since the problem is a univariate classification task, the
dataset is annotated for different window sizes and available
on https://github.com/tahamsi/gsx/dataset.

1) PREDICTION
The data is split into a train set and a test set to predict a fault
happening within the next time window. Several deep learn-
ing models were developed, including RNN, LSTM, GRU,
LSTM, LSTM-GMP, CNN, CNN-LSTM, and CNN-GRU.
To carry out the experiments, many topologies consisting of
the number of neurons and the number of dense layers is
examined for each, and the best configuration based on these
experiments is selected. Fig 3 displays LSTM’s training loss
as an example Adam’s performance with the given learning
rate.

Six scenarios have been designed based on different time
window sizes to investigate the performance of the models.

Fig 4 implies that almost all predictors could predict the
fault. In scenarios with the smaller time window size, the
performances of the predictors are very close, whereas, in
the bigger window size, RNN shows inferior performance
due to the vanishing gradient [58]. Finally, combined methods
such as CNN-GRU outperform those experiments in which
the window size is considerably large.

2) EXPLANATION
In the explanation part (instance-wise feature selection),
because of simplicity to show the result, the window size
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FIGURE 3. LSTM training error for window size 20. The training has been
conducted with Adam optimizer, and the learning rate was 0.1.

is fixed at 20. The models’ structures and hyper-parameters
have been identified through a grid search.

Since the LSTM showed acceptable performance during
the prediction, and it is still a black-box model, LSTM is
selected as the baseline. Therefore, the structure of the base-
line is (fc stands for fully connected):

Istm(60) —> fc(32, relu) —> fc(1, sigmoid).

In INVASE, the evaluator and baseline are the same, whilst
the selector is a feedforward neural network (7 is the window
size)

(fe(T, relu) — fc(20, relu) — fc(30, relu)
—> fc(T, sigmoid)).

Likewise, L2X used the same evaluator and baseline, the
selector is:

fe(T, relu) — fc(20, relu) — fc(30, relu)
—> Gumbel — SoftMax(T).

The temperature has been considered 0.1, the same as [37].
In GSX, the evaluator part and the baseline are the same
as the other methods. The temperatures is set 0.1. The
selector is:

fe(T, relu) — fc(20, relu) — fc(30, relu)
—> Gumbel — Sigmoid(T).

For L2X, the number of selected features is fixed 10 out
of 20. To make the comparisons fair, different values of the
regularization parameter A for INVASE and GSX have been
tested to reach the same number of selected features in aver-
age as L2X. Table 2 summarizes the average of 30 runs for
each model.

As evident in table 2, the performance measures including
accuracy and f-measure of all models are close to the baseline;
therefore, it can be concluded that they were loyal to the
baseline [31]. So, all models could explain the baseline to
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FIGURE 4. Comparing deep learning models regarding different window size. a) window size is 5, b) window size is 10, c) window size is
20, d) window size is 30, e) window size is 60, and f) window size is 120.

TABLE 2. Comparing GSX with other instance-wise feature selection
techniques (L2X and INVASE) in terms of performance and run-time. The
number of selected features are fixed for L2X, and controlled (by the
related penalty term) in GSX and INVASE.

Model Accuracy | F-Measure | Average | Training | Explanation
# of | time (s) time (s)
features

Baseline | 0.968 0.9 All

L2X 0.964 0.92 10 fixed |35.6 1.1

INVASE [0.916 0.71 10 575 2.1

GSX 0.963 0.92 10 29.7 0.8

some extent. However, L2X and GSX performed better than
INVASE.

On the one hand, although INVASE is a flexible method
that provides variable selected features, its performance has
been relatively poor compared to the others. The convergence
time for INVASE was also considerably high, which is typical
in reinforcement learning methods. On the other hand, L2X
shows good accuracy and run times performance. Since this
method considers the selector and the evaluator as a single
model, its convergence and explanation times are low. Never-
theless, as mentioned earlier, in L2X, the number of selected
features should be considered in advance and fixed for all
instances; since this value varies in a different situations,
it is a drawback. In terms of accuracy, GSX performs as
well as L2X, but its training time and explanation time are
slightly better than L2X. Moreover, it does not need to have
a fixed number of features in advance and is as flexible as
INVASE. Therefore, regarding the experiments, GSX could
take advantage of both previous methods and overcome their
deficiencies through a novel solution based on Gumbel with
a sigmoidal combination.

Fig 5 shows an example of GSX results on two sequences
containing 20 readings. As highlighted, for the normal sample
members indexed 2, 4, 6, 8, 9, 10, 11, 13, 15, and 18 partic-
ipated in this decision, and for the faulty sample members
indexed 1, 3,4, 6,9, 12, 13, 18, 19, and 20 contributed in the
decision.
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FIGURE 5. An example of GSX output. This heatmap compares two
sample and their selected features. The colours depict the amount of
vibration, 0 shows that the related reading is omitted and 1 shows that is
selected.

B. ELECTRICAL FAULT DETECTION DATASET

The next dataset is a public dataset for the electrical
fault detection and classification [55], [56] accessible via
https:// www.kaggle.com /datasets/esathyaprakash/electrical-
fault-detection-and-classification/detectdataset.csv. This data
set is related to a power system consisting of four generators
of 11 x 103 Volt, each pair located at each end of the trans-
mission line. Transformers are present in between to simulate
and study the various faults at the midpoint of the transmis-
sion line. The line voltage and line current parameters are
compared with the preloaded datasets, and hence, the faults
are classified. It contains six features and one class variable
denoting normal or fault condition. This dataset is used to
validate the models of this research.

1) PREDICTION

Like the previous dataset, the data is split into two sets
to train and test the predictors. The deep learning models,
including RNN, LSTM, GRU, LSTM, LSTM-GMP, CNN,
CNN-LSTM, and CNN-GRU are trained on the training set.
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FIGURE 6. Comparing deep learning models on the electrical fault
detection dataset, based on their accuracy and f-measure.

All topological parameters, such as the number of neurons
and the number of dense layers, are examined, and the best
configuration based on these experiments is selected. On this
dataset the models learn to classify a reading into fault or
normal condition, based on 6 features.

Fig 6 displays that, regarding the performance measures,
all model could conduct the classification task well. However,
RNN has been overfitted and showed a poor performance in
this dataset.

2) EXPLANATION

For the explanation part (instance-wise feature selection), the
goal is to highlight which features among the six predictors
contribute most in the final classification of each instance.
LSTM has been chosen as the baseline model. Through the
grid search the structures of all models are identified. The
structure of the baseline is as follow:

Istm(30) — fc(28, relu) —> fc(1, sigmoid).

In INVASE, the selector’s structure is (m is the number of
features)
(fc(m, relu) — fc(5, relu) —> fc(10, relu)

—> fc(m, sigmoid)).
In L2X the selector is:

fe(m, relu) —> fc(8, relu) — fc(16, relu)
—> Gumbel — SoftMax(m).

The temperature has been considered 0.1, the same as [37].
In GSX, the temperatures is also 0.1. The selector is:

fe(m, relu) —> fc(5, relu) — fc(10, relu)

—> Gumbel — Sigmoid(m).

The number of selected features for L2X is 4 out of 6. And
such as the previous dataset to make the comparisons fair,
different values of the regularization parameter A for INVASE
and GSX have been examined to identify the same number
of selected features as L2X. Table 3 summarizes the average
results of 30 runs for each model.

As evident in table 3, in this dataset the performance of
L2X and GSX are close to the baseline; therefore, they can
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TABLE 3. Comparing GSX with other instance-wise feature selection
techniques (L2X and INVASE) in terms of performance and run-time on
the electrical fault detection dataset. The number of selected features are
fixed 4 out of 6 for L2X, and controlled (by the related penalty term) in
GSX and INVASE.

Model Accuracy | F-Measure | Average | Training | Explanation
# of | time (s) time (s)
features

Baseline |0.99 0.99 All

L2X 0.97 0.98 4 fixed |14 0.5

INVASE | 0.89 0.89 4 279 0.8

GSX 0.99 0.99 4 13.6 0.4
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FIGURE 7. An example of GSX output on the electrical fault detection
dataset. This heatmap compares two sample and their selected features.
The colours depict the amount of the features, 0 shows that the related
reading is omitted and 1 shows that is selected.

conduct the classification the same as the baseline. However,
INVASE’s performance is quit far from the baseline. More-
over, GSX performed better than L2X with better run-time.
Fig 7 shows an example of GSX results on two readings.
For the normal sample members indexed 1, 2, 5, and 6 par-
ticipated in the classification result; for the faulty sample
members indexed 1, 2, 3, 5 contributed in the decision.

IV. CONCLUSION

This paper develops an explainable deep learning model
for the predictive preventive maintenance task, aiming to
predict a fault happening in the near future by processing
the preceding vibration signals. The primary dataset con-
sists of chronological sequences of vibration readings and
their related labels denoting whether they were faulty or not.
We implemented and tested all models of this research upon
this dataset. Furthermore, we used a public dataset for elec-
trical fault detection to validate the findings.

Different deep learning models have been examined,
including RNN, LSTM, GRU, CNN, LSTM-GMP, CNN-
LSTM, and CNN-GRU. The experiments show that all con-
sidered prediction models perform well; however, the RNN’s
performance deteriorates with a more significant time win-
dow due to the vanishing gradient problem. The hybrid mod-
els with larger window sizes (combination of CNN with
LSTM or GRU) outperformed the other models.

In order to explain the resulted prediction models, among
the different post-hoc explanation methods, the paper consid-
ers the use of “instance-wise feature selection” methods to
highlight the most contributing features for each individual
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separately. Whilst deep learning models are black-box, this
approach can highlight based on which features such model
makes a decision for each input. To this end, different meth-
ods have been reviewed, and among them, two state-of-the-art
methods, L2X [37] and INVASE [33] are investigated deeply.
Both methods aim to make the selection process trainable,
minimize the number of selected features, and keep the aux-
iliary feature selection model loyal to the baseline. A detailed
review of these methods revealed that: (i) in L2X, the number
of selected features is fixed for all instances, limiting its
applicability in real applications, (ii) the convergence time
in INVASE is high because it trains all three parts including
selector, evaluator and baseline together, and as a reinforce-
ment learning technique, its output is sensitive to the value of
its hyper-parameters.

To cope with the existing problems with L2X and INVASE,
this paper has developed a novel model-agnostic explainable
method called Gumbel-Sigmoid eXplanator (GSX). Instead
of Gumbel-SoftMax reparameterization trick applied in L2X,
this method uses Gumbel-Sigmoid to make the selection
process differentiable. Unlike the Gumbel-SoftMax in which
the d-hot output results from the SoftMax function, and one
needs to take the top d members, Gumbel-Sigmoid gener-
ates independent concrete results for each unit. To sum up,
in this method (i) we have developed a differentiable and
trainable connection between the selector and the evaluator,
and (ii) we can flexibly control the number of selected fea-
tures without relying on a predefined number of features by
using the /p penalty term. The experimental results on both
datasets indicated the outperformance of GSX against L2X
and INVASE.

For future works, GSX can be extended to high-
dimensional and multi-modal data such as multi-variate time
series, images, text, videos, and so on. To this end, it is worth
investigating the use of GSX for different deep learning mod-
els for various applications such as Computer Vision, NLP,
and Signal Processing.
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