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Abstract

Escapes of domesticated fish from aquaculture followed by interbreeding with wild

conspecifics pose a threat to the genetic integrity of natural populations. In addition to disease

and competition, wild populations can become inundated with genetic material from

domesticated peers, leading to the introduction of deleterious alleles that can reduce fitness

and survivability. Extensive work has focused on the interaction between farmed and wild

Atlantic salmon, Salmo salar, within rivers, while little attention has been given to marine

farmed species. European seabass (Dicentrarchus labrax) is a critical species for aquaculture

in the Mediterranean Sea. However, levels of introgression among the wild populations are

unclear. With wild stocks under ever-growing fishing pressure, it has become evident that

more needs to be done to understand the extent and effects of introgression of farmed genes

into the wild. In this study, 1,994 samples were taken from 19 farms and 33 locations in the

wild and screened at 1,742 SNPs generated using double-digest RAD (ddRAD). Population

structure and individual admixture were assessed using statistical approaches such as

Principal Component Analysis (PCA), Discriminant Analysis of Principal Components

(DAPC) and FastStructure. Results elucidate previously unknown patterns of differentiation

among Mediterranean populations and reveal a complicated picture of the genomic make up

of farmed sea bass. Movement of broodstock between the Atlantic and Mediterranean Sea is

evident and domestication and domestication has left a strong impact on farmed genomes.

Genomics is a valuable tool in discovering patterns of differentiation in marine fish

populations, while highlighting how unregulated and long-term farming practices can affect

natural populations diversity.
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Introduction

Aquaculture is the fastest-growing global food production system, and now provides half of

all fish consumed by humans, with at least 600 million livelihoods at least partially dependent

on fisheries and aquaculture (FAO, 2022; Nakajima et al., 2019; Yang et al., 2019). Common

carp (Cyprinus carpio) farming for human consumption dates back 8,000 years to Henan

Province in China (Nakajima et al., 2019), and Nile tilapia (Oreochromis niloticus) farming

dates back to 3500 years ago in Egypt (Nakajima et al., 2019; Teletchea, 2021). The greatest

expansion of fish aquaculture worldwide occurred in the 1960s, since the introduction of

marine net pens, with an estimated 543 marine species farmed globally (Diserud et al., 2022;

Gkagkavouzis et al., 2021; Houston et al., 2020; Teletchea, 2021). Eighty percent of global

aquaculture production volume is supported by farming approximately 70 of these species,

compared with the major terrestrial livestock species of pigs, chickens, and cows, which

make up 80% of global meat production (Houston et al., 2020). The FAO reports that in

1974, only 4% of fish consumed were domesticated, but that number has now risen to 49.2%

(FAO, 2022).

Marine genomics and fisheries

Genetic tools are invaluable to inform sustainable management of fisheries and the health of

not only farmed stocks, but also their natural wild conspecifics. Next Generation Sequencing

(NGS) and Restriction-site Associated DNA markers (RAD) have been proven effective for

the detection of hidden population structure, subdivision, and differentiation in fish,

according to Maroso et al., (2021). Most notably for this study, NGS and RAD allow for

detailed comparison of wild and farmed populations to predict the potential impact of

aquaculture on natural populations, a recommended practice since the early ‘90s

(Arechavala-Lopez et al., 2018; Jackson et al., 2015; Maroso et al., 2021).

DNA-based analysis, such as microsatellites, mitochondrial DNA, and single nucleotide

polymorphisms (SNPs), have been used extensively in research for the following aquaculture

species, notably salmon, cod, Nile tilapia, rainbow trout, and, to a lesser extent, seabass

(Consuegra et al., 2011; Seddon et al., 2014; Bolstad et al., 2017; Maduna et al., 2017;

Wringe, Anderson, et al., 2018; Bernaś et al., 2020; Nabaes Jodar, Cussac, and Becker, 2020;
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Nayfa et al., 2020; O'Sullivan et al., 2020; Wenne et al., 2020; Jensen et al., 2021; Quinn,

2021).

Single Nucleotide Polymorphisms occur upon the change of a single base in DNA sequence

and are a highly abundant source of genetic variation in and among species (Peñaloza et al.,

2021; Ruperao & Edwards, 2015) allowing for genome-wide coverage of the targeted

individual. SNPs have often been used in marine species which often have low levels of

population structure and have become an exceptionally useful tool in determining effective

population size, spatial connectivity, population structure, and admixture between and across

populations (Arechavala-Lopez et al., 2012; Glover et al., 2013; Polovina et al., 2020;

Robinet et al., 2020; Souche et al., 2015)

Breeding practices

In aquaculture, selective breeding programmes play an ever-increasing role in production.

Despite more recent developments than most terrestrial livestock, it is seen in salmonids,

shrimp, tilapia, carp, sea bream, seabass, turbot, sturgeons, oysters and more (Boudry et al.,

2021). The term selective breeding, also known as artificial selection, can be defined by the

various methods that humans use to select organisms with desirable traits by using selected

parents to make controlled crosses (Chavanne et al., 2016). Common commercial traits

selected for fish breeding are increased growth, disease resistance, reduced aggression,

absence of malformations, adaptation to density and utilisation of feed and fillet quality

(Arechavala‐Lopez et al., 2013; Karlsson et al., 2016; Wringe, Jeffery, et al., 2018;

Almodóvar, Leal, et al., 2020; Bradbury et al., 2020). Consistent selection of characteristics

over generations leads to significant genetic differences between domesticated individuals

and the wild (Glover et al., 2017). Non-genomic effects of aquaculture can also affect the

surrounding ecosystem by eutrophication, release of chemicals and medicines, and

modification of benthos (Porporato, Pastres and Brigolin, 2020).

In Europe, the six main cultured finfish species are Atlantic salmon (Salmo salar), rainbow

trout (Oncorhynchus mykiss), gilthead seabream (Sparus aurata), European seabass

(Dicentrarchus labrax), common carp (Cyprinus carpio) and turbot (Scophthalmus maximus)

(FAO, 2022). Of the total European aquaculture production, 80-83% originate from selective

breeding (Janssen et al., 2017), with family-based breeding schemes predominant (Chavanne
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et al., 2016). Family-based designs require tracing the family origin of the breeding pairs,

often allowing flexibility in the number and type of desired traits (Chavanne et al., 2016;

Delomas & Campbell, 2022; Janssen et al., 2017; Waters et al., 2020).

Breeding populations can be established from wild and farmed individuals. Breeding success

heavily depends on the genetic integrity and variability of the selected individuals, and

therefore it is necessary to determine the relatedness between them to control inbreeding, so

that long-term sustainability of the farm and the natural populations can be ensured

(Villanueva et al., 2022; Boudry et al., 2021; Chavanne et al., 2016; Janssen et al., 2017;

Robledo et al., 2018; Waters et al., 2020; You et al., 2020; Loukovitis et al., 2015). A key

means of controlling excessive inbreeding, as Chavanne et al., (2016) suggest, is to ensure a

sufficiently large effective breeding size, usually above 50, that can contribute to the next

generation. Domestication can be evaluated by the number of generations in a breeding

program. When comparing the domesticated individuals to the wild through genetic

techniques it can be seen that the more generations of selective breeding, the greater the

difference in genetics and performance. In the case of our target species, the number of

selected generations varied between two and eight for European seabass (Villanueva et al.,

2022; Chavanne et al., 2016; Janssen et al., 2017).

Many fish species are highly fecund, meaning many individuals can be produced from a

small proportion of brood stock, decreasing effective population size and increasing

inbreeding; a problem hard to control in marine species that exhibit mass-spawning

behaviour, as a large variance parental contribution to offspring can occur (Villanueva et al.,

2022; Bylemans et al., 2016; Chavanne et al., 2016; Janssen et al., 2017; Superio et al.,

2021).

The performance of a farmed individual depends on the interaction between its genotype and

the environment (Houston et al., 2020). This interaction can vary in aquaculture, both within

and across the farm. Bylemans et al., (2016), and Novel et al., (2010), found that reared

individuals often have a loss of genetic variability and lower evolutionary potential. This

could be due to poor selection in the breeding processes or the use of strains that are not

locally adapted to the surrounding wild environment (Delomas & Campbell, 2022). Small

effective population sizes and founder effects that occur when using only a few limited

individuals for broodstock are the main contributing factors for this decline (Glover et al.,
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2013; Loukovitis et al., 2015; Vandeputte et al., 2019). Domesticated fish can compete for

food, space, and breeding opportunities, influence predation, interbreeding with native

populations, spread parasites and diseases, and increase fishing pressure on wild populations

due to the assumption of increased stocks (Arechavala-Lopez et al., 2013; Atalah &

Sanchez-Jerez, 2020; Clavelle et al., 2019; Fragkoulis et al., 2017; Lorenzen et al., 2012;

Šegvić-Bubić et al., 2017).

A common method of rearing in the coastal environment are sea cages (Figure 1). Escapees

are a major threat to natural biodiversity, likely due to events such as net failure, predators,

sabotage, deliberate release in restocking, collisions with seagoing vessels, human error,

storms and other severe environmental factors (Bylemans et al., 2016; Clavelle et al., 2019;

Jackson et al., 2015).

Frequent low-level leakage escape events can represent average production losses between

1-5% annually, leading to a steady flow of potentially invasive fish entering the local

ecosystem (Atalah & Sanchez-Jerez, 2020; Jackson et al., 2015). Polovina et al., (2021),

suggests that domestication can introduce new alleles allelic combinations that may change

the genetic structure of the natural populations and damaging local adaptations. Genes from

one genome of a population or species become permanently embedded into the other genome,

also known as introgression (Ghosh et al., 2012; Harrison & Larson, 2014). Broodstock such

as fry and fingerlings, which are exchanged between farms from varying geographic regions,

have entirely different genetic backgrounds to the local wild populace (Polovina et al., 2021).
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Aquaculture icons - Salmon and Salmonids

Salmonids is a subsector that has experienced the most dramatic growth and is at the

forefront of aquaculture practices. Atlantic salmon (Salmo Salar), are an iconic and high

value species and is considered to be one of the most domesticated and most researched fish

in aquaculture (Almodóvar et al., 2020; Beacham et al., 2021; Bertolotti et al., 2020; Bolstad

et al., 2017, 2021; Boulding et al., 2008; Bradbury et al., 2020; Gao et al., 2020; Glover et al.,

2013; Karlsson et al., 2016; Keyser et al., 2018; Wringe, Anderson, et al., 2018; Wringe,

Jeffery, et al., 2018) S.Salar are decreasing in the wild due to anthropogenic effects such as

overexploitation and habitat degradation and as such, their farmed counterparts make up over

70% of production globally (Almodóvar et al., 2020; Bolstad et al., 2021; Naylor et al.,

2005).

Scotland and Norway began the first farming of Atlantic Salmon in the 1970s taking

advantage of their suitable coastal habitat with deep-water columns and ideal temperature

ranges (Barton et al., 2023) with commercial breeding programmes introduced in Norway in

1997 (Boudry et al., 2021; Diserud et al., 2022). However, concerns about escapees have

been long known, with the first study published by Maitland in 1986. Since then, the number

of farmed escapees in Norway, based off growth patterns in the scales, has increased to more

than 470, 000 since 1989 (Diserud et al., 2022).

Although this is consistent across many aquaculture species, farmed salmon grow

significantly faster, display lower fitness, have differing anti-predator behavioural responses

and transcribe genes differently (Clavelle et al., 2019; Glover et al., 2020; Yang et al., 2019).

Introgression between domesticated and wild individuals has been well recorded in salmonids

(Glover et al., 2008; Ozerov et al., 2016; Wringe, Anderson, et al., 2018; Wringe, Jeffery, et

al., 2018). Glover et al, 2008, conducted the first study into Atlantic Salmon escapees, which

successfully assigned 21 out of 29 escaped individuals back to a single farm. Hybridisation of

escaped farmed salmon with wild Atlantic salmon has resulted in an average level of farmed

introgression of 6.4% in 109 rives across Norway, of which 25% had introgression levels

above 10% (Karlsson et al., 2016). Reduced life expectancy, altered sizes when reaching

maturity, reduced spawning success and low survival rates in the wild have been shown for

individuals with a high level of introgression in salmon (Bolstad et al., 2017; Glover et al.,

2012; O'Sullivan et al., 2020; Skaala et al., 2012; Sylvester et al., 2018; Wacker et al., 2021).
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Additionally, sea lice spread from salmon farms can greatly increase mortality, reduce

population size, and resilience to the changing climate (Thorstad et al., 2021). Glover et al.,

(2012), showed that 28% of genetic changes in microsatellite DNA in studied populations of

the wild population could be linked to introgression from farmed counterparts. Over a

12-year period, Diserud et al., (2022), found that increasing farming intensity increases the

number of escapees, and concurrently states that as long as non-sterile fish can escape, all

wild populations are at risk.

European sea bass (Dicentrarchus labrax)

Marine fish species European sea bass (Dicentrarchus labrax) ranges from Africa to southern

Norway in the Atlantic, throughout the Mediterranean and the Black Sea (Robinet et al.,

2020) (Figure 2).

Consumption of marine species dates back to the 15th century. Italy exploits the natural

migration of species such as sea bass, gilthead seabream, grey mullets and European eel, and

confining them in lagoons known as 'vallicoltura' (Boudouresque et al., 2020; Ciccotti et al.,

1995; Teletchea, 2021). At present, sea bass is one of the most important fish in

Mediterranean and Atlantic aquaculture, producing more than 191,000 tons annually, 95% of

which come from farms (Šegvić-Bubić et al., 2017). Of the farmed production of European

seabass, 50% consists of individuals from selective breeding programmes (Superio et al.,
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2021). Based on fish sampled in the West-Mediterranean and Adriatic Sea, the first captive

broodstock of European sea bass was established in France and Italy in the 1990's. Most

domesticated stocks fall between two and eight generations, with the oldest known breeding

program having individuals bred in captivity for eight generations without the input of the

wild (Villanueva et al., 2022; Boudry et al., 2021; Chavanne et al., 2016).

European seabass hatcheries rely on spontaneous mass spawning and communal rearing of

the produced progeny for production purposes, with four to five breeding programs available

(Villanueva et al., 2022). Mating patterns and reproductive success of each breeder in a mass

spawning event are difficult to quantify, and a successful breeding program requires many

parents to participate in each spawn (Boudry et al., 2021; Superio et al., 2021; Vandeputte &

Haffray, 2014). Superio et al., (2021), investigated parental assignment in European seabass

(Dicentrarchus labrax), a known mass spawner, and found that only four females produced

up to 80% of the analysed eggs, and of those eggs, where a single male may sire up to 57%,

allowing progeny to be skewed towards one or few families, thus increasing the risk of an

inbreeding depression.

Escapes are not new. Some studies have estimated that up to 10-15% of fish in aquaculture

escape. However, little is known about the impacts this has on the wild population in seabass

(Villanueva et al., 2022, Brown et al., 2015; Polovina et al., 2020; Šegvić-Bubić et al., 2011).

1.5 million fish (90% Dicentrarchus labrax, 10% Sparus aurata) escaped in La Palma, Spain

after repeated severe storms between December 2009 and January 2010 (Toledo-Guedes et

al., 2014). Jackson et al., (2015), has also documented numerous escapes of ~ 600,000

seabream and seabass across three years causing significant economic losses of €42.8 million

(Izquierdo-Gomez & Sánchez-Jerez, 2016; Jackson et al., 2015; Toledo-Guedes et al., 2014).

Despite the financial losses and possible impact on natural populations, many countries in the

Mediterranean, such as Croatia, Turkey, Greece, provide no specific regulations of farming to

avoid or limit escapes. Natural populations of sea bass are already under great pressure from

fishing and habitat changes, with 62.5% of Mediterranean stocks exploited at unsustainable

levels and Atlantic stocks in decline. If aquaculture is found to be adding to the impact on

them, implications for wild sea bass could be disastrous (FAO, 2022; Souche et al., 2015).

New genomic resources have been developed for D.labrax, such as SNP arrays and quality
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reference genomes, like the combined ~60K SNP array ‘MedFish’ and a 57K array known as

‘DlabChip’ (Griot et al., 2021; Peñaloza et al., 2021). Such developments have allowed the

investigation of the population structure of wild and/or farmed European seabass using both

microsatellite data and SNPs (Coscia et al., 2012; Coscia & Mariani, 2011; Hillen et al.,

2017; Loukovitis et al., 2015; Polovina et al., 2020; Robinet et al., 2020; Šegvić-Bubić et al.,

2017).

Advances in genetics over the past decade have allowed for the detection of three regional

groupings found in the north-eastern Atlantic, the western Mediterranean and the eastern

Mediterranean (Villanueva et al., 2022; de Pontual et al., 2019; Peñaloza et al., 2021; Robinet

et al., 2020). Partial reproductive isolation occurs between the Atlantic and Mediterranean

populations with a potential hybrid zone located near Gibraltar in the Alboran Sea (Duranton

et al., 2018, 2020; Souche et al., 2015; Vandeputte et al., 2019).

However, the aforementioned investigations are much smaller compared to this study. Both

Villanueva et al, (2022) and Peñaloza et al., (2021), sequenced 516 individuals belonging to

24 populations restricted to the Mediterranean. In the Atlantic Oceans, Robinet et al., (2020),

studied 827 wild individuals for population connectivity. And Souche et al., (2015),

sequenced 644 individuals from 22 sites across the sea bass native range, which had a greatly

reduced number of SNPs at 49 loci. Furthermore, studies focused on the nature of escapees

have been limited in nature, either looking solely at the Adriatic Sea with six farmed and ten

wild populations used (Šegvić-Bubić et al., 2017) or have been investigated solely in Cyprus,

which compared wild caught individuals against three hatcheries (Brown et al., 2015). What

cannot be underestimated is the importance of this research project. Never before has

D.labrax been investigated at this scale for both population structure and potential

introgression of farmed genes into the wild.

More needs to be done to understand the dynamics of sea bass stocks and populations, given

that wild stocks are under ever-growing fishing pressure, in addition to the stresses of climate

change. This study aims to i) characterise the genetic structure of natural populations of sea

bass across its distribution range ii) estimate the genetic diversity across all farmed and wild

samples and iii) try to characterise farmed sea bass using genetic tools, to assess introgression

into wild populations, and evaluate the use of genetic tools for traceability of escapees. This

study will complement the literature surrounding Dicentrarchus labrax, enable targeted
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conservation efforts to maintain genetic purity in natural populations, and show critical areas

in which mitigation measures to reduce fish escapes are essential.

Methods

Data collection
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Samples of Dicentrarchus labrax were collected in 2016 by research surveys and fishing

vessels throughout their range in the Atlantic and Mediterranean as part of the

European-funded project AquaTrace. Coordinates were recorded for points where fish were

captured or collected from markets, as well as for the length of each individual. Tissue

samples were then extracted from muscle or fin clips. Samples were processed (DNA

extraction, library preparation and sequencing) at the Laboratory of Biodiversity and

Evolutionary Genomics (LBEG), KU Leuven, Belgium, as described by Hillen et al., (2017).

In short, a RAD protocol was used using a modified salt extraction procedure and sequenced

on an Illumina HiSeq2500 in paired-end mode at the Genomics Core of the University of

Leuven. It should be noted that only the subsequent raw ddRAD data file created in 2016 at

KU Leuven was used for this analysis at the University of Salford, no wet laboratory work

was performed.

Sampling locations
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More than fifty locations were selected to ensure the most comprehensive and representative

collection of samples across the Mediterranean and Atlantic (Fig. 3). Natural populations

were selected according to their geographical location to ensure full coverage. Criteria for

farms included high domestication, high annual production levels, geographical location and

origin of the brood stock used.

Populations were ordered according to their geographical location: first in the Atlantic and
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then from West to East (Table 1). Farm sites are confidential and therefore labelled according

to region. For example, WM_1 is West Mediterranean Farm 1 and EM_1 East Mediterranean

Farm. Broodstock can strongly influence population structure and compare population

indices. The use of brood stock is a well-established practice in fisheries to improve health,

genetic diversity, and desirable breeding characteristics. Four populations included in this

analysis are known to have individuals of varying geographic origin, ATL_2 and WM_6-8.

Data Preparation

Samples underwent a tailored bioinformatics pipeline using GBSX v1.2 (Herten et al., 2015),

BOWTIE v2.2.4 (Langmead & Salzberg, 2012), SAMTOOLS v1.1 (H. Li et al., 2009) and

BEDTOOLS v2.23.0 (Quinlan & Hall, 2010). Samples were demultiplexed, mapped to the

sea bass genome (sea bass _ V1.0, GenBank: GCA_000689215.1). FREEBAYES v1.02.-33

(Garrison & Marth, 2012) was then used to call SNP variants in all samples simultaneously,

with minimum mapping quality and minimum base quality set to 15 and 15. The resulting

variant call format (VCF) data file used in this study consisted of 172,000 markers and 2349

D. labrax individuals across wild and farmed locations.

To achieve a quality dataset, stringent filters were applied using vcftools 0.1.15 (Danecek et

al., 2011). First, indels were removed and only bi-allelic SNPs were kept. Second, sites with

a minimum allele frequency greater than or equal to 0.05 had a minimum quality score above

40, and a mean depth value of 3 were retained. Individuals and SNPs with missing data of

more than 20% have also been removed. A final filtering step included removing duplicates

and two populations due to unknown geographical locations and origins. This resulted in

1,994 individuals on 52 geographic locations and 1,742 SNPs, 1% of the original genetic

markers. To ensure maximum population structuring in the data, loci that do not meet the

expectations of Hardy-Weinberg equilibrium were not removed. Pearman et al., 2022 show

that the removal of loci that exhibit deviations from HWE can significantly reduce the degree

of inferred population structure.

Genetic Diversity

R package ADEGENET (Jombart et al., 2010; Jombart & Ahmed, 2011) was used to

calculate heterozygosity (expected HE and observed HO), heterozygosity was then tested for

significance using Bartlett’s test to compare variances. ADEGENET was further used to
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calculate the inbreeding coefficient (FIS) and pairwise FST coefficients (Weir and Cockeram,

1984), bootstrapped 1000 times by R package hierfstat. The fixation index ranges from zero

(without differentiation) to one (different alleles in the other population). When comparing

groups of individuals of the same species, FST values below 0.05 generally indicate little

evidence of genetic differentiation, while an FST value above 0.15 can be considered

significant in differentiating populations (Frankham, 2010).

In addition to genetic diversity, the effective population size (Ne) also contributes

significantly to the viability of a population. Ne identifies the number of individuals within

the population that contribute to the next generation of offspring. Fluctuations in the

population size studied, the sex ratio of breeding individuals, and subsequent reproductive

success can influence Ne. Estimates of the current effective population size (Ne) were

obtained from linkage disequilibrium between groups, as implemented in NeEstimator v2.1

software (Do et al., 2014).

Population Structure

Principal Component Analysis (PCA), which reduces extensive data to fewer dimensions

known as the Principal Components (PCs) of Variation, is widely used to investigate

population structure. PCs capture the maximum variability of the data while being free of

Hardy Weinberg Equilibrium (HWE) and linkage equilibrium (LD) assumptions,

demonstrating the geographical origin of populations without assuming a predefined number

of expected clusters (Gaspar & Breen, 2019; Visscher et al., 2014). PCA was conducted using

FactoMineR (Lê et al., 2008). R package ADEGENET v.2.1.3 (Jombart et al., 2010; Jombart

& Ahmed, 2011) was used to perform DAPC on clusters predefined by sampling location

using the dapc() function. DAPC summarizes genetic differences between sampling sites by

transforming the data via PCA and performing discriminatory analyses of the number of main

components retained (Jombart et al., 2010). Jombart et al., (2010), and Miller et al., (2020)

found that results typically maximise distance and minimise the variance between groups,

while making no assumptions about population genetic processes, such as genetic drift.

DAPCs were calculated without prior spatial information, with the inferred number of genetic

clusters using the find.clusters() function in ADEGENET. Find.clusters tests successive

K-means with increasing clusters (k) up to 10 and repeated 100 times. The selection of

optimal k was carried out by applying the lowest Bayesian Information criterion (BIC) score,
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as recommended by Jombart et al. (2010). For DAPC, the number of principal components to

retain was determined using the cross-validation approach using function xvalDapc(), with

the maximum number of PCs being N/3. Following this, optim.a.score() was used to

determine the optimal number of principal components to retain. Once the optimal number of

PCs was determined, subsequent DAPC for both prior and no prior analyses was conducted

using this value.

A Bayesian cluster analysis was carried out in fastSTRUCTURE (Raj et al., 2014) to assess

the potential number of genetic clusters. This software uses a model-based algorithm that

simultaneously estimates the frequency of population alleles with ancestry proportions. The

tested K values ranged from 1 to 10 under the admixture model, with 10 replicates per run.

To determine the number of population results from fastSTRUCTURE runs, the Structure

Selector web server analysed the resultant Qmatrix files (Evanno et al., 2005; Li & Liu, 2018;

Puechmaille, 2016). Structure Selector implements the methods of Puechmaille (2016) and

Evanno et al. (2005) to identify the most likely number of clusters. Of these estimators,

Puechmaille was used, as they account for uneven sample sizes in the dataset. Interactive R

package Pophelper was used to visualise the chosen runs (Francis, 2017). R package FSTruct

measured ancestry differences in the conclusion of population structure based on the

membership clusters found in Structure Selector (Morrison et al., 2022). The resulting

pairwise FST/FST
max were bootstrapped 1000 times and tested for significance using a

Wilcoxon rank-sum test.
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Results

Genetic Diversity

On average, all locations had a lower observed heterozygosity compared to expected, with

the largest differentiation between the wild Western Mediterranean (Supplementary Table 1 &

2). HO was higher in wild populations than in aquaculture species, except in the Eastern

Mediterranean (EM). HE greater in the western Mediterranean and Atlantic wild populations

compared to their farmed conspecifics, and lower in the wild eastern populations compared to

their domesticated counterparts. Averaging FIS across regions had values ranging from 0.041

to 0.101. FIS was lower in the Atlantic and Western Mediterranean wild populations compared

to their domesticated counterparts but was higher in the wild individual’s Eastern

Mediterranean basin (0.101) than in the nearby farms (0.096) (ST1 & 2). When applying

Bartletts test of homogeneity of variances between the two heterozygosity measures and

considering the 95% confidence intervals, only the Atlantic demonstrated significance.

At a population level (Table 2), observed heterozygosity ranged from 0.2 to 0.292, and
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expected heterozygosity (HE) ranged 0.228 to 0.273. Significant differences between the two

measures of heterozygosity were found in 25 of the sampling sites with the most significance

seen in the Atlantic locations. Observed heterozygosity was lower than expected across all

sites, except in BEL, FRA_1-3, SPA_1, SPA_3 and GRE_4. Inbreeding coefficients (FIS)

below zero, demonstrating heterozygote excess (Table 3). By contrast, positive FIS values

indicate a slight deficiency of heterozygotes, as shown in all other samples. Significant

findings can be seen in UK_2, FRA_4, SPA_4, POR, ATL_2, EM_7 and EM_8.

Estimated Population Size

Estimates of Ne, as executed by NeEstimator v 2.1, could not be defined for many which

showed wide ranges with upper confidence limits of infinity (Table 3). However, comparing

the estimated population sizes can still be of interest. In addition to the higher heterozygosity

estimates in the Atlantic, all wild populations in this region had an effective population size

over 100. The site with the largest Ne with reliable CI values was FRA_6 (1009, [95% CI 572

- 1935]), followed closely by FRA_1 (938, [95% CI 378 - 1041]).

The lowest Ne was found in WM_3 with a very low estimation of 10 (95% CI 6.3-16). Ne is

much higher in wild populations than compared to aquaculture. Notable exceptions were WM

_ 5 and WM _ 6 with surprisingly high estimates of 1616 (95% CI 195 - inf) and 946 (95%

CI 568 - inf), GRE _ 5 (28 [95% CI 17 - 56]) and TUR _ 1 had very low values (57 [95% CI
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20 - inf]). TUN also showed a low Ne estimate of 76 [95% CI 15 - inf], however, this is

unsurprising due to the small sampling size of 6 individuals. It should be noted that 14 of the

19 farms examined had an effective population size of less than 50.

Population structure
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Slight differentiation could be found between the Atlantic wild populations with many values

close to 0. However, significant differences in FST values could be seen between Norway and

SPA_2, and Norway and POR. The Western Mediterranean populations similarly follow suit,

and slight differences can be seen between the wild EM populations, especially in GRE_5,

GRE_6, TUR_1 and TUR_2 with their fellow cohorts. Varying differentiation was found

between the West and East Mediterranean, ranging from a weak FST of 0 to 0.05, with most

values falling somewhere between. East Mediterranean farms showed varying differences

between themselves and their native cohort, the greatest of which can be seen between
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TUR_2 and EM_5 at 0.135. Most evidently in Figure 2 is the 0.3 FST found between WM_6-8

and the Mediterranean populations. The use of Atlantic broodstock in these farms is

exceptionally clear, showing lower differentiation with the Atlantic populations; the lowest of

which is seen in WM_6 having an FST of 0. Mediterranean broodstock use is also present

within the Atlantic with ATL_2 showing higher differentiation compared to the wild Atlantic

than the Mediterranean farms.

Principal component analysis (PCA) explained 13.2% of the total variance for all the

populations explored in the dataset across PC 1 and 2 (Figure 5a). PCA reveals that the

Atlantic and Mediterranean populations are two distinct groups, and there is great overlap

between the wild conspecifics and farmed populations within the same basin. When

considering only wild individuals (Figure 5b)

Farmed fish in the Western Mediterranean are indistinguishable from their wild conspecifics,

while individuals that identify with the Eastern Mediterranean farms are well distributed

across the entire Mediterranean (Fig. 5a). Domesticated individuals that geographically align

with the Atlantic can be found in the Eastern Mediterranean, and farmed individuals located

in the Western Mediterranean can be found grouping with the Atlantic. As expected, these

domesticated individuals belong to ATL_2 and WM_6-8 (SF1). When removing these

populations from the picture, one fish from the West Mediterranean wild, one from the West

Mediterranean farm and one from the Atlantic can still be seen collating with the East

Mediterranean Farms (SF 2).

In wild populations, PCs 1 and 2 accounted for 14.7% of total variance for all wild

populations across both regions (Figure 5b), 3.3% of variation for those belonging to the

Mediterranean (Figure 6a), and 1.7 % for the Atlantic (Figure 6b). Interestingly individuals

from the western Mediterranean wild populations can be seen grouping with the Atlantic wild

and vice versa. This could be a potential hybrid zone between the wild Atlantic and Western

Mediterranean individuals (from POR and SPA_5; Fig. 5) between the two or a case of

migration. Additionally, a subtle genetic differentiation can be seen between the Western and

Eastern Mediterranean at 2.7%, forming two clusters along PC2 with overlap of individuals

around Italy.
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Adegenet recommends that principal components do not exceed N/3 or 664 in this study

(Jombart & Ahmed, 2011). Cross validation showed that with a maximum retention of five

hundred principal components, individuals assigned back to their populations had a success

rate of 97.4%, with a root mean squared error of 0.544. To avoid overfitting of the data,

optim-a-score retained seventy-three principal components for both prior and non-prior

population analysis (Supplementary Figure 3). When adjusting for 73 PC’s, only 28.3% of

individuals were assigned back to their original populations.

Assignment success greatly increases when considering the wild populations. BIC revealed 3

genetically distinct clusters with an assignment probability of 99.61% (Figure 7 & Figure 8).

Assignment probability for K1 and 2 was 100%, with individuals’ assignment to cluster 3

being 98.1% (Supplementary Table 2). Contrastingly, Structure Selector (Figure 9b) determined 4

or 5 groups to represent the population structure of the wild individuals. However, when

visualised, the true representation is in accordance with BIC, DAPC and literature at 3 (Fig

11).
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BIC revealed a lack of population structure when investigating farmed populations. Structure

Selector, however, identifies the ideal number of populations of either 8 or 9 (Figure 9a). A

DAPC (Figure 10) correctly assigned 89.8% of individuals to these 9 clusters. 2 out of the 9

clusters (4 and 6) had an assignment success rate of 100%. K=4 houses ATL_1 individuals

and K =6, WM_2 and WM_3. The remaining ranged between 72.3% to 96.27%

(Supplementary Table 4). Assignment probability outside of these 9 clusters drastically falls

to 64.59% (SF 5).

Wild Atlantic populations are genetically homogeneous, with no substructure detected. In

direct contrast, the Atlantic/Mediterranean split gives a strong genetic signal. (Figure 11).

Mixing can clearly be seen between the two clades around the Strait of Gibraltar (POR AND

SPA_5), with little introduction from the Atlantic into the Eastern Mediterranean except in

TUN, ITA_5 and ITA_6. POR is the most affected and shows evident Mediterranean markers

either from migration or historical mixing events. It is also clear that one individual
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categorised with SPA_4 shows introgression from the Mediterranean and an individual from

SPA_5 showing Atlantic genomes (Figure 11 and 13), these individuals were also identified

during Principal Component Analysis in Figure 5b. (Figure 11 and 13). TUN also

demonstrates some Atlantic material.

Substructure can also be seen in the wild Mediterranean between the East (Tunisia to Greece)

and Western groups (Sicily to Gibraltar) (Figure 11). When comparing the two Mediterranean

regions, it is clear that the Eastern Mediterranean has impacted the West, with at least one full

wild Eastern Mediterranean individual present in ITA_1 and a potential domesticated escapee

at ITA_4. Western Mediterranean markers can also be seen across ITA_5, ITA_6 and GRE_1,

showing that gene flow is still very present between the two clades. GRE_5 also

demonstrates high levels of introgression with the EM farms, similar in genetic composition

to EM_3 (Figure 11 and 13) most likely to be from domesticated escapees. A hybrid of 50%

ancestry may also be present in GRE_7, which could have originated from numerous sources.

Farms also had homogeneous populations, and therefore showed similar patterns, such as

WM_2-5, EM_1 and ATL_1 and EM_4,5 and 7 (Figure 12 and 13). However, domesticated

farms like WM_7-8 have a very distinct genetic structure, despite grouping with the Atlantic

in the PCA’s (Figure 14). WM_6 seems entirely made up of wild Atlantic individuals and

may be early in their selection process. EM_9 is also entirely distinct from the other

aquaculture sites. Overall, long-term selection of strains and the use of brood stock was very

apparent.
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Locations with samples from multiple sources or populations recently mixed are expected to

have higher variable ancestry (FST/FSTmax), while populations with few mixing events are

expected to have more homogeneous ancestry and a lower FST/FSTmax score. FST/FSTmax was

computed for the 3 wild clusters, measuring the ancestry variability of the inferred cluster

memberships. FST/FSTmax ranged from 0.01 to 0.272 (Figure 14). Pairs of bootstrap

distributions are significantly different p < 2e 10−16 for all combinations via a Wilcoxon

rank-sum test (Supplementary Table 5). The lowest ancestry variability was found in clusters

K2 at 0.01 (West Mediterranean), while the highest was found in K1 (East Mediterranean)

with the Atlantic (K2) falling in the middle at 0.119.
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Discussion

Anthropogenic events, such as overfishing or climate change, can reduce population size

variation, leading to reduced genetic variation (Glover et al., 2012; Loukovitis et al., 2015;

Vandeputte et al., 2019). Furthermore, aquaculture practices typically increase inbreeding

and change gene frequencies due to genetic drift and selection (Hillen et al., 2017; Lorenzen

et al., 2012; Novel et al., 2010, 2013). When combining these factors, it is no wonder that the

Mediterranean Sea is described as "under siege" (Boudouresque et al., 2020; Coll et al.,

2012).

Wild Population Structure

Populations of D. labrax form three genetic clusters: the Atlantic from Gibraltar to Norway,

the Western Mediterranean from the Alboran Sea to the Sicily Strait, and the Eastern

Mediterranean from the Sicily Strait to the Black Sea. Immediately apparent is that the

Atlantic samples have weak population structure and are near homogeneous; a finding

consistent with Coscia et al., (2012), Coscia & Mariani (2011), and Souche et al., (2015). As

such, the ability to assign individuals to the wild Atlantic cluster was extremely high.

Early population genetic studies support the strong genetic differentiation found between the

Atlantic and Mediterranean regions at the Strait of Gibraltar, as seen throughout this study

(Lemaire et al., 2005; Vandeputte et al., 2019 and Villanueva et al., 2022). Such a strong

phylogeographic break between the Atlantic and Mediterranean has also been proven for

numerous other species, such as the European green crab (Carcinus maenas, Roman &

Palumbi, 2004), red seaweed (Asparagopsis taxiformis, Andreakis et al., 2004), the common

dentex (Dentex dentex, Bargelloni et al., 2003) and Sagitta setosa (Peijnenburg et al., 2004).

Wild Atlantic and Mediterranean populations of European sea bass diverged 300,000 years

ago (Novel et al., 2010; Patarnello et al., 2007; Robinet et al., 2020; Tine et al., 2014).

However, this break is not absolute and is a permeable barrier. Our study finds that the

natural exchange of the Atlantic and Mediterranean genomes is localised around Gibraltar.

Duranton et al., (2018), discovered asymmetrical gene flow with Atlantic genomes influenced

by around 5% of Mediterranean material, while Western Mediterranean genomes contained

around 31% of the Atlantic. While Duranton et al., (2018), found that 13% of Atlantic

ancestry was present in the Eastern Mediterranean, it should be noted that none was
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demonstrated in this study past the Sicily-Tunisian strait.

Phylogenetic breaks between the Western and Eastern Mediterranean have been successfully

identified, such as in swordfish, which was previously thought to be a panmictic unit (Xiphias

gladius, Vias et al., 2010). Since Bahri-Sfar et al., (2000), this split in seabass has led only a

few studies, which found significant divergence between the two basins at six microsatellite

loci in 19 samples. Mixing is very present from the Eastern Mediterranean into the Western

populations in our data. The Eastern Mediterranean is very pure, while the West can be seen

as a face to introgression from two fronts. Such findings are in line with Quéré et al., (2012),

who discovered that the West Mediterranean had dual evolutionary origins from both the

Atlantic and Eastern Mediterranean, leading to the emergence of an entirely new reproductive

population in the West.

Introgression between Wild and Farmed populations

Effective population size being larger in the wild than farmed populations of seabass has been

seen in previous literature (Villanueva et al., 2022; Šegvić-Bubić et al., 2017) and it is

expected. Some Ne CI estimates could not be accurately determined, suggesting that either

there was little power to make any inferences, or more likely that the wild populations are

exceptionally large, which is not uncommon in natural populations of marine fish (Marandel

et al., 2019). That being said, Ne could be seen as smaller than the 500 proposed to maintain

long-term genetic diversity in marine populations (Frankham, 2010; Wang et al., 2016) or the

100 individuals suggested solely for aquaculture (Hillen et al., 2017). Numerous estimates

were even below 50, most notably WM_3, which had an effective population size of 8. It

should be noted that these estimates, especially in the case of wild populations listed, are

based on their sampling locations and are arbitrary. Therefore, I urge them to be taken with

caution. For those wanting to repeat this analysis, it would be far more informative to group

sampling locations to the three clades when conducting estimates of population size for the

wild populations.

Regardless, low estimates of Ne can allow the effects of genetic drift to outweigh the

influence of selection, making it difficult for populations to respond to environmental change

(Lehnert et al., 2020). Further challenges can arise in domesticated stock from the typical

breeding practice of mass spawning. While many commercial farms aim to use many

breeders (typically 200), the number of contributing parents to the next generation may be
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unknown, and much smaller than the number of individuals present in the tank (Brown et al.,

2015; Chavanne et al., 2016; Hillen et al., 2017).

Surprisingly, the inbreeding coefficient FIS was higher in the East Mediterranean populations

than in their domesticated populations. Another possible explanation for these results is the

Wahlund effect. This explains positive FIS values with the presence of undetected (or

unaccounted for) population substructure, which is not thought to be the case here.

Additionally, FIS assumes an island model. An island model contains populations calculated

by a balanced migration rate, random mating, and equal mating chances, which are likely

violated in uncontrolled conditions. Populations of sea bass in the wild occur in large

numbers allowing for over 5998 tons to be captured globally in 2020 (FAO 2022). The

likelihood of natural populations being inbred is extremely low thanks to reproductive traits,

such as mass spawning where sexually mature females can spawn on average 200, 000

eggs/kg (Vandeputte et al., 2019).

Both wild and farmed sampled had locations with higher expected heterozygosity than

observed indicating a reduction in fitness. Higher HE can be found if the population was

established relatively recently, if there are increased numbers of kin through inbreeding and if

the population was generated from numerous origins. FST also shows small to large

differences between farms, depending on their composition and broodstock origin.

Contrastingly, genetic investigations using SNPs and microsatellites performed prior to this

study found reduced allelic richness, reduced genetic variability, and lower expected

heterozygosity in aquaculture compared to wild populations (Bahri-Sfar et al., 2000; Brown

et al., 2015; Loukovitis et al., 2015; Novel et al., 2013; Peñaloza et al., 2021; Šegvić-Bubić et

al., 2017). Artificial gene flow can also influence low values between domesticated

populations, as the same hatchery may be used, or individuals shared, to reduce the risk of

inbreeding depression. Indeed, haplotype sharing has been previously proven among

Mediterranean farmed populations by Peñaloza et al (2021).

Farmed populations with genetic compositions similar to those in wild populations (as seen in

WM_6) may be in the initial stages of their selective breeding program, or that the practice of

broodstock has been re-implemented, where wild individuals are used to mitigate inbreeding

by matching the genetic diversity of the wild (Polovina et al., 2020; Villanueva et al., 2022).

High relatedness in farms signifies a great degree of inbreeding, and along with low

population estimates, the introduction of broodstock may not be enough to avoid deleterious
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effects. The genetic background of farmed fish plays a key role in assignment, as assignment

is more robust when larger differences are present (Glover et al., 2012). There is convincing

evidence of Atlantic fish being present in Mediterranean farms and of Mediterranean

individuals present in one Atlantic Farm (ATL_2). Due to the varying geographic

composition of domesticated samples, admixture composition of farms differs between great

similarity to the native fish to signatures of high selection intensity. While high selection

intensity is an asset for tracing fish back to the source farm, it is impossible to identify a

unique genetic profile for each farm with this current dataset. As such, individuals can only

be traced to native or domesticated populations.

Escapees and introgression

FastStructure detected few events of genetic introgression from domesticated individuals in

wild populations of European seabass, with the exception of GRE_5. This could be explained

in three ways: 1) good farming practices (no or little escapees); 2) escapees low survival rate

and no reproduction in the wild 3) low rate of escapees and introgression into a very big wild

population (genetic signal gets diluted or lost). Below I discuss these options in detail.

Escaped sea bass has the potential to survive for extended periods, as shown by

Arechavala-Lopez et al (2012). After escaping, they often swim to nearby fishing grounds,

coastal habitats, and protected areas where they feed on prey and compete for natural

resources. A considerable influence of domesticated sea bass on the local wild population

was found by Šegvić-Bubić (2017), with the middle Adriatic showing such high degrees of

admixture that no true wild individuals remained. There is a high probability of genetic

change in the population if an escape incidence is 10% or higher (Castellani et al., 2018).

That being said, given the power of this dataset, we are confident that there are very few

escapees from farms in the wild populations. Numerous factors can allow limited

introgression between wild and farmed populations. First, it is possible that escapees could

have been missed in the sampling effort at the wild locations, or that they are not able to be

distinguished genetically. Secondly, farmed individuals may lack survival in the wild. Lower

survival rate could be due to reduced foraging ability, greater predation risk, and lower

swimming performance. Farmed seabass may not be well adapted to the local environment

conditions, given the genetic, phenotypic, and behavioural changes that result from breeding

programs (Bernaś et al., 2020). Reduced fitness of hybrids from escapees has been
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extensively documented in seabream, salmon, trout and cleaner fish (Bernaś et al., 2020;

Bolstad et al., 2017, 2021; Castellani et al., 2018; Faust et al., 2018, 2021; Glover et al.,

2018; Naylor et al., 2005; Solarte-Murillo et al., 2020; Wringe, Jeffery, et al., 2018; Žužul et

al., 2019).

Toledo-Guedes, Sanchez-Jerez and Brito., (2014), suggest that sexual maturity is usually not

reached in sea cages. As such escapees could potentially be reproductively viable but unable

to successfully interbreed with wild conspecifics and become a self-sustaining population.

Conversely, large female escapees up to 6kg were identified by Brown, Miltidou, and

Tsigenopoulos., (2015), who found that they could interact with the surrounding wild after an

escape, including mature eggs. Reduced reproductive success in domesticated fish relative to

wild individuals may be due to changes in mating behaviour. If mating does occur, offspring

could be nonviable or maladapted to the local environment due to genetic differences.

Typically, offspring that are farmed have a lower lifetime survival than offspring that are

wild, with hybrid groups falling between the two (Karlsson et al., 2016). Furthermore, Naylor

et al., (2005) found that the lifetime success of hybrids was significantly reduced compared to

wild individuals (by a reduction between 27 and 89%) and that 70% of second-generation

embryos did not survive. Finally, although survival is thought to be low in the larval stage,

and establishment in the environment unlikely, a final potential route of introgression is for

eggs to escape during spawning (Brown et al., 2015).

Furthermore, restocking, a practice most commonly known in Atlantic salmon but

widespread in aquaculture, could have additional effects. Restocking aims to compensate for

population declines by releasing fry into the natural environment. Arechavala-Lopez et al.,

(2013) discovered that intentionally released domesticated sea bream, were rediscovered

mixed with wild individuals, and showed the same spawning behaviour after just one year.

D.labrax instances such as this are unknown and would require further study. It is clear,

however, that precautions must be taken to avoid escapees that could affect native

populations, and only native individuals should be used in restocking practices.

Reducing the number of escapees significantly is an appropriate approach to protect native

populations. Three methods for reducing escapes were reviewed by Dempster et al., (2018).

(1) Introduce programs for the effective recapture of escapes in habitats where they are

known to school. (2) Encourage the establishment of predatory fish around sea cages to

predate upon smaller escapees. Castellani (2018) highlights the effectiveness of
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implementing a grid between the escaped farm and a known river location of wild salmon.

Although these grids may not be viable for ocean cages, shoals of escapees rarely travel more

than 3 km from their escape point (Arechavala-Lopez et al., 2018). (3) Enact technical

standards so that fish farmers invest in preventive technologies to minimize escape (Dempster

et al., 2018). (5) Sterilisation of aquaculture species. A recent report by Nofima (the

Norwegian food research institute) focused on comparing production traits between sterilised

and fertile farmed salmon (Andersen et al., 2022). Sterilised salmon had their embryonic

germ cells inactivated through ablation and were studied between 2018-2022. Andersen et al.,

(2022), found that compared to their non-sterilised conspecifics they showed similar growth

performance in freshwater, normal osmoregulatory processes, seawater tolerances and no

significant differences in stress responses.

This study was unable to trace escapees to their origin, though this is a technique that has

been successfully used in salmon, rainbow trout and Atlantic cod to trace them back to their

farmed source (Glover et al., 2018; Karlsson et al., 2016; Polovina et al., 2020). A technique

successfully used in at least one study of European Seabass was implemented by

Šegvić-Bubić et al., (2017). With only 3.2% of fish being misclassified, they found

significant genetic differences between farmed fish of different origins and wild conspecifics

enabled the identification of seabass escapees to their farmed source without prior knowledge

of pedigree. Categorising seabass correctly remains a top priority for preserving natural

stocks and is an avenue that should be further explored.

Further investigation is warranted on the reduced genetic diversity observed through

introgression, with studies focused on the fitness effects of hybridisation, specifically in

Dicentrarchus labrax. New avenues to explore are programs such as NEWHYBRIDS

(Wringe, Anderson, et al., 2018) which in addition to RStudio package could allow for the

further investigations into outlier loci, allelic diversity, and hybridisation. Loukovitis et al.,

(2015) found that allelic diversity is a more sensitive measure of genetic variation than

heterozygosity for bottleneck events such as founder events, and allelic loss can occur faster.

Whether through the development of new equipment or further behavioural analysis of

escaped seabass, research on the mitigation of escapees is vital. Comprehensive management

programmes are also crucial in relation to broodstock and breeding programmes. An

invaluable asset to the scientific community would be a public data set covering broodstock,

breeding pairs and their offspring, in order to genetically characterize individual farms.
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