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A B S T R A C T   

Immune checkpoints (ICs) are highly expressed on tumor-infiltrating immune cells (TIICs) in different malig-
nancies, including colorectal cancer (CRC). T cells play crucial roles in shaping CRC, and their presence in the 
tumor microenvironment (TME) has proven to be one of the best predictors of clinical outcomes. A crucial 
component of the immune system is cytotoxic CD8+ T cells (CTLs), which play decisive roles in the prognosis of 
CRC. In this study, we investigated associations of immune checkpoints expressed on tumor-infiltrating CD8+ T 
cells with disease-free survival (DFS) in 45 naïve-treatment CRC patients. First, we examined the associations of 
single ICs, and found that CRC patients with higher levels of T-cell immunoglobulin and ITIM-domain (TIGIT), T- 
cell immunoglobulin and mucin domain-3 (TIM-3) and programmed cell death-1 (PD-1) CD8+ T cells tended to 
have longer DFS. Interestingly, when PD-1 expression was combined with other ICs, there were more evident and 
stronger associations between higher levels of PD-1+ with TIGIT+ or PD-1+ with TIM-3+ tumor-infiltrating CD8+

T cells and longer DFS. Our findings for TIGIT were validated in The Cancer Genome Atlas (TCGA) CRC dataset. 
This study is the first to report on the association of co-expression of PD-1 with TIGIT and PD-1 with TIM-3 in 
CD8+ T cells and improved DFS in treatment-naïve CRC patients. This work highlights the significance of im-
mune checkpoint expression on tumor-infiltrating CD8+ T cells as critical predictive biomarkers, especially when 
co-expression of different ICs is considered.   

1. Introduction 

Colorectal cancer (CRC) is the second leading cause of death and the 
third most common malignancy in men and women worldwide [1]. CRC 
is genetically and molecularly heterogeneous, which has significant 
implications for the efficacy of immunotherapy. CRC patients with mi-
crosatellite instability-high (MSI-H)/deficient mismatch repair (dMMR) 
tumors have better prognosis, survival, and response to immunotherapy 

than patients with microsatellite stable (MSS)/microsatellite instability- 
low (MSI-L) tumors [2–4]. MSI-H CRC patients have significantly higher 
survival rate due to increased tumor-infiltrating lymphocytes (TILs) 
recruitment within tumor tissues, including activated cytotoxic CD8+ T 
lymphocytes (CTLs), macrophages, CD4+ T cells and other immune cells 
[5–7]. Many studies reported that increased density of CD8+ TILs were 
associated with longer overall survival (OS) and disease-free survival 
(DFS) in CRC patients, suggesting that TILs could be used as indicators of 
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improved prognosis [8,9]. 
Immune checkpoints (ICs) have key roles in maintaining immune 

homeostasis through fine-tuning the extent of immune enhancing and 
prevention of autoimmunity [10]. ICs expressed on T cells lead to the 
alteration of immune responses by modulating T-cell activation path-
ways [11]. They have emerged as critical targets for the elicitation of 
potent therapeutic anti-tumor immune responses, mainly through the 
inactivation of inhibitory immune receptors within the TME [12]. 

In our recent study, we have reported that ICs, including T cell 
immunoreceptor with Ig and ITIM-domains (TIGIT), T-cell immuno-
globulin and mucin domain-3 (TIM-3), programmed cell death-1 (PD-1), 
and inducible T cell costimulatory (ICOS), were significantly overex-
pressed on CD8+ TILs, compared to normal colon tissues [13]. Addi-
tionally, we found that CRC patients at early TNM stages (stage I and II) 
had significantly higher levels of PD-1+, TIM-3+ and TIGIT+ tumor- 
infiltrating CD8+ T cells, compared to patients at advanced TNM 
stages (stages III and IV) [13]. Interestingly, patients with MSI-H tumors 
had higher levels of ICs expressed on CD8+ and CD4+ T cells than pa-
tients with MSS tumors [13]. In this study, we took our findings further 
and investigated the association of different immune checkpoints 
including TIGIT, TIM-3, LAG-3, and PD-1 expressed on CD8+ TILs with 
DFS of 45 treatment-naïve CRC patients. 

2. Materials and methods 

2.1. Patients and samples 

This study was conducted in accordance with ethical approval 
(protocol no. MRC-02-18-012) from the Medical Research Center, 
Hamad Medical Corporation, Doha, Qatar. All patients gave their 
informed consent before any sample collection. Tumor tissues (TT) and 
corresponding normal tissues (NT), as identified by the pathologist, 
were collected from fifty CRC patients at all TNM stages (stage I to stage 
IV). All CRC patients were treatment naïve and they underwent surgical 
resection without any neoadjuvant chemotherapy before the operation 
and collection of patients samples. Forty-five patients were eligible and 
included in the DFS analyses in this study. Clinical and pathological 
characteristics of the patients are described in Table 1. 

2.2. Cell staining and flow cytometric analyses 

Cells were isolated from TT and NT by mechanical disaggregation, as 
we have previously described [14]. Flow cytometric immune- 
phenotyping, and analyses were done as per our previous methods 
and protocols [13]. In brief, the isolated cells were washed with PBS and 
re-suspended in flow cytometry staining buffer, and FcR Blocking Re-
agent (Miltenyi Biotec, Bergisch Gladbach, Germany) was added to 
block Fc receptors. Cells were then stained with the viability dye 7-Ami-
noactinomycin D (7-AAD; BioLegend, San Diego, CA, USA) and 

monoclonal antibodies against different surface markers. These markers 
included CD3, CD8, PD-1, TIM-3, TIGIT and LAG-3. The used mono-
clonal antibodies were purchased from BD Biosciences, BioLegend and 
eBioscience; details of these antibodies were described in Toor et al. and 
Al-Mterin et al. [13,15]. Following staining, live cells were gated by 
exclusion of 7-ADD. Fluorescence minus one (FMO) and isotype controls 
were employed for staining validation and data interpretation. Samples 
were analyzed on a BD LSRFortessa X-20 flow cytometer using BD 
FACSDiva™ software (BD Biosciences). Then data were analyzed by 
using FlowJo V10 software (FlowJo, Ashland, OR, USA). The flow 
cytometric plots used in this analysis have already been shown in Fig. 3 
in Toor et al. [13]. 

2.3. TCGA analysis 

Transcriptome profiling data and clinical information of colorectal 
cancer patients were acquired from The Cancer Genome Atlas (TCGA) 
using the TCGAbiolinks package in R. Data filtration and normalization 
were performed with limma and edgeR packages. Primary solid tumor 
samples were chosen for further analysis. DFS data were extracted from 
cBioPortal (https://www.cbioportal.org), and data preparation and 
cleaning were done in R. OS data were obtained from clinical informa-
tion downloaded from TCGA. Primary solid tumor samples based on the 
median of gene expression were grouped into high-expressed and low- 
expressed samples for targeted genes. The prognostic difference, 
including OS and DFS, between high-expressed and low-expressed 
groups, was calculated utilizing Survival packages in R. Kaplan-Meier 
method was applied to estimate survival probability for groups, and 
the Survminer package was used to plot the results. 

2.4. Statistical analyses 

Statistical analyses were done by using GraphPad Prism 9 software 
(GraphPad Software, California, USA). Shapiro-Wilk test was used for 
evaluating the normality of datasets. Cell subsets were categorized as 
high or low groups if they were less than or more than the median for 
non-normally distributed data and less than or more than the mean 
value for normally distributed data. Kaplan-Meier method was used for 
comparing DFS between low and high frequency groups, and P values 
for PFS curves were calculated by using the log-rank test. Paired/un-
paired t tests were performed based on distribution of data and the 
normality of datasets, for comparisons within and between groups, 
respectively. Normalized values were analyzed using Pearson’s corre-
lation test, while Spearman’s rank correlation test was used for 
analyzing the samples that don’t give normal distributed. Statistical 
significance was determined by P values of less than or equal 0.05. 

3. Results 

3.1. Association of immune checkpoint-expressing CD8+ TILs with DFS 

Multiple studies have found that several IC molecules are expressed 
on TILs in many malignancies, including CRC, and they have a signifi-
cant role in tumor progression [16–18]. We have recently reported that 
co-inhibitory/stimulatory immune checkpoints including PD-1, TIM-3, 
TIGIT, LAG-3 and ICOS were significantly overexpressed in CD8+ TILs of 
CRC patients [13,19]. Expression of ICs on TILs was shown to be asso-
ciated with prognosis of different cancer patients [20–23]. We have 
recently shown that high levels of TIM-3 in circulating and tumor- 
infiltrating CD8+ T cells were associated with better DFS [19]. In this 
study, we extended our findings in a different and larger cohort of CRC 
patients, and investigated associations of different IC-expressing CD8+

TILs with DFS; NILs were used as controls. Forty-five CRC patients were 
divided into two groups as above and below median/mean levels of 
these cells (PD-1+: TILs (median 16.7), NILs (median 1.5); TIM-3+: TILs 
(median 13.8), NILs (median 2.5); TIGIT+: (mean 29.4), NILs (median 

Table 1 
Clinical and pathological characteristics of the CRC cohort.   

CRC patients 

Number 45 
Median age [range] 56 [18–79] 
Gender [Male:Female] 30:15 
TNM stage  
I 4 
II 20 
III 14 
IV 7 
Tumor histological grade  
G2 (Moderately differentiated) 41 
G3 (Poorly differentiated) 4 
MSI-H/dMMR 8 
Loss of nuclear expression for MLH1 & PMS2 7 
Loss of nuclear expression of MSH2 1  
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24.0); LAG-3+: TILs (median 1.9), NILs (median 2.2). Of note, CD8+ TILs 
expressed higher levels of PD-1, TIM-3 and TIGIT than CD8+ NILs. Pa-
tients with higher levels of PD-1, TIM-3 and TIGIT in CD8+ TILs tended 
to have better DFS; however, these differences did not reach statistical 
significance (Fig. 1A, B and C). On the contrary, patients with high 
frequencies of LAG-3+ CD8+ TILs tended to have shorter DFS, but again 
without any significant difference (Fig. 1D). Of note, this trend was also 
observed in NILs (Fig. 1D). The lack of statistical significance in these 
data could be attributed to the limited sample size of our study cohort; 
however, the trends highlight the importance of these ICs for DFS in CRC 
patients. 

3.2. Higher levels of PD1+TIGIT+ and PD1+TIM-3+ CD8+TILs are 
significantly associated with improved DFS 

Single immune checkpoint expressions showed trends but without 

statistical significance. Therefore, we opted to investigate the signifi-
cance of a combination of immune checkpoints expressed on tumor- 
infiltrating CD8+ T cells as more sensitive predictive biomarkers. Spe-
cifically, we investigated whether co-expression of PD-1 with other ICs 
on CD8+ TILs can be associated with DFS. Interestingly, we found that 
high levels of PD1+TIGIT+ and PD1+TIM-3+ CD8+ TILs were signifi-
cantly associated with longer DFS, compared to lower frequencies of 
these ICs-expressing CD8+ TILs (Fig. 2A and B). These associations were 
not observed in NILs, confirming that the synergistic effects in TILs are 
tumor-specific. In contrast, there were no significant associations be-
tween levels of PD1+LAG-3+ in CD8+ T cells in TILs and NILs with DFS 
(Fig. 2C). 

Fig. 1. Kaplan–Meier curves of DFS based on levels of different expression of ICs in TILs and NILs. Patients with high levels of PD-1+ (A), TIM-3+ (B), TIGIT+ (C), and 
LAG-3+ (D) in CD8+ T cells were compared with patients with low levels of these cells. 
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3.3. Validation of immune checkpoint association with DFS and OS in 
TCGA dataset 

TCGA database was used in order to validate our findings in a large 
cohort of patients. TCGA cohort contained 560 and 642 CRC patients for 
DFS and OS analyses, respectively. Patients were divided into groups 
based on high or low (above or below median) expressions of single 
immune checkpoint genes including PD-1, TIGIT, and TIM-3. Addi-
tionally, CRC patients were divided into groups based on high or low 
(above or below median) co-expression of two immune checkpoint 
genes. These groups included PD-1hiTIGIThi, PD-1lowTIGITlow, PD- 
1hiTIM-3hi and PD-1lowTIM-3low. We then investigated the associations 
between expression levels of single or double genes and DFS or OS for 
this cohort of patients (Fig. 3). Our analysis revealed that TIGIT 
expression was significantly associated with DFS and OS (Fig. 3A). CRC 
patients with high expression level of TIGIT gene showed significantly 

longer DFS and OS than patients with low TIGIT expression level [me-
dian survival for DFS: 9.078 years (high group) versus 5.256 years (low 
group); median survival for OS: 8.329 years (high group) versus 5.484 
years (low group)] (Fig. 3A). For PD-1 and TIM-3, there were no dif-
ferences in DFS and OS between the high and low groups (Fig. 3B, C). As 
we found that high levels of PD1+TIGIT+ and PD1+TIM-3+ CD8+ TILs 
were significantly associated with longer DFS, we opted to check such 
associations in a large cohort of TCGA CRC dataset. In agreement with 
our findings, we found that high co-expression of PD-1 with TIGIT genes 
was significantly associated with longer DFS, and there was a trend to-
wards improved OS [median survival for DFS: 9.078 years (high group) 
versus 5.256 years (low group); median survival for OS: 8.329 years 
(high group) versus 5.229 years (low group)] (Fig. 3D). However, co- 
expression of PD-1 with TIM-3 was not associated with DFS or OS 
(Fig. 3E). Altogether, our data and the TCGA validation highlight the 
significance of TIGIT expression alone or with PD-1 and the association 
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Fig. 2. Kaplan–Meier curves of DFS based on PD-1 co-expression with other ICs in TILs and NILs. Patients with high levels of PD-1+TIGIT+ (A), PD-1+TIM-3+ (B), and 
PD-1+LAG+ (C) in CD8+ T cells were compared with patients with low frequencies of these cells. 
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with improved clinical outcome of CRC patients. 
Although our investigations are in CD8+ T cells and the TCGA data 

are derived from bulk tumors, our findings for TIGIT was validated in 
the TCGA database. This could be because TIGIT is mainly expressed on 
T cells [24]. However, our findings for TIM-3 could not be validated in 
the TCGA. This could be attributed to the expression of TIM-3 in 
different immune cell subsets such as T cells, antigen-presenting cells 
and monocytic myeloid cells, which could play different roles in cancer 
progression [25]. Our previous work showed that TIM-3 expression in T 
cells is associated with better prognoses, while its expression in antigen- 

presenting cells could be associated with bad prognoses in CRC patients 
[25]. 

3.4. Correlations between frequencies of PD-1+ and other IC-expressing 
CD8+ T cells in TILs and NILs in CRC patients 

We have recently determined the correlations between different 
CD4+ Treg/T cell subsets with immune checkpoints in CRC patients with 
early and advanced stages [26,27]. In this study, we determined syn-
ergistic effects for co-expression of PD-1 and other ICs on DFS; therefore, 

Fig. 3. Kaplan–Meier curves of DFS and OS based on levels of different expression levels of ICs genes in bulk tumors of TCGA CRC dataset. Patients with high gene 
expressions of TIGIT (A), PD-1 (B), TIM-3 (C), PD-1 with TIGIT (D), and PD-1 with TIM-3 (E) in tumor tissues were compared with patients with low levels of these 
genes. P values, hazard ratios (HR) and number of patients in each subgroup are shown on plots. 
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we investigated correlations between PD-1 expression and other ICs. We 
identified the correlations between frequencies of CD8+PD-1+ T cells 
with CD8+TIM-3+ or CD8+TIGIT+ or CD8+LAG-3+ T cells in TILs and 
NILs (Fig. 4). There were moderate correlations between frequency of 
PD-1+ cells with TIGIT+ CD8+ TILs (correlation coefficient r = 0.311, P 
= 0.038 [TILs] (Fig. 4A)). Interestingly, there was a strong correlation 
between frequency of CD8+PD-1+ T cells with CD8+TIM-3+ in TILs, but 
not in NILs (correlation coefficient r = 0.794, P < 0.0001[TILs]; r =
0.068, P = 0.655 [NILs] (Fig. 4B)). No significant correlations were 
observed between frequency of CD8+PD-1+ T cells and CD8+LAG-3+ T 
cells in TILs and NILs (correlation coefficient r = 0.096, P = 0.531 
[TILs]; r = -0.267, P = 0.076 [NILs] (Fig. 4C)). These findings confirm 
the strong correlation between expression of PD-1 and other ICs, espe-
cially TIM-3. 

3.5. Levels of PD-1+TIGIT+, PD-1+TIM-3+, and PD-1+LAG-3+ CD8+

TILs in CRC patients with MSI-H versus MSI-L 

We have recently reported that patients with mismatch-repair defi-
ciency/microsatellite instability-high tumors (MSI-H) had higher levels 
of IC-expressing T cells than patients with proficient MMR and micro-
satellite stable tumors (MSI-L/MSS) [13]. With regards to CD8+ TILs, we 

found that levels of TIM-3+ cells, but not other ICs-expressing CD8+

TILs, were significantly higher in MSI-H than MSI-L tumors [13]. In this 
study, we investigated differences in levels of CD8+ TILs co-expressing 
two ICs between MSI-H and MSI-L patients. Seven CRC patients 
(15.5%) out of 44 patients had MSI-H tumors. We found that patients 
with MSI-H tumors have higher levels of PD-1+TIGIT+ and PD-1+TIM- 
3+ CD8+ T cells, compared to patients with MSI-L (PD-1+TIGIT+: mean 
± SEM; MSI-H 11.83 ± 3.34 vs. MSI-L 9.39 ± 1.98, P = 0.071; PD- 
1+TIM-3+: mean ± SEM; MSI-H 12.97 ± 3.54 vs. MSI-L 9.82 ± 1.90, P 
= 0.089) (Fig. 5A and B). However, the difference did not reach statis-
tical significance, which could be due to small sample size. Additionally, 
there was no difference in PD-1+LAG-3+ CD8+ TILs between patients 
with MSI-H and MSI-L tumors (Fig. 5C). 

4. Discussion 

Changes in T-cell subsets such as location, levels, or even biological 
function elements within the TME, have an influence on tumor out-
comes, which occur through tumor progression or tumor regression 
[28]. Vitorino et al., reported that a high level of tumor-infiltrating 
lymphocytes was associated with better survival in stages II and III 
CRC patients [29]. Tumor-infiltrating immune cells (TIICs) including 

Fig. 4. Correlations between frequencies of PD-1+ cells and other immune checkpoint-expressing CD8+ T cells. Correlations between frequencies of PD-1+ cells with 
TIGIT+ (A), TIM-3+ (B), and LAG-3+ (C) in CD8+ TILs and NILs in CRC patients. 
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CD8+ T cells are associated with better prognoses in different tumors 
such as CRCs, renal cancer, and lung cancer [30–32]. Moreover, 
increased infiltration of Th1 cells, CD3+ T cells and CD8+ T cells in the 
CRC TME correlated with improved DFS and OS, while decreased T cell 
density was correlated with worse prognosis [33,34]. Therefore, acti-
vated CD8+ T cells are critical components of the tumor-immune 
microenvironment (TIME), and they express several cell surface mole-
cules, including ICs such as TIGIT, TIM-3, LAG-3, and PD-1 [24,35,36]. 

Different studies reported the overexpression of different immune 
checkpoints on T cells and their associations with T cell exhaustion in 
various cancers including CRC [37], melanoma [38], multiple myeloma 
[39], breast cancer [40], liver cancer [41], and acute myeloid leukemia 
[42,43]. Furthermore, a number of studies documented that over-
expression of various ICs on T cells was associated with cancer prog-
noses. A recent study found that gastric cancer with positive expression 
of PD-1, TIM-3, and LAG-3 tended to have a better prognosis than cancer 
with negative expression [44]. Another study reported that expressions 
of PD-1 and TIM-3 on T cells were increased in multiple myeloma pa-
tients but not in the healthy controls, especially for progressive disease 
[45]. In our study, we found that CRC patients with higher levels of TIM- 
3+, TIGIT+, and PD-1+ CD8+ TILs showed improved DFS, although it 
was not significant. High levels of TIM-3 in tumor-infiltrating lympho-
cytes [46] and NK cells [47] contributed to a worse prognosis in 
different tumors. In contrast, Wang et al. found that increased level of 
TIM-3 was associated with a better prognosis in cervical cancer [48]. In 
addition, Al-Badran et al. found that high levels of TIM-3 and other ICs 
such as PD-1 and LAG-3 on stromal immune cells were correlated with a 
favorable prognosis and better survival rate in CRC, which may be 
attributed to the activation of immune responses in cancer tissues [49]. 
Another study found that down-regulation of TIM-3 may enhance CRC 
progression, which indicate that expression levels of TIM-3 is one of the 
most helpful predictors of clinical prognosis in CRC [50]. A recent study 
in CRC patients found that increased expressions of TIGIT and PD-1 were 
associated with better OS [51]. Another study found that PD-1 and TIGIT 
were upregulated in CRC patients with dMMR, which were related to 
TNM stage and DFS [52]. It was reported that patients with advanced 
TNM stage had higher expression of TIGIT and PD-1. Moreover, higher 
expression of TIGIT and PD-1 were found to be associated with better 
DFS in CRC patients with dMMR [52]. 

Co-expressions of different ICs have been detected in the TME of 
different tumors. However, studies reported on the associations of co- 
expression of different ICs with prognoses of cancer patients are 
limited. A recent study reported that co-expression of PD-L1 with TIM-3 
or TIGIT were associated with worse overall survival of esophageal 
squamous cell carcinoma patients [53]. Other studies have found that 
co-expression of IC receptors was associated with poor prognoses in 

different types of solid tumors, including lung cancer [54], ovarian 
cancer [55], and renal cell carcinoma [56]. However, there are no re-
ports on the association of IC co-expression and disease prognoses in 
CRC. Our study is the first to discover that CRC patients with high levels 
of PD-1+TIGIT+ and PD-1+TIM-3+ CD8+ TILs had significantly 
improved DFS, compared to patients with lower levels of these cells. 
Additionally, a strong positive correlation was observed between fre-
quency of CD8+PD-1+ TILs and CD8+TIM-3+ TILs, while moderate 
positive correlation was found between level of CD8+PD-1+ TILs and 
CD8+TIGIT+ TILs. 

High expression of LAG-3 in T lymphocytes leads to a decline in T cell 
responses [57]. Therefore, LAG-3 could be an interesting target for 
biological therapies such as immunotherapy. Many early-phase clinical 
trials in various malignances investigated the therapeutic antibodies 
against LAG-3 [58]. In our study, we noticed that high levels of LAG-3+

CD8+ TILs were associated with shorter DFS, although not significant. 
Recent studies reported that hepatocellular carcinoma and gastric can-
cer with Epstein-Barr virus positivity and MLH1 mutations had shorter 
OS and DFS, which were correlated with LAG-3 expression [59,60]. 
Furthermore, co-expression of PD1+LAG-3+ was detected in different 
cancer types. For instance, in an ovarian tumor mouse model, it has been 
found that dual blockade of LAG-3 and PD-1 showed to enhance tumor 
antigen-specific CD8+ T cell production of cytokines. Therefore, tar-
geting those inhibitory receptors would enhance the antitumor functions 
of these CD8+ T cells [61]. 

In our study, we found that MSI-H tumors have relatively higher 
levels of PD-1+TIGIT+ CD8+ TILs compared to MSI-L tumors. It has been 
found that MSI-H tumors have higher response rate to ICIs than MSI-L 
tumors [62,63]. Another study reported that dMMR subset of CRC pa-
tients have active T-helper 1 (TH-1)/cytotoxic T cells (CTL) microenvi-
ronment, which would result in upregulation of multiple ICs including 
PD-1, PD-L1, CTLA-4, LAG-3, and IDO [64]. This evidence supports 
that MSI-H CRC patients would have better clinical prognosis, and 
would be more sensitive to ICI therapy than MSI-L CRC patients. 

5. Conclusion 

Our study showed that patients with high levels of TIGIT+, TIM-3+, 
and PD-1+ CD8+ TILs tended to have longer DFS, but without any sta-
tistical significance. More importantly, increased levels of PD-1+TIGIT+

and PD-1+TIM-3+ CD8+ TILs in CRC patients were significantly associ-
ated with longer DFS. It is not clear whether these IC-expressing CD8+ T 
cells are activated effector cells with anti-tumor activity or anti- 
inflammatory cells, which inhibit inflammation and contribute posi-
tively to CRC prognosis. This warrants further investigations. Overall, 
expressions of ICs on CD8+ TILs in CRC patients are important predictive 

Fig. 5. Scatter plots of frequencies of different immune checkpoint co-expression in MSI-H versus MSI-L tumors. Scatter plots show PD1+TIGIT+ (A), PD-1+TIM-3+

(B) and PD-1+LAG-3+ (C) in tumor-infiltrating CD8+ T cells in MSI-H and MSI-L tumors. Data represent mean ± standard error of the mean (SEM). 
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biomarkers; however, investigations of multiple ICs are critical for 
determining more accurate prognostic significance. 
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