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ABSTRACT  

The field of engineering is witnessing an increasing number of applications for intelligent 

electromagnetic nano-coatings. These recent advancements serve as the impetus for an 

investigation into a theoretical and computational study of an unsteady electro-magneto-

hydrodynamic (EMHD) incompressible two-dimensional tangent hyperbolic non-Newtonian 

ternary hybrid nanofluid boundary layer coating flow external to a two-dimensional porous wedge 

geometry adjacent to a Darcy-Forchheimer porous medium. Both aligned electrical and transverse 

magnetic field effects are included. The effects of zeta-potential and surface injection/suction are 

included. The ternary composite nanofluid comprises three nanoparticles (𝐴𝑙2𝑂3, 𝑇𝑖𝑂2 and 𝑆𝑖𝑂2) 

with aqueous base fluid (𝐻2𝑂). The governing conservation partial differential equations for 

continuity and momentum and associated boundary conditions at the wedge surface and free 

stream are transformed with appropriate similarity variables. The emerging ordinary differential 

nonlinear boundary value problem is numerically solved in MATLAB. Validation with earlier 

studies is included. A significant deceleration is induced in the flow of a ternary hybrid nanofluid 

with an increase in the electric field parameter. An increment in Falkner-Skan power-law constant 

(moving wedge angle parameter) boosts the local skin friction coefficient for both the ternary 

hybrid nanofluid (THNF) and unitary 𝐴𝑙2𝑂3 nanofluid (UNF) cases. Both electroosmosis and 

electric field parameters improve the velocity distribution for both THNF and UNF flow cases.  

The flow is boosted with an increase in the power-law rheological characteristic, which ranges 

from shear-thinning n < 1 to shear-thickening n >1. The flow is accelerated by increasing the Darcy 

number, whereas it is retarded by increasing the Forchheimer number (which measures non-Darcy 

inertial drag) or the Weissenberg number (thicker momentum boundary layers). Greater values of 

the wedge surface injection parameter cause the flow to accelerate and the momentum boundary 

layer thickness to diminish, whereas surface suction produces the opposite effect. Electric potential 

magnitudes increase with an increase in the zeta potential parameter, whereas an increase in the 

electroosmosis parameter has the opposite effect, reducing the electric potential magnitudes. 

KEYWORDS: Wedge flow; Magnetic field; Electroosmotic flow; Darcy-Forchheimer porous medium, 

ternary hybrid nanofluids, non-Newtonian tangent hyperbolic model; smart coating.  
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1.INTRODUCTION 

Coating flows have received significant attention in the scientific literature owing to growing 

applications in medical, aerospace, industrial materials (polymer) processing and environmental 

engineering. Such flows can be simulated with boundary layer theory for a range of geometries 

depending on the substrate being protected. These include flat plates, curved bodies and wedges, 

all of which feature extensively in modern manufacturing processes. Coating transport phenomena 

may involve Newtonian and non-Newtonian fluids, heat transfer, mass transfer and other 

phenomena. For the wedge geometry, external boundary layer flows are often classified as 

“Falkner-Skan” flows. One of the earliest studies of viscoelastic wedge coating flow was 

communicated by Hsu [1] who showed that for homogeneous viscoelastic soluble coating flow on 

a wedge, the surface friction is elevated with shear-thickening whereas it is reduced with shear-

thinning. In recent years nanomaterial coatings [2] and also electro-magnetic deposition of 

coatings [3] and jet electrohydrodynamic coating methods [4] have been explored.  The emergence 

of nanofluids [5] in recent years has also impacted on the evolution of new smart electromagnetic 

nano-coatings [6-11]. Unitary nanofluids feature a single nanoparticle (metallic or carbon-based) 

suspended in a base fluid. Hybrid nanofluids feature two or more nanoparticles in the same base 

fluid. Furthermore, many novel electromagnetic nano-coatings are also strongly non-Newtonian i. 

e. they exhibit shear stress-strain characteristics which depart from the classical Newtonian viscous 

model.  Their rheological characteristics make them particularly suitable for coating applications 

in extreme environments and examples include anti-microbial nano-coatings [12, 13], titania-

based nano-epoxy resin coatings [14],  nanosilica-based coatings [15], magnetic nano-fiber sensor 

coatings [16] and cobalt-based carbon nanotube electromagnetic coatings [17]. The robust 

simulation of coating flows with these intelligent materials requires a combination of electro-

osmotics, magnetohydrodynamics, nanofluid dynamics and also non-Newtonian behaviour. This 

has motivated researchers to develop multi-physical boundary layer coating flow models in recent 

years. Many different non-Newtonian models have been utilized to study coating flows of wedge 

bodies including the Reiner-Rivlin second grade model [18], power-law model [19], Eyring-

Powell model [20] and Eringen micropolar model [21], An alternative model which is suitable also 

for smart coatings is the tangent hyperbolic model which is a rate  type non-Newtonian model, is 

known to be valid for both low and high shear rates and includes both relaxation time and the 

retardation time characteristics. Many investigators have used the tangent hyperbolic model in 
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recent years for both nanofluids and conventional fluids.  Malik et al. [22] deployed the tangent 

hyperbolic model to study hydromagnetic coating flow on an elongating cylindrical body with a 

finite difference method. Kumar et al. [23] studied two-phase magnetized radiative tangent 

hyperbolic fluid flow from a stretching surface. Tangent hyperbolic nanofluid flows were 

examined by Gharami et al. [24], Hayat et al. [25], Khan et al. [26] and Basha et al. [27], using 

different nanoscale models (Tiwari-Das volume fraction and Buongiorno two-component 

formulations). Prakash et al. [28] computed the combined effects of electrical and magnetic field 

on tangent hyperbolic radiative bioconvection nanofluid flow from a bi-directional stretching 

surface. Non-Newtonian nanofluid flows from a wedge configuration have also received some 

attention. Umavathi [29] studied the magnetized micropolar nanofluid flow from a wedge with 

Hall and ionslip current effects, considering both iron and copper nanoparticles and different base 

fluids. Ali et al. [30] used Oldroyd B and Jeffrey viscoelastic models to simulate the magnetic 

rheological flow from a shrinking/expanding wedge with activation energy effects. Ali et al. [31] 

used a finite element technique to compute the Carrea nanofluid magnetohydrodynamic boundary 

layer flow from a moving wedge, noting that the flow is decelerated with increasing unsteadiness 

parameter and wedge angle.  

The above studies did not consider the collective effects of non-Darcy porous media, combined 

electrical and magnetic field and the tangent hyperbolic nanofluid rheology for coating flow on a 

wedge geometry. The novelty and focus of the present study is the consideration of zeta potential 

electro-osmotic effects and wall transpiration (suction/injection) which have not been addressed 

for such coatings previously. The present model therefore provides a more comprehensive 

examination of multiple effects on non-Newtonian electromagnetohydrodynamic coating flows 

and has not been communicated in the literature hitherto. A Darcy-Forchheimer model is adopted 

for non-Darcy effects following [32,33, 34]. The effect of zeta-potential is also included. The 

ternary composite nanofluid comprises three nanoparticles (𝐴𝑙2𝑂3, 𝑇𝑖𝑂2 and 𝑆𝑖𝑂2) with aqueous 

base fluid (𝐻2𝑂). The governing conservation partial differential equations for continuity and 

momentum and associated boundary conditions at the wedge surface and free stream are 

transformed with appropriate similarity variables. The emerging ordinary differential nonlinear 

boundary value problem is numerically solved in MATLAB. Validation with earlier studies is 

included. The effects of the Weissenberg number, zeta potential parameter, magnetic field 

parameter, electric field parameter, wall suction/injection parameter, porous medium permeability 
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(Darcy) parameter, Forchheimer parameter and electroosmosis parameter on fluid axial velocity, 

electric potential and skin friction coefficient distributions are visualized graphically and 

documented in tables. The model is applicable to smart coatings for a range of industrial 

applications including aerospace (wings), nuclear reactor wall, surface sensors and biomedical 

devices. The ternary hybrid non-Newtonian nanofluid afford a wider range of functionalities than 

existing coatings in this regard via improved viscosity, anti-corrosion characteristics, tuning under 

electrical and magnetic fields and enhanced durability under extreme loadings. 

 

2. MATHEMATICAL FORMULATION  

2.1 Definition of the problem  

Consider the two-dimensional laminar incompressible non-Newtonian tangent hyperbolic ternary 

hybrid nanofluid boundary layer flow external to the surface of a permeable wedge that is 

embedded in a Darcy-Forchheimer porous medium. As shown in Figure 1, the Cartesian 

coordinate system (x, y) is selected in such a way that the origin is fixed at the apex of the wedge, 

the x-axis is directed along the surface of the wedge, and the y-axis is normal to the surface of the 

wedge. This is done so that the wedge can be represented by a triangle with its base at the apex. 

The flow is caused by the stretching of the wedge with a wall velocity of 𝑈𝑤 =
𝑏𝑥𝑚

1−𝑐𝑡
,,  and the 

external flow of the nanofluid has a free stream velocity of 𝑈𝑒 =
𝑎𝑥𝑚

1−𝑐𝑡
 . A static magnetic field 𝐵 =

(0, 𝐵0) acts in a direction that is normal to the surface of the wedge and an electrical field  x is 

applied parallel to the wedge surface. Here, t is the variable that represents time, the parameter 

constants are a, b, m and c in which 𝑏 < 0 and 𝑏 > 0 denote the rate of shrinking or stretching of 

the wedge. The constraint that the wedge angle should be aligned is called the Falkner–Skan 

power-law constraint (m). The gradient of the Hartree pressure factor is denoted by 𝛽 =
2𝑚

1+𝑚
, and 

it corresponds to 𝛽 =
Ω

𝜋
 for the entire wedge angle. 

 



5 
 

 

 

 

 

 

 

Fig. 1 Electromagnetic tangent hyperbolic nanofluid boundary layer coating flow on a wedge  

The Falkner-Skan boundary layer formulation is a simplified mathematical model used to 

describe the flow of a fluid past a wedge-shaped obstacle. It is often used as a benchmark problem 

to test and validate computational fluid dynamics codes. However, there is some uncertainty 

associated with the wedge flow model and its assumptions, which can have implications for 

describing physical phenomena.  

• Assumptions about the properties of the fluid: The wedge flow model assumes that the 

fluid is both incompressible and inviscid, which means it doesn't have any frictional forces 

and its density doesn't change. While these assumptions are appropriate for some 

applications, such as low-speed flows, they may not be valid for high-speed flows or flows 

with complex geometries. Ignoring buoyancy effects 

• Two-dimensional flow assumption: The wedge flow model is typically formulated in two 

dimensions, assuming that the flow is uniform in the third dimension. This assumption may 

not be valid for flows with significant three-dimensional effects, such as vortex shedding 

or secondary flow patterns. 

• Simplified geometry: The wedge flow model assumes a simple geometry, namely a 

wedge-shaped obstacle in a uniform flow. 

• Uncertainty in experimental data: The wedge flow model is often used as a benchmark 

problem for CFD validation, but there is uncertainty associated with the experimental data 

used to validate the model. 

 

2.1 Governing equations of the problem   
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For tangent hyperbolic liquid, the rheological constitutive equations are [31]:  

𝑆 = −𝑃𝐼 + 𝜏,          (1) 

𝜏 = −[𝜇∞ + (𝜇0 + 𝜇∞) tanh(Γ�̇�)𝑛]�̇�,      (2) 

where −𝑃𝐼 denotes the spherical component of the stress resulting from the incompressibility 

restriction, the additional stress tensor is denoted by 𝜏, 𝜇∞ denotes the viscosity at an infinite shear 

rate, 𝜇0 denotes the viscosity at a zero-shear rate viscosity, Γ denotes the constant time, 𝑛 denotes 

the power law index parameter and �̇� is shear rate which is characterized as: 

�̇� = √
1

2
∑ ∑ �̇�ij�̇�ji𝑗𝑖 = √

1

2
Π,        (3) 

 Π =
1

2
 𝑡𝑟𝑎𝑐 (𝑔𝑟𝑎𝑑(𝑉) + (𝑔𝑟𝑎𝑑(𝑉))

𝑇
)

2

 

 

where Π denotes the invariant of second strain tensor. For the case of 𝜇∞ = 0, Γ�̇� < 1.    

The component of the additional stress tensor may be represented as follows: 

 𝜏 =  −𝜇0|(Γ�̇�)𝑛| �̇� =  −𝜇|(1 + (Γ�̇� − 1))
𝑛

|�̇� =  −𝜇0|1 + 𝑛(Γ�̇� − 1)|�̇�.   (4) 

 

The Cartesian form of governing equations (mass and momentum conservation) for boundary layer 

flow of an incompressible, hyperbolic tangent nanofluid under the dual effect of electric and 

magnetic fields from a porous wedge to a Darcy-Forchheimer permeable medium are given by 

[31-33]: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,         (5) 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌𝑇𝐻𝑁𝐹

𝜕𝑃

𝜕𝑥
+ 𝜈𝑇𝐻𝑁𝐹  [(1 − 𝑛) + √2 𝑛Γ 

𝜕𝑢

𝜕𝑦
] 

𝜕2𝑢

𝜕𝑦2 − (
𝜎𝑇𝐻𝑁𝐹𝐵0

2

𝜌𝑇𝐻𝑁𝐹
+

𝜈𝑇𝐻𝑁𝐹

𝐾
) 𝑢 −

𝐹𝑢2 +
𝜌𝑒𝜙𝑥

𝜌𝑇𝐻𝑁𝐹
,             (6) 

Here 𝑢 and 𝑣 are 𝑥 and 𝑦 components of velocity respectively, 𝑃 is the pressure, kinematic 

viscosity of THNF (ternary hybrid nanofluid)  is 𝜈𝑇𝐻𝑁𝐹, THNF density is 𝜌𝑇𝐻𝑁𝐹, THNF dynamic 

viscosity is 𝜇𝑇𝐻𝑁𝐹, THNF electrical net charge thickness e ,𝐹 is the Forchheimer resistance factor 

(non-Darcy inertial drag coefficient) which is defined as 𝐹 =
𝐶𝑏

√𝐾
, where 𝐶𝑏is the drag force and 
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𝐾 is the permeability of the porous medium. Since the pressure is independent of the direction that 

is perpendicular to the boundary layer, it is possible to determine the pressure by using the inviscid 

flow that is located outside of the boundary layer. The free stream (boundary layer edge) velocity 

of the tangent hyperbolic nanofluid 𝑈𝑒(𝑥, 𝑡) =
𝑎𝑥𝑚

1−𝑐𝑡
 is assumed in Eq. (6).  When 𝑢 = 𝑈𝑒, 𝜈 =

0 and 𝜙𝑥 = 𝜙𝑦 are taken into account outside of the boundary layer, the x-momentum equation 

may be written as: 

−
1

𝜌𝑇𝐻𝑁𝐹

𝜕𝑃

𝜕𝑥
=

𝜕𝑈𝑒

𝜕𝑡
+ 𝑈𝑒

𝜕𝑈𝑒

𝜕𝑥
+ (

𝜎𝑇𝐻𝑁𝐹𝐵0
2

𝜌𝑇𝐻𝑁𝐹
+

𝜈𝑇𝐻𝑁𝐹

𝐾
) 𝑈𝑒 + 𝐹𝑈𝑒

2 −
𝜌𝑒𝜙𝑦

𝜌𝑇𝐻𝑁𝐹
,   (7) 

 

Substituting Eq. (7) into Eq. (6), the latter may be rewritten as follows:   

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

𝜕𝑈𝑒

𝜕𝑡
+ 𝑈𝑒

𝜕𝑈𝑒

𝜕𝑥
+ 𝜈𝑇𝐻𝑁𝐹  [(1 − 𝑛) + √2 𝑛Γ 

𝜕𝑢

𝜕𝑦
] 

𝜕2𝑢

𝜕𝑦2 − (
𝜎𝑇𝐻𝑁𝐹𝐵0

2

𝜌𝑇𝐻𝑁𝐹
+

𝜈𝑇𝐻𝑁𝐹

𝐾
) (𝑢 −

𝑈𝑒) − 𝐹(𝑢2 − 𝑈𝑒
2)   +

𝜌𝑒(𝜙𝑥−𝜙𝑦)

𝜌𝑇𝐻𝑁𝐹
,           (8) 

2.3 Thermophysical properties of ternary hybrid nanofluid (THNF): 

The density of THNF is given by the following expression, following [35-38]: 

𝜌𝑇𝐻𝑁𝐹 =  𝜙1𝜌1 + 𝜙2𝜌2 + 𝜙3𝜌3 + (1 − 𝜙1 − 𝜙2 − 𝜙3)𝜌𝑓,      (9) 

Here 𝜌1, 𝜌2, 𝜌3are the densities of the first, second and third nanoparticle, 𝜙1, 𝜙2, 𝜙3 are the volume 

fractions of first, second and third nanoparticles respectively and 𝜌𝑓is the density of base fluid 

(water).  

The dynamic viscosity of ternary hybrid nanofluid is taken as [35-38]: 

( ),1 1 ,2 2 ,3 3 /hnf nf nf nf       = + +        (10) 

Where ( )2

, 1nf i f i iB C   = + +         (11) 

Here the following notations apply: 𝜇𝑛𝑓,𝑖 is the dynamic viscosity of ith type nanoparticle (with 

given shape) suspension, 
f  is the dynamic viscosity of base fluid, ,B C are the viscosity 

enhancement coefficients. 

Electrical conductivity of ternary hybrid nanofluid may be characterised as: 
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𝜎𝑡ℎ𝑛𝑓

𝜎ℎ𝑛𝑓
=

(1+2𝜙1)𝜎1+(1−2𝜙1)𝜎ℎ𝑛𝑓

(1−𝜙1)𝜎1+(1+𝜙1)𝜎ℎ𝑛𝑓
,        (12) 

where 
𝜎ℎ𝑛𝑓

𝜎𝑛𝑓
=

(1+2𝜙2)𝜎2+(1−2𝜙2)𝜎𝑛𝑓

(1−𝜙2)𝜎2+(1+𝜙2)𝜎𝑛𝑓
 and 

𝜎𝑛𝑓

𝜎𝑓
=

(1+2𝜙3)𝜎3+(1−2𝜙3)𝜎𝑓

(1−𝜙3)𝜎3+(1+𝜙3)𝜎𝑓
. 

Here 
1 2 3, ,    are the electrical conductivites of first nanoparticle, second nanoparticle and third 

nanoparticle, respectively; and 𝜎𝑓   is the base electrical conductivity. Table 1 gives shape factors 

for different nanoparticle geometries and Table 2 provides the thermo-physical constants of the 

nanoparticles as well as the base fluid, respectively.  

Table 1 Parameters for defining shape and properties of nanoparticles [45] 

 

Shape of nanoparticles                            B                   C 

 

Platelets      37.1               612.6 

Cylindrical      13.5               704.4 

  Spherical       2.5                 6.2 

 

Table 2 Thermophysical properties of oxides nanoparticles [35-38] 

 

            Oxides                                        𝐻2𝑂              2 3Al O              2TiO               2SiO  

 

            Density     (𝐾𝑔 𝑚−3)       997.1             3970           4250            3970 

Electric conductivity  (𝑆𝑚−1) 5.5 × 10−6    35 × 106   3.5 × 106      10−23 

 

 

2.4 Electrical potential 

The electrical field generates an electrical double layer via electro-osmotic body force effects. The 

electrical potential distribution in the electrical double layer is analyzed using the Boltzmann-

Poisson equation (EDL): 

𝑑𝑖𝑣𝑫 = 𝜌𝑒 ,                  (13) 

Here 𝑫(= 𝜖𝑒𝑓Φ̅) which is the rate of volumetric change, and �̄�𝑒 and 𝜖𝑒𝑓 are respectively the 

density and the permittivity of the dielectric magnetic nanofluid. Then: 

𝑑𝑖𝑣(−𝜖𝑒𝑓 𝑔𝑟𝑎𝑑 Φ̅) = 𝜌𝑒 ,                       (14) 
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At every point on the permeable wedge surface, the permittivity is the same. The appropriate 

equation for electrical potential is: 

∇2Φ̅ = −
𝜌𝑒

𝜖𝑒𝑓
,             (15) 

and  

 𝜌𝑒 = �̅�𝑧1̅(𝑛+ − 𝑛−),             (16)  

Here the numbers 𝑛+  and 𝑛− represent the anticipated cation and anion densities at a concentration 

of 𝑛0, respectively. 

Assuming no EDL overlap, the Boltzmann distribution may be written as: 

𝑛± = 𝑛0 exp (±
�̅��̅�1�̅�

𝐾𝐵𝑇𝑤
),             (17) 

Here the electronic charge and charge balance are represented, respectively, by �̅� and 𝑧1̅, 

Boltzmann constant is denoted by 𝐾𝐵 and 𝑇𝑤 is the average electrolytic solution temperature.  

To apply Eqn. (17), the values of the ion counts are replaced in Eqn. (16), leading to: 

𝜌𝑒 = −2𝑧1̅ �̅� 𝑛0 sinh (
�̅�1�̅� Φ̅

𝐾𝐵𝑇𝑤
),              (18) 

The Boltzmann-Poisson equation Eqn. (15) is modified by invoking the second order differential 

equation for charge density i. e. Eqn. (18) to obtain the electrical potential distribution: 

𝜕Φ̅

𝜕𝑥2 +
𝜕2Φ̅

𝜕𝑦2 = −2𝑧1̅ �̅� 𝑛0 sinh (
�̅�1�̅� Φ̅

𝐾𝐵𝑇𝑤
).                             (19) 

2.5 Dimensional boundary conditions  

The relevant boundary conditions at the wedge surface (wall) and free stream are defined as 

follows [18-20]: 

𝑢 = 𝑈𝑤(𝑥) = −𝛾 𝑈𝑒(𝑥), 𝑣 = 𝑉𝑤 , �̅� = 𝜉̅     𝑎𝑡  𝑦 = 0,      (20) 

𝑢 = 𝑈𝑒(𝑥),   �̅� → 0          𝑎𝑠   𝑦 → ∞.        (21) 
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Here 𝛾 defines the moving wedge parameter. Three cases of are of pertinence for materials 

processing coating operations [39]: 𝛾 > 0 corresponds to a contracting wedge, 𝛾 < 0 indicates a 

stretching wedge, 𝛾 = 0  denoted as a stationary wedge.  

2.6 Scaling analysis  

Taking into consideration the stream function 𝜓(𝑥, 𝑦) in such a way that 𝑢 =
𝜕𝜓

𝜕𝑦
; 𝑣 = −

𝜕𝜓

𝜕𝑥
 and 

then introducing the following similarity transformations [34]:  

𝑈𝑒 =
𝑎𝑥𝑚

1−𝑐𝑡
, 𝑈𝑤 =

𝑏𝑥𝑚

1−𝑐𝑡
, 𝑉𝑤 =

𝑣0

√1−𝑐𝑡
, 𝜓 =

√2𝜈𝑓𝑥𝑈𝑒

√1+𝑚
 𝑓, 𝜂 = 𝑦

√(1+𝑚)𝑈𝑒

√2𝜈𝑓𝑥
, 𝜙 =   

�̅�1�̅� Φ̅

𝐾𝐵𝑇𝑤
 ,    (22) 

Utilizing these transformations, Eqn. (5) is automatically satisfied, and Eqns. (8) and (19) are 

converted to: 

𝐴𝜈𝑓′′′ ((1 + 𝑛) + 𝑛𝑊𝑒√1 + 𝑚 𝑓′′) +
𝐴

1+𝑚
(2 − 𝑓′′𝜂 − 2𝑓′) + 𝛽(1 − 𝑓′2) + 𝑓𝑓′′ −

(𝐴𝜎𝑀2+𝐴𝜈 𝐴𝜌𝐷𝑎) (𝑓′−1)

𝐴𝜌(1+𝑚)
+ 𝐹𝑟(𝑓′2 − 1) +

𝑈𝐸

𝐴𝜌
(1 + 𝑚)𝜙′′ = 0,      (23)  

(1 + 𝑚)𝜙′′ = 𝜅2 sinh(𝜙),         (24) 

The transformed dimensionless boundary conditions (20, 21) emerge as:  

𝑓′ = −𝛾, 𝑓 =
𝑆

1+𝑚
 , 𝜙 = 𝜉   𝑎𝑡  𝜂 = 0,        (25) 

𝑓′ = 1,   𝜙 → 0          𝑎𝑠   𝜂 → ∞.         (26) 

Here 𝐴 =
𝑐

𝑎𝑥𝑚−1 is the unsteadiness parameter, 𝑀2 =
2𝜎𝑓𝐵0

2𝑥

𝑈𝑒𝜌𝑓
 is the magnetic parameter, 𝐷𝑎 =

2𝑥𝜈𝑓

𝐾𝑈𝑒
 

is the Darcy permeability parameter, 𝑊𝑒 =
Γ 𝑈𝑒

3
2

√𝜈𝑓𝑥
 is the Weissenberg number, Fr is Forchheimer 

number (= 2𝑥𝐹), 𝑈𝐸 =
𝑈𝐻𝑆

𝑈𝑒
  is the electric field parameter in which Helmholtz-Smoluchowski 

velocity is  𝑈𝐻𝑆 =
−𝐾𝐵𝑇𝑤𝜖𝑒𝑓(𝜙𝑥−𝜙𝑦)

𝜇𝑓�̅�𝑒
, 𝜅 =

𝑚1
2𝜈𝑓𝑥

𝑈𝑒
  is electroosmosis parameter (where  Debye-

Hückel parameter is 𝑚1
2 =

4�̅�2𝑒2𝑛0

𝜖𝑒𝑓𝐾𝐵𝑇𝑣
) , 𝑆 = −

𝑣0√2𝑥

√𝜈𝑓𝑢𝑒(1−𝑐𝑡) 
 is the wedge surface suction/injection 
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parameter (for  suction (𝑆 < 0) and for blowing i.e. injection (𝑆 > 0)) and zeta potential 

parameter is 𝜉 =
𝑧𝑒�̃�

𝐾𝐵𝑇𝑣
.  

3. WALL CHARACTERISTIC PHYSICAL QUANTITIES 

 

The skin friction coefficient is a key variable of importance in coating flows and is also known 

as the surface shear stress (wall velocity gradient). It may be defined as: 

𝐶𝑓 =
𝜏𝑤

𝜌𝑇𝐻𝑁𝐹𝑈𝑒
2,            (27) 

where 𝜏𝑤 = 𝜇𝑇𝐻𝑁𝐹 [(1 − 𝑛)
𝜕𝑢

𝜕𝑦
+

𝑛Γ

√2
 (

𝜕𝑢

𝜕𝑦
)

2

]
𝑦=0

, 

Via the similarity transformations (22), the required dimensionless skin friction expression takes 

the form:  

Where 𝑅𝑒 =
𝑈𝑒𝑥

𝜈𝑓
 is a local Reynolds number.  

In Eqns. (23) and (28), the following constants are used:  

𝐴𝜌 =
𝜙1𝜌1+𝜙2𝜌2+𝜙3𝜌3

𝜌𝑓
+ (1 − 𝜙1 − 𝜙2 − 𝜙3),       

𝐴𝜇 = ((1 + 𝐵1𝜙 + 𝐶1𝜙2)𝜙1 + (1 + 𝐵2𝜙 + 𝐶2𝜙2)𝜙2 + (1 + 𝐵3𝜙 + 𝐶3𝜙2)𝜙3)/𝜙, 𝐴𝜈 =
𝐴𝜇

𝐴𝜌
, 

𝐴𝜎 = 𝐴ℎ𝑛𝑓

(1+2𝜙1)𝜎1+(1−2𝜙1)𝐴ℎ𝑛𝑓

(1−𝜙1)𝜎1+(1+𝜙1)𝐴ℎ𝑛𝑓
,         

𝐴ℎ𝑛𝑓 = (
(1+2𝜙3)𝜎3+(1−2𝜙3)𝐴𝑓

(1−𝜙3)𝜎3+(1+𝜙3)𝐴𝑓
)

((1+2𝜙2)𝜎2+(1−2𝜙2)(
(1+2𝜙3)𝜎3+(1−2𝜙3)𝐴𝑓

(1−𝜙3)𝜎3+(1+𝜙3)𝐴𝑓
))

((1−𝜙2)𝜎2+(1+𝜙2)(
(1+2𝜙3)𝜎3+(1−2𝜙3)𝐴𝑓

(1−𝜙3)𝜎3+(1+𝜙3)𝐴𝑓
))

.  (29) 

4. NUMERICAL SOLUTION AND VALIDATION   

The strong nonlinearity arising in Eqn. (23) which is coupled to Eqn. (24) require a numerical 

solution. The highly accurate and stable bvp4c shooting method in MATLAB is therefore adopted. 

The Bvp4c formula is basically a Lobattao - IIIa collocation technique [40, 41]. With suitable 
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substitutions, the higher-order differential Eqns. (23) and (24) may be reduced into first-order 

ordinary differential equations, as follows:  

𝑓 = 𝑦(1); 𝑓′ = 𝑦(2); 𝑓′′ = 𝑦(3); 𝑓′′′ = 𝑦′(3); 𝜙 = 𝑦(4); 𝜙′ = 𝑦(5); 𝜙′′ = 𝑦′(5),                (30) 

where  

𝑦′(3) = (−
𝐴

1+𝑚
(2 − 𝑦(3)𝜂 − 2𝑦(2)) − 𝛽(1 − 𝑦(2)2) − 𝑦(1)𝑦(3) +

(𝐴𝜎𝑀2+𝐴𝜈 𝐴𝜌𝐷𝑎) (𝑦(2)−1)

𝐴𝜌(1+𝑚)
−

𝑈𝐸

𝐴𝜌
(1 + 𝑚)𝑦′(5)) /𝐴𝜈 ((1 + 𝑛) + 𝑛𝑊𝑒√1 + 𝑚 𝑦(3)),      (31)  

𝑦′(5) =
𝜅2 sinh(𝑦(4))

(1+𝑚)
,                     (32) 

The associated boundary conditions take the form:  

𝑦(2) = −𝛾, 𝑦(1) =
𝑆

1+𝑚
 , 𝑦(4) = 𝜉   𝑎𝑡  𝜂 = 0,       (33) 

𝑦(2) = 1,   𝑦(4) → 0          𝑎𝑠   𝜂 → ∞.        (34) 

The mesh selection and error function are revitalized by the presence of a continuous solution. The 

disparity stays the same, with a magnitude of10−9. At the value of 𝜂 = 8, all numerical solutions 

converge asymptotically.  

Using the finite difference algorithm bvp4c, the three-stage LobattoIIIa formula can be 

implemented [46, 47]. This is an illustration of a collocation formula, and the answer provided by 

the collocation polynomial is exact to the fourth degree at every point on the interval of integration 

and is C1-continuous. The grid is chosen, and mistakes are handled based on the remainder of the 

continuous solution. This article findings are accurate to within 10-9 units. The problem-solving 

model contains 352 vertices. This issue was resolved with a grid size of 483, and a highest residual 

of 5.173 × 10−9. After convergence is reached on a given mesh, the programmes make 

adjustments to the mesh in order to generate a solution with adequate precision using as few mesh 

points as practically possible. To validate the present numerical approach, comparison with 

previous simpler studies has been conducted. Table 3 shows the present results for the velocity, 

𝑓′(𝜂)and skin friction , 𝑓′′(𝜂), benchmarked against the earlier computations of Kandasamy et al. 
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[34] and White [42].  Excellent correlation is achieved testifying to the accuracy of the present 

MATLAB bvp4c solutions.  

Table – 3: Comparison of present MATLAB solutions with [34, 42] for 𝑓′(𝜂) 𝑎𝑛𝑑 𝑓′′(𝜂). 

𝜼 Kandasamy et al. [34] White [42] Present Solution 

𝒇′(𝜼) 𝒇′′(𝜼) 𝒇′(𝜼) 𝒇′′(𝜼) 𝒇′(𝜼) 𝒇′′(𝜼) 

0.0 0 0.469686 0 0.469599 0 0.46969891643441 

0.5 0.234267 0.465078 0.23423 0.46503 0.234276697704929 0.465127365137735 

1.0 0.460628 0.434377 0.46063 0.43438 0.460627771046274 0.434463545861249 

2.0 0.816687 0.255668 0.81669 0.25567 0.816685225121935 0.255691186224172 

3.0 0.969046 0.067714 0.96905 0.06771 0.969049598861173 0.067698996031665 

4.0 0.997773 0.006871 0.99777 0.00687 0.997772151844778 0.006870179538637 

4.1 Stability analysis  

The given problem is a boundary value problem that involves a system of six first order ordinary 

differential equations (ODEs) with five unknown functions (𝜂), 𝑦′(𝜂), 𝑦′′, 𝑦′′′(𝜂), 

𝜙(𝜂), 𝜙′(𝜂) 𝑎𝑛𝑑  𝜙′′(𝜂). The associated boundary conditions are given by equations (33) and (34) 

which is solved by using the shooting technique.  

The stability and existence of the formulated problem can be analysed using the theory of nonlinear 

boundary value problems. A key tool for this analysis is the Sturm-Picone comparison theorem, 

which relates the eigenvalues of a linear boundary value problem to the stability and existence of 

a nonlinear boundary value problem.  
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To apply the Sturm-Picone comparison theorem, we need to linearize the given system of ODEs 

about the trivial solution 𝑦(𝜂) =  𝑦′(𝜂) =  𝑦′′(𝜂) = 𝑦′′′(𝜂) = 𝜙(𝜂) = 𝜙′(𝜂) = 𝜙′′(𝜂) = 0. We 

obtain the following linearized system:  

𝑦′′′′(𝜂) = 𝜙′′(𝜂) = 0,         (35) 

The boundary solution to the linearized system are the same as the boundary conditions for the 

original system, given by equations (33) and (34).  

The general solution to the linearized system is given by:  

𝑦(𝜂) = 𝐶1 + 𝐶2𝜂 + 𝐶3𝜂2 + 𝐶4𝜂3,        (36) 

 𝜙(𝜂) = 𝐶5 + 𝐶6𝜂,          (37) 

Where 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5 and 𝐶6 are arbitrary constants. The boundary conditions (33) and (34) lead 

to the following equations for these constants.   

𝐶1 =
𝑆

1+𝑚
, 𝐶2 = 𝛾, 𝐶5 = 𝜉, 𝐶3 =

1−𝐺

6
, 𝐶4 = −

𝐺

6
, 𝐶6 = 0,    (38) 

 where 𝐺 = 𝐴𝑉(1 + 𝑛)/(𝐴𝜎𝑀2 + 𝐴𝜈𝐴𝜌𝐷𝑎)(1 + 𝑚)𝑊𝑒√1 + 𝑚.   

Using the Sturm-Picone comparison theorem, we can conclude that the nonlinear boundary value 

problem is stable and has a unique solution if and only if the linearized boundary value problem 

has only trivial solutions. The linearized boundary value problem has only trivial solution if and 

only if the boundary value problem:  

𝑦′′′′(𝜂) + 𝜆𝑦(𝜂) = 0,          (39) 

With boundary conditions (33) and (34), has only trivial solutions. Here 𝜆 is an eigenvalue of the 

linearized boundary value problem.  

The eigenvalues of the linearized boundary value problem are given by 𝜆𝑛 = (
𝑛𝜋

𝐿
)

4

, where L is a 

length scale determined by the problem parameters, and n is a positive integer.  

Since the eigenvalues are all positive, the linearlized boundary value problem has only trivial 

solutions. Therefore, by the Sturm-Picone comparison theorem, the nonlinear boundary value 

problem is stable and has a unique solution.  
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5. RESULTS AND DISCUSSION 

In this section, numerical solutions obtained for a wide range of control parameters are presented 

graphically for the electromagnetic nanofluid coating flow characteristics i.e. dimensionless 

velocity 𝑓′(𝜂), electric potential 𝜙(𝜂), and surface friction coefficient 𝑓′′(0). The computations 

consider three types of oxide nanoparticles i. e. 2 3Al O , 2TiO , 2SiO with base fluid of water, 𝐻2𝑂. 

The nanoparticle value of 2 3Al O is 𝜙1 = 0.03, the nanoparticle value of 2TiO  is 𝜙2 = 0.02 and 

the nanoparticle value of 2SiO  is 𝜙3 = 0.01. The ternary hybrid nanofluid (THNF) is considered 

as 2 3Al O , 2TiO , 2SiO with base fluid 𝐻2𝑂 and the unitary nanofluid (UNF) is assumed to be 2 3Al O  

with base fluid as water 𝐻2𝑂. Data has been extracted from appropriate references for the other 

parameters [3, 5, 22, 30, 44]. The selected ranges of parameters are suitable for real ternary 

nanocoating boundary layer flows. Results for dimensionless velocity distribution are discussed 

for various pertinent parameters for both cases of THNF and UNF in Figs.2(a)-2(i). 

Fig.2(a) shows the impact of the Darcy permeability parameter, Da on both THNF and UNF. 

Significantly greater velocity is computed with increment in Darcy number Da for both of the 

nanofluid cases. However, the UNF achieves larger magnitudes of velocity, both close to the 

wedge surface and further away from it. The increment in Darcy number corresponds to a boost in 

the permeability of the porous medium. The Darcian drag force is therefore depleted and less 

obstruction to the nanofluid is created by the porous medium solid fibers.  Effectively the use of a 

single nanoparticle produces a thinner momentum boundary layer (greater flow acceleration) than 

a ternary nanofluid.  
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Figs. 2. Impacts of (a) Darcy number, (b) Forchheimer number, (c) moving wedge parameter, 

(d) Falkner-Skan power-law constant (wedge angle parameter), (e) rheological power-law 

index, (f) suction/injection parameter (g)  Weissenberg number, (h) electric field parameter 

and (i) Hartmann number on axial velocity for fixed value of 𝜅 = 1; 𝑚 = 0.3; 𝑈𝐸 = 2; 𝑛 =
0.2; 𝑊𝑒 = 0.1; 𝐹𝑟 = 0.5; 𝑀 = 2; 𝐷𝑎 = 0.5; 𝐴 = 1; 𝑆 = 0.5; 𝜉 = 1, 𝛾 = 0.2, 𝜙1 = 0.03; 𝜙2 =
0.02; 𝜙1 = 0.01. 
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Figs. 3. Impacts of (a) zeta potential parameter and (b) electroosmosis parameter on electric 

potential profiles for fixed values of 𝜉 = 1 𝑎𝑛𝑑 𝜅 = 1. 
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Figs. 4. Impacts of (a)Zeta potential parameter, (b) Electroosmosis parameter, (c)  rheological 

power-law index, (d) Forchheimer number, (e) Falkner-Skan power-law constant, (f) suction/ 

injection parameter and (g)  unsteadiness parameter, on surface friction coefficients for fixed 

value of 𝜅 = 1; 𝑚 = 0.3; 𝑈𝐸 = 2; 𝑛 = 0.2; 𝑊𝑒 = 0.1; 𝐹𝑟 = 0.25; 𝑀 = 2; 𝐷𝑎 = 0.5; 𝐴 =
1; 𝑆 = 0.5; 𝜉 = 1, 𝛾 = 0.2, 𝜙1 = 0.03; 𝜙2 = 0.02; 𝜙1 = 0.01. 

 

The ( )f  velocity profiles for both THNF and UNF are displayed for a range of Forchheimer 

numbers in Fig. 2(b). As can be observed, in the case of a Darcian porous medium for which 

second order inertial drag effects vanish ( )0rF =  and the Forchheimer drag force term   

𝐹𝑟(𝑓′2 − 1) vanishes. This produces the maximum velocity magnitudes for both THNF and UNF. 

With increment in Fr, ( )f   is significantly reduced. However again higher velocity magnitudes 

are achieved with UNF case relative to the THNF at any value of Forchheimer number. Therefore, 

greater retardation is induced in the THNF case with larger Forchheimer number and a thicker 

momentum boundary layer is generated at the wedge surface. The (alumina nanoparticle) unary 

nanofluid may experience less drag due to the modification in viscosity at lower volume fraction 

present compared with ternary nanofluid. It is also noteworthy that negative velocity is generated 

very close to the wedge surface indicating that Forchheimer effect produces a weak backflow (flow 

reversal) in the vicinity of the wall.  

In Fig.2(c), for both THNF and UNF, the impacts of varying the wedge parameter 𝛾 on the velocity 

distribution is illustrated. It is clear that when the wedge parameter is increased positively i. e. 

contracting wedge case (𝛾 = 0.25, 0.5), the velocity magnitude is decreased. However, with 

negative increment in wedge parameter (𝛾 =  −0.25, −0.5) which implies wedge stretching the 

reverse trend is induced and the velocity is enhanced. The intermediate case of a stationary wedge 

naturally falls between the other two stretching and contracting wedge cases. The presence of 

surface stretching on the wedge assists in momentum development in the boundary layer which is 

reduced in thickness and results in significant flow acceleration. The contracting surface destroys 

momentum in the boundary layer which manifests in deceleration and a greater momentum 

boundary layer thickness. Again, significantly greater velocity is computed for the UNF case 

relative to the THNF case.  

Fig. 2(d) illustrates the influence of the wedge angle parameter, m, on velocity evolution. The 

velocity of the fluid is substantially reduced as m rises. A physical increase in the wedge angle 
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parameter reduces the pressure exerted on the fluid. Even more so, the velocity profile is more 

sensitive to variations in m values at intermediate distance from the wedge surface, with a lesser 

influence at the wedge surface (wall) and in the free stream. The parameter, 𝑚 =
𝛽

2−𝛽
 is also known 

as the Hartree pressure gradient parameter. Here β = Ω/π for a vertex angle Ω of the wedge. The 

case m = 0 implies Blasius boundary layer flow along a flat horizontal surface (for which β = 0 

and the wedge morphs into a flat plate) and m = 1 corresponds to forward stagnation point 

boundary layer flow adjacent to a vertical surface (i. e. β = 1 such that the wedge angle Ω = π 

implying that the wedge has morphed into a vertical plate). Both these scenarios are also of interest 

in materials processing operations e. g. stretching/contracting sheet processes. The case of m = 2 

implies that  =4/3 so that the internal wedge apex angle = 4 π/3 ie. 240 degrees. This corresponds 

to the case of the reverse wedge configuration i. e. backward facing wedge. Clearly as wedge 

internal angle is increased, the resistance to the boundary layer flow is increased. The maximum 

velocity therefore corresponds to the case m = 0 and the minimal velocity to m = 2. The momentum 

boundary layer thickness will be minimized and maximized respectively for these two cases. The 

geometric nature of the wedge will therefore exert a profound influence on velocity development 

in the boundary layer and can be exploited to achieve desired flow control in nanomaterials 

operations [5]. It is also pertinent to note once again that markedly greater velocity (and lower 

hydrodynamic boundary layer thickness) is computed for the UNF case (alumina single 

nanoparticle) compared with the THNF case, and again the disparity is highest at intermediate 

distance transverse to the wedge surface.  

Fig. 2(e) shows the effect of tangent hyperbolic power-law index (n) on the velocity distribution.  

For both THNF and UNF, the rheological nature has significant effects on the distribution of fluid 

velocities in the boundary layer, although again the UNF case exhibits considerably greater 

velocity magnitudes. A shear thickening nanofluid (dilatant) has n> 1, a shear thinning nanofluid 

has n <1 and for the classical Newtonian viscous case, n = 1. Figure 2(e) reveals that as n increases, 

the velocity profile exhibits a declining trend. The flow is strongly decelerated for dilatant 

behaviour and momentum boundary layer thickness is elevated. The considerable increase in 

viscosity associated with shear-thickening is responsible for the retarding behaviour. It has been 

shown experimentally that the increment in nanofluid viscosity for dilatant power-law nanofluids 

increases with a reduced concentration of nanoparticles (volume fraction) [43]. The combination 
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of 3 nanoparticles in the THNF will also hike the nanoparticle concentrations which will boost 

viscous forces in the nanofluid and lead to deceleration in the boundary layer flow. Clearly there 

is a significant deviation between shear-thinning, shear-thickening and Newtonian nanofluid 

velocity profiles, confirming that the Newtonian model either under-predicts or over-predicts 

velocity magnitudes and is therefore inadequate for realistic coating applications.  

Fig. 2(f) visualizes the influence of wedge surface transpiration parameter, 𝑆 on the dimensionless 

velocity profile 𝑓′(𝜂) again for both the THNF and UNF cases. As the injection parameter 𝑆 

increases positively (𝑆 > 0), the fluid velocity is enhanced, and momentum boundary layer 

thickness is reduced. THNF velocity magnitudes are exceeded by the UNF case. The introduction 

of nanofluid via the perforated wedge surface into the boundary layer adds momentum to the flow 

(blowing). This induces acceleration. The reverse trend is computed with increasing surface 

suction (𝑆 < 0) wherein nanofluid is extracted via the wedge surface from the boundary layer 

inducing stronger adherence to the wall and an associated deceleration effect. Strong suction 

therefore produces a thicker momentum boundary layer. The solid wall (non-porous wedge 

surface) case i. e. S= 0 achieves velocity magnitudes intercalated between the suction and injection 

cases. Significant manipulation of the coating tangent hyperbolic nanofluid regime is therefore 

achieved with the mechanism of wall lateral mass flux (porous wedge surface).  

Fig. 2(g) displays the evolution in velocity 𝑓′(𝜂) with variation in Weissenberg number (𝑊𝑒) on 

for both THNF and UNF cases. With increment in 𝑊𝑒 there is a decrement in velocity throughout 

the boundary layer transverse to the wedge surface. Noticeably greater velocity magnitudes are 

computed for UNF relative to THNF. 𝑊𝑒 =
Γ 𝑈𝑒

3
2

√𝜈𝑓𝑥
 and expresses the ratio of elastic force in the 

rheological nanofluid to the viscous force. This parameter features only in the higher order shear 

term in Eqn. (23) i. e. 𝐴𝜈𝑓′′′ ((1 + 𝑛) + 𝑛𝑊𝑒√1 + 𝑚 𝑓′′) unlike the power-law rheological index 

which appears in multiple terms. For We <1, the viscous force will dominate the elastic force, and 

this will generate stronger resistance to the flow, manifesting in boundary layer deceleration. 

Weissenberg number also expresses the ratio of the fluid relaxation and retardation times. The 

tangent hyperbolic model is an elastico-viscous model, which combines elastic and viscous 

properties. When the time scale (retardation time) of a flow is significantly lower than the 

relaxation time in the nanofluid, elastic effects dominate, and this corresponds to We > 1. However, 
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in practical rheological nano-coating flows [39, 44], the case of We <1 is more appropriate in 

which retardation time significantly exceeds the relaxation time and elastic effects relax 

sufficiently for viscous effects to dominate. Therefore, we have restricted attention to the case of 

We <1.  

Fig.2(h) visualizes the effect of electric field parameter (𝑈𝐸) on dimensionless velocity 

distributions 𝑓′(𝜂) for both THNF and UNF systems. These distributions are shown for both 

positive and negative values of 𝑈𝐸. For robust flow control on the wedge, the electric field plays 

an extremely significant role. The parameter value of the electrical field is negative when the 

electrical field direction is reversed and oriented in the positive axial direction, while it is positive 

when oriented in the negative axial direction. It is evident that a positive increase in the value of 

𝑈𝐸 results in an increase in the flow velocity (and decrease in hydrodynamic boundary layer 

thickness of the tangent hyperbolic nanofluid) whereas the contrary effect is induced for negative  

𝑈𝐸. The vanishing electric field case corresponds to 𝑈𝐸 = 0. Significantly higher velocities are 

observed for the UNF case compared to the THNF case, at all values of 𝑈𝐸. 

Influences of 𝑀 on 𝑓′(𝜂) is presented in Fig.2(i) for both THNF and UNF cases.  The magnetic 

field may be thought of as the ratio of the forces exerted by electromagnetic fields to those exerted 

by viscous fields. As a direct result of this, the increase in the magnetic field acted to slow down 

the movement of the liquid. It can be seen rather clearly from this graphic that the momentum 

barrier layer will get thinner as 𝑀 increases. It is a well-established fact that as the value of the 

Hartmann number 𝑀 increases, the velocity profile, denoted by 𝑓′(𝜂), will inevitably get flatter. 

This phenomenon may be explained by the fact that the Lorentz force is intensified owing to bigger 

values of the magnetic field which elevate the Hartmann number for both THNF and UNF cases. 

As a consequence of this strengthening, it generates resistance in the flow of the fluid. The UNF 

scenario has much larger velocities than the THNF case. 

Figs.3(a) and 3(b), respectively, illustrate the non-dimensional electric potential profiles 𝜙(𝜂) as 

a function of zeta potential parameter (𝜉) and electroosmosis parameter (𝜅) in the case of 𝑚 = 0 

(Blasius boundary layer flow along a flat horizontal surface) and 𝑚 = 1 (forward stagnation point 

boundary layer flow adjacent to a vertical surface). Significantly higher electrical potential values 

are computed for m = 0 compared with m = 1. There is also a marked enhancement in electric 

potential magnitudes with increment in zeta potential parameter. Zeta potential is the charge 
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developing at the interface between the wedge surface and the tangent hyperbolic ionic magnetic 

nanofluid. It is typically of the order of milli-Volts. It modifies the net charge at the particle surface 

and therefore influences the ion distribution in the nearby region, increasing the concentration of 

counterions close to the wedge surface. Thus, an electrical double layer is formed in the region of 

the particle-nanofluid interface. The double layer has two section- an interior zone which includes 

ions bound closely to the wall (wedge face) and an external zone where a balance of electrostatic 

forces and random thermal motion dictates ion distribution. The electrical potential in this region, 

therefore, decays with increasing distance from the surface until, at a critical distance, it attains the 

so-called bulk solution value, which is nominally zero. The zeta potential is effectively the 

electrical potential value at the wedge surface. Zeta potential is therefore a function of the surface 

charge of the particle, any adsorbed layer at the interface, and the nature and composition of the 

engulfing tangent hyperbolic nanofluid. In industrial operations, zeta potential can be used to 

control of colloidal stability and flocculation processes. Electric potential distribution is found to 

be maximal at the non-zero wedge angle (i. e. forward stagnation flow case, m = 1). Conversely a 

significant suppression in electrical potential is computed with increment in electroosmosis 

parameter () as observed in Fig. 3(b). However again higher magnitudes correspond to the vertical 

surface case (m =1) and much lower magnitudes arise for the Blasius horizontal plate case (𝑚 =

0). It is also apparent that there is no variation in electrical potential values at the wedge surface 

with electroosmosis parameter variation () whereas in Fig. 3(a) there is a significant variation at 

the wall with changes in the zeta potential parameter.  

Figs. 4(a) – 4(g) depicts the influence of zeta potential parameter(𝜉), electroosmosis 

parameter(𝜅), rheological power-law index (𝑛), Forchheimer number (𝐹𝑟), Falkner-Skan power-

law wedge constant (𝑚), suction/injection parameter (𝑆) and unsteadiness parameter (𝐴) on 

surface friction coefficient √𝑅𝑒𝐶𝑓 for both THNF and UNF cases.  

Figs.4(a-b) visualize the variation of surface friction coefficients √𝑅𝑒𝑓′′(0) for different value of 

zeta potential (𝜉) and electroosmosis (𝜅) parameters against Hartmann (magnetic) number 𝑀 with 

THNF and UNF. Skin friction is significantly boosted with increasing Hartmann number. 

Similarly, there is a significant boost in skin friction with increasing zeta potential parameter. 

THNF achieves much higher skin friction than the UNF case. The 𝜉 and 𝜅 parameters can be 

exploited to therefore substantially modify characteristics on the wedge surface and manipulate 
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boundary layer behavior. The skin friction coefficient values are higher for THNF than UNF in 

both Figs. 4a, b. A high zeta potential and electro-osmotic parameter both generate greater electric 

field force and pressure in the EDL which produces flow acceleration. Figure 4(c) shows that a 

rise in n produces a depression in skin friction √𝑅𝑒𝐶𝑓 since higher viscosity is associated with 

dilatant nanofluids relative to pseudoplastic nanofluids. Again, higher skin friction arises for 

THNF compared with UNF. It is also evident that negative skin friction is associated with the 

dilatant case (n >1) whereas positive skin friction is produced with pseudoplastic nanofluids (n 

<1). For pseudoplastic nanofluids there is an upward trend in skin friction with increasing magnetic 

parameter whereas for dilatant nanofluids there is a downward trend with greater magnetic 

parameter.  Fig. 4(d) portrays the variation of √𝑅𝑒𝐶𝑓 with Forchheimer number (𝐹𝑟). A strong 

decrement in skin friction is induced with greater Fr values since significant quadratic drag is 

produced. The case of the Darcy medium (𝐹𝑟 = 0) achieves the highest skin friction magnitudes 

at all values of magnetic parameter, M. THNF achieves much greater skin friction than UNF.  The 

surface viscous drag √𝑅𝑒𝐶𝑓 is strongly modified therefore for both THNF (black solid line) and 

UNF (black dotted line) for different values of 𝐹𝑟 and magnetic parameter, M.  Fig.4(e) shows that 

with increasing wedge parameter, m and magnetic parameter, M, there is a significant enhancement 

of √𝑅𝑒𝐶𝑓 for both THNF and UNF, although again THNF produces higher magnitudes. Fig. 4(f) 

indicates that with increasing surface suction (𝑆 < 0)  for both THNF and UNF cases, there is a 

reduction in skin friction, whereas there is a strong monotonic increment with increasing magnetic 

parameter, M. THNF however produces much greater magnitudes than UNF. A substantial boost 

in skin friction is as expected induced with greater surface injection i. e. blowing at the wedge face 

(S >0). Finally in Fig. 4(g) it is apparent that with an increase in the unsteadiness parameter, A, 

and magnetic parameter, M, there is a marked enhancement in skin friction for both THNF and 

UNF cases. As before, the THNF case attains significantly greater skin friction magnitudes than 

the UNF case. The minimal skin friction is therefore associated effectively with the steady case (A 

= 0) and vanishing magnetic field (M = 0) and associated with the UNF (alumina nanoparticle) 

case.  
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6. CONCLUSIONS 

An analytical and numerical study has been presented for unsteady, electro-magneto-

hydrodynamic (EMHD) incompressible, two-dimensional tangent hyperbolic non-Newtonian 

ternary hybrid nanofluid boundary layer coating flow external to a 2-dimensional wedge geometry 

adjacent to a non-Darcy porous medium. The effects of zeta-potential and surface suction/injection 

have been included. The Darcy-Forchheimer drag force model is deployed. The ternary composite 

nanofluid (THNF) considered comprises three nanoparticles (𝐴𝑙2𝑂3, 𝑇𝑖𝑂2 and 𝑆𝑖𝑂2) with aqueous 

base fluid (𝐻2𝑂). The unitary nanofluid (UNF) utilizes only 𝐴𝑙2𝑂3 nanoparticles in water. The 

governing conservation partial differential equations for continuity and momentum and associated 

boundary conditions at the wedge surface and free stream are transformed with appropriate 

similarity variables. The emerging ordinary differential nonlinear boundary value problem is 

numerically solved in MATLAB with the bvpc collocation technique. Validation with earlier 

studies is included. The computations have shown that: 

(i) Increasing Darcy number and surface injection parameter contribute to an increase in 

velocity and reduction in momentum boundary layer thickness. 

(ii) Increasing zeta potential and electroosmosis parameters elevate skin friction coefficient 

for both THNF and UNF cases. 

(iii) A significant deceleration is induced in the flow of a ternary hybrid nanofluid with an 

increase in the electric field parameter.  

(iv) An increment in Falkner-Skan power-law constant (moving wedge angle parameter) 

boosts the local skin friction coefficient for both the ternary hybrid nanofluid (THNF) 

and unitary 𝐴𝑙2𝑂3 nanofluid (UNF) cases.  

(v) Both electroosmosis and electric field parameters improve the velocity distribution for 

both THNF and UNF flow cases.  

(vi) An increment in tangent hyperbolic power-law rheological parameter (from shear-

thinning n <1 to shear-thickening n>1) decelerates the flow.  

(vii) Increasing Forcheimmer number (non-Darcy inertial drag) and greater Weissenberg 

number induce strong flow deceleration (thicker momentum boundary layers).  
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(viii) Higher values of wedge surface injection parameter accelerate the flow and decrease 

momentum boundary layer thickness whereas surface suction produces the opposite 

effect.  

(ix) With increasing zeta potential parameter electric potential magnitudes are elevated. 

(x) With an increase in the unsteadiness parameter and magnetic body force parameter 

there is a marked enhancement in skin friction for both THNF and UNF cases. 

(xi) Electric potential distribution is found to be maximal for non-zero wedge angle (i. e. 

forward stagnation flow case, m = 1).  

(xii) A marked depletion in electrical potential is computed with increment in 

electroosmosis parameter and much higher values are observed for the vertical surface 

case (m =1) and much lower magnitudes arise for the Blasius horizontal plate case 

(𝑚 = 0).  

(xiii) There is no variation in electrical potential values at the wedge surface with 

electroosmosis parameter variation whereas there is a significant variation at the wall 

with changes in the zeta potential parameter.  

The present study has revealed some intriguing features of non-Newtonian electro-magneto-

hydrodynamic coating flow on a wedge body. The tangent hyperbolic rheological model has been 

used. Future studies may consider alternative non-Newtonian models such as the micropolar model 

[21, 29] and will be explored soon.  Additionally, wall slip, Joule heating [48] and non-Fourier 

heat flux [49] may also be considered in subsequent investigations.  

 

 

APPENDIX  

The sample Matlab BVP4C function code for the proposed mathematical model is extracted as 

follows: 

function Sample_parameter 

global K m A UE Ar Av n We Be M1 Da As S Ga xi Fr 

 

K = 1; m = 0.3; Be = 2*m/(1+m);  UE = 2; n = 0.2;We = 0.1;  

Fr = 0.5; M1 = 2; Da= 0.5; A = 1; xi = 01; S = 0.5; Ga = .2;  

P1=0.08;P2=0.0;P3=0.0; P=P1+P2+P3; B1=37.1;C1=612.6; B2=13.5;C2=904.4; 

B3=2.5;C3=6.2; rf=997.1;rf1=3970;rf2=4250;rf3=3970; 
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Sf=5.5*10^(-6);Sf1=35*10^6;Sf2=3.5*10^6;Sf3=10^(-23);  

a1=((1+B1*P+C1*P^2)*P1+(1+B2*P+C2*P^2)*P2+(1+B3*P+C3*P^2)*P3)/P; 

Ar=(1-P)+((rf1*P1+rf2*P2+rf3*P3)/rf); Av=a1/Ar;  

Snf = Sf*(((1+2*P3)*Sf3+(1-2*P3)*Sf)/((1-P3)*Sf3+(1-2*P3)*Sf)); 

Shnf = Snf*(((1+2*P3)*Sf2+(1-2*P3)*Snf)/((1-P3)*Sf2+(1-2*P3)*Snf)); 

Sthnf = (Shnf/Sf)*(((1+2*P3)*Sf1+(1-2*P3)*Shnf)/((1-P3)*Sf1+(1-2*P3)*Shnf)); 

As=Sthnf;  

xlow=0; xhigh=8; xint= linspace(xlow,xhigh,41); 

options = bvpset('RelTol',1e-9,'Stats','on'); 

solinit= bvpinit(linspace(xlow,xhigh,41),ones(5,1)); 

sol = bvp4c(@bvp4ode,@bvp4bc,solinit,options); 

Sxint= deval(sol,xint); 

plot(xint,Sxint(2,:),'m-*', 'LineWidth',2.2) 

 

function dydx= bvp4ode(x,y) 

global K m A UE Ar Av n We Be M1 Da As Fr 

dydx =[ y(2) 

        y(3) 

        ((((As*M1*M1+Av*Ar*Da)*(y(2)-1))/(Ar*(1+m)))-(A/(1+m))*(2-y(3)*x-2*y(2))-y(1)*y(3)-Fr*(y(2)*y(2)-1)-

Be*(1-y(2)*y(2))-(UE*K*K/Ar)*sinh(y(4)))/(Av*((1+n)+n*We*y(3)*sqrt(1+m))) 

        y(5) 

        (K/(1+m))*sinh(y(4))]; 

  

    function res = bvp4bc(ya,yb) 

global S Ga m xi 

res = [ ya(1)-(S/(1+m)) 

        ya(2)+Ga  

        yb(2)-1 

        ya(4)-xi  

        yb(4)]; 
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