
1 
 

*Corresponding author: mmbhatti@sdust.edu.cn; mubashirme@yahoo.com  

 

 ZAMM‐Journal of Applied Mathematics and Mechanics/ 

Zeitschrift für Angewandte Mathematik und Mechanik 

https://onlinelibrary.wiley.com/journal/15214001 

Impact factor:1.603 

Accepted April 2nd 2023 

 

Mixed convection Casson polymeric flow from a nonlinear stretching 

surface with radiative flux and non-Fourier thermal relaxation effects: 

Computation with CSNIS   

 

A. Shahid1, W. Wei1, M. M. Bhatti2,3*, O. Anwar Bég4 and Tasveer A. Bég5 

1School of Science, Zhejiang University of Science and Technology, Hangzhou, 310023, P.R. China. 

2College of Mathematics and Systems Science, Shandong University of Science & Technology, Qingdao 

266590, Shandong, P.R. China. 

3Material Science, Innovation and Modelling (MaSIM) Research Focus Area, North-West University, 

Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa. 

4 Multi-Physical Engineering Sciences Group, Mechanical Engineering, Corrosion and Multiphysics 

Lab, SEE Building, Room 3-08, Salford University, Manchester, M54WT, UK.  

5 Engineering Mechanics Research, Israfil House, Dickenson Rd., Manchester, M13, UK.  

 

 

Abstract:  

Thermal non-Newtonian polymer coating flows is growing as a major area in materials 

processing. Inspired by new developments in this field which require more sophisticated 

mathematical models, the current investigation examines the laminar viscoplastic boundary layer 

flow and mixed convective heat transfer over a power-law nonlinear stretching surface. To 

simulate thermal relaxation effects the hyperbolic Cattaneo-Christov heat flux model is deployed. 

The non-Newtonian polymer characteristics are described by employing the Casson flow model. 

High temperature conditions invoke thermal radiation flux which is analyzed with an algebraic 

flux model. Via robust similarity transformations, the primitive partial differential conservation 

equations for momentum and energy equations are rendered into a system of coupled non-linear 

ordinary differential equations with associated wall and free stream boundary conditions.  The 

emerging boundary value problem is solved numerically with an efficient Chebyshev Spectral 

Newton Iterative scheme (CSNIS), in the MATLAB platform. The resulting solutions are 

discussed for different emerging parameters using graphs and tables.  Validation is included with 

special cases from the literature. With increasing power law stretching index increases, the flow 
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is decelerated, and temperatures are reduced. Increment in mixed convection parameter boosts 

the velocity but suppresses temperature and thermal boundary layer thickness. Increasing non-

Fourier Deborah number, temperatures are depleted whereas with increasing radiative flux 

parameter they are increased. With elevation in Casson non-Newtonian parameter, velocity is 

decreased whereas temperature is enhanced and Nusselt number is suppressed.  

 

Keywords: Cattaneo-Christov heat flux; Mixed convection; thermal radiation; nonlinear stretching 

surface; non-Fourier; Chebyshev Spectral Newton Iterative Scheme; polymer coating. 

Nomenclature 

,y x  Cartesian coordinates  

c  Constant 

U  Nonlinear stretching velocity 

wT  Temperature at the sheet surface (wall) 

T  Ambient (free stream) temperature 

ˆ ˆ,u v  Velocity components 

*
k  Rosseland mean spectral absorption coefficient 

pc  Specific heat 

Gr  Grashof number 

Pr  Prandtl number 

Greek symbols 

  mixed convection parameter 

  Power index associated with surface stretching velocity 

jk jke e =  Ratio between the deformed part with itself 

c  Critical value of the Casson model 

D  Plastic dynamical viscosity 

  Yield stress of liquid 

1
2   =

D c
 Casson viscoplastic parameter 

  Stefan-Boltzmann constant 

  Thermal diffusivity of the polymer 

  Polymer fluid density 

2  Non-Fourier heat flux relaxation time 

  Kinematic viscosity 

  Modified Deborah number 

  Reynolds number 
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  Radiation parameter 

 

1. Introduction 

Non-Newtonian fluids flowing over nonlinear stretching surfaces have stimulated the 

attention of scientists in recent years, due to advances in modern polymer materials processing 

systems and thermal coating deposition with viscoplastic materials. For instance, if a non-

Newtonian liquid is used as the cooling and heating medium, the required injecting power may 

be greatly decreased. As a result, the analysis of non-Newtonian boundary layer flows adjacent 

to an elongating sheet is crucial in optimizing coating flows and in other technologies including 

heat exchange [1-3]. Many synthetic and natural liquids exhibit a range of non-Newtonian 

characteristics including slurries, muds, solidified milk, pastes, imprinting ink, amalgamations, 

cleansers, sugar suspensions, shampoos and thermoplastics. Non-Newtonian liquids have 

various features that differ from Newtonian liquids. These characteristics include viscoplasticity 

(yield stress behaviour), viscoelasticity, internal microstructure (couple stresses for example), 

relaxation, retardation, spurting and swelling. Non-Newtonian constitutive models are therefore 

more complex and generally non-linear when compared to the classic Newtonian model. Due to 

these complexities, there is no single constitutive equation that encompasses all of their features 

[4]. Therefore, a range of non-Newtonian models have been deployed in recent years to address 

various flow problems. In thermal polymer coating dynamics [5], heat is critical and convective 

heat transfer must also be simulated in addition to thermal conduction (at the wall) and thermal 

radiation for high temperature fabrication systems. The convective heat from stretching sheets 

with different non-Newtonian models has received considerable attention in the mathematical 

modelling community.  Prakash et al. [7] used a tangent hyperbolic non-Newtonian nanofluid 

model to study biaxial stretching of electromagnetic polymers with convective and radiative heat 

transfer. Kumar et al. [8] deployed a differential transform method to compute the time-

dependent convective boundary layer flow of a Stokes polar (couple stress) rheological fluid from 

a stretching sheet. Kumar et al. [8] explored the effects of thermal radiation and magnetic field on 

micropolar fluid moving from a stretching sheet with wall slip effects. Kumar et al. [9] analyzed 

the impact of radiative flux on non-aligned stagnation-point flow of a magnetized micropolar 

fluid from a convectively heated surface. Megahed [10] used the Sisko viscolastic model to 

compute the dissipative thermal convection boundary layer flow from a nonlinear extending 

surface with heat generation. Many other studies have been reported for non-Newtonian thermal 

flows from stretching surfaces in which linear, quadratic, exponential stretching velocity models 

have been deployed.  

The above studies were restricted to the classical Fourier model for thermal conduction. 

This is a parabolic model and neglects thermal relaxation effects which can be significant in 

polymer processing. To more accurately represent thermal behaviour therefore a non-Fourier 
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model [11] is required. The Cattaneo-Christov model [12, 13] provides an excellent approximation 

for computing thermal relaxation effects associated with hyperbolic heat conduction. It has therefore 

been extensively explored in recent years in the context of polymer processing. Kumaran et al. 

[14] used the Keller box finite difference technique to compute the enrobing boundary layer flow 

of a rheological magnetized bio-nanofluid with the tangent hyperbolic model on a stretching 

cylinder with non-Fourier heat flux effects. They observed that temperature distributions deviate 

strongly from the Fourier case and that velocity and concentration fields are also modified 

substantially. Shahid et al. [15] deployed the Maxwell viscoelastic model to study non-Foruier 

heat flux effects on stretching sheet dynamics with radiative heat transfer and wall transpiration 

effects. Alhowaity et al. [16] considered the pseudoplastic nanofluid transport from a stretching 

surface with non-Fourier heat flux effects, noting a considerable modification in Nusselt number 

with stronger thermal relaxation. Mehmood et al. [17] applied both Runge–Kutta–Fehlberg 

numerical quadrature and Adomian decomposition methods to compute the non-orthogonal 

stagnation flow of a magnetized Oldroyd-B viscoelastic polymer on a stretching sheet with 

hetegrogenous chemical reaction and Cattaneo-Christov heat flux. They noted that thermal 

boundary layer thickness was reduced with stronger non-Fourier Deborah number and that wall 

shear stress was strongly modified. Sui et al. [18] employed the homotopy analysis method 

(HAM) to compute the non-Fourier thermo-solutal boundary layer heat and mass transfer of a 

Maxwell viscoelastic nanofluid from a stretching plane with hydrodynamic wall slip. They 

reported substantial reduction in the temperature magnitudes with enhanced thermal relaxation 

(Cattaneo-Christov) parameter.  Han et al. [19] analyzed the Cattaneo-Christov heat flux effects 

on Maxwell fluid flow from a stretching surface. Mustafa [20] derived power series solutions for 

non-Fourier heat flux effects on rotating thermal convection flow of a Maxwell fluid. Many other 

studies have also been communicated of relevance to thermal polymer processing featuring non-

Fourier heat flux models including Kumar et al. [21] (on wedge/cone external boundary layer 

flows), Saqlain et al. [22] (on mixed convection), Bhatti et al. [23] (on quadratic convection in 

Maxwell viscoelastic flows) and Mishra et al. [24] (on Von Karman swirling flows). Very recently 

Ray et al. [25] studied Eyring-Powell rheological polymer nanofluid flow from a stretching surface 

with with non-Fourier thermal relaxation effects. They showed that skin friction factor decreases 

with increasing Deborah (viscoelastic) number and also Cattaneo–Christov thermal relaxation 

parameter. All these studies have confirmed the substantial influence of non-Fourier heat flux in 

polymeric coating flow dynamics.  

In the present article, a mathematical model is developed for radiative mixed convective 

Casson viscoplastic polymer boundary layer flow from a nonlinear stretching sheet with Cattaneo–Christov 

thermal relaxation effects. Thermal buoyancy effects are included. The Casson model provides an 

accurate description for real polymers and other suspensions deployed in coatings [26, 27]. The 

Casson model is a shear thinning model which is assumed to have an infinite viscosity at zero 

rate of shear, a yield stress below which no flow occurs, and a zero viscosity at an infinite rate of 
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shear, i.e., if a shear stress below the yield stress is applied to the polymer, it behaves like a solid, 

whereas if a shear stress greater than yield stress is applied, it starts to move [28, 29]. The current 

analysis also generalizes previous studies which considered only linear sheet stretching to 

consider general power-law stretching rates (quadratic, exponential etc) which provide a more 

robust representation of polymer coating flows. The Rosseland algebraic flux model is deployed 

to compute radiative flux effects [30, 31] since radiation is known to encourage cross-linking and 

enhance stability of optically dense polymers [32]. The transformed nonlinear ordinary 

differential boundary value problem is solved with an efficient, stable and rapidly converging 

Chebyshev Spectral Newton Iterative Scheme (CSNIS) [33]. There are different numerical 

methods (see refs. [34-38]) that can be used to solve such kind of problems, but the used numerical 

method has advantages over other numerical methods. In the proposed technique, we transform 

the domain of the proposed problem to [-1,1]. Further, we discretize this domain into few 

numbers of grid points, while employing some other numerical methods. To obtain the accuracy, 

we discretize the domain in thousands of points. Validation with special cases from the literature 

is included. Graphical plots are presented for the impact of key emerging parameter on velocity 

and temperature distributions. Nusselt number and skin friction are also computed in Tables. 

The thermal and hydrodynamic characteristics are described in detail.  

 

2. Mathematical model for viscoplastic non-Fourier stretching polymer flow  

Laminar, incompressible, steady-state flow of non-Newtonian Casson polymeric fluid along a 

vertical stretching sheet is considered. The stream of extruding polymer flow issuing from a slit 

is constrained at 0y  . From a fixed origin, two equivalent and opposite forces are exerted to 

stretch the sheet along the x -axis. The sheet is extended with a nonlinear stretching velocity 
=U cx , where c is a constant and  represents the power index associated with surface 

stretching velocity. The boundary layer regime is depicted in Fig. 1. A uniform radiative flux is 

applied transverse to the sheet plane. The polymer is assumed to absorb or emit radiation but not 

scatter radiation [32] and Rosseland’s diffusion flux approximation, valid for high optical 

thickness is therefore deployed. Furthermore, wT is the constant temperature imposed at the sheet 

surface (wall) with a corresponding uniform ambient (free stream) temperature, T . The 

appropriate constitutive equations for an isotropic and incompressible Casson fluid (viscoplastic 

polymer) are: 

2 , ,
2

2 , ,
2


  





  



  
+   

 
=   
 +  
   

D jk c

jk

D jk c

c

e

e

      (1) 
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Here   is the ratio between the deformed part with itself, jk jke e = , jke  is the ( ),j k -th part 

of the deformation ratio, 
c  the critical value of the Casson model, and 

D  the plastic dynamical 

viscosity and   the yield stress of liquid. 

 

 
Fig. 1: Viscoplastic polymer stretching flow regime  

 

Thermal buoyancy is invoked and under the Boussinesq approximation, the governing equations 

of continuity, momentum and energy conservation may be shown to assume the following form, 

extending earlier models [39, 40] to include non-Fourier heat flux and non-Newtonian effects: 

 

ˆ ˆ
0,

 
+ =

 

u v

x y
       (2) 
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

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+ = + + − 

   

u u u
u v g T T

x y y
     (3) 

2

2 22 2 2
2 2
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ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

1
ˆ ˆ .

ˆ ˆ ˆ ˆ2

r

p

u T v T v T u T
u v u v

x x y y x y y x QT T T
u v

x y y c yT T T
uv u v

x y x y

 


        
+ + +            + + = −

      
+ + + 

    

  (4) 

The radiative flux (uni-directional) is expressed here as: 

�̃�𝑟 = −
16�̄�𝑇∞

3

3𝑘∗
𝜕𝑇

𝜕�̄�
,      (5) 

Where û  and v̂ denote velocity components in the x  and y directions sequentially,

1
2   =

D c
 is the Casson viscoplastic parameter,   the Stefan-Boltzmann constant,  is the 

thermal diffusivity of the polymer, *
k  is the Rosseland mean spectral absorption coefficient,   

the polymer fluid density, 2  the non-Fourier heat flux relaxation time,   is kinematic viscosity, 

and 
pc the specific heat. The prescribed boundary conditions at the wall (sheet) and in the free 

stream are: 

ˆ ˆ, 0,  ,  at 0,= = = = =wu U cx v T T y      (6) 

ˆ 0, ,  as .→ → →u T T y       (7) 

Invoking the following similarity transformations: 

( )
( )

( ) ( )

( )

1

1

1 1
ˆ ˆ,  ,

2 1

1
,  .

2 w

cx
u cx F v F F

cx T T
y

T T





   
   




 



−

−





+  −
 = = − + 

+  

+ −

= = 
− 

  (8) 

Using Eqn. (8) in Eqns. (2)-(7), generates the following non-dimensional boundary layer equations 

for momentum and energy (heat): 

( )2

1

1 2
1 0,

1
 

 

 
  + + − − = 

+ 
F FF F      (9) 

24 3 1
1 Pr Pr 0.

3 2 2

 
     

− +   
    + + + − =   

   
F FF F    (10) 

The associated transformed dimensionless boundary conditions are: 

 

( ) ( ) ( )0,   = 1,  at 0,F F    = = =      (11) 

( ) ( ) 0,  0,             as ,F     = = →      (12) 

 

Here the following definitions apply: 
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( ) 1
3 2 3

22 2 2 2 *

4
,Pr , , = .

  
   

  

− 
−

= = = =


wg T T x TGr
cx

U x k
  (13) 

 

whereGr  the Grashof number,  the mixed convection parameter, Pr  the Prandtl number,   

the modified Deborah number featuring non-Fourier heat flux relaxation time,  the Reynolds 

number and   the radiation parameter, respectively. 

The dimensionless form of skin friction and Nusselt number with thermal radiative flux 

contribution (both of which are useful for assessing wall characteristics), take the form:  

 

( )

( )

1/2

1

1/2

1 1
Skin friction 1 0 ,

2

1 4
Nusselt number  1 0 .

2 3



 −

 +
=  = +  

 


+  
=  = − +  

  

n
Cf F

n
Nu

   (14) 

 

3. Numerical Method: The CSNIS Technique 

Accurate (exact) solutions of the non-linear differential Eqs. (9)-(10) subject to the boundary 

conditions (11)-(12) are extremely difficult if not intractable, due to the non-linearity. A few 

investigators have utilized scientific semi-analytical methods similar equations. In the current 

investigation, we utilized a numerical approach known as CSNIS (Chebyshev Spectral Newton 

Iterative Scheme). This method has been applied in a range of materials processing applications 

in recent years including slip flow on stretching cylinders [41] and boundary layer flows [42]. 

Firstly, the Newton iterative scheme is employed to transmute the collection of nonlinear 

ordinary differential equations into a linear system. We can write for ( 1)thj + iterations: 

 

1 1,  ,j j j j j jF F F   + += + = +      (15) 

 

This applies for every dependent variable, where jF , j , presents a smaller change in jF , and 

j , separately. The Eqns. (9)- (12) in a linearized form are: 

1, 2, 3, 1,

1

1, 2, 3, 2,

1 2
1 A A A ,

1

4
1 B B .

3

    
 

    

 
  + + + + + =  

+  


    + + + + =    

j j j j j j j j j

j j j j j j

F F F F R

B R

  (16) 

 

The corresponding boundary conditions emerge as:  
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( ) ( ) ( ) ( ) ( ) ( )0 0 ,  0 1 0 ,  0 1 0 ,    = − = − = −j j j j j jF F F F  (17) 

( ) ( ) ( ) ( )0 ,  0 .    = −   = − j j j jF F  (18) 

 

Secondly, the new set of linearized Eqns. (16) dependent upon boundary conditions (17)-(18) is 

solved utilizing the Chebyshev spectral collocation technique [42]. Accordingly, the actual 

domain [0, ∞) is transformed to finite domain [0, L]. The converted area is changed to [-1, 1] by 

utilizing the transformation, 2 / 1 = −L , and the nodal points from -1 up to 1 are specified as 

Gauss-Lobatto collocation points using ( )cos / ,  0,1,2,...,k k N k N = = ,. The CSNIS depends 

on the differentiation matrix [D], and it can be approximated using a process very similar to that 

proposed by Trefethen [43]. In Eqn. (16), the coefficients ,  ,  ,A , , ,  1,2,..... i j i j i jB R i = are: 

 

( )

1, 2, 3,

2

1, 1 2, 1 1 3, 1

2

1,

1

2

2,

4
A ,  A ,  A ,

1

3 1
B ,  B ,  B ,

2 2

1 2
1 ,

1

14 3
1 Pr ,

3 2 2






 



 


     

+ + + +

 = = − = +


− + 
= = = − 


 

   = − + + − 
+ 

+ −      = + + + −  
    

j j j j j j

j r j j r j j j r j

j j j j j

j j j j j j j j j

F F F

n
P F P F F P F

R F F F F

R F F F F






  (19) 

 

We apply the differentiation matrix [D], to the set of Eqns. (9)-(12). This gives: 

 

1,11 12

2,21 22

j j

j j

F RC C

RC C





    
=    

     
 (20) 

Where  

3 2

11 1, 2, 3, 12

1

2 2

21 1, 22 2, 3,

1 2
1 A A A ,  0,  

1

4
1 ,  B B ,

3


 



 
= + + + + + =  

+  


  
= + + = + +    

j j j j

j j j

C D D D I C

C D B D C D D

 (21) 
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Here I expresses the identity matrix. Now, the Gauss-Seidel technique can be employed over the 

above set of matrices to obtain their solutions. All the computations of the above equations are 

performed in the MATLAB software.  

 

4. Results and discussion 

The CSNIS approach is employed to solve the nonlinear differential equations (9)-(12) 

with the boundary conditions (11)-(12) for the various values of the dimensionless parameters i.e.  

the mixed convection term  , the Casson fluid parameter
1

 , power-law stretching index , 

thermal radiation , Prandtl parameter Pr , and the non-Fourier Deborah number . We used the 

following parameters to generate the graphical results for the velocity and temperature profiles: 

1
Pr 0.72, 1, 0.3, 0.4, 2, 1.    = = = = = =  Data has been extracted to represent realistic 

viscoplastic polymers in thermal processing regimes.  

 

Tables 1 and 2 compare the velocity gradient (skin friction) and heat transfer rate (Nusselt 

number) computed with CSNIS with Vajravelu [39] and Cortell [40]. Setting the following values 

to zero in the general model i. e. Eqns. (9)-(12) equates the current formulation exactly with the 

models in [39, 40] which are restricted to Newtonian viscous flow without mixed convection: 

1
, 0   =  = = = . It is observed that an excellent agreement has been attained, demonstrating 

very good accuracy of the CSNIS methodology. Confidence in the CSNIS results is therefore 

justifiably high.  Table 3 displays the numerical results for skin friction coefficient and Nusselt 

number for each emerging parameter. In this table, we can observe that the skin friction 

coefficient decreases as the Casson fluid parameter and mixed convection parameter rise. 

Conversely both skin friction and Nusselt number are elevated with increasing power law 

stretching index rises i.e with more intense stretching of the sheet. 
1

2   =
D c

 is the Casson 

viscoplastic parameter and features in the modified shear term, (1 +
1

𝛽1
)𝐹‴ in the momentum 

Eqn. (9). As Casson parameter increases the yield stress also increases which inhibits momentum 

development. This reduces velocity but increases skin friction at the wall. However, the increase 

in viscoplastic parameter will induce a heating effect in the boundary layer (temperatures will 

rise) and this will lead to a depletion in heat transferred to the wall. Nusselt numbers are therefore 

reduced with larger Casson viscoplastic parameter. Generally increasing mixed convection term

 , power-law stretching index , thermal radiation , Prandtl parameter Pr and non-Fourier 

Deborah number all contribute to enhancing Nusselt number magnitudes significantly.  
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Table 1. Skin friction i. e. wall velocity gradient ( )0F  - comparison of CSNIS solutions with 

earlier special cases where
1

, 0   =  = = = . 

  Current Results 

(CSNIS) 

Vajravelu [39] (4th order RK method) Cortell [40] (RK 

method) 

( )0F  

1 -1.000000 -1.0000 –1.0000 

3 -1.148593 - -1.1485 

5 -1.194487 -1.1944 - 

7 1.216850 - -1.2168 

10 -1.234874 -1.2348 –1.2348 

 

 

Table 2. Nusselt number i. e. wall heat transfer rate ( )0   - comparison of CSNIS solutions with 

earlier special case [34] where
1

, 0   =  = = = . 

 

  Current Results (CSNIS) Vajravelu [39] (4th order RK method) 

( )0   

Pr 0.71=  Pr 7=  Pr 0.71=  Pr 7=  

1 –0.458545 –1.895403 –0.4590 –1.8953 

5 –0.438819 –1.861581 –0.4394 –1.8610 

10 –0.434849 –1.854638 –0.4357 –1.8541 

 

 

Table 3: Numerical results of skin friction and Nusselt number for all key parameters.    

 

1        Pr    Skin friction 

coefficient 

Nusselt 

number 

1 1 2 0.4 0.72 0.3 -1.854851 0.851447 

2      -1.635221 0.777461 

3      -1.549360 0.746962 

 1.5     -1.839591 0.858976 

 2     -1.822740 0.867202 

 3     -1.783062 0.886172 

  1.5    -1.618611 0.756410 
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  2    -1.854851 0.851447 

  3    -2.252588 1.046484 

   0.2   - 0.803959 

   0.3   - 0.828859 

   0.5   - 0.872064 

    0.71  - 0.843039 

    1  - 1.069178 

    1.5  - 1.395812 

     0.2 - 0.814533 

     0.4 - 0.890229 

     0.5 - 0.930720 

 

Figs. 2-10 present the velocity and temperature profiles with variation in all control parameters.  

The impact of Casson fluid parameter on the profiles of temperature and velocity are 

illustrated in Figures 2 and 3. The velocity is observed to decrease when the Casson fluid 

parameter is increased, whereas the temperature increases. With increasing Casson fluid 

parameter i. e. greater viscoplasticity (higher yield stress), the thickness of the momentum 

boundary layer drops. However back flow is never induced i. e. velocity magnitudes are always 

positive anywhere in the boundary layer regime transverse to the sheet. However, when the 

Casson fluid parameter is increased, the thickness of the thermal boundary layer grows. It is 

noteworthy that asymptotically smooth profiles are computed consistently in the free stream 

confirming the prescription of an adequately large infinity boundary condition in the CSNIS code.  
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Fig. 2 Influence of 1  on velocity profiles. 

 
Fig. 3 Influence of 1  on temperature curves.  
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Fig. 4 Influence of   on velocity profiles.  

 
Fig. 5 Influence of   on temperature curves.  
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Fig. 6 Influence of   on velocity profiles. 

 
Fig. 7 Influence of   on temperature distributions.  
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Fig. 8 Impact of Pr  on temperature profiles.  

 
Fig. 9 Impact of   on temperature profiles.  
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Fig. 10 Influence of    on temperature curves. 

The velocity and temperature profiles with variation in power law stretching index are shown in 

Figures 4-5. It is revealed that when the power index increases, both the fluid velocity and the 

temperature drop. The basic case of a linear elastic stretching surface is retrieved for 1 = . The 

parameter,  arises in multiple terms in both the momentum and thermal boundary layer Eqns, 

viz −
2

𝜉+1
(𝜉𝐹′2 − 𝜆𝜃) in Eqn. (9) and the convective terms, 𝑃𝑟 𝛾 (

𝜉−3

2
𝐹𝐹′𝜃′ −

𝜉+1

2
𝐹2𝜃″) in Eqn. 

(10). By virtue of the definition of the stretching velocity, velocity =U cx , clearly  =2 implies 

quadratic stretching,  =3 corresponds to cubic stretching etc. With increasing stretching rate there 

is a delay in the momentum imparted to the boundary layer. This suppresses the velocity field 

and via coupling terms in both equations (9) and (10) also reduces the thermal diffusion, leading 

to a reduction in temperatures. The case of linear stretching therefore over-predicts both velocity 

and temperature (and under-predicts momentum boundary layer thickness and over -predicts 

thermal boundary layer thickness). More realistic results corresponding to actual nonlinear 

stretching encountered in real polymer processing are therefore only computable with the power-

law model.   

Figures 6-7 illustrate the effect of the mixed convection term  on the velocity and 

temperature distributions. Since the mixed convection term features in the coupling term, 

−
2

𝜉+1
(−𝜆𝜃) which is effectively positive and this exerts a strong effect on the flow characteristics. 



18 

   

When  𝜆 = 0 the case of forced convection is produced.  Higher values of 𝜆 =
𝐺𝑟

ℜ2 =
𝑔𝛽(𝑇𝑤−𝑇∞)�̄�3

𝜈2

𝑈2�̄�2

𝜈2

 

imply a boost in Grashof number and accentuation in thermal buoyancy force relative to viscous 

force. This will accelerate the boundary layer flow whereas it will inhibit thermal diffusion in the 

regime. Both momentum boundary layer thickness and thermal boundary layer thickness will be 

reduced.  

Figure 8 depicts the influence of the Prandtl number Pr on the thermal profile. A sharp 

decrement in temperature is induced with larger Prandtl number. As Pr increases, the thickness 

of the thermal boundary layer decreases. The momentum-to-thermal diffusivity ratio is expressed 

by the Prandtl number. Prandtl number also expresses the ratio of momentum to thermal 

boundary layer thickness. When Pr =1 both momentum and energy diffuse at the same rate and 

the boundary layer thicknesses are equal. Prandtl number is also inversely proportional to 

thermal conductivity. Higher Pr therefore implies a reduction in polymer thermal conductivity 

which manifests in a reduction in temperatures. Since lower Prandtl liquids have greater thermal 

conductivities than higher liquids, heat may permeate from the sheet more rapidly. As a 

consequence, Prandtl number choice (depending on the polymer utilized) may be exploited to 

accelerate cooling. 

Figure 9 demonstrates how temperature distribution is modified with thermal radiation 

parameter,   The radiative flux energizes the polymeric flow. 𝜁 =
4�̄�𝑇∞

3

𝑘∗𝜅
 and expresses the 

relative contribution of thermal radiation to thermal conduction in the regime. When 𝜁  = 0, radiative 

flux vanishes from the augmented thermal diffusion term, (1 +
4

3
𝜁)𝜃″  in Eqn. (10), and 

temperature and thermal boundary layer thickness are minimized. With increment in thermal 

radiation parameter, thermal diffusion is exacerbated in the boundary layer which produces a 

boost in temperatures. It is also noteworthy that when 𝜁  = 1, both thermal conduction and thermal 

radiation contribute equally whereas when 𝜁  < 1, thermal conduction is dominant.  

Figure 10 shows that at higher values of the non-Fourier Deborah number  , a 

considerable decrease in temperatures inside the boundary layer is induced. There will also be a 

corresponding reduction in the thickness of the thermal boundary layer. In the non-Fourier 

model, the modified Deborah number features the supplemental impact brought on by thermal 

relaxation time. By setting 0 = , the Cattaneo-Christov heat flux model (non-Fourier), is 

reduced to the classical Fourier model. 𝛾 = 𝜆2𝑐�̄�
𝜉−1  and features in the modified thermal 

diffusion terms, +𝑃𝑟 𝛾 (
𝜉−3

2
𝐹𝐹′𝜃′ −

𝜉+1

2
𝐹2𝜃″)  in Eqn. (9). Higher thermal relaxation effect 

implies a longer time required for thermal waves to propagate in the polymer and results in a 

cooling effect i. e. decrease in temperature. Lower thermal relaxation corresponds to a faster 

propagation of thermal waves which produces higher temperatures. Evidently the inclusion of 



19 

   

thermal relaxation i. e. non-Fourier effects avoids the over-prediction of temperature encountered 

with the classical Fourier model.  

 

5. Concluding Remarks  

Motivated by simulating thermal non-Newtonian polymer coating flows, in this article the 

laminar viscoplastic boundary layer flow and mixed convective heat transfer over a power-law 

nonlinear stretching surface with thermal relaxation effects has been studied. The hyperbolic 

Cattaneo-Christov heat flux model has been used. The non-Newtonian polymer characteristics 

are described by employing the Casson flow model. The Rosseland diffusion flux model has been 

employed for thermal radiation. Via robust similarity transformations, the primitive partial 

differential conservation equations for momentum and energy equations have been converted 

into a system of coupled non-linear ordinary differential equations with associated wall and free 

stream boundary conditions. A Chebyshev Spectral Newton Iterative scheme (CSNIS) in the 

MATLAB platform has been implemented to solve the nonlinear boundary value problem. 

Verification of the method has been achieved via comparisons with Newtonian flow and classical 

Fourier heat flux solutions presented in the literature. The main findings of the present 

computations can be summarized as follows: 

 

1. When the Casson viscoplastic fluid parameter is increased, the fluid velocity is depleted 

whereas temperature magnitudes are increased.  

2. When the mixed convection parameter is enhanced, the flow is accelerated strongly 

whereas temperature is reduced substantially. 

3. The temperature and fluid velocity both decline as the power law stretching index 

parameter is enhanced. 

4. An elevation in the Prandtl number reduces the thickness of the thermal boundary layer 

and suppresses temperatures, whereas temperature is strongly boosted with increment 

in thermal radiation parameter.   

5. Higher non-Fourier Deborah numbers induce a reduction in thermal boundary layer 

thickness as well as a considerable decrease in temperature profile due to larger thermal 

relaxation times. 

6. Nusselt number is strongly boosted with increasing mixed convection parameter, 

radiative parameter, Prandtl number and non-Fourier Deborah number  

CSNIS has been shown to hold significant promise in numerical analysis of nonlinear rheological 

thermal polymer coating flows. Attention has however been restricted to a viscoplastic model. 

Future investigations may consider viscoelastic polymers and utilize for example the FENE-P 

model. Efforts in this direction will be communicated imminently [44]. 
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