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ABSTRACT   

The continuous two-dimensional boundary layer heat transfer in an electroconductive Newtonian 

fluid from a stretching surface that is biased by the magnetic field aligned with thermal radiation 

is the subject of this study. The effects of magnetic induction are induced because Reynolds 

number is not small. The sheet is travelling with a temperature and velocity that are inversely 

related to how far away from the steady edge it is from the plane in which it is travelling. We also 

imposed external velocity 𝑢 = 𝑢𝑒(𝑥) =  D𝑥𝑝  in the boundary. The necessary major equations are 

made dimensionless by the local non-similarity transformation, became a system of non-linear 

ordinary differential equations after being transformed from non-linear partial differential 

equations. The subsequent numerical solution of the arisen non-dimensional boundary value 

problem utilizes a 6th-order Runge-Kutta integration scheme and Nachtsheim-Swigert shooting 

iterative technique. A good correlation is seen when the solutions are compared to previously 

published results from the literature. Through the use of graphical representation, the physical 

impacts of the fluid parameters on speed, induced magnetic field, and temperature distribution is 
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carried out. Furthermore, the distributions for skin friction co-efficient, and local Nusselt number 

are also studied for different scenarios. The skin friction coefficient and local Nusselt number are 

observed to increase with greater values of the temperature exponent parameter and velocity 

exponent parameter. However, as heat radiation increases, the local Nusselt number decreases even 

though temperatures are noticeably higher. The study finds applications in magnetic polymer 

fabrication systems. 

 

KEY WORDS: Non-similar solution, stretching surface, induced magnetic field, velocity 

exponent parameter, temperature exponent parameter, boundary layers, thermal convection, 

radiation, electroconductive materials processing. 

 

1     INTRODUCTION  

       Boundary-layer theory [1] remains one of the most versatile and enduring approaches in 

modern fluid dynamics. Introduced by the great aerospace engineer, Prandtl, over a century ago, 

the bisection of the flow field into two distinct areas simplifies the equations of fluid flow: one in 

the core of the boundary layer, where the dominance of viscosity is observed and a created body 

which is submerged in a fluid experienced the majority of the drag force, and other side of the 

boundary layer where the viscosity has no significant effects on the solution and thus can be 

neglected. The theory has been deployed in practically every branch of fluid dynamics, including 

aerodynamics, medical flows, atmospheric phenomena, sediment transport, chemical engineering 

transport and materials processing systems, to name a few applications. In materials fabrication 

technologies [2], boundary layer flow with heat transfer adjacent to a stretching sheet which is 

moving in its own plane constitutes a fundamental problem. Stretching sheet transport phenomena 

arise in numerous manufacturing processes such as polymer extrusion, surface coating, plastic 

films packaging, enrobing, continuous casting of metals, spray deposition etc. 

Magnetohydrodynamic materials processing [3] involves, among other areas, the synthesis of 

electrically conducting fluids and features in for example modern metallurgy, smart coating 

systems and metal working processes. Complex electroconductive polymers [4] are also designed 

by the cooling of continuous sheets drawn through a quiescent or moving fluid and stretched during 

the drawing process. The composition of manufactured materials is particularly sensitive to the 

rate of heat transfer at the stretching surface since both heat and mass transfer as well as electro-

magnetic phenomena also occur in such stretching flows. Several different phenomena, such as 

magnetic induction in polymer alignment Several different phenomena, such as magnetic 

induction in polymer alignment, in such applications, variations in material composition, magnetic 
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leiaton of diamagnetic matter, texture formation in metals, and dampening of magnetic fields on 

conductive liquids are all observed. Phase conversion in both liquid-to-solid and solid-to-solid 

state transitions is also observed. Beginning with a continuous semi-infinite sheet travelling 

gradually through a fluid environment that was at rest, Sakiadis [5] pioneered the research of 

stretched boundary layer flows. Among the two common types of upwelling heat and mass 

transport, forced convection correlates with the set ups where the velocity of the fluid rules over 

the other parameters and features often in thermal materials processing [6, 7]. External forces drive 

the flow and buoyancy effects are vanishingly small. Examples include cooling systems in 

automotive engines and furnaces. Rahman et al. [8] studied energy convection in the formation of 

heat in a micropolar fluid along an inconsistent stretching sheet with a viscosity which is 

contingent on temperature and changing exterior temperature. Gupta et al. [9] presented detailed 

finite element computations for transverse magnetic field effects on electroconductive polymer 

convection flows from a stretching sheet. As noted earlier, electromagnetic induction may arise in 

flows where magnetic Reynolds number is not vanishingly small. In addition to including the 

conventional Lorentzian magnetic drag force, a separate equation for induced magnetic field 

conservation must be included with appropriate wall and free stream boundary conditions for 

magnetic boundary layers. Many excellent studies of magnetic inductive boundary layers have 

been conducted for Newtonian viscous fluids along a semi-infinite flat plate without heat transfer 

by notably Greenspan and Carrier [10], Glauert [11], Gribben [12] (using matched asymptotic 

expansions) and Na [13]. The congruous energy relocation in the formation of heat problem has 

been considered by Tan and Wang [14] and Afzal [15]. More recently magnetoconvective stasis-

point flow and energy transfer towards a reclined sheet with induced magnetic field has been 

researched by Ali et al. [16]. Other studies featuring magnetic induction in materials processing 

and medical engineering include Ghosh et al. [17] (on oscillatory liquid metal boundary layers in 

permeable media), Ghosh et al. [18] (on network modelling of unsteady magnetic flow in a tilted 

rotating channel) and Ghosh et al. [19] (on asymptotic analysis of free convection Rayleigh flow). 

The Adomain Decomposition technique (ADM) was employed by Bég et al. [20] to compute 

squeezing flow characteristics in magnetic bio-lubricants. Usman et al. [21] investigated heat 

transmission of Williamson fluid in cilated porous channels using MATLAB quadrature. 

Shamshuddin et al. [22] presented, Keller box numerical solutions for gyrotactic magnetic 

bioconvection nanofluid. Bég et al. [23] used shooting and finite element methods to analyze the 
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hydromagnetic with induction effects, nano-polymers flow from a stretching surface. All these 

studies highlighted the significant contribution that magnetic induction makes to transport (energy 

relocation such as impulse force and heat) characteristics.  

In stretching sheet fluid dynamics, a variety of thermal and hydrodynamic wall conditions may be 

relevant in addition to various stretching sheet rates (linear, quadratic, cubic, exponential etc) as 

elaborated by Jaluria [7].  A linearly stretched sheet with a homogenous surface heat flux was used 

in Dutta et al. [24] for computation of the temperature dispersion in the flow. In order to expand 

sheet boundary layer convection, changing surface temperature and linear surface stretching were 

both studied by Grubka and Bobba [25]. Karwe and Jaluria [26] employed finite difference 

methods to model mixed convection from a travelling sheet. Chen and Strobel [27] research done 

numerically on the combined forced and free convection in isothermal boundary layer flow from 

a horizontal sheet that was moving continuously. Ingham [28] analyzed the continuance of 

solutions for the free transportation boundary layer flow just about a constantly moving 

perpendicular surface with temperature inversely correlated to the distance along the surface. Ali 

and Al-Yousef [29] have reported on laminar mixed convection adjacent to a uniformly moving 

vertical plate with wall mass flux effects. A hot, continuously stretched surface has been researched 

by Chen [30] using mixed convection cooling. 

Thermal radiation also has a significant role in modern materials processing [31] and often 

accompanies convective and conductive heat transfer. The radiation effects on forced and free 

convection have both been studied extensively in recent years. Algebraic flux models are 

frequently employed in such studies since they circumvent the need to solve the full integro-

differential equation of radiative transfer. A popular flux model is the Rosseland approximation 

which provides reasonable accuracy for optically dense flows. It has been utilized in many diverse 

studies in materials processing and chemical engineering (including coupled 

magnetohydrodynamic transport) in recent years and the reader is referred to [32]-[39].  

In our study, we have out-stretched the study of Ali et al. [16] and Chen [30] by considering 

velocity exponent, wall temperature exponent and thermal radiation effects. This constitutes the 

originality of this study. The Local Non-Similarity (LNS) approach proposed by Sparrow-Yu [40] 

is used. With the help of a shooting technique termed the Nachtsheim-Swigert [41] iteration 

methodology and a 6th order Runge-Kutta iterative process, numerical solutions of the modified 

nonlinear boundary layer equations are discovered. Validation with earlier studies [16, 30] is 
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included. Extensive visualization of transport characteristics (velocity, temperature, magnetic 

induction, local skin friction and local Nusselt number) is presented. The simulations are relevant 

to electroconductive materials processing [42].       

Analysis of the boundary layer of Newtonian flow and heat transfer along a non-isothermal 

electroconductive radiative stretching surface under the influence of the aligned magnetic field 

effect has not yet been attempted. Therefore, utilizing the induced magnetic field effect, a study is 

done of the steady flow and heat transfer via a stretching surface. A second-order ordinary 

differential equation matching to the heat equation, a third order ordinary differential equation 

relating to the momentum equation, and magnetic induction boundary layer equation are all 

generated via similarity transformation. For different values of the dimensionless parameters of 

the issue under consideration, numerical computations up to the appropriate degree of precision 

were performed using the shooting iterative approach, which comprises the 6th-order Runge-Kutta 

integration scheme and the Nachtsheim-Swigert scheme for the purpose of illustrating the results 

graphically. 

2.   MATHEMATICAL MODEL  

      This study is concerned with the steady Newtonian hydromagnetic two-dimensional boundary 

layer convective heat intensity transport from a reclined surface effected by aligned magnetic field 

along with thermal radiation. The sheet (e.g. electrically conducting polymer) is moving in a 

coplanar manner with a rate of change of distance and temperature inversely correlated with 

distance from the leading edge respectively. An external velocity 𝑢 = 𝑢𝑒(𝑥) =  𝐷𝑥𝑝  is imposed 

at the free stream. A slit is used at the origin to let the sheet squeeze through the fluid medium. 

Both the x-axis and the y-axis are pointed at the sheet. Two equal and opposing forces along the 

x-axis are applied to expand the sheet. This moving sheet should move with a velocity that follows 

a power law form, i.e.,  𝑢𝑒 = 𝐶𝑥𝑝, while being affected by a surface heat flux. Further, a magnetic 

field in the y-direction is also produced as a result of the implications of a magnetic field of 

intensity 𝐻  in the positive x-direction. The magnetic Reynolds number permits the generated 

magnetic field to be abandoned in contrast to an applied magnetic field. It is assumed that there is 

no applied electric field and that the Hall effect does not exist. The basic equations for two-

dimensional steady incompressible laminar flow are given by Chen [30], Ghosh et al. [19], and 

Ali et al. [16]. 
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Fig 1 Magnetic boundary layer convection-radiation flow from a stretching surface 

Mass conservation (continuity)  

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                              (1)  

Magnetic field continuity  

𝜕𝐻1

𝜕𝑥
+
𝜕𝐻2

𝜕𝑦
= 0                                       (2)  

Momentum           

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
−

𝜇

4𝜋𝜌
(𝐻1

𝜕𝐻1

𝜕𝑥
+ 𝐻2

𝜕𝐻1

𝜕𝑦
) = 𝜈

𝜕2𝑢

𝜕𝑦2
+ (𝑢𝑒

𝑑𝑢𝑒

𝑑𝑥
−
𝜇𝐻𝑒

4𝜋𝜌
 
𝑑𝐻𝑒

𝑑𝑥
 )                      (3)  

Magnetic induction conservation 

𝑢
𝜕𝐻1

𝜕𝑥
+ 𝑣

𝜕𝐻1

𝜕𝑦
− 𝐻1

𝜕𝑢

𝜕𝑥
− 𝐻2

𝜕𝑢

𝜕𝑦
= 𝜇𝑒

𝜕2𝐻1

𝜕𝑦2
                          (4) 

Energy conservation 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
−
𝜕𝑞𝑟

𝜕𝑦
                            (5) 

where the extended surface has cartesian coordinates x and y which are perpendicular to it 

respectively. The magnetic induction units along the x and y axes are 𝐻1 and  𝐻2 respectively,  𝑢𝑒   

and 𝐻𝑒  are the horizontal-velocity component and component of the horizontally produced 

magnetic field at the boundary layer’s edge, 𝜈 is the magnetic polymer’s kinematic viscosity, 𝑝 is 

its  density and 𝜇 is its dynamic viscosity,  𝑘 is the fluid’s thermal conductivity, 𝑐𝑝 is its specific 

heat at constant pressure, and  𝑞𝑟 is the radiative heat flux. Thermal diffusivity is symbolizing as  

𝛼 =
𝑘

𝜌𝑐𝑝
  .  

Using Rosseland’s estimation [32-39], the following expression of the radiative heat flux:  
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 𝑞𝑟 = −
4𝜎

3𝑘

𝜕𝑇4

𝜕𝑦
                              (6) 

Where the Rosseland mean absorption coefficient equal to 𝑘, and the Stefan-Boltzmann constant 

is equal to  𝜎. According to [32-39], we disregard higher-order terms under the supposition that 

inside the flow, temperature variations are sufficiently modest such that Taylor series expansion 

can show  𝑇4 about the free steam temperature 𝑇∞: 

 𝑇4 ≈ 4𝑇∞
3 𝑇 − 3𝑇∞

4                            (7)       

Equations (6) and (7) allow us derive: 

    
𝜕𝑞𝑟

𝜕𝑦
= −

16𝜎1𝑇∞
3

3𝑘1

𝜕2𝑇

𝜕𝑦2
                          (8) 

Using Eqn. (8) the energy i.e. thermal boundary layer Eqn. (5) becomes: 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
−
16𝜎1𝑇∞

3

3𝑘1

𝜕2𝑇

𝜕𝑦2
                       (9)   

The following are suitable border conditions:  

{
 
 

 
 u = uw(x) =  Cx

p, v = 0 ,
∂H1

∂y
= H2 = 0,

T = Tw = T∞ + Ax
λ at y = 0

u = ue(x) =  Dx
p , H1  =  He(x) =  H0 x

p 
T = T∞  as  y → ∞ 

                   (10) 

In this case 𝐶, 𝐷 and 𝐴 are constants (positive),  𝐻0 denotes consistent magnetic field at infinity 

(free stream), 𝑝  and 𝜆  are velocity exponent parameter and temperature exponent parameter, 

respectively, 𝑇𝑤 and 𝑇∞ are the wall temperature and the ambient temperature, respectively. The 

system of major equations has been transformed into a system of dimensionless equations by the 

introduction of the dimensionless variables listed below: 

{
 
 

 
         𝜂 =

𝑦

𝑥
(𝑅𝑒𝑥)

1 

2 , 𝜉 =
𝐺𝑟𝑥𝐶𝑜𝑠⋎

(𝑅𝑒𝑥)
2 ,  𝑅𝑒𝑥 =

𝑢𝑤 

𝜈
𝑥, 𝜓(𝑥, 𝑦) = 𝜈(𝑅𝑒𝑥)

1 

2   𝑓(𝜉, 𝜂)

𝜙 = 𝐻𝑒 (
𝜈𝑥

𝑢𝑤 
)

1

2
𝑔(𝜉, 𝜂),  𝐺𝑟𝑥 =

𝑔𝛽(𝑇𝑊−𝑇∞)𝑥
3

𝜈2
,      𝜃(𝜉, 𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
 

   

                          (11)  

Where 𝜓 is dimensional stream function,  𝑓 is the dimensionless stream flow function, and 𝜃 is 

the dimensionless fluid temperature, 𝜉 is the upthrust force variable, and 𝜂 is the dimensionless 

interval perpendicular to the sheet. The continuity Eqs. (1-2) are now found to be identically 

satisfied by Eq. (11). After some simplification, by substituting Eq. (11) into Eqs. (3-4, 9), we 

obtain:  
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Momentum boundary layer equation 

{
𝑓′′′ − 𝑝𝑓′

2
+
𝑝+1

2
𝑓𝑓′′ + 𝛿2𝑝 + β [𝑔′

2
𝑝 − (

𝑝+1

2
) 𝑔𝑔′′ − 𝑝] =

(𝜆 − 2𝑝 + 1)𝜉[
𝜕𝑓′

𝜕𝜉
𝑓′ − 

𝜕𝑓

𝜕𝜉
𝑓′′ + β{𝑔′′

𝜕𝑔

𝜕𝜉
− 𝑔′  

𝜕𝑔′

𝜕𝜉
}]

                                                (12) 

Magnetic induction boundary layer equation 

𝛾𝑔′′′ +
𝑝+1

2
𝑔′′𝑓 −

𝑝+1

2
𝑓′′𝑔 = (𝜆 − 2𝑝 + 1)𝜉[

𝜕𝑔′

𝜕𝜉
𝑓′ −

𝜕𝑓′

𝜕𝜉
𝑔′ −

𝜕𝑓

𝜕𝜉
 𝑔′′ + 

𝜕𝑔

𝜕𝜉
𝑓′′]                   (13)  

Thermal boundary layer (heat) equation 

1

𝑃𝑟
(1 +

4

3
𝑁)𝜃′′ − 𝜆𝑓′𝜃 +

𝑝+1

2
𝑓𝜃′ = (𝜆 − 2𝑝 + 1)𝜉[𝑓′ 

𝜕𝜃

𝜕𝜉
− 𝜃′

𝜕𝑓

𝜕𝜉
]                    (14)     

where 𝛽 =
𝜇

4𝜋𝜌
(
𝐻𝑜

𝐶
)
2

 is body force magnetic parameter, a constant term 𝛿 =
D

C
 ,  𝛾 =  

𝑢𝑒

𝜐
   is the 

reciprocal of magnetic Prandtl number, Pr =
𝜈 

𝛼
   is the Prandtl number  and 𝑁 = (

4𝜎𝑇∞
3

𝑘𝛼
)   is the 

radiation variable. The following boundary conditions are required after transformation:  

{ 

𝑓(𝜉, 0) = 0,  𝑓′(𝜉, 0) = 1,       𝑔(𝜉, 0) = 0,

 𝑔′′(𝜉, 0) = 0,   𝜃(𝜉, 0) = 1                𝑎𝑡 𝑦 = 0

            𝑓′(𝜉,∞) = 𝛿,  𝑔′(𝜉,∞) = 1, 𝜃(𝜉,∞) = 0 𝑎𝑠  𝑦 → ∞ 
   

                    (15)  

Here, in this study in computational procedure, we used the following values of parameters that 

stated in Table1.  

Table 1: Estimated values in present study 

 

Parameters estimated values 

Magnetic parameter (𝛽) 1, 2, 3 

Variable (𝜉) 0.5, 2.5 

Velocity exponent parameter (𝑝) 0, 0.25, 0.5, 0.55, 0.6, 0.65, 0.75, 1 

Prandtl number (𝑃𝑟) 0.1, 0.7, 0.72, 13 

Constant parameter (𝛿) 3 

Temperature exponent parameter (𝜆) -0.75, -0.6, 0.6, -0.4, 0, 0.75, 1 

Radiation parameter (𝑁) 0, 1, 2, 3 

Reciprocal of magnetic Prandtl number (𝛾) 0.5 

Prandtl number 𝑃𝑟, Prandtl number with reciprocal magnetization𝛾, radiation variable 𝑁, 

magnetic force parameter 𝛽, velocity exponent parameter 𝑝, temperature exponent parameter 𝜆, 

buoyancy force parameter 𝜉 . Results are graphically plotted in Figs. 2-18. 
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3     NUMERICAL SOLUTION USING LOCAL NON-SIMILARITY METHOD (LNSM) 

     Numerous researchers have used the LNSM, which was proposed by Sparrow and Yu [40], for 

example Minkowycz and Sparrow [43] in thermal boundary layers, Bég et al. [44] in liquid metal 

forced convection magnetic induction boundary layers, Hossain [45] in dissipative 

magnetohydrodynamic convective boundary layer flows, Bég et al. [46] in cross-diffusive 

magnetic boundary layers in porous media and Bég et al. [47] in inclined solar collector thermo-

solutal convection boundary layers. It is an excellent technique for tackling non-similar boundary 

layer physics. Using this process, it is possible to extract two crucial properties from the resulting 

differential equations: the local solutions and the non-similar solutions at any streamwise location. 

The wall’s unidentified boundary conditions included using a shooting approach and forward 

integration, two typical methods for computing the numerical solutions to these equations. The 

technique also permits some self-verification of the numerical results’ accuracy. Considering the 

following transformations for the velocity, magnetic induction, and temperature fields, 

respectively, the LNSM retains all the terms in the altered equations with 𝜉 − derivatives:  

𝜕𝑓

𝜕𝜉
= 𝐺1(𝜉, 𝜂);                            (16) 

 
𝜕𝑔

𝜕𝜉
= 𝐺2(𝜉, 𝜂);                             (17) 

 
𝜕𝜃

𝜕𝜉
= 𝐺3(𝜉, 𝜂).                          (18) 

As a result, three new equations must be derived in order to identify  𝐺1(𝜉, 𝜂), 𝐺2(𝜉, 𝜂). These 

present three extra unknown functions. Creating the subsidiary  equations by differentiating the 

modified equations with regard to 𝜉  .The secondary equations for 𝐺1(𝜉, 𝜂), 𝐺2(𝜉, 𝜂), 𝐺3(𝜉, 𝜂) 

contain the terms 
𝜕𝐺1

𝜕𝜉
, 
𝜕𝐺2

𝜕𝜉
, 
𝜕𝐺3

𝜕𝜉
 and their 𝜂  derivatives. The systems of equations for 𝑓(𝜉, 𝜂) , 

𝑔(𝜉, 𝜂), 𝜃(𝜉, 𝜂), 𝐺1(𝜉, 𝜂), 𝐺2(𝜉, 𝜂) and  𝐺3(𝜉, 𝜂) transmuted to an ODE (Ordinary Differential 

Equations) system of equations with the terms ignored. This LNS (Local Non-Similarity) 

technique configuration is refrred regarded as considering that approximations are obtained by 

omitting the words as the second degree of truncation. The level of truncation will determine how 

accurate the LNS results are. Now differentiating Eqns. (12)-(14) with respect to 𝜉 we have: 
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{
 
 
 
 

 
 
 
 𝜕𝑓

′′′

𝜕𝜉
− 2𝑝𝑓′ 

𝜕𝑓

𝜕𝜉

′
+
𝑝+1

2
[𝑓

𝜕𝑓′′

𝜕𝜉
+ 𝑓′′  

𝜕𝑓

𝜕𝜉
] + β [2𝑔′

𝜕𝑔′

𝜕𝜉
𝑝 − (

𝑝+1

2
) [𝑔

𝜕𝑔′′

𝜕𝜉
+  𝑔′′

𝜕𝑔

𝜕𝜉
]]

= (𝜆 − 2𝑝 + 1)[ 
𝜕𝑓′

𝜕𝜉
𝑓′ − 

𝜕𝑓

𝜕𝜉
𝑓′′ + β{

𝜕𝑔

𝜕𝜉
𝑔′′ − 

𝜕𝑔′

𝜕𝜉
𝑔′}] +

(𝜆 − 2𝑝 + 1)𝜉 [[
𝜕𝑓′

𝜕𝜉
 
𝜕𝑓′

𝜕𝜉
+ 𝑓′ 

𝜕2𝑓′
′

𝜕𝜉2
] − [𝑓′′  

𝜕2𝑓

𝜕𝜉2
+
𝜕𝑓

𝜕𝜉

𝜕𝑓′′

𝜕𝜉
] +

β{[𝑔′′
𝜕2𝑔

𝜕𝜉2
+
𝜕𝑔

𝜕𝜉

𝜕𝑔′′

𝜕𝜉
] − [𝑔′  

𝜕2𝑔′

𝜕𝜉2
+
𝜕𝑔′

𝜕𝜉

𝜕𝑔′

𝜕𝜉
]}

                 (19) 

{
 
 

 
 𝛾

𝜕𝑔′′′

𝜕𝜉
+
𝑝+1

2
[
𝜕𝑔′′

𝜕𝜉
𝑓 +  𝑔′′

𝜕𝑓

𝜕𝜉
] −

𝑝+1

2
[𝑓′′

𝜕𝑔

𝜕𝜉
+ 𝑔

𝜕𝑓′′

𝜕𝜉
] =

(𝜆 − 2𝑝 + 1) [
𝜕𝑔′

𝜕𝜉
𝑓′ −

𝜕𝑓′

𝜕𝜉
𝑔′ −

𝜕𝑓

𝜕𝜉
𝑔′′ +

𝜕𝑔

𝜕𝜉
𝑓′′] + (𝜆 − 2𝑝 + 1)𝜉[[

𝜕𝑓′

𝜕𝜉
 
𝜕𝑔′

𝜕𝜉
+ 𝑓′ 

𝜕2𝑔′

𝜕𝜉2
]

− [𝑔′
𝜕2𝑓′

𝜕𝜉2
+
𝜕𝑓′

𝜕𝜉
 
𝜕𝑔′

𝜕𝜉
] − [ 𝑔′′

𝜕2𝑓

𝜕𝜉2
+
𝜕𝑓

𝜕𝜉

𝜕𝑔′′

𝜕𝜉
] + [𝑓′′

𝜕2𝑔

𝜕𝜉2
+
𝜕𝑔

𝜕𝜉

𝜕𝑓′′

𝜕𝜉
]]

          (20) 

{

1

𝑃𝑟
(1 +

4

3
𝑁)

𝜕𝜃′′

𝜕𝜉
− 𝜆[𝑓′

𝜕𝜃

𝜕𝜉
+ 𝜃

𝜕𝑓′

𝜕𝜉
] +

𝑝+1

2
[𝜃′

𝜕𝑓

𝜕𝜉
+ 𝑓 

𝜕𝜃′

𝜕𝜉
] =

(𝜆 − 2𝑝 + 1) [𝑓′
𝜕𝜃

𝜕𝜉
− 𝜃′

𝜕𝑓

𝜕𝜉
] + (𝜆 − 2𝑝 + 1)𝜉[[𝑓′

𝜕2𝜃

𝜕𝜉2
+
𝜕𝜃

𝜕𝜉

𝜕𝑓′

𝜕𝜉
] − [𝜃′

𝜕2𝑓

𝜕𝜉2
+
𝜕𝑓

𝜕𝜉

𝜕𝜃′

𝜕𝜉
]]

             (21)                                                              

Now applying the second level of truncation we have the following equations: 

{
 
 

 
 𝜕𝑓

′′′

𝜕𝜉
− 2𝑝𝑓′ 

𝜕𝑓

𝜕𝜉

′
+
𝑝+1

2
[𝑓

𝜕𝑓′′

𝜕𝜉
+ 𝑓′′  

𝜕𝑓

𝜕𝜉
] + β [2𝑔′

𝜕𝑔′

𝜕𝜉
𝑝 − (

𝑝+1

2
) [𝑔

𝜕𝑔′′

𝜕𝜉
+  𝑔′′

𝜕𝑔

𝜕𝜉
]] =

(𝜆 − 2𝑝 + 1)[ 
𝜕𝑓′

𝜕𝜉
𝑓′ − 

𝜕𝑓

𝜕𝜉
𝑓′′ + β{

𝜕𝑔

𝜕𝜉
𝑔′′ − 

𝜕𝑔′

𝜕𝜉
𝑔′}] +

(𝜆 − 2𝑝 + 1)𝜉[[
𝜕𝑓′

𝜕𝜉
 
𝜕𝑓′

𝜕𝜉
+ 𝑓′ 

𝜕2𝑓′

𝜕𝜉2
] −

𝜕𝑓

𝜕𝜉

𝜕𝑓′′

𝜕𝜉
+ β{

𝜕𝑔

𝜕𝜉

𝜕𝑔′′

𝜕𝜉
−
𝜕𝑔′

𝜕𝜉

𝜕𝑔′

𝜕𝜉
}]

             (22) 

{
 
 

 
 𝛾

𝜕𝑔′′′

𝜕𝜉
+
𝑝+1

2
[
𝜕𝑔′′

𝜕𝜉
𝑓 +  𝑔′′

𝜕𝑓

𝜕𝜉
] −

𝑝+1

2
[𝑓′′

𝜕𝑔

𝜕𝜉
+ 𝑔

𝜕𝑓′′

𝜕𝜉
] =

(𝜆 − 2𝑝 + 1) [ 
𝜕𝑔′

𝜕𝜉
𝑓′ −

𝜕𝑓′

𝜕𝜉
𝑔′ −

𝜕𝑓

𝜕𝜉
𝑔′′ +

𝜕𝑔

𝜕𝜉
𝑓′′] +

(𝜆 − 2𝑝 + 1)𝜉[[
𝜕𝑓′

𝜕𝜉
 
𝜕𝑔′

𝜕𝜉
] −

𝜕𝑓′

𝜕𝜉
 
𝜕𝑔′

𝜕𝜉
−
𝜕𝑓

𝜕𝜉

𝜕𝑔′′

𝜕𝜉
+
𝜕𝑔

𝜕𝜉

𝜕𝑓′′

𝜕𝜉
] 

                                                           (23) 

{

1

𝑃𝑟
(1 +

4

3
𝑁)

𝜕𝜃′′

𝜕𝜉
−  𝜆[𝑓′

𝜕𝜃

𝜕𝜉
+ 𝜃

𝜕𝑓′

𝜕𝜉
] +

𝑝+1

2
[𝜃′

𝜕𝑓

𝜕𝜉
+ 𝑓 

𝜕𝜃′

𝜕𝜉
] =

(𝜆 − 2𝑝 + 1) [𝑓′
𝜕𝜃

𝜕𝜉
− 𝜃′

𝜕𝑓

𝜕𝜉
] + (𝜆 − 2𝑝 + 1)𝜉[

𝜕𝜃

𝜕𝜉

𝜕𝑓′

𝜕𝜉
−
𝜕𝑓

𝜕𝜉

𝜕𝜃′

𝜕𝜉
]
                                               (24) 

By introducing, 
𝜕𝑓′

𝜕𝜉
= 𝐺′1(𝜉, 𝜂),  

𝜕𝑓′′

𝜕𝜉
= 𝐺′′1(𝜉, 𝜂),   

𝜕𝑓′′′

𝜕𝜉
= 𝐺′′′1(𝜉, 𝜂),   

𝜕𝑔′

𝜕𝜉
= 𝐺′2(𝜉, 𝜂),   

𝜕𝑔′′

𝜕𝜉
=

𝐺′′2(𝜉, 𝜂),    
𝜕𝑔′′′

𝜕𝜉
= 𝐺′′′2(𝜉, 𝜂),    

𝜕𝜃′

𝜕𝜉
= 𝐺′3(𝜉, 𝜂) , 

𝜕𝜃′′

𝜕𝜉
= 𝐺′′3(𝜉, 𝜂) , the transformed equations 

are: 

{
𝐺1
′′′ − 2𝑝𝑓′𝐺1

′ +
𝑝+1

2
(𝐺1𝑓

′′ + 𝑓𝐺1
′′) + 𝛽 [2𝑔′𝐺2

′𝑝 −
𝑝+1

2
(𝐺2𝑔

′′ + 𝑔𝐺2
′′)] =

(𝜆 − 2𝑝 + 1)[{𝑓′𝐺1
′ − 𝑓′′𝐺1 − 𝛽𝐺2

′𝑔′ + 𝛽𝐺2𝑔
′′} + 𝜉{(𝐺1

′)2 − 𝐺1
′′𝐺1 − 𝛽(𝐺2

′)2 + 𝛽𝐺2𝐺2
′′}]

 (25) 
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{
𝛾𝐺2

′′′ +
𝑝+1

2
(G1𝑔

′′ + 𝑓𝐺2
′′) −

𝑝+1

2
(𝐺2𝑓

′′ + 𝑔𝐺1
′′) =

(𝜆 − 2𝑝 + 1)[ {𝐺2
′𝑓′ − 𝐺1

′𝑔′ − 𝐺1
′𝑔′′ + 𝐺2𝑓

′′} + 𝜉{𝐺2𝐺1
′′ − 𝐺1𝐺2

′′}]
                                      (26) 

{
(1 +

4

3
𝑁)G3

′′ + pr [
p+1

2
(f G3

′ + G1θ
′) − λ(G3 f

′ + θ G1
′ )] =

    pr(𝜆 − 2𝑝 + 1)[{𝐺3 𝑓
′ − 𝐺1 𝜃

′} + 𝜉{𝐺3𝐺1
′ − 𝐺1𝐺3

′}]
                                                   (27)                                                                          

The border circumstances are: 

{
 

 
𝐺1(𝜉, 0) = 0,        𝐺1

′(𝜉, 0) = 0,

𝐺1
′(𝜉,∞) = 0,       𝐺2(𝜉, 0) = 0,

𝐺2
′(𝜉,∞) = 0,      𝐺3(𝜉, 0) = 0,

 𝐺2
′′(𝜉, 0) = 0,        𝐺3(𝜉,∞) = 0 

                                                                                             (28)             

Finally, there are six equations which emerge and are given below: 

{
𝑓′′′ − 𝑝𝑓′

2
+
𝑝+1

2
𝑓𝑓′′ + 𝛿2𝑝 + β [𝑔′

2
𝑝 − (

𝑝+1

2
) 𝑔𝑔′′ − 𝑝] =

(𝜆 − 2𝑝 + 1)𝜉[ 
𝜕𝑓′

𝜕𝜉
𝑓′ −

𝜕𝑓

𝜕𝜉
𝑓′′ + β{

𝜕𝑔

𝜕𝜉
𝑔′′ − 

𝜕𝑔′

𝜕𝜉
𝑔′}] 

                                                (29) 

{𝛾𝑔′′′ +
𝑝+1

2
𝑔′′𝑓 −

𝑝+1

2
𝑓′′𝑔 = (𝜆 − 2𝑝 + 1)𝜉[

𝜕𝑔′

𝜕𝜉
𝑓′ −

𝜕𝑓′

𝜕𝜉
𝑔′ −

𝜕𝑓

𝜕𝜉
𝑔′′ + 

𝜕𝑔

𝜕𝜉
𝑓′′]                    (30) 

{
1

𝑃𝑟
(1 +

4

3
𝑁) 𝜃′′ − 𝜆𝑓′𝜃 +

𝑝+1

2
𝑓𝜃′ = (𝜆 − 2𝑝 + 1)𝜉[𝑓′ 

𝜕𝜃

𝜕𝜉
− 𝜃′

𝜕𝑓

𝜕𝜉
]                                       (31) 

{
𝐺1
′′′ − 2𝑝𝑓′𝐺1

′ +
𝑝+1

2
(𝐺1𝑓

′′ + 𝑓𝐺1
′′) + 𝛽 [2𝑔′𝐺2

′𝑝 −
𝑝+1

2
(𝐺2𝑔

′′ + 𝑔𝐺2
′′)] =

(𝜆 − 2𝑝 + 1)[{𝑓′𝐺1
′ − 𝑓′′𝐺1 − 𝛽𝐺2

′𝑔′ + 𝛽𝐺2𝑔
′′} + 𝜉{(𝐺1

′)2 − 𝐺1
′′𝐺1 − 𝛽(𝐺2

′)2 + 𝛽𝐺2𝐺2
′′}] 

(32) 

  {
𝛾𝐺2

′′′ +
𝑝+1

2
(G1𝑔

′′ + 𝑓𝐺2
′′) −

𝑝+1

2
(𝐺2𝑓

′′ + 𝑔𝐺1
′′) =

(𝜆 − 2𝑝 + 1)[ {𝐺2
′𝑓′ − 𝐺1

′𝑔′ − 𝐺1
′𝑔′′ + 𝐺2𝑓

′′} + 𝜉{𝐺2𝐺1
′′ − 𝐺1𝐺2

′′}]
                                    (33) 

{
(1 +

4

3
𝑁)G3

′′ + pr [
p+1

2
(fG3

′ + G1θ
′) − λ(G3f

′ + θG1
′ )] =

  pr(𝜆 − 2𝑝 + 1)[{𝐺3𝑓
′ − 𝐺1𝜃

′} + 𝜉{𝐺3𝐺1
′ − 𝐺1𝐺3

′ }]
                                                      (34) 

The combined boundary conditions are: 

{
 
 

 
 

𝑓(𝜉, 0) = 0,  𝑓′(𝜉, 0) = 1,

𝑔(𝜉, 0) = 0, 𝑔′′(𝜉, 0) = 0  

      𝜃(𝜉, 0) = 1,  𝑓′(𝜉,∞)  = 𝛿           

 𝑔′(𝜉,∞) = 1, 𝜃(𝜉,∞) = 0 
   

  

  𝐺1(𝜉, 0) = 0, 𝐺1
′(𝜉, 0) = 0

 𝐺1
′(𝜉,∞) = 0;  𝐺2(𝜉, 0) = 0 

 𝐺2
′(𝜉,∞) = 0;  𝐺3(𝜉, 0) = 0

𝐺2
′′(𝜉, 0) = 0, 𝐺3(𝜉,∞) = 0 

   

                                   (35)  

The engineering design section have some remarkable uses of the skin friction coefficient and local 

Nusselt number. These parameters evaluate the wall shear stress and local wall heat transfer rate 

respectively and may be defined for the present problem as follows. 
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 𝑆𝑘𝑖𝑛 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 , 𝐶𝑓𝑥 (𝑅𝑒𝑥)
1 

2 = 2𝑓′′(𝜉, 𝜂)           (36)      

𝐿𝑜𝑐𝑎𝑙 𝑁𝑢𝑠𝑠𝑒𝑙𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 , 𝑁𝑢𝑥(𝑅𝑒𝑥)
−
1 

2  = −𝜃′(𝜉, 0)              (37) 

  

4. VALIDATION OF RUNGE KUTTA CODE 

        We have compared our results with previously well-known results and found satisfactory 

agreement. The comparisons are documented in Tables 2-4 and benchmarked against simpler 

models of Mahapattra and Gupta [48] and Ali et al. [16]. The Runge-Kutta code’s correctness is 

attested to by the excellent confirmation that has been obtained.  

Table 2: The Local Skin Friction coefficient for diverse values of  𝜹 when β =0, 𝑝=1.0,  𝜆=0.0, 

𝑁=0.0, γ =1.0, 𝑝𝑟=0.72, 𝜉 = 0. 

𝜹 Present Mahapattra and Gupta [48] Ali et al. [16] 

0.1 -0.9698 -0.9694 -0.9694 

0.2 -0.9187 -0.9181 -0.9181 

0.5 -0.6675 -0.6673 -0.6673 

2.0 2.0174 2.0175 2.0175 

5.0 4.7293 4.7293 4.7293 

Table 3: Skin Friction coefficient and the Local Nusselt number for diverse 𝜷 when 𝑝=1.0,  𝜆 

=𝑁=0.0, γ =1.0, and 𝑝𝑟=0.72, 𝛿 = 3.0, 𝜉 = 0.0.  

𝜷 Present  

(Skin friction coefficient) 

Ali et al. [16]  Present  

(local Nusselt number) 

Ali et al. [16] 

0.1 4.7093 4.70928 0.9794 0.97902 

0.5 4.6280 4.62764 0.9766 0.97617 

1.0 4.5225 4.52158 0.9729 0.97240 

2.0 4.2993 4.29431 0.9648 0.96405 

5.0 4.4589 3.43352 0.9300 0.92863 
Table 4: The Local Nusselt number for various  𝑃𝑟  when p=1.0,  𝜆 =N=0.0, γ =1.0, 𝛿 = 3.0, 𝜉 = 0.0 , 𝛽 = 1. 

𝑃𝑟 Present 

(local Nusselt number) 

Ali et al. [16] 

0.07 0.3393 0.3381 

0.5 0.8285 0.8274 

2.0 1.5204 1.5214 

6.8 2.5951 2.5978 

10.0 3.0758 3.0790 

 

5.   DISCUSSION OF GRAPHICAL RESULTS  

      The problem posed by nonlinear system of Eqns. (29)-(34) under boundary conditions (35) 

have been solved in MATLAB symbolic software using the Nachtsheim-Swigert [26] iteration 
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technique along with a 6th order Runge-Kutta iterative process. This technique is extremely 

efficient and stable and has been deployed in numerous previous investigations by the authors- see 

[33-36].  

In order to consider the results, carry out calculations for various parameter values, for instance, 

Prandtl number 𝑃𝑟 , Prandtl number with reciprocal magnetization 𝛾 , radiation variable 𝑁 , 

magnetic force parameter 𝛽, velocity exponent parameter 𝑝, temperature exponent parameter 𝜆, 

buoyancy force parameter 𝜉 . Results are graphically plotted in Figs. 2-18.  

In Figs. 2-4, it is shown how a magnetic parameter affects the induced magnetic fields’ speed, 

temperature, and direction. It is evident that the velocity profile decreases with escalating magnetic 

force parameter 𝛽 and increases with increasing buoyancy force parameter 𝜉 as shown in Fig 2. 

The momentum boundary layer thickness is therefore increased with greater magnetic Lorentz 

retarding force (flow retardation) whereas it is reduced with thermal buoyancy effect. With 

increasing magnetic force parameter 𝛽 the temperature profile increases whereas it is reduced with 

increasing upthurst force parameter 𝜉 as shown in Fig 3. The additional energy that the magnetic 

polymer expends to drag against the imposed magnetic-field is undoubtedly lost as thermal-energy. 

This warms environment and thickens thermal-boundary layer. Increasing thermal buoyancy 

however only assists momentum development and counteracts thermal diffusion in the regime by 

suppressing convection currents and reducing thermal boundary layer thickness. It is also seen that 

the induced magnetic field profile decreases with increasing magnetic force parameter 𝛽 whereas 

it increases with increasing buoyancy force parameter 𝜉 as shown in Fig 4. Magnetic induction is 

therefore inhibited with Lorentz body force whereas it is encouraged with thermal buoyancy effect; 

this manifests in a respective thinning and thickening of magnetic boundary layer thickness, as 

well as numerous additional investigations, including those by Glauert [11] and Gribbin [12] 

among others. It's also important to note that Fig. 4 specifies 0.5 for the magnetic Prandtl number’s 

inverse = 
𝑢𝑒

𝜐
 .  Physically as elaborated by Cramer and Pai [49]. When this parameter is unity the 

momentum and magnetic boundary layer thicknesses are approximately equal. Magnetic diffusion 

rate, however, outpaces momentum diffusion rate for 𝛾 = 0.5. This encourages the influence of 

Lorentzian body force which counteracts magnetic induction and decreases the magnetic boundary 

layer thickness. Asymptotically smooth distributions are computed in the free stream indicating 

that a sufficiently large infinity boundary condition is prescribed in the MATLAB Runge-Kutta 

code. 
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Fig. 5 shows that the influence of the radiation parameter N as well as the upthurst force variable 

𝜉 on temperature profile. Observation says that the temperature profile escalates with increasing 

radiation variable 𝑁 and declines with increasing upthurst force variable 𝜉. Radiation parameter 

𝑁  has no effect on velocity and induced magnetic field profiles respectively, which is 

understandable since it does not feature in either the hydrodynamic (momentum) or magnetic 

induction boundary layer equations. Radiation’s main impact is to energise the regime of the 

boundary layer, which raises temperatures and increases the thickness of fluid energy border layer. 

Again, in the free stream, smooth decays are generated to demonstrate that the simulations are 

accurate run in MATLAB employed an appropriately big infinity boundary condition. 
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Fig. 3 Effect of the magnetic force  
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               The effect of temperature exponent parameter 𝜆 on the velocity, temperature and induced 

magnetic field profiles is given in Figs 6-8. Fig 6 shows that speed profile deteriorate weakly with 

increasing temperature exponent parameter 𝜆 and increases weakly with increasing buoyancy-

force parameter 𝜉 . By rising the temperature-exponent term 𝜆  and buoyancy-force term 𝜉 , 

respectively, the heat profiles is seen in Fig. 7 to be strongly decreasing. The non-isothermal effect 

therefore produces lower temperature magnitudes than would be computed with an isothermal 

model. Again, we noticed in Fig. 8 that rising of magnetic intensity, the contour of the induced 

decelerates with acceleration of temperature exponent parameter 𝜆 and increases with escalating 

buoyancy force parameter 𝜉. However, the impact again is marginal, and a much more pronounced 

effect is observed, as expected, on the temperature distribution (Fig. 7). 
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A velocity exponent parameter 𝑝 impact on the velocity, temperature, and induced magnetic field 

profiles is discussed in Figs 9-11. It is seen that the velocity profile increases by increasing the 

value of the  𝑝 ande 𝜉 as shown in Fig 9. Substantial flow acceleration is therefore induced with 

power-law stretching and thermal buoyancy effect i.e., the thickness of the momentum boundary 

layer is lowered. According to Fig. 10, the thickness of the thermal boundary layer is decreased in 

the regime as the velocity exponent variable 𝑝, and the upthrust force variable 𝜉, are increased. We 

observe from Fig 11 that the induced magnetic field profile however is enhanced with elevation in 

the value of 𝑝 and 𝜉. Magnetic boundary layer thickness is therefore accentuated with power-law 

stretching of the sheet and stronger thermal buoyancy effect.  
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 Fig. 10 Effect of the velocity exponent 

parameter on temperature profile 

        
 
 
 
       

Fig. 11   Effect of the velocity exponent 

parameter on magnetic field profile 

              

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

p



pr=0.72, N=0.0

=0.1, =-0.5

=3.0, =0.5

p=0.55, =

p=0.60, =

p=0.65, =

p=0.65, =

 
 (


 


)

  

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05


p

pr=0.72, N=0.0

=0.1, =-0.5

=3.0, =0.5

 p=0.55, =

 p=0.60, =

 p=0.65, =

 p=0.65, =

g
 '
(


)

  

Fig. 9   Effect of the velocity exponent 

parameter on velocity profile 



17 

 

 

 

Fig 12 shows the effect of Prandtl number 𝑃𝑟 on the temperature profile only. It is seen that the 

temperature profile declines with escalating𝑃𝑟  and 𝜉 . Thickness of Energy boundary layer is 

deteriorated with the enhancement of 𝑃𝑟  values. The single-most prime statistic in heat 

transmission in fluids is the Prandtl number 𝑃𝑟, which is a property of a specific fluid under 

specific circumstances. It is inversely proportional to the fluid’s thermal conductivity because it 

measures the relationship between momentum and thermal diffusivity. Higher thermal 

conductivity fluids are correlated with Lower Prandtl values, vice versa. When 𝑃𝑟 = 1 , the 

momentum and thermal diffusion rates are equal, and the thickness of the thermal and velocity 

boundary layers will be the same.  Heat diffusion greatly surpasses momentum diffusivity when 

𝑃𝑟 is significantly low. Thermal buoyancy encourages momentum diffusion, as noted earlier, but 

suppresses thermal diffusion. Higher buoyancy force parameter, 𝜉,  therefore, decreases the 

thickness of the thermal boundary layer.  
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Figs 13- 14 display the effects of the velocity exponent parameter 𝑝 on the local Nussetl number 

and the local skin friction coefficient. At different values of p, Local Skin friction and Local 

Nusselt number are expressed as a function of 𝜉 . The local Nusselt number grows when the 

buoyancy force parameter 𝜉 and the velocity exponent parameter p increase, as seen in Fig 13. The 

local skin friction coefficient rises when the buoyancy force parameter and the velocity exponent 

parameter 𝑝, rise, as can be shown once more in Fig 14. As a result, a clearly discernible flow 

acceleration is produced with increased thermal buoyancy 𝜉,and power-law stretching velocity 

effects. 

Fig. 12   Effect of the Prandtl number 

on temperature profile 
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As illustrated in Figs. 15-16, the “Local Nusselt number and the Local Skin Friction coefficient” 

are presented as function of  𝜉 various values of the temperature exponent parameter, 𝜆. According 

to Fig. 15, the local Nusselt number rises when the buoyant force parameter 𝜉 rises for a given 𝜆, 

which boosts heat transmission to the wall. As seen in Fig. 16, the local skin friction coefficient 

increases for a given 𝜆 as the buoyancy force parameter 𝜉 grows.  

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

0 1 2 3 4 5 6

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

p

p=0.0

p=0.25

p=0.75

p=1.0

N=0.0, pr=0.70

=, =

=, =

-
(


)

  

 

0 1 2 3 4 5 6

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5
p

N=0.0, pr=0.70

=, =

=, =

2
f 

''(



)



p=0.0

p=0.25

p=0.75

p=1.0

 

0 1 2 3 4 5 6

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7



p=0.0 , N=0.0

pr=0.70, =

=, =

=−

=−

= 

= 

- 

(

,0
)


 

“Fig. 15   Effect of the temperature 

exponent and buoyancy force parameter 

on Nusselt number” 
 

“Fig. 13 Effect of the velocity exponent 

and buoyancy force parameter on the 

Nusselt number” 

Fig. 14   Effect of the velocity exponent 

and buoyancy force parameter on the 

skin friction coefficient 
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The local Nusselt number and the local skin friction coefficient are presented as a function of 𝜉 at 

various values of magnetohydrodynamic force parameter, 𝛽 in Figs 17-18. Noticed from Fig. 17 

that Nusselt number increases significantly in magnitude when 𝜉  rises for a given 𝛽 . Fig. 18 

demonstrates that for a particular, the local drag coefficient accentuate gradually as buoyancy-

force parameter 𝜉 rises. 
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6. CONCLUSIONS 

 

The processing of magnetic polymer materials at high temperatures, under the influence of an 

aligned magnetic field and heat radiation, has been modeled using an extensive mathematical 

model for steady two-dimensional boundary layer heat transmission in an electroconductive 

Newtonian fluid from an expanded surface. Sparrow-Yu local non-similarity transformations were 

used to non-dimensionalize the governing boundary layer equations, that could be solved 

numerically by a 6th-order Runge-Kutta integration scheme with Nachtsheim-Swigert shooting 

iterative technique. The accuracy of the numerical scheme has been verified through comparison 

with published literature shown in tables 2-4. The following conclusions can be drawn:  

❖ For a given value of the buoyancy force parameter, the local Nusselt number is increased 

by improving the velocity exponent parameter and temperature exponent parameter, and 

decreases by improving the magnetic force parameter, radiation parameter, and reciprocal 

of magnetic Prandtl number. 

❖ For a given value of the buoyancy force parameter, the wall shear stress (local skin friction 

coefficient) increases with an increase in the temperature exponent parameter, reciprocal 

of the magnetic Prandtl number, and velocity exponent parameter, whereas it decreases 

with an increase in the magnetic force parameter. 

❖ Yet, raising the buoyancy force parameter causes the temperature to decrease while 

increasing the velocity and magnetic induction profiles. Increasing the temperature-

exponent parameter decreases the rate of change in distance, the induced magnetic field, 

and the temperature magnitudes. 

❖ By increasing the magnetic force variable, the temperature is elevated but the velocity 

outline and magnetic field created are suppressed. 

❖ As the radiation parameter increases, the temperature outline grows while the local Nusselt 

number decreases. 
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