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Abstract: Continuous two-dimensional boundary layer heat transfer in an electroconductive Newto-
nian fluid from a stretching surface that is biased by a magnetic field aligned with thermal radiation is
the subject of this study. The effects of magnetic induction are induced because the Reynolds number
is not small. The sheet is traveling with a temperature and velocity that are inversely related to how
far away from the steady edge it is from the plane in which it is traveling. We also imposed external
velocity u = ue(x) = Dxp in the boundary. The necessary major equations are made dimensionless
by the local non-similarity transformation and become a system of non-linear ordinary differential
equations after being transformed from non-linear partial differential equations. The subsequent
numerical solution of the arisen non-dimensional boundary value problem utilizes a sixth-order
Runge–Kutta integration scheme and Nachtsheim–Swigert shooting iterative technique. A good cor-
relation is seen when the solutions are compared to previously published results from the literature.
Through the use of graphical representation, the physical impacts of the fluid parameters on speed,
induced magnetic field, and temperature distribution are carried out. Furthermore, the distributions
for skin friction coefficient and local Nusselt number are also studied for different scenarios. The
skin friction coefficient and local Nusselt number are observed to increase with greater values of
the temperature exponent parameter and velocity exponent parameter. However, as heat radiation
increases, the local Nusselt number decreases even though temperatures are noticeably higher. The
study finds applications in magnetic polymer fabrication systems.

Keywords: non-similar solution; stretching surface; induced magnetic field; velocity exponent
parameter; temperature exponent parameter; boundary layers; thermal convection; radiation; electro-
conductive materials processing

1. Introduction

Boundary-layer theory [1] remains one of the most versatile and enduring approaches
in modern fluid dynamics. Introduced by the great aerospace engineer, Prandtl over a
century ago, the bisection of the flow field into two distinct areas simplifies the equations
of fluid flow: one in the core of the boundary layer, where the dominance of viscosity is
observed and a created body which is submerged in a fluid experienced the majority of
the drag force, and another side of the boundary layer where the viscosity has no signifi-
cant effects on the solution and thus can be neglected. The theory has been deployed in
practically every branch of fluid dynamics, including aerodynamics, medical flows, atmo-
spheric phenomena, sediment transport, chemical engineering transport and materials
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processing systems, to name a few applications. In materials fabrication technologies [2],
boundary layer flow with heat transfer adjacent to a stretching sheet that is moving in
its own plane constitutes a fundamental problem. Stretching sheet transport phenomena
arise in numerous manufacturing processes such as polymer extrusion, surface coating,
plastic film packaging, enrobing, continuous casting of metals, spray deposition, etc. Mag-
netohydrodynamic materials processing [3] involves, among other areas, the synthesis of
electrically conducting fluids and features in for example modern metallurgy, smart coating
systems and metalworking processes. Complex electroconductive polymers [4] are also
designed by the cooling of continuous sheets drawn through a quiescent or moving fluid
and stretched during the drawing process. The composition of manufactured materials is
particularly sensitive to the rate of heat transfer at the stretching surface since both heat
and mass transfer as well as electromagnetic phenomena also occur in such stretching
flows. Several different phenomena, such as magnetic induction in polymer alignment,
variations in material composition, diamagnetic matter, texture formation in metals, and
dampening of magnetic fields on conductive liquids are all observed. Phase conversion in
both liquid-to-solid and solid-to-solid state transitions is also observed. Beginning with a
continuous semi-infinite sheet traveling gradually through a fluid environment that was at
rest, Sakiadis [5] pioneered the research of stretched boundary layer flows. Among the two
common types of upwelling heat and mass transport, forced convection correlates with the
setups where the velocity of the fluid rules over the other parameters and features often in
thermal materials processing [6,7]. External forces drive the flow and buoyancy effects are
vanishingly small. Examples include cooling systems in automotive engines and furnaces.
Rahman et al. [8] studied energy convection in the formation of heat in a micropolar fluid
along an inconsistent stretching sheet with a viscosity that is contingent on temperature and
changing exterior temperature. Gupta et al. [9] presented detailed finite element computa-
tions for transverse magnetic field effects on electroconductive polymer convection flows
from a stretching sheet. As noted earlier, electromagnetic induction may arise in flows
where the magnetic Reynolds number is not vanishingly small. In addition to including the
conventional Lorentzian magnetic drag force, a separate equation for induced magnetic field
conservation must be included with appropriate wall and free stream boundary conditions
for magnetic boundary layers. Many excellent studies of magnetic inductive boundary
layers have been conducted for Newtonian viscous fluids along a semi-infinite flat plate
without heat transfer by notably Greenspan and Carrier [10], Glauert [11], Gribben [12]
(using matched asymptotic expansions) and Na [13]. The congruous energy relocation in
the formation of heat problems has been considered by Tan and Wang [14] and Afzal [15].
More recently magnetoconvective stasis-point flow and energy transfer towards a reclined
sheet with an induced magnetic field has been researched by Ali et al. [16]. Other studies
featuring magnetic induction in materials processing and medical engineering include
Ghosh et al. [17] (on oscillatory liquid metal boundary layers in permeable media), Ghosh
et al. [18] (on network modeling of unsteady magnetic flow in a tilted rotating channel) and
Ghosh et al. [19] (on asymptotic analysis of free convection Rayleigh flow). The Adomain
Decomposition technique (ADM) was employed by Bég et al. [20] to compute squeez-
ing flow characteristics in magnetic bio-lubricants. Usman et al. [21] investigated heat
transmission of Williamson fluid in ciliated porous channels using MATLAB quadrature.
Shamshuddin et al. [22] presented Keller box numerical solutions for gyrotactic magnetic
bioconvection nanofluid. Bég et al. [23] used shooting and finite element methods to ana-
lyze the hydromagnetic with induction effects, nano-polymers flow from a stretching surface. All
these studies highlighted the significant contribution that magnetic induction makes to
transport (energy relocation such as impulse force and heat) characteristics.

In stretching sheet fluid dynamics, a variety of thermal and hydrodynamic wall condi-
tions may be relevant in addition to various stretching sheet rates (linear, quadratic, cubic,
exponential, etc.) as elaborated by Jaluria [7]. A linearly stretched sheet with a homogenous
surface heat flux was used by Dutta et al. [24] for the computation of the temperature dis-
persion in the flow. In order to expand sheet boundary layer convection, changing surface
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temperature and linear surface stretching were both studied by Grubka and Bobba [25].
Karwe and Jaluria [26] employed finite difference methods to model mixed convection
from a traveling sheet. Chen and Strobel’s [27] research was conducted numerically on the
combined forced and free convection in isothermal boundary layer flow from a horizontal
sheet that was moving continuously. Ingham [28] analyzed the continuance of solutions for
the free transportation boundary layer flow just about a constantly moving perpendicular
surface with a temperature inversely correlated to the distance along the surface. Ali and
Al-Yousef [29] have reported on laminar mixed convection adjacent to a uniformly moving
vertical plate with wall mass flux effects. A hot, continuously stretched surface has been
researched by Chen [30] using mixed convection cooling.

Thermal radiation also has a significant role in modern materials processing [31] and
often accompanies convective and conductive heat transfer. The radiation effects on forced
and free convection have both been studied extensively in recent years. Algebraic flux
models are frequently employed in such studies since they circumvent the need to solve
the full integro-differential equation of radiative transfer. A popular flux model is the
Rosseland approximation which provides reasonable accuracy for optically dense flows. It
has been utilized in many diverse studies in materials processing and chemical engineering
(including coupled magnetohydrodynamic transport) in recent years and the reader is
referred to [32–39].

In our study, we have out-stretched the study of Ali et al. [16] and Chen [30] by
considering the velocity exponent, wall temperature exponent and thermal radiation effects.
This constitutes the originality of this study. The Local Non-Similarity (LNS) approach
proposed by Sparrow-Yu [40] is used. With the help of a shooting technique termed the
Nachtsheim–Swigert [41] iteration methodology and a sixth order Runge–Kutta iterative
process, numerical solutions of the modified nonlinear boundary layer equations are
discovered. Validation with earlier studies [16,30] is included. Extensive visualization
of transport characteristics (velocity, temperature, magnetic induction, local skin friction
and local Nusselt number) is presented. The simulations are relevant to electroconductive
materials processing [42].

Analysis of the boundary layer of Newtonian flow and heat transfer along a non-
isothermal electroconductive radiative stretching surface under the influence of the aligned
magnetic field effect has not yet been attempted. Therefore, utilizing the induced magnetic
field effect, a study is conducted on the steady flow and heat transfer via a stretching
surface. A second-order ordinary differential equation matching the heat equation, a third-
order ordinary differential equation relating to the momentum equation, and a magnetic
induction boundary layer equation are all generated via a similarity transformation. For dif-
ferent values of the dimensionless parameters of the issue under consideration, numerical
computations up to the appropriate degree of precision were performed using the shooting
iterative approach, which comprises the sixth-order Runge–Kutta integration scheme and
the Nachtsheim–Swigert scheme for the purpose of illustrating the results graphically.

2. Mathematical Model

This study is concerned with the steady Newtonian hydromagnetic two-dimensional
boundary layer convective heat intensity transport from a reclined surface affected by an
aligned magnetic field along with thermal radiation. The sheet (e.g., electrically conducting
polymer) is moving in a coplanar manner with a rate of change of distance and temperature
inversely correlated with the distance from the leading edge, respectively. An external
velocity u = ue(x) = Dxp is imposed at the free stream. A slit is used at the origin to let the
sheet squeeze through the fluid medium. Both the x-axis and the y-axis are pointed at the
sheet. Two equal and opposing forces along the x-axis are applied to expand the sheet ( see
Figure 1). This moving sheet should move with a velocity that follows a power law form,
i.e., ue = Cxp, while being affected by a surface heat flux. Further, a magnetic field in the
y-direction is also produced as a result of the implications of a magnetic field of intensity H
in the positive x-direction. The magnetic Reynolds number permits the generated magnetic
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field to be abandoned in contrast to an applied magnetic field. It is assumed that there
is no applied electric field and that the Hall effect does not exist. The basic equations
for two-dimensional steady incompressible laminar flow are given by Chen [30], Ghosh
et al. [19], and Ali et al. [16].
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Mass conservation (continuity)

∂u
∂x

+
∂v
∂y

= 0 (1)

Magnetic field continuity
∂H1

∂x
+

∂H2

∂y
= 0 (2)

Momentum

u
∂u
∂x

+ v
∂u
∂y
− µ

4πρ

(
H1

∂H1

∂x
+ H2

∂H1

∂y

)
= ν

∂2u
∂y2 +

(
ue

due

dx
− µHe

4πρ

dHe

dx

)
(3)

Magnetic induction conservation

u
∂H1

∂x
+ v

∂H1

∂y
− H1

∂u
∂x
− H2

∂u
∂y

= µe
∂2H1

∂y2 (4)

Energy conservation

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 −

∂qr

∂y
(5)

where the extended surface has cartesian coordinates x and y which are perpendicular
to it, respectively. The magnetic induction units along the x and y axes are H1 and H2
respectively, ue and He are the horizontal-velocity component and component of the hori-
zontally produced magnetic field at the boundary layer’s edge, ν is the magnetic polymer’s
kinematic viscosity, p is its density and µ is its dynamic viscosity, k is the fluid’s thermal
conductivity, cp is its specific heat at constant pressure, and qr is the radiative heat flux.
Thermal diffusivity is symbolized as α = k

ρcp
.

Using Rosseland’s estimation [32–39], the following expression of the radiative heat
flux is generated

qr = −
4σ

3k
∂T4

∂y
(6)
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where the Rosseland mean absorption coefficient is equal to k, and the Stefan–Boltzmann
constant is equal to σ. According to [32–39], we disregard higher-order terms under the
supposition that inside the flow, temperature variations are sufficiently modest such that
Taylor series expansion can show T4 about the free steam temperature T∞:

T4 ≈ 4T∞
3 T − 3T∞

4 (7)

Equations (6) and (7) allow us to derive:

∂qr

∂y
= −16σ1T∞

3

3k1

∂2T
∂y2 (8)

Using Equation (8) the energy, i.e., thermal boundary layer Equation (5) becomes:

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 −

16σ1T∞
3

3k1

∂2T
∂y2 (9)

The following are suitable border conditions:
u = uw(x) = Cxp, v = 0 , ∂H1

∂y = H2 = 0,
T = Tw = T∞ + Axλ at y = 0

u = ue(x) = Dxp , H1 = He(x) = H0 xp

T = T∞ as y→ ∞

(10)

In this case C, D and A are constants (positive), H0 denotes consistent magnetic
field at infinity (free stream), p and λ are velocity exponent parameter and temperature
exponent parameter, respectively, Tw and T∞ are the wall temperature and the ambient
temperature, respectively. The system of major equations has been transformed into a
system of dimensionless equations by the introduction of the dimensionless variables
listed below:

η = y
x (Rex )

1
2 , ξ = GrxCosg

(Rex )
2 , Rex = uw

ν x, ψ(x, y) = ν(Rex )
1
2 f (ξ, η)

φ = He

(
νx
uw

) 1
2 g(ξ, η), Grx = gβ(TW−T∞)x3

ν2 , θ(ξ, η) = T−T∞
Tw−T∞

(11)

where ψ is the dimensional stream function, f is the dimensionless stream flow function,
and θ is the dimensionless fluid temperature, ξ is the upthrust force variable, and η is the
dimensionless interval perpendicular to the sheet. The continuity Equations (1) and (2)
are now found to be identically satisfied by Equation (11). After some simplification, by
substituting Equation (11) into Equations (3), (4) and (9), we obtain:

Momentum boundary layer equation f ′′′ − p f ′2 + p+1
2 f f ′′ + δ2 p + β

[
g′2 p−

(
p+1

2

)
gg′′ − p

]
=

(λ− 2p + 1)ξ[ ∂ f ′
∂ξ f ′ − ∂ f

∂ξ f ′′ + β
{

g′′ ∂g
∂ξ − g′ ∂g′

∂ξ

}
]

(12)

Magnetic induction boundary layer equation

γg′′′ +
p + 1

2
g′′ f − p + 1

2
f ′′ g = (λ− 2p + 1)ξ

[
∂g′

∂ξ
f ′ − ∂ f ′

∂ξ
g′ − ∂ f

∂ξ
g′′ +

∂g
∂ξ

f ′′
]

(13)

Thermal boundary layer (heat) equation

1
Pr

(
1 +

4
3

N
)

θ′′ − λ f ′θ +
p + 1

2
f θ′ = (λ− 2p + 1)ξ

[
f ′

∂θ

∂ξ
− θ′

∂ f
∂ξ

]
(14)
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where β = µ
4πρ

(
Ho
C

)2
is body force magnetic parameter, a constant term δ = D

C , γ = ue
υ

is the reciprocal of the magnetic Prandtl number, Pr = ν
α is the Prandtl number and

N =
(

4σT3
∞

kα

)
is the radiation variable. The following boundary conditions are required

after transformation:
f (ξ, 0) = 0, f ′(ξ, 0) = 1, g(ξ, 0) = 0,
g′′ (ξ, 0) = 0, θ(ξ, 0) = 1 at y = 0

f ′(ξ, ∞) = δ, g′(ξ, ∞) = 1, θ(ξ, ∞) = 0 as y→ ∞
(15)

Here, in this study in the computational procedure, we used the following values of
parameters stated in Table 1.

Table 1. Estimated values in present study.

Parameters Estimated Values

Magnetic parameter (β) 1, 2, 3

Upsthurst force variable (ξ) 0.5, 2.5

Velocity exponent parameter (p) 0, 0.25, 0.5, 0.55, 0.6, 0.65, 0.75, 1

Prandtl number (Pr) 0.1, 0.7, 0.72, 13

Constant parameter (δ) 3

Temperature exponent parameter (λ) −0.75, −0.6, 0.6, −0.4, 0, 0.75, 1

Radiation parameter (N) 0, 1, 2, 3

Reciprocal of magnetic Prandtl number (γ) 0.5

Prandtl number Pr, Prandtl number with reciprocal magnetization γ, radiation variable
N, magnetic force parameter β, velocity exponent parameter p, temperature exponent pa-
rameter λ, and buoyancy force parameter ξ. Results are graphically plotted in Figures 2–18.

3. Numerical Solution Using Local Non-Similarity Method (LNSM)

Numerous researchers have used the LNSM, which was proposed by Sparrow and
Yu [40], for example, Minkowycz and Sparrow [43] in thermal boundary layers,
Bég et al. [44] in liquid metal forced convection magnetic induction boundary layers, Hos-
sain [45] in dissipative magnetohydrodynamic convective boundary layer flows,
Bég et al. [46] in cross-diffusive magnetic boundary layers in porous media and
Bég et al. [47] in inclined solar collector thermos-solutal convection boundary layers. It is an
excellent technique for tackling non-similar boundary layer physics. Using this process, it is
possible to extract two crucial properties from the resulting differential equations: the local
solutions and the non-similar solutions at any streamwise location. The wall’s unidentified
boundary conditions included using a shooting approach and forward integration, two
typical methods for computing the numerical solutions to these equations. The technique
also permits some self-verification of the numerical results’ accuracy. Considering the
following transformations for the velocity, magnetic induction, and temperature fields,
respectively, the LNSM retains all the terms in the altered equations with ξ− derivatives:

∂ f
∂ξ

= G1(ξ, η); (16)

∂g
∂ξ

= G2(ξ, η); (17)

∂θ

∂ξ
= G3(ξ, η) (18)
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As a result, three new equations must be derived in order to identify G1(ξ, η), G2(ξ, η).
These present three extra unknown functions. Creating the subsidiary equations by differ-
entiating the modified equations with regard to ξ. The secondary equations for G1(ξ, η),
G2(ξ, η), G3(ξ, η) contain the terms ∂G1

∂ξ , ∂G2
∂ξ , ∂G3

∂ξ and their η derivatives. The systems of
equations for f (ξ, η), g(ξ, η), θ(ξ, η), G1(ξ, η), G2(ξ, η) and G3(ξ, η) transmuted to an ODE
(Ordinary Differential Equations) system of equations with the terms ignored. This LNS
(Local Non-Similarity) technique configuration is referred to as considering that approxi-
mations are obtained by omitting the words as the second degree of truncation. The level of
truncation will determine how accurate the LNS results are. Now differentiating Equations
(12)–(14) with respect to ξ we have:

∂ f ′′′
∂ξ − 2p f ′ ∂ f

∂ξ

′
+ p+1

2

[
f ∂ f ′′

∂ξ + f ′′ ∂ f
∂ξ

]
+ β

[
2g′ ∂g′

∂ξ p−
(

p+1
2

)[
g ∂g′′

∂ξ + g′′ ∂g
∂ξ

]]
= (λ− 2p + 1)[ ∂ f ′

∂ξ f ′ − ∂ f
∂ξ f ′′ + β{ ∂g

∂ξ g′′ − ∂g′
∂ξ g′}]+

(λ− 2p + 1)ξ
[[

∂ f ′
∂ξ

∂ f ′
∂ξ + f ′ ∂2 f ′′

∂ξ2

]
− [ f ′′ ∂2 f

∂ξ2 + ∂ f
∂ξ

∂ f ′′
∂ξ

]
+

β{[g′′ ∂2g
∂ξ2 +

∂g
∂ξ

∂g′′
∂ξ ]− [g′ ∂2g′

∂ξ2 + ∂g′
∂ξ

∂g′
∂ξ ]}

(19)


γ

∂g′′′
∂ξ + p+1

2

[
∂g′′
∂ξ f + g′′ ∂ f

∂ξ

]
− p+1

2 [ f ′′ ∂g
∂ξ + g ∂ f ′′

∂ξ ] =

(λ− 2p + 1)
[

∂g′
∂ξ f ′ − ∂ f ′

∂ξ g′ − ∂ f
∂ξ g′′ + ∂g

∂ξ f ′′
]
+ (λ− 2p + 1)ξ[

[
∂ f ′
∂ξ

∂g′
∂ξ + ∂2g′

∂ξ2

]
−
[

g′ ∂
2 f ′

∂ξ2 + ∂ f ′
∂ξ

∂g′
∂ξ

]
−
[

g′′ ∂2 f
∂ξ2 + ∂ f

∂ξ
∂g′′
∂ξ

]
+
[

f ′′ ∂2g
∂ξ2 +

∂g
∂ξ

∂ f ′′
∂ξ

]
]

(20)


1
Pr

(
1 + 4

3 N
)

∂θ′′
∂ξ − λ[ f ′ ∂θ

∂ξ + θ
∂ f ′
∂ξ ] +

p+1
2

[
θ′ ∂ f

∂ξ + f ∂θ′
∂ξ

]
=

(λ− 2p + 1)
[

f ′ ∂θ
∂ξ − θ′ ∂ f

∂ξ

]
+ (λ− 2p + 1)ξ

[[
f ′ ∂

2θ
∂ξ2 +

∂θ
∂ξ

∂ f ′
∂ξ

]
− [θ′ ∂

2 f
∂ξ2 + ∂ f

∂ξ
∂θ′
∂ξ

]
]

(21)

Now applying the second level of truncation we have the following equations:
∂ f ′′′
∂ξ − 2p f ′ ∂ f

∂ξ

′
+ p+1

2

[
f ∂ f ′′

∂ξ + f ′′ ∂ f
∂ξ

]
+ β

[
2g′ ∂g′

∂ξ p−
(

p+1
2

)[
g ∂g′′

∂ξ + g′′ ∂g
∂ξ

]]
=

(λ− 2p + 1)[ ∂ f ′
∂ξ f ′ − ∂ f

∂ξ f ′′ + β{ ∂g
∂ξ g′′ − ∂g′

∂ξ g′}]+
(λ− 2p + 1)ξ[[ ∂ f ′

∂ξ
∂ f ′
∂ξ + f ′ ∂2 f ′

∂ξ2 ]−
∂ f
∂ξ

∂ f ′′
∂ξ + β{ ∂g

∂ξ
∂g′′
∂ξ −

∂g′
∂ξ

∂g′
∂ξ }]

(22)


γ

∂g′′′
∂ξ + p+1

2

[
∂g′′
∂ξ f + g′′ ∂ f

∂ξ

]
− p+1

2 [ f ′′ ∂g
∂ξ + g ∂ f ′′

∂ξ ] =

(λ− 2p + 1)
[

∂g′
∂ξ f ′ − ∂ f ′

∂ξ g′ − ∂ f
∂ξ g′′ + ∂g

∂ξ f ′′
]
+

(λ− 2p + 1)ξ[
[

∂ f ′
∂ξ

∂g′
∂ξ

]
− ∂ f ′

∂ξ
∂g′
∂ξ −

∂ f
∂ξ

∂g′′
∂ξ + ∂g

∂ξ
∂ f ′′
∂ξ ]

(23)


1
Pr

(
1 + 4

3 N
)

∂θ′′
∂ξ − λ[ f ′ ∂θ

∂ξ + θ
∂ f ′
∂ξ ] +

p+1
2

[
θ′ ∂ f

∂ξ + f ∂θ′
∂ξ

]
=

(λ− 2p + 1)
[

f ′ ∂θ
∂ξ − θ′ ∂ f

∂ξ

]
+ (λ− 2p + 1)ξ[ ∂θ

∂ξ
∂ f ′
∂ξ −

∂ f
∂ξ

∂θ′
∂ξ ]

(24)

By introducing, ∂ f ′
∂ξ = G′1(ξ, η), ∂ f ′′

∂ξ = G′′ 1(ξ, η), ∂ f ′′′
∂ξ = G′′′ 1(ξ, η), ∂g′

∂ξ = G′2(ξ, η),
∂g′′
∂ξ = G′′ 2(ξ, η), ∂g′′′

∂ξ = G′′′2 (ξ, η), ∂θ′
∂ξ = G′3(ξ, η), ∂θ′′

∂ξ = G′′ 3(ξ, η), the transformed
equations are:{

G′′′1 − 2p f ′G′1 +
p+1

2
(
G1 f ′′ + f G′′1

)
+ β

[
2g′G′2 p− p+1

2
(
G2g′′ + gG′′2

)]
=

(λ− 2p + 1)[
{

f ′G′1 − f ′′G1 − βG′2g′ + βG2g′′
}
+ ξ{(G′1)

2 − G′′1 G1 − β(G′2)
2 + βG2G′′2 }]

(25)

{
γG′′′2 + p+1

2
(
G1g′′ + f G′′2

)
− p+1

2
(
G2 f ′′ + gG′′1

)
=

(λ− 2p + 1)
[ {

G′2 f ′ − G′1g′ − G′1g′′ + G2 f ′′
}
+ ξ
{

G2G′′1 − G1G′′2
}] (26)
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{(
1 + 4

3 N
)

G′′3 + pr

[
p+1

2
(
f G′3 + G1 θ′

)
− λ
(
G3 f′ + θ G′1

)]
=

pr(λ− 2p + 1)
[
{G3 f ′ − G1 θ′}+ ξ

{
G3G′1 − G1G′3

}] (27)

The border circumstances are:
G1(ξ, 0) = 0, G′1(ξ, 0) = 0,
G′1(ξ, ∞) = 0, G2(ξ, 0) = 0,
G′2(ξ, ∞) = 0, G3(ξ, 0) = 0,
G′′2 (ξ, 0) = 0, G3(ξ, ∞) = 0

(28)

Finally, there are six equations that emerge and are given below: f ′′′ − p f ′2 + p+1
2 f f ′′ + δ2 p + β

[
g′2 p−

(
p+1

2

)
gg′′ − p

]
=

(λ− 2p + 1)ξ[ ∂ f ′
∂ξ f ′ − ∂ f

∂ξ f ′′ + β{ ∂g
∂ξ g′′ − ∂g′

∂ξ g′}]
(29)

{
γg′′′ +

p + 1
2

g′′ f − p + 1
2

f ′′ g = (λ− 2p + 1)ξ[
∂g′

∂ξ
f ′ − ∂ f ′

∂ξ
g′ − ∂ f

∂ξ
g′′ +

∂g
∂ξ

f ′′ ] (30)

{
1
Pr

(
1 +

4
3

N
)

θ′′ − λ f ′θ +
p + 1

2
f θ′ = (λ− 2p + 1)ξ[ f ′

∂θ

∂ξ
− θ′

∂ f
∂ξ

] (31)

{
G′′′1 − 2p f ′G′1 +

p+1
2
(
G1 f ′′ + f G′′1

)
+ β

[
2g′G′2 p− p+1

2
(
G2g′′ + gG′′2

)]
=

(λ− 2p + 1)[
{

f ′G′1 − f ′′G1 − βG′2g′ + βG2g′′
}
+ ξ{(G′1)

2 − G′′1 G1 − β(G′2)
2 + βG2G′′2 }]

(32)

{
γG′′′2 + p+1

2
(
G1g′′ + f G′′2

)
− p+1

2
(
G2 f ′′ + gG′′1

)
=

(λ− 2p + 1)
[ {

G′2 f ′ − G′1g′ − G′1g′′ + G2 f ′′
}
+ ξ
{

G2G′′1 − G1G′′2
}] (33)

{(
1 + 4

3 N
)

G′′3 + pr

[
p+1

2
(
fG′3 + G1θ

′)− λ
(
G3f′ + θG′1

)]
=

pr(λ− 2p + 1)
[
{G3 f ′ − G1θ′}+ ξ

{
G3G′1 − G1G′3

}] (34)

The combined boundary conditions are:
f (ξ, 0) = 0, f ′(ξ, 0) = 1,
g(ξ, 0) = 0, g′′ (ξ, 0) = 0

θ(ξ, 0) = 1, f ′(ξ, ∞) = δ
g′(ξ, ∞) = 1, θ(ξ, ∞) = 0

G1(ξ, 0) = 0, G′1(ξ, 0) = 0
G′1(ξ, ∞) = 0; G2(ξ, 0) = 0
G′2(ξ, ∞) = 0; G3(ξ, 0) = 0
G′′2 (ξ, 0) = 0, G3(ξ, ∞) = 0

(35)

The engineering design section has some remarkable uses of the skin friction coefficient
and local Nusselt number. These parameters evaluate the wall shear stress and local wall
heat transfer rate, respectively, and may be defined for the present problem as follows.

Skin Friction coe f f icient , C f x (Rex )
1
2 = 2 f ′′ (ξ, η) (36)

Local Nusselt number , Nux(Rex )
− 1

2 = −θ′(ξ, 0) (37)

4. Validation of Runge–Kutta Code

We have compared our results with previously well-known results and found satisfac-
tory agreement. The comparisons are documented in Tables 2–4 and benchmarked against
simpler models of Mahapattra and Gupta [48] and Ali et al. [16]. The Runge–Kutta code’s
correctness is attested to by the excellent confirmation that has been obtained.
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Table 2. The Local Skin Friction coefficient for diverse values of δ when β = 0, p = 1.0, λ = 0.0, N = 0.0,
γ = 1.0, pr = 0.72, ξ = 0.

δ Present Mahapattra and Gupta [48] Ali et al. [16]

0.1 −0.9698 −0.9694 −0.9694

0.2 −0.9187 −0.9181 −0.9181

0.5 −0.6675 −0.6673 −0.6673

2.0 2.0174 2.0175 2.0175

5.0 4.7293 4.7293 4.7293

Table 3. Skin Friction coefficient and the Local Nusselt number for diverse β when p = 1.0, λ = N = 0.0,
γ = 1.0, and pr = 0.72, δ = 3.0, ξ = 0.0.

β
Present (Skin

Friction Coefficient) Ali et al. [16] Present (Local
Nusselt Number) Ali et al. [16]

0.1 4.7093 4.70928 0.9794 0.97902

0.5 4.6280 4.62764 0.9766 0.97617

1.0 4.5225 4.52158 0.9729 0.97240

2.0 4.2993 4.29431 0.9648 0.96405

5.0 4.4589 3.43352 0.9300 0.92863

Table 4. The Local Nusselt number for various Pr when p = 1.0, λ = N = 0.0, γ = 1.0, δ = 3.0,
ξ = 0.0 , β = 1.

Pr
Present

(Local Nusselt Number) Ali et al. [16]

0.07 0.3393 0.3381

0.5 0.8285 0.8274

2.0 1.5204 1.5214

6.8 2.5951 2.5978

10.0 3.0758 3.0790

5. Discussion of Graphical Results

The problem posed by nonlinear system of Equations (29)–(34) under boundary
conditions (35) has been solved in MATLAB symbolic software using the Nachtsheim–
Swigert [26] iteration technique along with a sixth-order Runge–Kutta iterative process.
This technique is extremely efficient and stable and has been deployed in numerous previ-
ous investigations by the authors- see [33–36].

In order to consider the results, carry out calculations for various parameter values, for
instance, Prandtl number Pr, Prandtl number with reciprocal magnetization γ, radiation
variable N, magnetic force parameter β, velocity exponent parameter p, temperature
exponent parameter λ, buoyancy force parameter ξ. Results are graphically plotted in
Figures 2–18.

In Figures 2–4, it is shown how a magnetic parameter affects the induced magnetic
fields’ speed, temperature, and direction. It is evident that the velocity profile decreases
with escalating magnetic force parameter β and increases with the increasing buoyancy
force parameter ξ as shown in Figure 2. The momentum boundary layer thickness is, there-
fore, increased with greater magnetic Lorentz retarding force (flow retardation) whereas it
is reduced with the thermal buoyancy effect. By increasing the magnetic force parameter β
the temperature profile increases whereas it is reduced by increasing the upthrust force pa-
rameter ξ as shown in Figure 3. The additional energy that the magnetic polymer expends
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to drag against the imposed magnetic field is undoubtedly lost as thermal energy. This
warms the environment and thickens the thermal-boundary layer. Increasing thermal buoy-
ancy, however, only assists momentum development and counteracts thermal diffusion
in the regime by suppressing convection currents and reducing thermal boundary layer
thickness. It is also seen that the induced magnetic field profile decreases with increasing
magnetic force parameter β whereas it increases with increasing buoyancy force parameter
ξ as shown in Figure 4. Magnetic induction is, therefore, inhibited with Lorentz body
force whereas it is encouraged with thermal buoyancy effect; this manifests in a respec-
tive thinning and thickening of magnetic boundary layer thickness, as well as numerous
additional investigations, including those by Glauert [11] and Gribbin [12] among others.
It is also important to note that Figure 4 specifies 0.5 for the magnetic Prandtl number’s
inverse = ue

υ . Physically as elaborated by Cramer and Pai [49]. When this parameter is
unity the momentum and magnetic boundary layer thicknesses are approximately equal.
Magnetic diffusion rate, however, outpaces momentum diffusion rate for γ = 0.5. This en-
courages the influence of Lorentzian body force which counteracts magnetic induction and
decreases the magnetic boundary layer thickness. Asymptotically smooth distributions are
computed in the free stream indicating that a sufficiently large infinity boundary condition
is prescribed in the MATLAB Runge–Kutta code.
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Figure 5 shows the influence of the radiation parameter N as well as the upthrust force
variable ξ on the temperature profile. The temperature profile escalates with increasing
radiation variable N and declines with increasing upthrust force variable ξ. Radiation
parameter N has no effect on velocity and induced magnetic field profiles, respectively,
which is understandable since it does not feature in either the hydrodynamic (momentum)
or magnetic induction boundary layer equations. Radiation’s main impact is to energize
the regime of the boundary layer, which raises temperatures and increases the thickness
of the fluid energy border layer. Again, in the free stream, smooth decays are generated
to demonstrate that the simulations are accurately run in MATLAB by employing an
appropriately big infinity boundary condition.

The effect of temperature exponent parameter λ on the velocity, temperature and
induced magnetic field profiles are given in Figures 6–8. Figure 6 shows that the speed pro-
file deteriorates weakly with increasing temperature exponent parameter λ and increases
weakly with increasing buoyancy-force parameter ξ. By rising the temperature-exponent
term λ and buoyancy-force term ξ, respectively, the heat profiles are seen in Figure 7 to
be strongly decreasing. The non-isothermal effect, therefore, produces lower temperature
magnitudes than would be computed with an isothermal model. Again, we noticed in
Figure 8 that with the rising of magnetic intensity, the contour of the induced decelerates
with the acceleration of the temperature exponent parameter λ and increases with the
escalating buoyancy force parameter ξ. However, the impact again is marginal, and a
much more pronounced effect is observed, as expected, on the temperature distribution
(Figure 7).
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Velocity exponent parameter p impact on the velocity, temperature, and induced
magnetic field profiles is discussed in Figures 9–11. It is seen that the velocity profile
increases by increasing the value of the p ande ξ as shown in Figure 9. Substantial flow
acceleration is, therefore, induced with power-law stretching and thermal buoyancy effect,
i.e., the thickness of the momentum boundary layer is lowered. According to Figure 10, the
thickness of the thermal boundary layer is decreased in the regime as the velocity exponent
variable p, and the upthrust force variable ξ is increased. We observe from Figure 11 that
the induced magnetic field profile, however, is enhanced with elevation in the value of
p and ξ. Magnetic boundary layer thickness is, therefore, accentuated with power-law
stretching of the sheet and stronger thermal buoyancy effect.



Appl. Sci. 2023, 13, 4592 13 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 20 
 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

1.5

2.0

2.5

3.0

ξ

p

pr=0.72, N=0.0
β=0.1, λ=-0.5
δ=3.0, γ=0.5

f '
(ξ

,η
)

η

 p=0.55, ξ=0.5
 p=0.60, ξ=0.5
 p=0.65, ξ=0.5
 p=0.65, ξ=2.5

 
Figure 9. Effect of the velocity exponent parameter on velocity profile. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

p
ξ

pr=0.72, N=0.0
β=0.1, λ=-0.5
δ=3.0, γ=0.5

p=0.55, ξ=0.5
p=0.60, ξ=0.5
p=0.65, ξ=0.5
p=0.65, ξ=2.5

 θ
 (ξ

, η
)

η  
Figure 10. Effect of the velocity exponent parameter on temperature profile. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

ξ
p

pr=0.72, N=0.0
β=0.1, λ=-0.5
δ=3.0, γ=0.5

 p=0.55, ξ=0.5
 p=0.60, ξ=0.5
 p=0.65, ξ=0.5
 p=0.65, ξ=2.5

g 
'(ξ

,η
)

η  
Figure 11. Effect of the velocity exponent parameter on magnetic field profile. 

Figure 12 shows the effect of Prandtl number 𝑃𝑟 on the temperature profile only. It 
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energy boundary layer deteriorated with the enhancement of 𝑃𝑟 values. The single-most 
prime statistic in heat transmission in fluids is the Prandtl number 𝑃𝑟, which is a property 
of a specific fluid under specific circumstances. It is inversely proportional to the fluid’s 
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Figure 12 shows the effect of Prandtl number Pr on the temperature profile only. It is
seen that the temperature profile declines with escalating Pr and ξ. The thickness of the
energy boundary layer deteriorated with the enhancement of Pr values. The single-most
prime statistic in heat transmission in fluids is the Prandtl number Pr, which is a property
of a specific fluid under specific circumstances. It is inversely proportional to the fluid’s
thermal conductivity because it measures the relationship between momentum and thermal
diffusivity. Higher thermal conductivity fluids are correlated with Lower Prandtl values and
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vice versa. When Pr = 1, the momentum and thermal diffusion rates are equal, and the
thickness of the thermal and velocity boundary layers will be the same. Heat diffusion greatly
surpasses momentum diffusivity when Pr is significantly low. Thermal buoyancy encourages
momentum diffusion, as noted earlier, but suppresses thermal diffusion. A higher buoyancy
force parameter, ξ, therefore, decreases the thickness of the thermal boundary layer.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 20 
 

mal diffusivity. Higher thermal conductivity fluids are correlated with Lower Prandtl val-
ues and vice versa. When 𝑃𝑟 = 1, the momentum and thermal diffusion rates are equal, 
and the thickness of the thermal and velocity boundary layers will be the same. Heat dif-
fusion greatly surpasses momentum diffusivity when 𝑃𝑟 is significantly low. Thermal 
buoyancy encourages momentum diffusion, as noted earlier, but suppresses thermal dif-
fusion. A higher buoyancy force parameter, 𝜉, therefore, decreases the thickness of the 
thermal boundary layer.  

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

pr

ξ
p=0.5, N=0.0
β=0.1, γ=0.5
λ= −0.5, δ=3.0

θ 
(ξ

, η
)

η

pr=0.1, ξ=0.5
pr=0.1, ξ=2.5
pr=0.7, ξ=0.5
pr=13, ξ=0.5

 
Figure 12. Effect of the Prandtl number on temperature profile. 

Figures 13 and 14 display the effects of the velocity exponent parameter 𝑝 on the 
local Nussetl number and the local skin friction coefficient. At different values of p, Local 
Skin friction and Local Nusselt number are expressed as a function of 𝜉. The local Nusselt 
number grows when the buoyancy force parameter 𝜉 and the velocity exponent param-
eter p increase, as seen in Figure 13. The local skin friction coefficient rises when the buoy-
ancy force parameter and the velocity exponent parameter 𝑝, rise, as can be shown once 
more in Figure 14. As a result, a clearly discernible flow acceleration is produced with 
increased thermal buoyancy 𝜉,and power-law stretching velocity effects. 

As illustrated in Figures 15 and 16, the “Local Nusselt number and the Local Skin 
Friction coefficient” are presented as a function of 𝜉 various values of the temperature 
exponent parameter, 𝜆. According to Figure 15, the local Nusselt number rises when the 
buoyant force parameter 𝜉  rises for a given 𝜆, which boosts heat transmission to the 
wall. As seen in Figure 16, the local skin friction coefficient increases for a given 𝜆 as the 
buoyancy force parameter 𝜉 grows.  

0 1 2 3 4 5 6

0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

p

p=0.0
p=0.25
p=0.75
p=1.0

N=0.0, pr=0.70
δ=3.0, λ=0.0
β=0.1, γ=0.5

-θ
(ξ

,0
)

ξ  
Figure 13. Effect of the velocity exponent and buoyancy force parameter on the Nusselt number. 

Figure 12. Effect of the Prandtl number on temperature profile.

Figures 13 and 14 display the effects of the velocity exponent parameter p on the
local Nussetl number and the local skin friction coefficient. At different values of p, Local
Skin friction and Local Nusselt number are expressed as a function of ξ. The local Nusselt
number grows when the buoyancy force parameter ξ and the velocity exponent parameter
p increase, as seen in Figure 13. The local skin friction coefficient rises when the buoyancy
force parameter and the velocity exponent parameter p, rise, as can be shown once more in
Figure 14. As a result, a clearly discernible flow acceleration is produced with increased
thermal buoyancy ξ,and power-law stretching velocity effects.

As illustrated in Figures 15 and 16, the “Local Nusselt number and the Local Skin
Friction coefficient” are presented as a function of ξ various values of the temperature
exponent parameter, λ. According to Figure 15, the local Nusselt number rises when
the buoyant force parameter ξ rises for a given λ, which boosts heat transmission to the
wall. As seen in Figure 16, the local skin friction coefficient increases for a given λ as the
buoyancy force parameter ξ grows.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 20 
 

mal diffusivity. Higher thermal conductivity fluids are correlated with Lower Prandtl val-
ues and vice versa. When 𝑃𝑟 = 1, the momentum and thermal diffusion rates are equal, 
and the thickness of the thermal and velocity boundary layers will be the same. Heat dif-
fusion greatly surpasses momentum diffusivity when 𝑃𝑟 is significantly low. Thermal 
buoyancy encourages momentum diffusion, as noted earlier, but suppresses thermal dif-
fusion. A higher buoyancy force parameter, 𝜉, therefore, decreases the thickness of the 
thermal boundary layer.  

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

pr

ξ
p=0.5, N=0.0
β=0.1, γ=0.5
λ= −0.5, δ=3.0

θ 
(ξ

, η
)

η

pr=0.1, ξ=0.5
pr=0.1, ξ=2.5
pr=0.7, ξ=0.5
pr=13, ξ=0.5

 
Figure 12. Effect of the Prandtl number on temperature profile. 

Figures 13 and 14 display the effects of the velocity exponent parameter 𝑝 on the 
local Nussetl number and the local skin friction coefficient. At different values of p, Local 
Skin friction and Local Nusselt number are expressed as a function of 𝜉. The local Nusselt 
number grows when the buoyancy force parameter 𝜉 and the velocity exponent param-
eter p increase, as seen in Figure 13. The local skin friction coefficient rises when the buoy-
ancy force parameter and the velocity exponent parameter 𝑝, rise, as can be shown once 
more in Figure 14. As a result, a clearly discernible flow acceleration is produced with 
increased thermal buoyancy 𝜉,and power-law stretching velocity effects. 

As illustrated in Figures 15 and 16, the “Local Nusselt number and the Local Skin 
Friction coefficient” are presented as a function of 𝜉 various values of the temperature 
exponent parameter, 𝜆. According to Figure 15, the local Nusselt number rises when the 
buoyant force parameter 𝜉  rises for a given 𝜆, which boosts heat transmission to the 
wall. As seen in Figure 16, the local skin friction coefficient increases for a given 𝜆 as the 
buoyancy force parameter 𝜉 grows.  

0 1 2 3 4 5 6

0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

p

p=0.0
p=0.25
p=0.75
p=1.0

N=0.0, pr=0.70
δ=3.0, λ=0.0
β=0.1, γ=0.5

-θ
(ξ

,0
)

ξ  
Figure 13. Effect of the velocity exponent and buoyancy force parameter on the Nusselt number. Figure 13. Effect of the velocity exponent and buoyancy force parameter on the Nusselt number.



Appl. Sci. 2023, 13, 4592 15 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 20 
 

0 1 2 3 4 5 6

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5
p

N=0.0, pr=0.70
δ=3.0, λ=0.0
β=0.1, γ=0.5

2f
 ''

(ξ
,0

)

ξ

p=0.0
p=0.25
p=0.75
p=1.0

 
Figure 14. Effect of the velocity exponent and buoyancy force parameter on the skin friction coeffi-
cient. 

 
Figure 15. Effect of the temperature exponent and buoyancy force parameter on Nusselt number. 

 
Figure 16. Effect of the temperature exponent and buoyancy force parameter on the skin friction 
coefficient. 

The local Nusselt number and the local skin friction coefficient are presented as a 
function of 𝜉 at various values of the magnetohydrodynamic force parameter, 𝛽 in Fig-
ures 17 and 18. Noticed from Figure 17 that the Nusselt number increases significantly in 
magnitude when 𝜉 rises for a given 𝛽. Figure 18 demonstrates that for a particular, the 
local drag coefficient accentuates gradually as buoyancy-force parameter 𝜉 rises. 

Figure 14. Effect of the velocity exponent and buoyancy force parameter on the skin friction coefficient.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 20 
 

0 1 2 3 4 5 6

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5
p

N=0.0, pr=0.70
δ=3.0, λ=0.0
β=0.1, γ=0.5

2f
 ''

(ξ
,0

)

ξ

p=0.0
p=0.25
p=0.75
p=1.0

 
Figure 14. Effect of the velocity exponent and buoyancy force parameter on the skin friction coeffi-
cient. 

 
Figure 15. Effect of the temperature exponent and buoyancy force parameter on Nusselt number. 

 
Figure 16. Effect of the temperature exponent and buoyancy force parameter on the skin friction 
coefficient. 

The local Nusselt number and the local skin friction coefficient are presented as a 
function of 𝜉 at various values of the magnetohydrodynamic force parameter, 𝛽 in Fig-
ures 17 and 18. Noticed from Figure 17 that the Nusselt number increases significantly in 
magnitude when 𝜉 rises for a given 𝛽. Figure 18 demonstrates that for a particular, the 
local drag coefficient accentuates gradually as buoyancy-force parameter 𝜉 rises. 

Figure 15. Effect of the temperature exponent and buoyancy force parameter on Nusselt number.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 20 
 

0 1 2 3 4 5 6

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5
p

N=0.0, pr=0.70
δ=3.0, λ=0.0
β=0.1, γ=0.5

2f
 ''

(ξ
,0

)

ξ

p=0.0
p=0.25
p=0.75
p=1.0

 
Figure 14. Effect of the velocity exponent and buoyancy force parameter on the skin friction coeffi-
cient. 

 
Figure 15. Effect of the temperature exponent and buoyancy force parameter on Nusselt number. 

 
Figure 16. Effect of the temperature exponent and buoyancy force parameter on the skin friction 
coefficient. 

The local Nusselt number and the local skin friction coefficient are presented as a 
function of 𝜉 at various values of the magnetohydrodynamic force parameter, 𝛽 in Fig-
ures 17 and 18. Noticed from Figure 17 that the Nusselt number increases significantly in 
magnitude when 𝜉 rises for a given 𝛽. Figure 18 demonstrates that for a particular, the 
local drag coefficient accentuates gradually as buoyancy-force parameter 𝜉 rises. 

Figure 16. Effect of the temperature exponent and buoyancy force parameter on the skin friction
coefficient.

The local Nusselt number and the local skin friction coefficient are presented as
a function of ξ at various values of the magnetohydrodynamic force parameter, β in
Figures 17 and 18. Noticed from Figure 17 that the Nusselt number increases significantly
in magnitude when ξ rises for a given β. Figure 18 demonstrates that for a particular, the
local drag coefficient accentuates gradually as buoyancy-force parameter ξ rises.
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6. Conclusions 
The processing of magnetic polymer materials at high temperatures, under the influ-

ence of an aligned magnetic field and heat radiation, has been modeled using an extensive 
mathematical model for steady two-dimensional boundary layer heat transmission in an 
electroconductive Newtonian fluid from an expanded surface. Sparrow–Yu local non-
similarity transformations were used to non-dimensionalize the governing boundary 
layer equations, which could be solved numerically by a sixth-order Runge–Kutta inte-
gration scheme with a Nachtsheim–Swigert shooting iterative technique. The accuracy of 
the numerical scheme has been verified through comparison with published literature 
shown in Tables 2–4. The following conclusions can be drawn:  
 For a given value of the buoyancy force parameter, the local Nusselt number is in-

creased by improving the velocity exponent parameter and temperature exponent 
parameter and decreases by improving the magnetic force parameter, radiation pa-
rameter, and reciprocal of magnetic Prandtl number. 

 For a given value of the buoyancy force parameter, the wall shear stress (local skin 
friction coefficient) increases with an increase in the temperature exponent parame-
ter, reciprocal of the magnetic Prandtl number, and velocity exponent parameter, 
whereas it decreases with an increase in the magnetic force parameter. 

 Yet, raising the buoyancy force parameter causes the temperature to decrease while 
increasing the velocity and magnetic induction profiles. Increasing the temperature-
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For a given value of the buoyancy force parameter, the wall shear stress (local skin
friction coefficient) increases with an increase in the temperature exponent parameter,
reciprocal of the magnetic Prandtl number, and velocity exponent parameter, whereas
it decreases with an increase in the magnetic force parameter.
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increasing the velocity and magnetic induction profiles. Increasing the temperature-
exponent parameter decreases the rate of change in distance, the induced magnetic
field, and the temperature magnitudes.
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similarity transformations were used to non-dimensionalize the governing boundary 
layer equations, which could be solved numerically by a sixth-order Runge–Kutta inte-
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the numerical scheme has been verified through comparison with published literature 
shown in Tables 2–4. The following conclusions can be drawn:  
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parameter and decreases by improving the magnetic force parameter, radiation pa-
rameter, and reciprocal of magnetic Prandtl number. 

 For a given value of the buoyancy force parameter, the wall shear stress (local skin 
friction coefficient) increases with an increase in the temperature exponent parame-
ter, reciprocal of the magnetic Prandtl number, and velocity exponent parameter, 
whereas it decreases with an increase in the magnetic force parameter. 

 Yet, raising the buoyancy force parameter causes the temperature to decrease while 
increasing the velocity and magnetic induction profiles. Increasing the temperature-
exponent parameter decreases the rate of change in distance, the induced magnetic 
field, and the temperature magnitudes. 

 By increasing the magnetic force variable, the temperature is elevated but the velocity 
outline and magnetic field created are suppressed. 

As the radiation parameter increases, the temperature outline grows while the local
Nusselt number decreases.

Some intriguing new information on the processing of thermal magnetic polymer
sheets has emerged from the current simulations. They have, however, been limited to
Newtonian flow. Future studies may take into account non-Newtonian models for various
electroconductive polymers, such as viscoelastic [50] and viscoplastic models [51], which
are now being taken into consideration.
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