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ABSTRACT 
As sound propagates within a room, it experiences high-order reflection, diffraction, and 

scattering. This causes the reflection density to increase over time, such that the sound field 

becomes diffuse and chaotic. Under these conditions, there is little benefit in running a comp-

utationally costly full wave solver – if it is even feasible – so methods based on Geometrical 

models of acoustic propagation prevail. Raytracing is currently the de-facto method for this 

late-time, high-frequency regime in room acoustic modelling. It samples the propagating 

distributions of acoustic intensity by launching a set of rays and individually tracing their 

trajectories. This is computationally efficient when only specular reflections are present, but 

accurate inclusion of scattering or diffraction requires ‘ray-splitting’ to be introduced, causing 

an exponential increase in computational cost with reflection order, crippling the algorithm. 

Hence only crude Monte Carlo implantations of these processes are tractable with Raytracing.  

An emerging solution for modelling late-reflections is “Surface-Based” Geometrical 

Acoustics. These formulations map a distribution of rays arriving at a boundary onto a pre-

defined ‘approximation space’ of basis functions spanning position and angle, so the sound 

field is represented by a vector of boundary coefficients. Re-radiation of subsequent reflections 

is thus reduced to a matrix multiplication, with the steady-state solvable via a Neumann series. 

As rays only propagate one reflection order before being collected, the multiple ‘child’ rays 

produced that would be produced by scattering or diffraction of a ‘parent’ ray at the boundary 

are absorbed into the ‘approximation’ space at each reflection order. This maintains a fixed 

number of degrees of freedom and a linear computational cost with reflection order. This thesis 

presents a Surface-Based Geometrical Acoustic formulation cast in a Galerkin Boundary 

Element framework.  

This thesis presents and implements the formulation in two dimensions and validates it 

against an Image Source Model for a rectangular room. The Galerkin Boundary Element 

scheme expediates comparison of different approximation schemes and their effect on 

convergence and accuracy can be easily studied. Examination of the resulting power 

distributions on the boundary for early reflections show power being smudged over a range of 

reflection angles, indicating approximation in the scheme. But this is perceptually appropriate 

for late-time diffuse fields as individual reflections will no longer be distinguishable, and late 

time energy decay rates are shown to be correct. Receiver responses for early reflections show 

very good agreement also, so long as angular resolution is set sufficiently high. The formulation 
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is shown to converge with the number of angular degrees of freedom as well as smaller element 

sizes. The results show a high degree of accuracy and identical convergence trends when using 

continuous orthogonal polynomials, such as Legendre, Chebyshev or Lobatto, as angular basis. 

In contrast, other functions, such as continuous piecewise-linear, or discontinuous Piecewise-

constant, exhibit a significant degree of approximation for higher interpolation orders due to 

their discontinuous or non-smooth nature. Solutions in Geometrical Acoustics can be 

discontinuous. The ultimate ambition in formulating the model presented in this thesis is to 

include diffraction, and solutions when it is included will be continuous. This capability still 

remains as work for the future, but the choices made in this thesis were informed by that end 

goal. 
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1 INTRODUCTION 

1.1 MOTIVATION 

Numerical prediction methods allow implementation, analysis and comparison of different 

concepts, formulations, and designs without the need to build physical models and/or undertake 

any measurements. They have had a significant impact on scientific progress and innovation 

in a wide range of disciplines, including acoustics [1]. The scope of such models within various 

sub-disciplines in acoustics stretches from refining room acoustics for critical listening and 

performance spaces to examining transducer and diffuser designs.  

In room acoustics, the need to model the entire audible frequency range spanning several 

octaves with respect to (w.r.t.) dimensions of a typical space imposes the need to operate 

different classes of prediction models to compute the solution efficiently and accurately in 

different bandwidths [2]. For modelling low frequencies in room acoustic applications where 

wave effects dictate important perceptual cues, ‘numerically-exact’ wave solvers such as Finite 

Element Method (FEM) or Boundary Element Method (BEM) are most efficient and accurate. 

But the high-frequency regime remains challenging for these algorithms as their computational 

workload rises rapidly as a function of frequency [3]. These methods typically discretise space 

and/or bounding surfaces using elements and model the interactions between them. 

Geometrical Acoustic (GA) algorithms are most commonly used for modelling high 

frequencies for room acoustics. Algorithms in this category postulate sound to travel 
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geometrically in homogenous media, i.e., in straight lines in the form of rays or particles, 

ignoring all wave effects [4]. This assumption is valid at high frequencies, where the 

wavelength is short when compared to the room dimensions [1]. 

The sound field excited by a source in a room transitions to a highly diffuse state soon after 

early reflections. This is illustrated in Figure 1.1 with the increase in reflection density around 

the 20 ms mark after sparse early reflections. This process is accelerated if substantial boundary 

scattering is present. The high reflection density at late-time nullifies the need to model and 

track individual reflection paths, albeit imposing the necessity to include scattering and 

diffraction to construct a representative sound field. While wave solvers include effects like 

diffraction and scattering as a part of how they mathematically solve the underlying Partial 

Differential Equation (PDE), which describe the acoustic wave propagation in a solution 

domain, GA methods were inherited from computer graphics and do not inherently model 

scattering or diffraction within their mechanism; these processes have to independently 

included with GA where required [5].  

Figure 1.1 Impulse response of a room [6] 

Reflection-path-based GA methods such as classical Raytracing or Image Source Method 

(ISM) perform best following their basic principle, modelling a single ray incident at a 

boundary to produce a single reflected ray, without any ray splitting. When additional rays are 

produced at each reflection order, usually as a consequence of scattering or diffraction, the 

number of rays grows with reflection order. This leads to exponential cost scaling with 

reflection order, which is extremely limiting. Hence, only very crude, low-resolution methods 

of scattering or diffraction are used in conjunction with these GA models. This limits their 
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ability in maintaining a good balance of accuracy to computational cost in constructing late-

time sound fields for room acoustics. 

1.2 ‘SURFACE-BASED’ GEOMETRICAL ACOUSTICS 

An emerging solution to model late reflections for room acoustics is what Savioja and 

Svensson [7] term ‘Surface-based’ Geometrical Acoustics (SB-GA). In contrast to reflection-

path-based GA models such as Raytracing, which track individual reflections over many 

reflection orders, SB-GA algorithms discretise acoustic power flow on a boundary mesh. 

Similarities with mesh-based wave solvers are evident, particularly with how BEM models low 

frequencies. SB-GA is thus seen as a hybrid of both BEM and GA approaches, following the 

GA postulates while computing the solution utilising an element-based mesh.  

The core of the SB-GA formulation is the discretisation scheme or ‘approximation space’. 

This is pre-defined and comprises the product of spatial and angular ‘basis’ or ‘shape’ functions 

that are used to interpolate the solution on the boundary. This framework reduces the boundary 

solution to a vector of coefficients, and modelling reflections between boundaries is simplified 

to a matrix multiplication. This allows the number degrees of freedom (DOF) of the system to 

be kept constant – independent of reflection order – and hence maintains a linear computational 

cost with reflection order. This is true even if scattering is present, so effectively circumvents  

the issue faced by reflection-path-based GA models in efficiently addressing ray-spitting. 

SB-GA algorithms date back to the seventies when Kuttruff proposed Acoustic Radiosity 

[8]. This models idealised diffuse reflections and ignores their directionality [9]. More 

sophisticated algorithms under this category, which model and parametrise reflection direction, 

have since been independently developed by three different research groups. A group at Duke 

University have presented their model named “Energy-Intensity Boundary Element Method” 

(EI-BEM) [10] which was further refined in [11]. Another group based in Helsinki have 

developed an “Acoustic Radiance Transfer” model from the Room Acoustic Rendering 

Equation [12], and further focused it towards room acoustics in [13]. A third group from 

Nottingham have developed a Boundary Element version of their “Dynamical Energy 

Analysis” (DEA) [14] model in [15] and [16]. This group has also recently published a 

direction preserving version of such a formulation based on a Petrov-Galerkin BEM scheme 

[17].  
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Once the choices in dimensionality, interpolation and mathematical notation are considered, 

the different formulations can be considered to be equivalent. The review of these formulations 

in the next chapter and the new SB-GA formulation presented in this thesis aim to make this 

equivalence clearer.  

The term ‘approximation space’ used in the formulation alludes towards the presence of 

approximation in these methods. Collection and reflection of energy at surfaces always results 

in an approximation in both space and time, with the geometrical accuracy of exact reflection 

paths being degraded [7]. Repeatedly discretising higher order reflections in an SB-GA 

framework will not result in a solution similar to tracking individual rays, but that is not the 

aim – it is the spatial distribution of rays that describes acoustic intensity, and not individual 

rays that capture this information. From a theoretical standpoint, this is an important reason 

why classical Raytracing models employ receivers with some volume or area to average over, 

so cannot be ‘point-like’. Following this hypothesis, tracing individual rays to a very high 

number of reflection orders forms one sample within a distribution. The explicit path travelled 

by a ray over many reflection orders is not important computationally [7]. Hence there is no 

advantage in using a computationally expensive wave solver to construct late-time sound fields, 

since energy-based algorithms providing an ensemble average of all responses are cheaper and 

sufficient [18]. This is perceptually appropriate for human listeners too, because the energy 

envelope is of primary importance at this time interval. SB-GA models are hence well suited 

to model the late-time interval in room acoustic responses. SB-GA exploits this relationship to 

simplify the algorithm and provide memory and computational benefits, with the degree of 

approximation being controllable. Also, once the boundary solution is computed for a specific 

number of reflection orders, receiver responses can be quickly recomputed as an additional 

stage independent of the boundary solution. This simplifies the process for multiple listening 

positions [9].  

1.3 A NEW ‘SURFACE-BASED’ GEOMETRICAL ACOUSTIC 

FORMULATION 

This thesis presents a new energy-based SB-GA formulation within a Galerkin BEM 

framework. It is referred to as Energy Boundary Element Method (EBEM) for the remainder 

of this thesis. It is to be noted that EBEM is not related to the Energy Finite Element Method 

(EFEM) based on the heat equation. As the name suggests, EBEM utilizes a Galerkin BEM 
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framework to map incoming energy onto the boundary. A novel aspect of this formulation is 

that it discretises incoming and outgoing energy separately, similar to recent formulations in 

high-frequency BEM [19]. The incoming and outgoing energy or power distributions are 

discretised with a weighted sum of basis functions in both space and direction. The Galerkin 

BEM framework computes the coefficients for these incoming or outgoing distributions by 

first computing a vector of ‘projections’. This requires a second pair of integrals to be 

evaluated, involving a pair of ‘testing’ functions. Matching basis and testing functions will 

yield a ‘Bubnov-Galerkin’ method while different basis and testing functions results in a 

‘Petrov-Galerkin’ method. The former will minimise the mean squared error in the same 

approximation or testing space as the solution and the latter minimises the mean squared error 

in some other space. Our EBEM is formulated with a ‘Bubnov-Galerkin’ scheme for simplicity 

and symmetry in basis, and synergy with high-frequency BEM in [19]. 

The coefficients of the desired distribution are subsequently found from the projections by 

solving a matrix equation involving a ‘mass matrix’, which is the identity matrix of the 

approximation and testing spaces. It is termed the mass matrix due to its similarity in definition 

with the mass matrix in FEM. This may appear to be an additional step, but: i) it is 

computationally cheap to solve because the mass matrix is usually sparse, and ii) it is this that 

provides the flexibility necessary to switch testing and basis functions at will, so allows easy 

comparison between other published schemes.  

Hence, the Galerkin BEM framework expediates comparison of basis and test functions to 

analyse their effect on accuracy, convergence, and the properties of the boundary solution. The 

numerical implementation of EBEM is set up such that the factors required to compensate for 

these are moved outside the main solution part of the code, where they would have to be hard-

coded, into a matrix multiplication. 

Directional point source and receivers are also included. These are modelled with Fourier 

series in angle of arbitrary order. Stacking the Fourier coefficients into vectors means that all 

wave propagation operators can be described by matrix multiplications in EBEM. This is 

identical to the structure observed in a published framework for ‘auralizing’ BEM solutions 

including directional sources and receivers [20]. 

There have been suggestions that SB-GA may be computationally expensive even for a 

‘perceptual’ algorithm, but these observations do not consider the crucial computational cost 

scaling with reflection order [9]. The numerical set up of the problem carries the majority of 
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the computational effort and EBEM is structured and implemented so that the problem set-up 

is performed at the pre-solution stage, easing numerical effort at the solution stage. The 

computationally intensive boundary-to-boundary interaction matrix is derived independent of 

the source position matching the structure in BEM [20], allowing source position and its 

characteristics to be readily changed. Angle dependent absorption is also implemented without 

any assumptions on incident sound direction.  

The mathematical notation and structure of EBEM emphasises synergy with high-frequency 

BEM as noted in this section and can be considered as a possible route towards a mesh-based 

unified full auditory bandwidth algorithm for room acoustics [21]. 

1.4 THESIS OUTLINE 

Chapter 2 presents and reviews the literature pertinent to this research. Relevant classical 

reflection-path-based GA models are discussed first, after which the majority of the chapter 

focusses on SB-GA methods. Formulations presented independently by three different research 

groups are reviewed. 

Chapter 3 introduces relevant background theory and describes the theoretical framework 

for the EBEM formulation. All acoustic propagation processes are described, and the boundary 

integrals are derived. The Galerkin BEM framework is then presented, followed by the final 

algorithm structure. 

Chapter 4 introduces a validation model and provides justification for the choice of 

algorithm used for validating EBEM The methodology for numerically implementing and 

validating the developed EBEM model is developed, and the numerical quadrature rules used 

for evaluating EBEM integrals are detailed. 

Chapter 5 presents the results of the validation study and Chapter 6 discusses these results. 

The discussion focuses on the accuracy and convergence, as well as approximation introduced 

in the solution as a result of the various angular basis schemes studied.  

Chapter 7 draws conclusions from the thesis and its results and presents avenues to further 

develop the EBEM formulation. 



Chapter 2: Literature Review 

 7 

2 LITERATURE REVIEW 

This chapter reviews the literature relevant to EBEM. The first part of the chapter reviews 

classical GA methods with the focus of this chapter falling on SB-GA methods which follows. 

The state-of-art SB-GA formulations independently developed by different research groups are 

discussed, reviewed, and compared. 

2.1 GEOMETRICAL ACOUSTICS 

Geometrical Acoustics (GA) is an umbrella category for several algorithms which simplify 

the laws of acoustical propagation and follow the postulate of geometrical propagation of sound 

in straight lines in homogenous media. This ray or particle assumption of propagation is as an 

idealisation of the plane wave [4]. GA models inherently ignore the wavelength and wave 

properties of sound including its transmission effects. These assumptions are only valid at high 

frequencies where the propagating wavelength is small when compared to the dimensions of 

the room, the boundaries and all of its details. The geometric propagation assumption fails at 

low frequencies where wave effects are significant and important to include. They are also 

inaccurate in smaller rooms, where a low modal density extends up to high frequencies. But its 

conceptual simplicity and the ease with which it constructs practical sound field makes GA an 

attractive option for computerised modelling of room acoustics and it has dominated the field 

for decades. 
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The earliest noted use of ray-based acoustics was by Sabine in the 1900s to investigate sound 

propagation paths using Schlieren photography [27]. This was the first step towards 

considering a ray-based approach to modelling sound and laid the foundation for computerised 

Raytracing [7]. The development towards a fully workable model for room acoustics required 

a few intermediate steps, notably computing mean free path lengths using a ray-based approach 

[22] and the subsequent determination of decay functions for 2D rectangular rooms [23]. 

During the same period, methods following similar assumptions were developed in the fields 

of computer graphics, optics and underwater acoustics aimed at solving different problems. 

The seminal paper describing use of Raytracing in computer graphics [24] was published the 

same year as Krokstad et al proposed the first 3D room acoustic model, capable of handling 

multiple receivers [25]. But this formulation was still limited to a qualitative investigations of 

reflection angles and early echograms. Overlap in research methodology and the clear use of 

ray-based propagation was evident in both papers, although these were developed 

independently [7]. The term ‘auralisation’ was coined by Kleiner and Dalenbäck in [26], 

defining the process of rendering the sound field in rooms from numerical models. The basic 

principles of such systems were outlined earlier by Schroeder in [27] within the context of 

concert hall acoustics. Limited by the computational power available at that time, GA was 

deemed to be the only practical approach to room acoustic and concert hall modelling.  Full 

room models did not become practically tractable until the eighties, which were then used as a 

quantitative tool for modelling room acoustics in 1/1 octave frequency bands. With 

advancements in computing power over the decades, the use of computer modelling for room 

acoustics has become increasingly popular and instigated similar research in other fields like 

computer gaming to render realistic real-time audio [7].  

Deterministic GA models such as ISM are commonly used to model high frequency early 

reflections which are sparse in time. But ISM’s computational cost scales exponentially with 

reflection order, which limits it to modelling low order early reflections. For modelling late-

time in room acoustic responses, when the sound field is very diffuse and chaotic, it is 

appropriate to operate a computationally cheaper model as only the energy decay envelope is 

important perceptually, and individual reflections are indistinguishable. Stochastic GA models 

such as classical Raytracing are typically used for this purpose.  

Wave effects like scattering and diffraction can be important to include in room models, but 

are not naturally included in GA. GA models such as Raytracing maintains its linear 

computation cost with reflection order when no ray splitting is modelled i.e., one ray arriving 
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at a boundary results in one ray being reflected. When these diffraction or scattering are 

included as an additional process with Raytracing, they produce additional rays at each 

reflection order due to ray splitting which cripples Raytracing with an exponential 

computational cost with reflection order. This is shown in Figure 2.1. Moreover, only very low 

fidelity Monte Carlo models of boundary scattering and diffraction can be included with 

Raytracing without losing its attractive linear computational cost with reflection order. 

Figure 2.1 Raytracing (a) with no ray-splitting (b) with ray-splitting due to scattering and 

diffraction 

 

GA models can be generalised into two categories: Reflection-path-based models and 

“Surface-Based” models. The rest of this section focuses on reflection-path-based models 

pertinent to this thesis. SB-GA models are discussed and reviewed in Section 2.3. 

2.1.1 Image Source Method 

ISM constructs a solution from simple omnidirectional sound sources that individually 

satisfy the PDE that describes the acoustic propagation in the solution domain. The basic 

building block of ISM is the Image Source solution, applied to a sound source in a room to 

produce an explicit expression for a wave reflected at a boundary. ISM is very effective for 

smooth boundaries but is constrained at higher reflection orders limited by its exponential 

computational cost scaling with reflection order. 

(a) (b) 
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Figure 2.2 Construction of a first order image source by the image source solution. A is 

the source in the room, A' is the image source, and B is the receiver in the room [4] 

The ISM mechanism reflects all sources in a room against all the room boundaries, 

producing a set of Image sources (IS). These are subsequently reflected against all the 

boundaries in the respective rooms to produce the next set of ISs. This process is repeated for 

a required number of reflection orders – all permutations of the boundaries must be considered 

for reflection. If reflections are modelled to be purely specular, the sound paths – rays – can be 

backtracked from receiver to the source. A difference between this and classical Raytracing is 

that this is a single ray path direct from a source to a point receiver, not a distribution. Because 

of this, energy spreading with distance must be directly computed, since there is no ray-

spreading present to include it implicitly. 

 Assuming all the ISs radiate the same signal at the same initial time as the original source 

in the room, the contribution from each IS to the receiver in the room replicates the contribution 

from one reflection path from the source to the receiver in the room. The power density can 

now be computed by summing the contributions of all valid ISs. The construction of ISM with 

reflection order is similar to the methodology for Raytracing; an IS solution of #!" order 

corresponding to a ray hitting # walls [1]. 



Chapter 2: Literature Review 

 11 

Figure 2.3 A rectangular room (solid line) with the original source (o), first order image 

sources (*), second order image sources (o) and third order image sources (triangle) in 

their respective image rooms (dashed lines) [7] 

Early research leading to ISM for room acoustics began with investigations into canonical 

problems, such as an infinite wedge and later extended to shoebox rooms, by Cremer [28] and 

later by Mintzer [29]. The first computerised ISM model was proposed by Gibbs and Jones to 

compute sound power levels in a rectangular room [30], like the one shown in Figure 2.3. 

Simplicity of ISM is its main advantage but it is normally limited to low order early 

reflections as the number of IS rises exponentially with reflection order. Generalising for a 

room with $ edges, the number of IS generated for the %!" order reflection is: 

 &$($ − 1)#$%
&

#'%

 2.1 

In the case of a rectangular room like the one shown in Figure 2.3, certain IS positions 

overlap and are degenerate, making the valid number of IS used for a specific reflection order 

significantly less than predicted by eq. 2.1. But in an arbitrary-shaped room, eq. 2.1 holds. 

Strictly speaking, the IS solution is exact only for spherical incidence and cuboid geometries 

with boundary impedance of either −1 or +1, meaning perfectly rigid or pressure-release 

boundary conditions respectively. For non-rigid boundary conditions, the approximation can 

be good so long as the angle of incidence for rays at the boundary are small and away from 

grazing incidence [1]. Deviating from a convex geometry with the corners having opening 

angles which are not rational multiples of +, the total field is no longer the sum of the direct 
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sound and the sound fields from all the ISs. In this more general case, diffraction must be 

included to obtain accurate results. This must be added as an additional process [31]. 

When extending ISM to arbitrary geometries, additional checks are required in addition to 

recursively applying the IS solution. The relevance of each IS w.r.t. to each receiver position 

must be checked. Figure 2.4 shows these “audible” image sources for first and second order 

reflection orders. These audibility computations can be optimised by using a beam-tracing 

algorithm which pre-computes visibility of each IS and stores it as a beam tree [1]. 

Figure 2.4 Image source audibility test for first and second order reflections. S is the 

source in the room, R and R’ are the receiver positions in the room, S1 and S2 are first 

order image sources and S12 and S21 are second order image sources [1]. 

2.1.2 Classical Raytracing 

Raytracing models acoustic propagation in a room by emitting a distribution of particles or 

rays from a source simultaneously in all directions, then reflecting these against boundaries 

and tracking valid reflection paths from the source to the boundary. Emission from the source 

can either be with a pre-determined distribution or via a Monte Carlo process. The following 

figure shows such a valid ray path from source to receiver. 
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Figure 2.5 Tracing a ray from a source to receiver and a time histogram of the number 

of detected rays (represented by dots) at each time step [1] 

The first instance of computerised Raytracing was implemented to calculate mean free paths 

in rectangular rooms [22], but the first paper on computing time-energy responses for 3D 

geometry was proposed by Krokstad et al [25] a decade later. These algorithms model 

reflections as purely specular. Later, Kuttruff extended the methodology to implement diffuse 

reflections in 1971 [25]. Heinz then extended the model to include diffuse rays in shadow 

regions, termed ‘diffuse rain’ [32]. This addition computes the visibility of all diffuse ‘child’ 

rays to the receiver accounting for the angle of reflection and solid angle covered by the 

receiver, also allowing point receivers [7]. 

A critical parameter dictating accuracy of Raytracing models is the number of rays modelled 

for a particular study, in addition to the approximation due to the omission of wave effects. As 

only a finite number is rays are possible to be modelled realistically, the solution will be 

approximate. Raytracing models accommodate boundary absorption and ray termination in two 

ways: 

1. Attenuating the energy carried by a ray upon reflection by a factor determined by 

the boundary material properties. For instance, the energy carried by a ray can be 

attenuated by multiplying the incident energy by a factor of (1 − ,), where , is the 

boundary absorption coefficient. The obvious advantage of this method is the ability 

to use frequency dependent absorption. Rays are then terminated when either: 

a. A maximum ray travelling distance (or time) is reached, or 

b. The energy carried by the ray reaches a minimum threshold. 
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2. The ‘annihilation’ approach where a probabilistic condition of a ray getting 

terminated on incidence at a boundary is imposed. This probability term is dependent 

on the boundary material properties. Highly absorbing boundaries lead to rays to 

more rays getting annihilated when compared to more reflective surfaces.  

Both these methodologies yield identical results in the limit of large ray numbers, but 

differences exist in computation time and efficiency. The annihilation is superficially more 

efficient because the number of rays reduces with reflection order. But it is also less accurate 

because it does not allow absorption factors in frequency bands and because termination of 

rays leaves a smaller statistical basis for higher reflection orders [1]. 

An important drawback of the Raytracing formulation is the inability to include point 

receivers. As implied above, Raytracing does not terminate rays when they come in contact 

with receivers – they pass though unobstructed. Only the energy carried by the ray and the time 

since source radiation is computed and logged. Ideally, detectors would be point-like, but the 

probability of a ray hitting a point is infinitely small. Hence this imposes the need for 

volumetric or surface receivers. This present issues such as [7]: 

a. Detection of the same reflection paths multiple times, and/or 

b. Detecting paths which are invalid for the specific receiver position. 

Raytracing maintains a linear computational cost with reflection order. This is dependent on 

using a boundary reflectance model that includes no ray splitting – it must give one ray out for 

every one ray in. To representatively model the late-time part of room impulse responses, the 

algorithm must handle scattering and diffraction effectively, since this governs the transition 

to a diffuse field and is important for realism [33]. Similar to ISM, Raytracing does not 

naturally include either of these processes in its framework, so they must be separately included 

where required. Various techniques have been proposed to include diffuse reflections; majority 

of them work on either of these principles: 

a. On reflection there is a chance of the ray being reflected specularly or randomly 

based on the scattering coefficient.  

b. Producing several “child” rays from each “parent” ray when it is reflected at 

boundary surface.  

 



Chapter 2: Literature Review 

 15 

Figure 2.6 Methods of including scattering with Raytracing (a) Non-specular ray 

redirection method (b) Producing additional 'child' rays at each reflection order in 

addition to the specular reflection 

Principal (a) is computationally efficient as no additional rays are produced at each 

reflection. The scattering distribution is captured on average over many reflection instances 

(rays and reflection orders) via a Monte Carlo process. 

Principal (b) is more accurate since it captures the scattering or diffraction distribution at 

each reflection, but it leads to ray splitting, and therefore an exponentially increasing number 

of rays with reflection order. It can, however, be useful in modelling outdoor scenes, where the 

rate of loss of rays (into the sky) counteracts the production of extra rays by ray splitting, and 

the relative importance of each reflection justifies the extra computational cost. But in rooms 

the rays are trapped, and the computational cost is prohibitive. Recent work based on pre-

computed edge-to-edge visibility graphs to accelerate computation with these additional 

diffracted rays – but this was only applied to ‘direct’ diffraction and the algorithm retains the 

prohibitive exponential computational cost with reflection order [34]. 

2.2 “SURFACE-BASED” GEOMETRICAL ACOUSTICS 

An emerging solution to address the issues faced by Raytracing when modelling late 

reflections is “Surface-based” GA. These models use room boundaries as surfaces for 

intermediate storage of acoustic energy. A limitation is that collecting and discretising energy 

at boundaries leads to an approximation and the geometrical accuracy of exact ray like paths 

degraded [7]. But this is not inappropriate for late-time, where the highly diffuse and chaotic 

sound field means that individual reflections cannot be distinguished anyway. 

SB-GA interpolates the solution with a pre-defined ‘approximation space’. Spatially this is 

based on elements in a boundary mesh and the interpolation (or ‘basis’) functions can be those 

(a) (b) 
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used in standard FEM or BEM; discontinuous piecewise-constant (PWC) or continuous 

piecewise-linear (PWL) are simple low-order choices. For interpolation w.r.t. reflection angle, 

many DOF are required to capture the angular distribution on the boundary. This could either 

be as a high order family of PWC functions arranged over non-overlapping angular ranges or 

continuous orthogonal polynomials such as Legendre, Chebyshev or Lobatto – in order to 

capture the dependency on angle that arises for early reflections. SB-GA thus operates similarly 

to how BEM models low frequencies, except that it discretises power flow and also considers 

propagation angle. 

A crucial feature of SB-GA is its ability to maintain a linear computational cost with 

reflection order. This feature holds even if ray splitting processes like scattering or diffraction 

occur at each reflection order [35]. Rays arriving on the boundary from different directions can 

contribute to the same energy ‘block’. The ‘child’ rays produced are absorbed into the 

approximation space. Reflections are simplified to matrix multiplications and the DOF remains 

constant, maintaining a linear computational cost. 

Authors of Raytracing models acknowledge that it is the spatial distribution of rays – not 

individual rays – that represent acoustic intensity. This is why point receivers cannot be used. 

It is tempting to think that the paths of individual rays are important – as concerned Pohl and 

Stephenson [35] – but this is not the case at high reflection orders, as a chaotic sound field is 

present at this stage and fine details of individual ray directions are not perceptually important 

to human listeners. What the Raytracing algorithm is propagating is a sampling of a probability 

distribution, the latter being which is what actually represents acoustic intensity in the model. 

This is of even greater importance when including boundary scattering as the increase in 

reflection density makes individual reflections irrelevant. SB-GA exploits this principle to 

simplify the algorithm and ease computational effort. 

Another important advantage is the simplification of computing receiver responses. These 

can be quicky recomputed, or computed together for multiple receiver positions, once the 

boundary solution has been computed [9]. This article also suggests that SB-GA might be 

computationally expensive but does not discuss the crucial computational cost scaling trends 

explained above. Efficient problem set up is of utmost importance. 

The earliest algorithm in this category is the Radiosity method proposed by Kuttruff in the 

1970s [8]. An important distinction between Radiosity and reflection-path-based-GA is the 

assumption of ideally diffuse reflections, thus it ignores the directionality of sound arriving at 
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the boundaries. All reflections are assumed to scatter by Lambert’s law. The results from a 

Radiosity model are useful for late reflections which tend to be diffuse in practice. 

More recently, sophisticated SB-GA models with parametrise reflection directions have 

emerged. Such models have been independently developed by three different research groups. 

These are presented in the following sections. 

2.2.1 The Duke Group 

Franzoni, Bliss and Rouse formulated a boundary element method based on energy/intensity 

variables in 2001 [10]. The basic building blocks of the algorithm are infinitesimally small 

uncorrelated broadband sound sources. A continuous distribution of these infinitesimally small 

sources is used to model the boundary, and the radiations from these sources are used replicate 

the sound field in a room. The assumption of these sources being uncorrelated holds so long as 

the simulated wavelengths are short, compared to the room dimensions, and the boundary 

absorption being not too large. The plane wave assumption is abandoned here and replaced 

with this distribution of sources for modelling spreading waves from the boundary.  

For a broadband sound field, the sources modeling the boundary will be correlated to some 

degree, over a short distance, typically less than one wavelength from the boundary. This local 

correlation between adjacent sources introduces a directivity effect for each boundary source. 

The source power and directivity coefficients for each of the boundary sources are computed 

in an iterative manner, modelling diffuse reflection first, followed by specular reflections. The 

directivity was limited to first order with three terms in the Fourier series expansion in angle 

in full space applied to a half-space. Rouse and Franzoni presented an improvement to the EI-

BEM formulation in 2005 [11] to allow unlimited terms in the Fourier series expansion 

completely applied over the half space. This series expansion no longer limited to three terms. 

The non-orthogonality issue with [10] arising from using a standard Fourier series in the range 

from 0 to +, which results in the different orders (harmonics) of the series being non-orthogonal 

over this range, is solved. The source power and receiver coefficients can now be determined 

directly in a non-iterative manner. 
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Figure 2.7 A rectangular room with an internal source and boundary replaced by a 

distribution of sources [10] 

The theoretical development of time-averaged governing equations in energy density and 

intensity were recast to develop EI-BEM as: 

 ∇//⃗ ⋅ 2⃗ = 0 2.2 

and 

 1
2 	ρ(	7	8/⃗ 9∇

//⃗ . 8/⃗ ; − 98/⃗ . ∇//⃗ ;8/⃗ 	< + ∇//⃗ = = 0 2.3 

Where: 

2⃗ is the time averaged sound intensity 

ρ( is the density of air  

8/⃗  is the velocity vector 

= is the time averaged energy density 

The time averaged velocity term ⟨8(∇. 8) − (8. ∇)8⟩ is identically zero for a 1D sound field 

and remains zero for higher dimensions if the waves are assumed to be uncorrelated, 

broadband, random incidence plane waves. To have a non-zero time-averaged velocity term 

and to model spatial variation of source pressure, the plane wave assumption was abandoned 

in favour of uncorrelated sources used to model spherical waves from the boundary. This 

assumption also allows adding source pressure in the interior of the room in a mean-square 

sense at distances outside the limits of the correlation layer close to the boundary. The similarity 
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with the Equivalent Source Method [4], although a high frequency version, is evident from 

Figure 2.7. 

Once the normal velocity at the boundary is computed, the sound pressure reflected from 

the boundary can be computed as the integral of a Green’s function over the boundary. The 

Green’s function is a 2D free-field monopole here. To compute the total reflected mean-square 

pressure, the pressure contribution from the entire boundary for a specific frequency at a 

specific angle of incidence is obtained and integrated over all angular and frequency values. 

This was then used to obtain the equations to describe mean-square pressure and intensity 

radiated by each source on the boundary as: 

 @̅)* =
B(CD
2+E F(G) 2.4 

and 

 H) =
D
2+E F

(G)I+ 2.5 

Where: 

D is the source power 

F is the directivity function 

E is the distance from the source to point of evaluation (in m) 

G is the angle measure w.r.t. surface normal 

These equations include the spreading term used in computing receiver responses. As each 

of these sources on the boundary radiate in all directions, into and away from the interior of the 

room, the ‘reflected’ power generated into the room from a source will be half of the source 

power D. The directivity was derived by studying the acoustic intensity at a surface computed 

in two different ways: 

1. Summing uncorrelated waves reflected at the boundary. 

2. Replacing the boundary with uncorrelated sources and summing contributions from 

each source. 

This is illustrated in Figure 2.7. The directivity function F(G) was constrained with the 

following equation to conserve energy: 
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 JF(G)
,

$,

KG = 2+ 2.6 

Comparing the normal intensity incident at the surface from both methods mentioned above, 

the product of intensity reflection coefficient L- which is the ratio of intensity of reflected wave 

relative to the incident, and the magnitude of incident intensity can be expanded utilizing a 

Fourier series in angle as: 

 L-(M)	
N./0* (M)
B(C

= &[P/ cos #M + T/ sin #M]
1

/'(

 2.7 

This equation discretises outgoing sound. This equation is modified in [11] to include a 

factor of 2 in the sine and cosine arguments to improve convergence. This factor of 2 means 

that the discretisation in only in a semi-circle, or a halfspace of directions. The modified 

equation is presented below. This is a more realistic model of practical angle dependent sound 

fields. Both versions for this equation in [10] and [11] are appropriate, but the latter exhibits 

faster convergence.  

 L-(M)	
N./0* (M)
B(C

= &[P/ cos 2#M + T/ sin 2#M]
1

/'(

 2.8 

Also, now the Fourier series terms are orthogonal over a half interval and the coefficients 

can be found directly without solving a matrix equation. Although eq. 2.8 assumes periodicity 

of the angular distribution at M = ±90°. A better choice is to use a Cosine series or Legendre 

polynomials like the Nottingham group and EBEM do, as this would avoid the issue with 

periodicity encountered in this version of the formulation.  
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Figure 2.8 Incident and reflected pressure waves at a point (x,y) on a surface and a 

boundary point corresponding to a source [11] 

The source radiation can now be represented by a Fourier series expansion of product of the 

intensity reflection coefficient and the magnitude of time and the time-averaged incident 

intensity as: 

 
B(C[
2+ = cosG&[P/ cos 2#G + T/ sin 2#G]

1

/'(

 2.9 

The Fourier series coefficients are computed from the normal and tangential intensity 

components on an evaluation node on the boundary. The boundary integral equation is derived 

relating variation of source power on the boundary to the acoustic power of these uncorrelated 

sources. Consider a 2D enclosure with the boundary described by the surface \ shown in Figure 

2.9. The enclosure boundary is replaced by a continuous distribution of energy/intensity 

sources of strength dW/dS (power per unit length) and directivity F(M%) which can vary for 

each individual boundary source. A source at r% produces an intensity at a boundary point a2 

given by: 

 bH(a2) =
(KD/K\)(a%)F(M%)

2+|a2 − a3|
.
(a2 − a3)
|a2 − a3|

dS 2.10 
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Figure 2.9 An enclosure with a boundary described by a continuous distribution of 

uncorrelated sources [10] 

Here F(M%) is the directivity of the boundary source in the direction of the evaluation points 

and K\ is the incremental surface area. The total incident energy at the point of evaluation on 

the boundary is obtained by an integral over all incident intensities that contribute at that point: 

 H(a2) = dK H(a2)
2

 2.11 

Boundary effects such as angle dependent absorption are included as a function of the 

directional reflection coefficient R4(θ5) and the normal component of intensity. The normal 

component of reflected intensity is given by: 

 h2. H6(a2) = dR4(θ5) h2
5

. dH(a2) 2.12 

Where h2(a2) is the unit normal into the enclosure from the boundary at point a2. The 

incremental intensity emitted from the point located at a2 is equal to (dW/dS)(a2). 

The incoming intensity vectors interact with the boundary to include effects like absorption 

to obtain the reflected intensity. Applying conservation of energy at point a2 leads to the 

boundary condition integral equation: 
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KD
K\

(a2) = L-(i7)h2(a2). H289:;<(a2) + dL-(θ2)h2(a2)
5

. dH(a2) 2.13 

The quantities in this equation are defined in Figure 2.9. In this approach, each boundary 

element is assumed to have constant strength, dW/dS, equivalent to the piecewise-constant 

discretisation we will employ. The discretized version of the above boundary condition 

equation is applied by a collocation approach at the midpoint of each boundary element, 

resulting in a system of equations to solve for the source strengths. This is different to the 

Galerkin scheme employed by EBEM. The collocation scheme is less accurate and typically 

converges slower. This is because it minimises error only at the collocation point. In contrast, 

Galerkin schemes minimise Root Mean Squared error over the entire element. But collocation 

schemes are computationally cheaper since there is only one boundary integral to be  evaluated 

and not two. 

To calculate the mean square pressure at a point a in the interior, the contribution from all 

boundary infinitesimal sources and the interior sources in a room are summed: 

 @
*jjj(a) = dB(C

7

KD
K\

(a%)
F(M)

2+|a − a%|
K\ + & ρ(C

3=><:38:
289:;<2

D(E?)
F?(i)

2+|a − a289:;<|
 2.14 

A system of equations was formulated assuming Lambertian directivity to obtain boundary 

source powers. An iterative algorithm using the previously computed source power values 

solves the equations to obtain source powers and directivity terms for subsequent reflections. 

The improved EI-BEM model [11] uses eq. 2.13 as the starting point and the values of the 

coefficients are found by exploiting the orthogonality of the trigonometric functions. The 

boundary is now discretised by a Fourier series in half-space and the system now being 

orthogonal. The Fourier coefficients for each element in the mesh are now related to all other 

elements and energy radiated by interior sources in the room. This leads to solving a system of 

equations to obtain the unknown Fourier coefficients for each element. Directivity functions 

for two elements in an EI-BEM model are compared for the iterative and direct EI-BEM models 

below. 
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Figure 2.10 Comparison of directivity functions with iterative and direct approaches to 

EI-BEM [11] 

The direct solution achieves better accuracy compared the iterative method, which computes 

the magnitude of the Fourier series terms approximately. The ability to use more terms in the 

Fourier series expansion for the directivity function leads to improvement in their resolution. 

Specular reflections are modelled more accurately with these higher order harmonics and the 

reflections tend to being less diffuse.  

The off-axis source is seen to exhibit different directivities with different amplitudes for 

three terms for iterative and direct EI-BEM. The on-axis source with five terms in its Fourier 

series which was selected as the truncation limit for practical application in [11] shows higher 

amplitudes, hence the received power in the interior is associated with fewer number of 

elements, radiating higher amplitudes. 

Although this formulation is limited by the number elements in the boundary mesh and the 

number of Fourier series coefficients for each element, the improved direct EI-BEM model is 

able to accurately model higher order specular reflections.  

After a 14 year gap, the Duke group revisited their EI-BEM formulation in 2019 [36] Here 

the aim was to verify the method against an exact solution for a cuboid room, which is also 

derived in the paper. The verification was repeated with one and two dipole sources in the 

room. The wave equation was solved in the test room by dividing it into in two unequal cuboid 

spaces separated by the horizontal plane containing the dipole source(s). The dipole null line 
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was aligned parallel to the absorptive walls to prevent fluttering and 1D modes caused by the 

parallel rigid boundaries. The results show good agreement with the exact solution other than 

at the centre line between the two dipoles. This issue is due to the interior sources being 

spatially uncorrelated, and is a correctable limitation in the code implementation – it is not a 

fundamental limitation with the iterative EI-BEM. This does not occur in space immediately 

adjacent to the source where correlation effects are strongest. The direct model does not 

overshoot the solution near the source like the iterative results do and exhibits excellent 

agreement with the exact solution. 

 

2.2.2 The Helsinki Group 

Siltanen et al proposed the Room Acoustic Rendering Equation (RARE) in 2007 as a 

framework to describe several GA algorithms within the limits of local reaction [12]. Within 

this paper they also propose the Acoustic Radiance Transfer (ART) algorithm, which extends 

the Radiosity method [37] with the ability to model directional reflections in addition to diffuse 

ones following Lamberts law [38]. This is seen a step towards more realistic reflection models, 

while retaining the benefits of element-based techniques. As with Duke’s EI-BEM, the acoustic 

quantity modeled in ART is energy and phase information is neglected.  

RARE assumes the geometry k is represented as surface elements or patches, and the 

formulation recursively calculates the outgoing time dependent acoustic energy l at a surface 

point m@ at an angle Ω: 

 l(m@, Ω) = l((m@, Ω) + JL(m, m@, Ω)l(m, Γ)Kq
A

 2.15 

Where l(m@, Ω) is the time-dependent outgoing radiance from a surface point m@ in the direction 

Ω. It is written as a sum of two terms: 

1. the radiance emitted by the surface itself, l((m@, Ω) 

2. the radiance from all other surfaces in the enclosure via the surface point m 

The latter term is written as an integral over the whole geometry k. The radiance from a 

surface point, m towards the point m@ is l(m, Γ), where Γ is the direction of radiance from m to 

m@. Since only a fraction of the radiance leaving point m will be incident on m@, the radiance is 

multiplied by the reflection kernel L: 
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 L(m, m@, Ω) = r(m, m@)ρ(m@, Θ, Γ)t(m, m@) 2.16 

The visibility function r(m, m@) extends applicability to non-convex room geometries. It 

yields a value of 1 if the line from m to m@ is unobstructed, and 0 otherwise. 

ρ(m@, Θ, Ω) is the Bidirectional Reflectance Distribution Function (BRDF) which gives the 

ratio of incoming and outgoing energy as a function of incoming (Θ) and outgoing angle (Ω), 

for a given frequency. It describes the fraction of radiance incident at point m@ which is reflected 

in the angle Ω. BRDFs describe the material of the surface and they are used to model different 

types of reflections within the RARE. 

Figure 2.11 A Bidirectional Reflectance Density Function (BRDF) represents the 

directional distribution of energy reflected for one incident angle [12] 

t(m, m@) is the geometry term considering propagation delay, air absorption and the form factor, 

which is defined by the relative orientation of the two surfaces.  

Figure 2.12 Calculating the geometry term between two points x and x' [39] 
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Surface normal at the points m and m@ are hB and hB! 	 respectively. The cosine of the incident 

angle at point m@ gives: 

 hB! ∙
(m − m@)
|m − m@|  

2.17 

and the cosine of the outgoing angle at point m equals: 

 hB ∙
(m@ − m)
|m@ − m|  

2.18 

The form factor between small elements represented by points m and m@ is defined by their 

relative angles Θ and Γ and by their mutual separation.: 

 v(m, m@) =
cos(Θ) cos(Γ)
|m − m@|*  2.19 

These factors, along with the propagation operator \CD$D!C and the quadratic fall off, formulate 

the geometry term: 

 

 t(m, m@) = 	 whB ∙
(m@ − m)
|m@ − m|x whB! ∙

(m − m@)
|m − m@|x

\CD$D!C
|m − m@|* 2.20 

Where the propagation operator, \yE represents the propagation effects on sound radiation over  

a distance E. For a linear, absorptive propagation medium, it is defined as: 

 \yE2(z) = e$FE\E2(z) = e$FE2 |z −
E
C} 2.21 

Where C is the speed of sound in air and α is the absorption coefficient of air in Nepers per 

metre. Since the outgoing time dependent radiance at any point is a combination of the reflected 

time-dependent radiance and the emitted time dependent radiance, the acoustic radiance 

propagation in an enclosure can be written in the form of a RARE presented in eq. 2.15. 

The radiosity method is derived from the RARE by using the following diffuse reflectance 

function in place of the BRDF ρ(m@, Θ, Ω) in eq. 2.16 [12]: 
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 ρG.HH(q) = β(q)/π 2.22 

Where β is the reflectivity coefficient of the material at a point q. This simplifies the RARE by 

omitting the directional dependence.  

Discretizing the geometry into patches transforms the RARE into a matrix-based 

formulation which can be run marching on in reflection order. The ART algorithm is solved 

with a time-iterative approach with the following steps which follow a progressive radiance 

transfer model influenced by the progressive Radiosity solution. This is also illustrated in 

Figure 2.13. 

1. The energy radiated by the source into the room is distributed among the boundary 

elements. In this case, the differential-to-finite-area form factor is accurate if the 

sources are assumed to be point-like. Sound source directivity can be taken into account 

at this stage by weighting the outgoing energy flow according to the sound source 

directivity pattern 

2. The energy is further exchanged between elements always choosing the element with 

the highest unpropagated energy and distributing that energy to all other visible 

elements 

3. Propagation time and energy responses are computed and stored for each outgoing 

direction for all elements 

4. Steps 2 and 3 are repeated until the reflected energy at boundaries fall below a set 

threshold 

5. Multiple receiver responses can now be computed without repeating any of the previous 

steps 
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Figure 2.13 Progressive ART solution (a) Before initial energy shooting (b) After initial 

shooting (c) Element with highest energy transfers it to other elements (d) The previous 

step is repeated for the new element with the highest energy (e) After a few reflection 

orders (f) Solution convergence and receiver response [13] 

The Neumann series solution to the room acoustic rendering equation can be written as: 

 

Å/I%(m@, Ω) = dL(m, m@, Ω)Å/(m, Γ)Km
A

 

Å(m@, Ω) = &Å/(m@, Ω)
∞

/'(

 

2.23 

This is a reflection-iterative (marching on in reflection order) solution to the room acoustic 

rendering equation. With the surface of the geometry divided into $ elements, the Neumann 

series terms are presented as a sum of integrals over the elements: 

 Å/I%(m@, Ω) =&J L(m, m@, Ω)Å/(m, Γ)Km
J"

K

.'(

 2.24 

The LHS of the equation is then replaced by the average reflected radiance: 

 Å/,M(Ω) =
1
PM
J Å/(m@, Γ)Km@
J#

 2.25 
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This is equivalent to solving the scheme in a Galerkin framework with PWC spatial testing 

functions. Applying the same PWC basis functions to spatial discretisation of Å/(m, Γ) yields 

an approximation where the radiation is assumed invariant over an element: 

 Å/I%,M(Ω) =
1
PM
& J JL(m, m@, Ω)Å/,.(−Ω)KmKm@

J"J#

K

.'%

 2.26 

Here m@ is on element Ç and	m is on element É. The direction is discretized into directional 

segments over which radiation is assumed constant; a PWC discretisation in solid angle: 

 Å/,#,M =
1

∫ KϕN$

J Å/,MKΩ
N$

 2.27 

Here ϕ# is the solid angle covered by the directional segment Ü. Then, an approximation where 

the radiation does not change over direction is given by: 

 Å/I%,#,M =
1

PM ∫ KϕN$

& J J JL(m, m′, Ω<)Å/,.,O"($Q%)Km	Km′	KΩ<
J"J#N$

/

.'%

 2.28 

Writing the reflection kernel in its discretized form, 

 L.,M,# =
∫ ∫ ∫ L(m, m′, Ω<)Km	Km′	KΩ<J"J#N$

PM ∫ KϕN$

 2.29 

Now, eq. 2.28 can be written as: 

 Å/I%,#,M =&&L.,M,#Å/,.,S
S∈U

∞

.'%

 2.30 

Where the indices l are a set of directional segments produced by the Γ. operator over boundary 

integrals. The iterative solution is now given by: 
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 ÅM,# = Å(,M,# +&&&L.,M,#Å/,.,S
S∈U

K

.'%

∞

/'(

 2.31 

Å(,M,# computes the radiance propagation from the source directly to the elements. Propagation 

is advanced in a time iterative manner before the transferred radiance falls below a set 

threshold. Now, ÅM,# can be computed directly, propagating energy from all elements to the 

receiver. 

Comparing this formulation to the one that will be proposed in the following chapter, a 

similar structure emerges, albeit one that has PWC interpolation and testing functions hard 

coded into it. Notably, the denominator terms in eq. 2.28 and eq. 2.29 analytically calculate the 

mass matrix equivalent in space and angle, in 3D. This is possibly because the orthogonality 

of the PWC basis functions over the mesh make the mass matrix diagonal. This operator is 

PWC over elements and since the integration is a linear operator, boundary integrals are 

reduced to sum of constant values over boundary segments where the integrand is constant. 

The group also proposed a frequency domain version if ART, that computed solutions based 

on a time-harmonic assumption. Siltanen, Lokki and Savioja also provide [40] alternative 

frameworks for parallel implementation of ART suited for the frequency domain formulation. 

The improvement in computational speed was found to be proportional to the number of 

parallel threads used.  Siltanen and Loki [39] further proposed modifications to RARE so that 

it can include diffraction. A paper outlining an approach for embedding the Biot-Tolstoy model 

of diffraction in ART was presented by the group in [39], but results for a full implementation 

were not included.  

 

2.2.3 The Nottingham Group 

Dynamical Energy Analysis (DEA) was proposed by Tanner [14] in 2009. It is capable of 

computing flow of wave energy distributions in complex built-up structures. DEA interpolates 

between Statistical Energy Analysis (SEA) and Raytracing to compute mechanical or acoustic 

energy densities for high frequencies. It does this by expressing the ray dynamics in terms of 

linear boundary operators, which are in turn represented as a collection of basis functions on a 

boundary. SEA represents the solution in each subsystem of the structure as a scalar value 
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representing the mean ray density while DEA includes dynamical correlations and represents 

the solution as a vector – considering direction.  

The number of boundary functions considered dictates the directional resolution of the 

dynamics. The maximum number of basis functions needed to reach convergence is expected 

to be small, making DEA more efficient than Raytracing, especially in the small damping 

regime. Some of the inefficiencies inherent in the common Raytracing formulations are 

circumvented by using limited geometric ray information in a DEA model. Benefiting from the 

SEA ansatz and by retaining information on the underpinning ray dynamics as necessary, DEA 

successfully extends the range of applicability of standard SEA, providing quantitative error 

bounds for SEA analyses. DEA models a classical Hamiltonian system describing ray 

trajectories in phase-space à = (a, â) where a is the position co-ordinate and â is the direction 

vector, which they refer to as ‘momentum’. Phase space densities are propagated along ray 

trajectories using the Frobenius-Perron (FP) operator ℒV. This linear operator describes how an 

energy density ã varies over time å along the solution ray trajectories of a dynamical system 

defined by a vector field ç as: 

 à̇ = ç(à) 2.32 

The solution of this equation defines solution ray trajectories in phase-space of the form: 

 à(å) = èW(à(0)) 2.33 

Where èW is the associated continuous time flow map. This map encapsulates the Raytracing 

process. It describes how a ray leaving a certain point on the boundary in a certain direction 

arrives at another point on the boundary with a specific direction. Phase-space energy densities 

are propagated though a domain using the FP operator given by: 

 ℒV[ã](à) = Jê(à − èW(ë))ã(ë, 0)Kë 2.34 

Replacing èW with a discrete boundary map è. ,M – i.e., by introducing a discretisation scheme 

for ray position and angle distributions on the boundary – modifies the FP operator to a local 

boundary integral operator TM. DEA uses a modified version of the FP operator where the flow 

is replaced by a boundary to boundary discrete map, as opposed to continuous time-dependent 
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flow. This operator maps the energy density flow from the phase-space on a boundary ΓM to a 

different boundary Γ. as: 

 TM[ã](à.) = Jí$X#Y(Z",[")[. ,M 9ëM;ê |à. − è.,M9ëM;} ã9ëM;KëM 2.35 

The weighting term [. ,M is used to model angle dependent boundary absorption. The stationary 

steady-state boundary density can be obtained with a Neumann series: 

 ρ = &T/[B(] = (2 − T)$%[B(]
∞

/'(

 2.36 

Where # is the number of iterations and B( is the initial boundary density. 

Chappell and Tanner developed a boundary element formulation for DEA [15]. This BIE 

formulation involved solving the Liouville equation using the FP operator. The linear wave 

equation and the Liouville equation are linked using the Eikonal equation. The formulation is 

developed with time dependence and then the steady state solution is derived. A numerical 

solution was obtained with Legendre polynomials as basis in phase-space and spatially 

discretized on a boundary element mesh. Boundary properties are set by eq. 19 in [15] and 

specular reflections modelled with Snell’s law of reflection from optics. 

The paper cites Raytracing as more cumbersome when computing a steady state solution as 

each reflection from the boundary has to be accounted for. But phase space densities can be 

obtained from the FP operator if propagation phase is ignored. This is similar to Raytracing 

algorithms. The BIE formulation in this paper aims to overcome these limitations by 

developing an algorithm to efficiently compute the solutions of the stationary Liouville 

equation. This is obtained by rewriting the Raytracing equation as a BIE.  This realized with a 

boundary mapping technique mapping ray densities from a point source onto the boundary and 

then formulating a FP operator for the boundary mapping scheme.  

Recently, this group proposed a DEA method based on a Petrov-Galerkin Scheme [17]. This 

formulation discretises direction with a set of Dirac delta functions as basis. The finite set of 

directions at the boundary is assumed as a subset of a global set and the directional information 

is retained when solving energy density propagating through multi-domains. Energy density 

can then be described with a ray propagation with the same global direction in different 
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domains. This emphasises similarities with volumetric mesh methods such as FEM. This 

formulation was verified against ISM. This method is similar to the “ray direction quantisation” 

process discussed by Pohl [41]. 

This group has also developed a formulation operating on a volumetric mesh similar to FEM 

where the entire domain along with the boundaries are meshed [42]. This is a unique feature of 

the Nottingham group’s approach and opens up exciting opportunities in modelling problems 

in structure-borne and inhomogeneous media. As the formulation is restricted to tetrahedral 

elements which are always convex by nature allows in-depth analysis on integration efficiency 

and accuracy that cannot be replicated by a boundary to boundary scheme due to shadowing 

by other sections of the boundary. 

 

2.3 CONCLUSIONS 

EBEM has been formulated so that it adopts attractive features from the SB-GA models 

discussed in this chapter. The SB-GA models in this chapter discretise only the incoming or 

outgoing energy and included a mechanism to relate the incoming and reflected outgoing 

energies. EBEM on the other hand discretises incoming and outgoing energy separately. This 

is similar to high frequency BEM [19] and EBEM aims to emphasise its synergy with SB-GA. 

The Galerkin framework adopted for mapping power onto the boundaries in EBEM 

expediates the comparison of different basis and testing functions. This is different to the 

collocation scheme by the Duke Group [10]. EBEM is implemented so that the factors required 

to compensate for these are moved outside the main solution part of the code, where they would 

have to be hard-coded, into a matrix multiplication. Stacking the Fourier coefficients describing 

directional sources and receivers into vectors means that all wave propagation operators can be 

described by matrix multiplications in EBEM. 
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3 THEORY & FORMULATION 

This chapter describes the theoretical framework for the EBEM formulation. First the 

assumed model of acoustic power propagation is presented. This is followed by the boundary 

integral representations for various propagation and mapping processes required to operate the 

EBEM algorithm, with structure for solving the discretised form of the EBEM model presented 

at the end of the chapter.  

3.1 FUNDAMENTALS OF ROOM ACOUSTICS 

Room Acoustics models study how sound is propagated and reflected within an enclosed 

space and how it is perceived by a listener in the space. The basic equations are presented, 

along with source, propagation and boundary interaction processes are discussed. 

3.1.1 Basic equations 

The Acoustic wave equation is a PDE derived from the mass conservation and inertia laws 

in a fluid media. It is stated as: 

h Δ@ =
1
C* ⋅

î*@
îz*  3.1 
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Where C is the speed of sound in metres per second and Δ@ is the Laplace operator in Cartesian 

co-ordinates, given in three dimensions by: 

 Δ@ =
î*@
îq* +

î*@
îï* +

î*@
îñ* 3.2 

3.1.2 Propagation of sound 

Mathematically, the sound propagation in an enclosed space is described using the wave 

equation. However, this PDE can only be solved analytically in certain idealised cases [43] and 

we hence require all existing and applied formulations to model sound fields in enclosed 

spaces. Sound propagation in air can be described by Huygen’s principle which establishes that 

a wave front progresses in a certain space if each of the points on the wave front radiates 

spherical waves themselves. These individual waves sum up to the total wave front at an 

advanced time.  

3.1.3 Boundary reflection and absorption 

In homogenous media such as air, sound waves travel unobstructed in all possible directions 

from a source until the wavefronts are obstructed with a change in medium density. This arises 

at the boundaries of rooms where the boundary density is far greater than density of air.  On 

incidence at the boundary, if the surface is perfectly smooth, the ray is reflected specularly, 

with the incident and reflection angles w.r.t. to the surface normal being equal. 

Depending on the boundary material properties, only a portion of energy incident on the 

boundary is reflected back into the room. The residual fraction not reflected back into the room 

is absorbed or transmitted at the boundary, the former resulting from internal acoustic energy 

dissipation processes. Reflection processes produce a change in energy amplitude as well as 

propagation phase, if considered.  

On incidence on the boundary, it is assumed that the absorbed or transmitted fraction has no 

effect on the reflected wave or the sound field in the room. As such, the amplitude of the 

reflected wave is reduced by a factor L which is the reflection coefficient. By examining 

pressure and velocity of the incident wave, we can define the boundary surface impedance ó\ 

in terms of L: 
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 ó\ = B(C
1 + L
1 − L 3.3 

Where B( is the density of air in Üt/ò]. This equation leads to a relationship between L and 

normalised impedance of the boundary ô = ó\/B(C: 

 L =
ô − 1
ô + 1 3.4 

For realistic situations, L is bounded by −1 < L < 1 so that energy is always conserved or 

absorbed at boundaries and never increased. Considering a spatial degree in eq. 3.4, L for 

oblique incidence and in terms of normalised boundary admittance ë/ = 1 ô⁄  is defined by: 

 L^ =
cos M − ë/
cos M + ë/

 3.5 

The angle dependent reflection factor computed with a normalised boundary admittance ë/ =

ë/B(C(. The Absorption coefficient , relates the intensity of incident and reflected waves 

rather than amplitude. Intensity of a sound wave in air is given by: 

 2 =
@*

B(C
 3.6 

For pressure @. Sound intensity has units of power density and is proportional to squared 

pressure amplitude. Intensity is a vector and points in the direction of power flow. Therefore, 

intensity of the reflected wave will be attenuated by a factor of |L|*, giving the following 

equation for the angle-based absorption coefficient: 

 ,^ = 1 − |L^|* 3.7 

This will have a value of 0 for rigid non-absorbent boundaries.  

In acoustics, the medium of transmission is air, which attenuates sound energy propagating 

through it. The degree of attenuation depends on several factors including wave frequency, 

temperature, humidity, and atmospheric pressure. But in rooms the effect of this is typically 

quite small, hence in this thesis air absorption is ignored for simplicity. 
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3.1.4 Diffuse reflections 

Ideal specular reflections following Snell’s law are valid only for infinite smooth plane 

surfaces. For real surfaces which are finite and irregular, sound is scattered on incidence. The 

effect of the smoothness of a boundary surface on the impeding wave is a function of incident 

wavelength. If the dimensional variations of the boundary are small compared to incident 

wavelength, they are specularly reflected. This results in low frequencies with large 

wavelengths being specularly reflected from most surfaces. When surface irregularities are of 

similar order of magnitude as the wavelength, the incident wave, irrespective of incident 

direction, is reflected/scattered in all directions – called diffuse reflection. This is illustrated in 

Figure 3.1. At the highest frequencies, where wavelength is small compared to boundary 

features, redirection can occur. 

Figure 3.1 Frequency ranges for scattering from a periodic surface of repeat distance a, 

and roughness depth h [44] 

3.1.5 Sources of sound 

A sound field, in an enclosed space or otherwise can be excited by different kinds of sound 

sources. This section presents typical acoustic sources pertinent to derivation of a source model 

for EBEM discussed later in this chapter.  

3.1.5.1 Point sources 

Typical situations in room acoustics comprise of sound sources which are directional, such 

as vocal speakers or musical instruments or loudspeakers. These sources possess some volume, 

but computational modelling applications, they can be generalised to point sources [20]. 
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 Often it might be assumed that sources are omnidirectional, that is, lacking any directional 

characteristics. This assumption leads to the sound power being constant over the surface of a 

sphere centred on the point source.  The magnitude of the sound intensity will then also be 

constant over the surface of the sphere and, since the total sound power is represented by the 

intensity over the entire surface area of the sphere, it follows that intensity will point outward 

in the direction of increasing E and have magnitude: 

 2 =
D
4+E* 3.8 

Here D is the sound power of the point source in Watts. 

Figure 3.2 Wavefront from a point source 

 

3.1.5.2  Line sources 

A line source is essentially a distribution of an infinite number of point sources on an 

imaginary line. This thesis limits the study to sources that are coherent and identically valued. 

The radial power radiated by a line source and the intensity will be constant on the lateral 

surface of a cylindrical surface as shown:  

Figure 3.3 Wavefront from a line source 
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Intensity over the surface of the cylinder gives the total outputted sound power N, defined as: 

 N =
D
2+Eℎ 3.9 

N has units of Watts per metre squared. For infinitely long line sources, we define sound power 

per unit length D′: 

 2 =
D′
2+E 3.10 

To reduce the complexity of EBEM, the scope of development in this thesis is restricted to 2D. 

We only consider a 2D cross section of a 3D geometry, invariant in the third dimension. Now, 

infinitely long line sources in 3D can be assumed to be point sources in 2D as shown in Figure 

3.4. 

Figure 3.4 Simplification of an (a) infinitely long line source in 3D to a (b) point source in 

2D 

 

3.1.6 Energy response 

An impulse response of a room is its time domain response to an idealised Dirac delta input. 

It describes the temporal distribution of reflections in a room. This characterises all propagation 

paths from a source to a receiver in a room, direct and reflected. Each response at a receiver 

point will vary for each frequency simulated and we obtain a similar energy response when 

x 

y y 

x 

z 

(a) (b) 
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propagation phase is ignored. Direct sound from the source to the receiver, i.e., on the shortest 

path from the source to the receiver, will register the first detection, followed by sparse early 

reflections and late-time diffuse sound field with high reflection density. These weaker 

reflections at late-time merge together into what is subjectively perceived as reverberation. 

Figure 3.5 Schematic of an energy response of a room: x-axis represents time and y-axis 

represents its energy level w.r.t direct sound at t=0 [4] 

The energy provides a wealth of information on the acoustic qualities of the space under 

investigation, including computation of objective parameters and decay of energy in the room. 

Early reflections will differ significantly with source and/or receiver positions in a room. These 

are of outmost perceptual importance as they provide auditory cues describing size of the space 

for source localisation [38]. At late-time, the sound field is said to be diffuse, with the energy 

arriving at the receiver rapidly from a multitude of directions – and the direction or arrival will 

be irrelevant. Such sound fields are considered perceptually constant in a domain under study. 

These diffuse sound field components will decay exponentially with time, resulting in a 

reverberation tail.   

3.2 ASSUMED MODEL OF ACOUSTIC PROPAGATION 

EBEM is formulated as an energy-based method initially developed in 2D in this chapter.  

The Duke Group similarly discretise power density as well for their EIBEM model [10] 

discussed in Chapter 2. Acoustic propagation for EBEM is modelled with by a particle tracing 

problem. Particles travelling geometrically i.e., in straight lines are termed rays. Each 

individual particle will have position m and propagation direction üy . The power distribution 
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[9m, üy ;	of these particles is hence a function of both position and direction. This would mean 

that we are working strictly in the high-frequency regime. 

The second important assumption we make is to ignore propagation phase. Consideration is 

given to only energy and power when computing the solution, albeit including the direction of 

propagation. This assumption aligns with the classical Raytracing formulation and is justified 

by the chaotic nature of the sound field in the late-time interval in room acoustics [45]. Lack 

of phase information also means that interference effects cannot be modelled – this is typical 

of GA methods used for modelling high frequency room acoustics. We also ignore air 

absorption for simplicity, as already stated. 

3.2.1 Angular conventions 

As we are developing the EBEM formulation in 2D, position at a point m will vary in two 

dimensions and the direction vector üy  can take a value in the range 0° ≤ üy ≤ 360°. Hence, üy  

can be defined as: 

 üy = [cos M sin M] 3.11 

On the boundary, which is one dimensional (a line) when working in 2D, position m can be 

parametrised in terms of the distance from a reference point. m is therefore a function of only 

boundary position. This will be a scalar with units of metres. Incoming and outgoing directions 

of rays on the boundary are constrained within a 180° range as shown in Figure 3.6: 
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Figure 3.6 Geometry to illustrate incoming and outgoing directions on the boundary 

constrained to a 180° range 

In EBEM, we distinguish between these incoming and outgoing directions denoted by üy $ 

and üy I respectively. We specify the orientation of the boundary at a point m by its normal h§ 

and tangent vectors •̂, which are perpendicular to each other. h§ is taken to point into the solution 

domain Ω. For incoming directions, h§ ∙ üy < 0 and for outgoing directions, the relation is h§ ∙

üy > 0.  

The next step is to devise a scheme to parametrise these directions on the boundary. This 

can be achieved in in two different ways: 

1) Using an angle M defined in the boundary-local co-ordinate system defined by the 

normal and tangential vectors. This is shown in Figure 3.7 below. The incoming 

and outgoing directions in terms of are M defined as: 

 
üy I(M) = •̂/ sin M + h§/ cos M 

üy $(M) = •̂/ sin M − h§/ cos M 
3.12 

2) Using a dimensionless boundary tangential co-ordinate ® defined by ® = sinM. 

This is similar to how the Nottingham Group [15] define their incoming and 

outgoing directions, albeit encapsulated within their ‘momentum’ parameter. 

Incoming and outgoing directions in this case are defined as: 

 üy I(®) = •̂/® + h§/©1 − ®* 3.13 

üy $ 

M M 

üy $ üy I 
h§ 

•̂ 

Boundary 

Ω 
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üy $(®) = •̂/® − h§/©1 − ®* 

These two methods of parametrising direction on the boundary are shown in Figure 3.7 below: 

Figure 3.7 Illustrating incoming and outgoing ray directions on the boundary 

To convert between integrals w.r.t. M and ®, the following relationship can be exploited:  

 J …
K®
KM KM

, *⁄

$, *⁄
≡ J … 	K®

%

$%
 3.14 

Where 
!"
!# is the Jacobian. As ® = sin M,  we get: 

 K®
KM = cosM = ©1 − ®* 3.15 

M and ®	will be used interchangeably used this thesis based on their definitions in this chapter. 

M is usually used to check if propagation or reflection angles match and ® is used for evaluating 

angular integrals numerically. üy 	is used to ease the various definitions by avoiding the 

requirement to align local co-ordinates. 

M 

üy I(M) 

•̂/ 

h§/ 

® 

üy $(M) 

m 
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3.3 ALGORITHM STRUCTURE 

The EBEM algorithm structure is presented in this section. The various integral terms used 

in this section will be derived in following sections in this chapter. The discretised version of 

the EBEM algorithm is solved as follows: 

1) First the directional power from the source ¨2 is mapped onto the boundary as an 

incoming power distribution [$9m, üy $;, represented by ¨(
$. 

2) This distribution is reflected at the boundary to produce an outgoing power distribution 

[I9m, üy I;, represented by ¨(
I. 

3) This outgoing power distribution arrives at a different part on the boundary and is again 

mapped as an incoming power distribution [$9m, üy $;, represented by ¨%
$ 

4) The next step in the algorithm can be implemented in two ways: 

a. Steps 2 and 3 are repeated up to the specified number of reflection orders to 

simulate boundary reflections. All the ̈ .
$ are summed with respect to reflection 

order Ç to obtain the boundary distributions 

b. The total steady-state power distribution can me computed using a Neumann 

series. 

5) Power distribution at the receivers is computed, represented by ¨:. This is sum of the 

direct power from sources in the domain (represented by their ¨2) and power arriving 

from the boundary (represented by ∑ ¨.
I

. ). 

Each mapping is represented by a matrix multiplication. The algorithm described above can be 

summarised as: 

 ¨.
$ = ÆØ

$%∞2`¨2 for	Ç = 0
Ø$%∞``¨.$%

I 	 for	Ç > 0 , ¨.
I = Ø$%≤¨.

$. 3.16 

Where: 

∞2`	is the matrix describing source-to-boundary propagation 

∞`` is the matrix describing boundary-to-boundary propagation 

Ø is the mass (or identity) matrix 

≤ is the Reflectance matrix describing boundary absorption and scattering 
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Total power distribution at a receiver is given by: 

 ¨: = ∞2:¨2 + ∞`:&¨.
I

a
 3.17 

Where: 

∞2: is the source-to-receiver propagation matrix 

∞`: is the boundary-to-receiver propagation matrix  

The form in eq. 3.17 amounts to solution by marching on in reflection order. Although standard 

BEM algorithms are not usually solved in this way, the BEM formulation in eq. 32 and 41 in 

[19] uses it, and the time-domain version of BEM is often solved in a similar way [48]. 

3.4 POWER INCIDENT FROM A POINT SOURCE 

The first step in developing a complete acoustic transmission path for the EBEM 

formulation will be to define a source model. This would be used along with the solution 

domain enclosed by the boundary, and a receiver placed in said domain to completely model 

the acoustic transmission in a room. This section defines a point source and its physical 

description. Consider power radiating from a point source located at ûb in the solution domain 

as shown in Figure 3.8: 

Figure 3.8 Illustration of power radiating from a point source located at ûb and 

measurement of the source angle ≥cwith respect to a reception point m. ≤¥ is the unit ray 

vector in the direction of propagation from y0 to x 

 

ûb 

≤¥ 
m 

M2 

Ω 
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The source injects power D into the domain. As a 2D point source is equivalent to a 

cylindrical line source in 3D as explained in Section 3.1.5, the units of D is Watts per metre. 

Real line sources in 2D will have nearfield effects which are ignored as one of the starting 

assumptions when deriving the EBEM formulation in the high frequency regime. At a point m, 

which can be an arbitrary point in the domain or on the boundary, the received power density 

accounting for cylindrical spreading of power is given by: 

 DB =
D
2+L 3.18 

Where: 

≤ is the ray vector from ûb to m defined as ≤ = ûb − m 

L is the length of the ray from ûb to m in metres, computed as L = |≤| 

The units of the power density received at m is Watts per metre2 where the metre2 area term 

is tangential to the wavefront propagating from the source. The intensity received at this point 

will be the power density multiplied by the unit propagation direction vector ≤¥ = ≤/L and is 

hence defined as: 

 HB = ≤¥
D
2+L 3.19 

3.4.1 Source directionality 

Standardised metrics to analyse room acoustic conditions have traditionally been derived 

from measurements with omnidirectional loudspeakers. This has since been adopted with 

computer simulations for room acoustics to derive similar objective parameters from room 

acoustic simulation outputs. But typical sources in a room such as vocal speakers or musical 

instruments or even commonly used loudspeakers have directivity characteristics and are rarely 

omnidirectional. Furthermore, for the purpose of auralisation of real sources, inclusion of 

directional properties of sources is important [7]. 

One of the features of the EBEM formulation presented in this thesis is its ability to include 

directional sources. If we consider the point source to be directional and the power injected 

into the domain varies with angle M2, power injected by the source into the room is replaced by 

a directivity function D2(M2) whose integral from 0 to 2+ w.r.t. M2 equals D: 
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 J D2(M2)KM2
*,

(
= D 3.20 

Note that M2 is defined in the global sense relative to the Cartesian axes because the source lies 

in the domain and not on the boundary. D2(M2)	has units of Watts per metre per radian. For an 

omnidirectional source, the following equation is obtained:  

 D2(M2) =
D
2+ 3.21 

The equation for power density received at m is now: 

 DD =
D2(M2)
L  3.22 

The 2+ term is removed from this equation because of the units of D2(M2). Received intensity 

at m is: 

 H = ≤¥
D2(M2)
L  3.23 

The directional power distribution [9m, üy ; ≡ [(m, M:) is the acoustic quantity being 

propagated, and this needs to be formulated in terms of the power incident from a point source. 

At a receiver point, [ has units of Watts per metre2 per radian, with the “per radian” term is 

with respect to the receiver angle M:. The rays emanating from such a point source will be 

perfectly directional, and can be represented using a Kronecker delta function in angle 

ê(M2 − M:) defined as: 

 ê(M2 − M:) = Æ1, if	M2 = M:
0, otherwise 3.24 

Now the directional power distribution at m is given by: 

 [9m, üy ; = [(m, M:) =
D2(M2)
L ê(M2 − M:) =

D2(M2)
L ê9cos$%9üy ∙ ≤¥;; 3.25 

The total power incident at a receiver irrespective of the arrival direction is given by: 
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 D:(m) = d[9m, üy ;Küy ≡ J
D2(M2)
L ê(M2 − M:)KM:

*,

(
=
D2(M2)
L  3.26 

D: is the spatial power density with units of Watts per metre2. Here the sifting property of the 

delta function is exploited to remove the integral. The delta function ‘sifts’ the direction üy  for 

which M2 = M: which is equal to ≤¥. This is a mathematical way of describing Raytracing and 

is shown in Figure 3.9: 

Figure 3.9 The delta function adds a condition where direction üy  has to be equal to ≤¥ 

 

 

The received intensity at m can be computed with a similar integral: 

 H(m) = d[9m, üy ;üy 	Küy ≡ J
D2(M2)
L ê(M2 − M:)	ü¥(M:)KM:

*,

(
=
D2(M2)
L ≤¥ 3.27 

3.5 SOURCE TO BOUNDARY MAPPING 

This section describes the process of mapping the directional power distribution radiating 

from a point source in the domain to an equivalent incoming power distribution based in the 

boundary co-ordinate system. The source radiates rays in all directions as explained previously 

and the boundary can accept rays arriving from the domain in any direction, but only the ones 

that align in both receiver position and angle are geometrically valid. This is the orange ray in 

Figure 3.10 and this aligned ray into the boundary (shown in blue in the same figure). This 

imposes an equivalence between M2 and MD.  

≤¥ 

û( 

m 



Chapter 3: Theory 

 50 

Figure 3.10 Geometry illustrating source to boundary mapping 

 

This is not immediately straightforward to mathematically state as M2 is defined w.r.t. the 

global Cartesian x-axes and is defined MD w.r.t. the normal vector on the boundary. But this 

issue with comparison of definitions based on different reference directions is avoided by 

requiring that cos$%9üy $ ∙ ≤¥; = 0, which is satisfied with the condition üy $ = ≤¥. Hence, a 

boundary distribution with an angular term ê9cos$%9üy $ ∙ ≤¥;; will sift out a ray direction (blue 

arrow) matching the arrival direction from a point source in the domain (orange arrow). The 

incoming power distribution at the boundary is given by: 

 [$9m, üy $; =
D2(M2)
L ê9cos$%9üy $ ∙ ≤¥;;r(m, û() 

3.28 

In addition to ensuring only geometrically valid ray are considered, two additional checks 

must be performed on the sifted ray: 

1. A ray “visibility” check to ensure the ray path from the source to a boundary point is 

not occluded. A valid ray path with no obstructions will give such a term a value of 1, 

and 0	if the path is invalid or obstructed by another part of the boundary.  

2. A ray “validity” check to ensure the ray arrives on the boundary from the enclosed 

interior domain and not the exterior side. This can be imposed with the condition h§ ∙

≤¥ < 0. 

MD 

•̂D 

h§D 

üy $ 

û( 

m 

Room boundary Γ 

Source 

M2 

≤ 
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Both these checks are encapsulated into a single function	r(m, û()	which takes the value 1 if 

the ray path is valid and unobstructed, and 0 otherwise. However, this is always 1 in a convex 

domain such as the rectangular room modelled in this study. Hence this function is not 

considered in detail in this thesis, since all the case studies chosen are convex.  

3.6 INTERACTION WITH BOUNDARY MATERIAL 

Before considering the outgoing power distribution reflected from the boundary back into 

the domain, interaction of the incoming distribution with the boundary material must be 

considered. A ray arriving at the interface of two media can be affected in various ways. When 

a ray is incident on the boundary, rays into both the interior and exterior domains exist. We 

assume that the exterior medium is locally reacting, so no rays from the exterior medium re-

enter the interior domain. The local reaction model has been widely used in GA models and 

performs well in conjunction with GA models even when modelling porous absorbers which 

would deviate from a local reaction material. 

The mapping between the incoming and outgoing distributions, [$9m, üy $; and [I9m, üy I; 

can be completely arbitrary if scattering is present – any location m and incoming direction üy $ 

in a distribution [$ could in principle influence any location m and outgoing direction üy I in a 

distribution [I. For locally reacting boundaries, the two locations m are the same boundary 

point and the relationship becomes a Bi-directional Reflectance Density Function (BRDF) 

denoted by L(m, ®I, ®$) and used as: 

 [I(m, ®I) = J L(m, ®I, ®$)[$(m, ®$)K®$
I%

$%
 3.29 

3.7 RE-RADIATION FROM BOUNDARY 

 Section 3.6 described how the power distribution incident at a point û	on the boundary 

interacts with the boundary material before producing an outgoing power distribution back into 

the domain. Now this distribution has to be mapped as either:	

1. The distribution [$9m, üy ; at a receiver located at point m in the domain, or 

2. The incoming distribution [$9m, üy $;	at a point m at another part of the boundary 



Chapter 3: Theory 

 52 

Figure 3.11 shows the geometry for evaluating these interactions. The orange ray depicts 

such an interaction from û to a point m both in the domain as well as another part of the 

boundary.  

Figure 3.11 Geometry for evaluating boundary to boundary interactions 

The direction vectors at both these points align with the orange ray as shown, and therefore we 

have: 

 üy = üy I = üy $ = ≤¥ 3.30 

But how this direction vector is parametrised as an angle varies: 

• For at û ∈ Γd the angle Me is relative to the normal vector h§e at û	

• For m ∈ Ω the angle M is relative to the global Cartesian x-axis	

• For m ∈ ΓD the angle MD is relative to the inverted normal vector −h§D at m.	

In all three cases, the units of [ are Watts per metre squared per radian, where the “per metre 

squared” is taken in the plane perpendicular to the direction of propagation. The re-radiation 

statement will be developed for a domain receiver [9m, üy ; but will also apply to a boundary 

point [$9m, üy $;. 

All points on the boundary Γe  could potentially radiate to a point m ∈ Ω, and the power 

density received will be the summation of their contributions. Because of this, an integral over 

Ω 

üy  

≤¥ 

m 

M 

üy I 

h§e 
Mf 

û 

Γd 

üy $ 

h§D Mg m 

ΓB 



Chapter 3: Theory 

 53 

boundary position is present. The boundary can radiate in any angle too, hence there is also an 

integral over Me. [9m, üy ; is therefore given by: 

 
[9m, üy ; = JJ

[I9û, üy I;
L ê9cos$%9üy ∙ ≤¥;;ê9cos$%9üy I ∙ ≤¥;;

,
*

$,*O

× r(m, û) cos Me KMeKΓe 

3.31 

In this equation, m and üy  are arguments. Hence, it can no-longer assumed that üy  is aligned 

with ≤¥, but it remains true that the ray arriving from û points in direction ≤¥. The term 

ê9cos$%9üy ∙ ≤¥;; in the integrand ensures this geometric validity. Similarly, üy I is a function of 

the integration variable Me, but the geometric model of acoustic propagation means that only 

radiation from the boundary in the direction üy I = ≤¥ contributes. The term ê9cos$%9üy I ∙ ≤¥;; 

ensures this.  

The 1 L⁄  arises due to spherical spreading from the boundary sources. It converts the ‘per 

radian’ of [I9û, üy I; at û into a ‘per metre’ tangential to the wavefront at m. One of the ‘per 

metre’ of [I9û, üy I; at û will be integrated out by the spatial integral over Γe. But the ‘per 

metre’ of [I9û, üy I; is in the plane perpendicular to the direction of propagation, whereas the 

integral is w.r.t. boundary length. The cos Me term compensates for this. The second delta 

function can be exploited to analytically evaluate the integral w.r.t Me via the sifting property: 

 ∫9m, üy ; = J
∫I9û, ≤¥;

L ê9cos$h9üy ∙ ≤¥;;r(m, û) cos Me KΓe
i

 3.32 

This is the directional energy distribution at a point receiver.	cos Me = h§e ∙ ≤¥ can be substituted 

into this for ease of numerical evaluation. r(m, û) is the visibility function, which again can 

only be non-zero if the ray path is un-occluded. But now it must also to check if the ray leaves 

the front-side of Γe. Visibility checks from boundary to receiver require only that h§e ∙ ≤¥ > 0, 

whereas those for boundary-to-boundary mappings require that h§e ∙ ≤¥ > 0 and h§D ∙ ≤¥ < 0. 

Eq. 3.32 is equivalent to the FP operator that the Nottingham group uses as a starting point 

in their formulations. The only significant difference is that the Nottingham group’s 

formulation [15] integrates and later sifts in ‘momentum’ (equivalent to χ), whereas EBEM 

integrates w.r.t θe (instead of χe), and sift in θe and θD. 
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3.8 DISCRETISATION 

3.8.1 Geometry and mesh 

The 2D acoustic domain is enclosed by a boundary Γ which is made of a closed loop of $ 

connected line elements indexed by Γ/	such that: 

 Γ = 	º Γ/
KI%

/'(
 3.33 

The length of the #th line element with its start and end vertices at Ω/ and  Ω/I% is computed 

as: 

 l/ = |Ω/I% − Ω/| 3.34 

The position on each line element is parametrised by a dimensionless positional parameter æ. 

This parameter can take a value between 0 and 1:  

 m(#, æ) = (1 − æ)Ω/ + æΩ/I% 3.35 

The position around the entire boundary is parametrised with a different dimensionless 

parameter ø in the range 0 ≤ ø ≤ $ by taking # = ⌊ø⌋ and æ = ø − # and then using eq. 3.35, 

so we have: 

 m(ø) = (1 + ⌊ø⌋ − ø)Ω⌊X⌋ + (ø − ⌊ø⌋)Ω⌊X⌋I% 3.36 

The unit tangent vector •̂/ on the #th element is constant and equal to: 

 •̂/ 	= [Ω/I% − Ω/] l/⁄  3.37 

The unit normal vector h§/ on the #th element is constant and points perpendicular to t̂/ into Ω, 

hence: 
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•̂(ø) = •̂⌊X⌋ 

h§(ø) = h§⌊X⌋ 
3.38 

3.8.2 Discretisation on the boundary 

The EBEM algorithm discretises incoming and outgoing power at the boundary separately. 

Acoustic absorption is emulated with a ‘Reflectance’ matrix discussed later in this chapter. The 

discretised sound power will be the product of spatial and angular interpolation (or ‘basis’) 

functions, ¬/ and √l respectively. 

 [± |m(ø), üy ±(®)} = 	&&¨±[#ƒ + ≈]
n

l'(

K

/'(

¬/(ø)√l(®) 3.39 

Here m ∈ Γ and ¨± is a vector of coefficients, where the two sets of indices # and ≈ have been 

collapsed into a single index #ƒ + ≈. ¬/(ø) is a spatial interpolation function. √l(®) is an 

angular interpolation function 

3.8.3 Spatial basis functions 

Discontinuous piecewise-constant (PWC) was chosen as the spatial basis function used in 

the EBEM codebase due its simplicity and precedent from other works. 

For PWC, the DOF will be associated with elements. Due to their discontinuous nature, the 

spatial solution on the boundary becomes discontinuous. The equation for PWC functions is: 

 ¬/(ø) = ∆1 # ≤ ø ≤ # + 1 ≡ m ∈ Γ/
0 otherwise	  3.40 

3.8.4 Angular basis functions 

The angular basis functions discretise [ |m, üy (®)} over the range −1 ≤ ® ≤ 1. The 

codebase for the EBEM algorithm was developed so that the angular basis functions can be 

changed readily and the associated variation in solution accuracy can be easily studied. The 

choices of angular basis functions implemented within the EBEM codebase are discontinuous 

piecewise-constant, continuous piecewise linear, and continuous orthogonal polynomials. 
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3.8.4.1 Discontinuous Piecewise-Constant (PWC) 

When interpolating angle, PWC functions have ƒ + 1	nodes (as constant basis functions 

require a single interpolation node for each angular subdivision) located at ®l = 2≈ ƒ⁄ − 1, 

where the index ≈ ranges from 0 to ƒ. Equation for these functions are: 

 √l(®) = Æ1 ®l ≤ ® ≤ ®lI%
0 otherwise	

 3.41 

This choice is compact in angle, which will later be seen to make the boundary-to-boundary 

interaction matrix sparse. The functions are also orthogonal, which makes the mass matrix 

diagonal. 

Figure 3.12 Discontinuous PWC basis in angle 

 

3.8.4.2 Continuous Piecewise Linear (PWL) 

Using PWL for interpolating angle requires ƒ nodes (as linear basis functions require two 

interpolation nodes for each angular subdivision) placed at ®l = 2≈ (ƒ − 1)⁄ − 1, where the 

index ≈ ranges from 0 to ƒ. Equation for these functions are: 

 √l(®) =

⎩
⎪
⎨

⎪
⎧
® − ®l$%
®l − ®l$%

®l$% ≤ ® ≤ ®l

®lI% − ®
®lI% − ®l

®l ≤ ® ≤ ®lI%

0 otherwise

 3.42 
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This choice has the benefit of making the solution in the domain continuous while retaining 

the ‘compact in angle’ property that makes the boundary-to-boundary interaction matrix sparse, 

but it makes the discretisation scheme non-orthogonal meaning the mass matrix – which must 

be inverted – will contain non-zero off-diagonal elements. 

Figure 3.13 Continuous PWL basis in angle 

 

3.8.4.3 Continuous Orthogonal Polynomials 

Orthogonal polynomials such as Legendre, Chebyshev or Lobatto as ® as their argument. 

Legendre polynomials have the property that [46]: 

 J No(®)N/(®)K® =
2

2# + 1êo/
%

$%
 3.43 

Figure 3.14 Legendre polynomials of order 0 through 5 
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Chebyshev polynomials map to cosine modes in angle. They have the property that: 

 J
Ào(®)À/(®)
©1 − ®*

K® = Ã
0 if	# ≠ ò
+ if	# = ò = 0
& '( if	# = ò ≠ 0

%

$%
. 3.44 

Figure 3.15 Chebyshev polynomials of order 0 through 5 

Another choice is Lobatto polynomials which are linear combinations of Legendre 

polynomials. A primary benefit of using Lobatto polynomials is their hierarchical nature [47]. 

They are defined as: 

 

l((®) =
1 − ®
2  

l%(®) =
® + 1
2  

ll(®) = Œ2≈ − 1
2 JÅl$%(œ)Kœ

p

$%

 

3.45 

This is for −1 ≤ ® ≤ 1. Here, Ål is the Legendre polynomial of order ≈ ≥ 2. 
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Figure 3.16 Lobatto polynomials of order 0 through 5 

An advantage of using continuous orthogonal polynomials is that they make the solution within 

the domain continuous. Additionally, the orthogonality of the Legendre polynomials means the 

mass-matrix will be diagonal when using them. Notably, this is not the case with Chebyshev 

polynomials because the integrals in its mass matrix do not include the denominator term 

required for orthogonality. The Nottingham group report that Chebyshev polynomials 

outperform Legendre. Also, Chebyshev polynomials are related to the Fourier series, so it 

should perform similar to the Duke group’s EI-BEM formulation. A disadvantage is that they 

all support the full range −1 ≤ ® ≤ 1 leading to a boundary-to-boundary interaction matrix 

that is dense. Although using the natural inner product in the case of Chebyshev polynomials 

would have resulted in a diagonal mass matrix, a potential disadvantage is that the weighting 

term in eq. 3.44 becomes infinite at either ends of the range of ®, i.e. at 1 or −1. Hence this 

was not considered as a possible choice to be used as angular basis.  

3.8.5 Source directivity 

This section provides a mathematical description of the directional source discussed in 

Section 3.4.1. To model directional characteristics, a Fourier series in angle M2 is utilised. A 

Fourier series can represent any angular distribution as a (possibly infinite) sum of sines and 

cosines. The source directivity function D2(M2) can be written in this form as: 

 D2(M2) 	= &√l

n)

l'(

cos ≈M2 +&¬l sin ≈M2

n)

l'%

 3.46 
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Where: 

ƒ5 is the source directivity order 

√l are the Fourier series cosine coefficients (provided by a user) 

¬l are the Fourier series sine coefficients (provided by a user) 

For an omnidirectional source, ƒ5 = 0 and √( = D/2+ where D is the total source power in 

Watts per metre. 

If a directional distribution D2 is pre-defined (eg. from measurement), √l and ¬l can be 

found from standard Fourier encoding equations: 

 D2 ≈&√q

n)

l'(

cos ≈M2 +&¬q sin ≈M2

n)

l'%

 3.47 

The Fourier series is a natural choice to interpolate cyclic data versus angle in the range 0 to 

2+. Moreover, they are the angular part of a Fourier Bessel series, and this can be used to 

describe high-order sources that are solutions to the 2D Helmholtz equation. Hence, this choice 

is attractive because it is consistent with low frequency approaches. In contrast, angular ranges 

on the boundary are half this range. Using a Fourier series in direction would have resulted in 

a non-orthogonality issue encountered in [10]. By multiplying of the angular argument by 2, 

the orthogonality is recovered but enforces a non-physical periodicity between the ends of the 

angular range. Ends of the angular range having different intensities may result in unwanted 

Gibbs artefacts. 

3.8.6 Receiver discretisation 

Similar to the directional point source, the directional power density incident at a point 

receiver is discretised with a Fourier series in receiving angle M:. Using similar Fourier series 

representations for source and receiver directivity allows easy analysis and plotting of different 

parts of the algorithm and makes reciprocity clearer to see. The received power arriving at a 

receiver [9m, üy ; is described as: 

 [ |m, üy (M:)} ≈ &√q

r*

q'(

cos @M: +&¬q sin @M:

r*

q'%

 3.48 
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Where: 

N: is the receiver order 

√q and ¬q are the output data computed from [ |m, üy (M:)}, which is a result from other parts 

of the algorithm. Once it is found it is mapped onto the representation in eq. 3.48. √q and ¬q 

are stacked into a single vector of length 2N: + 1 for easier data handling. 

By exploiting the standard equations for finding the coefficients for a Fourier series, we get: 

 ¨:[@] =

⎩
⎪
⎨

⎪
⎧√q =

1
91 + êq;+

J [ |m, üy (M:)} cos(@M:) KM:
*,

(
if	@ ≤ N

¬q$r =
1
+J [ |m, üy (M:)} sin((@ − N)M:) KM:

*,

(
if	@ > N

 3.49 

Where êq is the Kronecker delta, which equals 1 when @ = 0, and 0 otherwise. The total power 

arriving at the receiver irrespective of direction is: 

 
D:(m) = d[9m, üy ;Küy ≡ J “&√q

r*

q'(

cos(@M:) +&¬q sin(@M:)
r*

q'%

” KM:
*,

(

= 2+√( 

3.50 

Intensity at the receiver can now be computed as: 

 

H(m) = d[9m, üy ;üy 	Küy ≡ J [ |m, üy (M:)}
*,

(
[m‘ cos M: + û‘ sin M:]KM: 

= m‘ J [ |m, üy (M:)}
*,

(
cos M: KM: + û‘J [ |m, üy (M:)}

*,

(
sin M: KM: 

= +√%m‘ + +¬%û‘ 

3.51 

Directional receiver information in this format can be used in post processing in various 

models of spatial audio reproduction technology [7]. This mirrors the framework used in [20] 

for auralisation of BEM and is equivalent to 2D Ambisonics.  
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3.9 GALERKIN BOUNDARY ELEMENT METHOD 

A Galerkin BEM scheme is used to map power arriving at the boundary onto the 

discretisation scheme. The discretisation scheme allows the energy distribution on the 

boundary to be represented by a finite set of coefficients. These coefficients are computed for 

incident or re-reflected sound by the ‘testing’ integral.  

Galerkin BEM minimises the projection of the error in the solution of this in the chosen 

‘space’ of testing functions. It performs an inner product between the incoming energy 

distribution and a set of ‘testing’ functions. These allow choice in how error in the solution is 

minimised. Choosing them to match the basis functions results in a ‘Bubnov-Galerkin’ method 

which minimises mean-squared error in the same approximation space as the solution. 

Choosing different testing and basis functions results in a ‘Petrov-Galerkin’ method which 

minimises mean-squared error in some other space. For example, if Lagrange functions are 

used as basis functions and Dirac delta functions as testing functions, the Galerkin BEM 

reduces to a collocation type scheme. The Nottingham group recently opted to do the latter 

[49], using delta functions as basis in angle (so a finite set of angles instead of a distribution) 

and PWC testing functions. This produces an effect very similar to the ‘ray direction 

quantisation’ technique [35]. The main benefit is that ray transport directions can be preserved 

when transmitting through boundaries of sub-domains, although eliminating the need for 

numerical integration is also beneficial.  

For the EBEM presented herein, a Bubnov-Galerkin scheme was chosen for its simplicity, 

symmetry and similarity with the energy interpretation in [50]. 

A feature of Galerkin BEM is that it does not compute the coefficients of eq. 3.39 directly. 

Instead, it computes a vector of ‘projections’, from which the coefficients can be found by 

solving a matrix equation. The matrix involved in this equation is commonly known as the 

‘mass matrix’, due to its similarity with the mass matrix in FEM. Consider the double-layer 

potential ’ used in standard acoustics BEM: 

 ’{G}(m) = ÿ
îŸ
î#s

	(m, û)G(û)K⁄s
O+

 3.52 
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Where Ÿ(m, û) is the free space Green’s function. The boundary source distribution G(û) 

resides on the boundary Γs and are evaluated at all €. In practice, G(û) is written in discretised 

form as: 

 G(û) =&‹tGt

t

M'(

(û) 3.53 

 ‹ is a vector of coefficients and GM(û) is a family of basis functions on a mesh spanning Γs. 

Substituting eq. 3.53 into the equation for ’ leads to ’{G}(€) = bu‹ where: 

 bt =ÿ
îŸ
î#s

	(m, û)Gt(›)K⁄s
O+

 3.54 

Here b is the discretised version of ’ evaluated at m.  

The aim, however, is often to map ’{G}(m) onto another set of basis functions, so it can 

also be represented in a discretised form, now with coefficients fi. Consider a third space, 

usually termed dual-to-range in BEM literature [51]. This space comprises of a set of ‘testing’ 

functions i.(m). Now, fi can be found by solving the equation: 

 Øfl = ‡‹ 3.55 

Where: 

 ‡.,M =ÿ ÿ i.(m)
îŸ
î#e

(m, û)GM(û)KΓe
O+

KΓD
O,

, 3.56 

And, 

 Ø.,M =ÿ i.(m)®M(m)KΓD
O,

. 3.57 

This framework minimises the ℒ* norm of the equation to be solved in the space of the 

testing functions. D computes the projections of ’{G}(m) onto the testing functions i.(m). The 
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mass matrix undoes any overlap or non-biorthogonality between i.(m) and ®.(m). This 

amounts to solving fl = Ø$%‡‹.  

3.9.1 Projection operator and Mass matrix 

The mapping of some arriving field [9m, üy $;, as is computed by eq. 3.28 for power from a 

source and eq. 3.32 for sound from the boundary on the previous reflection order, is performed 

by an inner product integral in boundary position m and angle MD. This computes a vector â$ 

termed the ‘projections’: 

 

â$[òN + @] = JJ [9m, üy $;¬o@ (m)√q@ 9üy $; cos MD KMDKΓD

,
*

$,*O
 

= JJ [9m, üy $;¬o@ (m)√q@ (üy $)K®DKΓD
%

$%O
 

3.58 

In eq. 3.58, üy $ is a function of MD in the first integral according to eq. 3.12 and of ®D in the 

second according to eq. 3.13. The cos MD arises by the same logic that cos Me arose in eq. 3.31. 

[9m, üy $; is a power density that includes a ‘per metre’ that is perpendicular to the direction of 

propagation üy $, but the integral is w.r.t. boundary length. The cos MD term compensates for 

this. In the second integral the identity in eq. 3.14 has been exploited. 

To build a matrix that maps these projections back to the coefficients ¨$, eq. 3.39 is 

substituted into eq. 3.58. Unpacking all the combinations of ò, #, @ and ≈ into a matrix Ø 

gives: 

 

Ø[òN + @, #ƒ + ≈] = J J ¬o@ (m)¬/(m)√q@ 9üy $;√l9üy $; cos MD KMDKΓD

,
*

$,*O
 

= JJ ¬o@ (m)¬/(m)√q@ (üy $)√l(üy $)K®DKΓD
%

$%O
 

3.59 

This matrix shows the overlap between the basis function combinations in the discretisation 

scheme. It is termed the ‘mass matrix’ because its form matches the FEM mass matrix. 

Orthogonal discretisation schemes (orthogonal polynomials or PWC will give diagonal 

matrices. Non-orthogonal schemes, such as continuous PWL will also have some off-diagonal 

entries. 
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From the above we have â$ = Ø¨$. It follows that ¨$ = Ø$%â$. Multiplying by the 

inverse of Ø therefore unpicks the non-orthogonality in the discretisation scheme. It also 

performs a normalising role. This is equivalent to the normalisation that Siltanen et al [12] hard 

coded in eq. 2.28 and 2.29 . Inclusion of Ø allows EBEM to change basis functions without 

modification to the algorithm. 

Note that the notation on the left-hand sides of eq. 3.58 and eq. 3.59 assume that N and ƒ 

are the same for all boundary elements. But this is just a notation convenience. Allowing 

different elements to have different N and ƒ (so N/ and ƒ/) would be possible using a standard 

matrix assembly process. 

Note also that the ‘testing’ functions ¬o@ (m) and √q@ (üy $) are likely to be the same as the 

basis functions used for discretisation of [±9m, üy ±; in eq. 3.39, which would make Ø 

symmetrical. But this is not essential. They could be drawn from different family of basis 

functions if preferred. 

For a flat element (or elements) with constant normal vector eq. 3.59 can be separated into 

the product of two integrals, making the mass matrix block diagonal 

 Ø[òN + @, #ƒ + ≈] = J¬o@ (m)¬/(m)KΓD
O

×J √q@ 9üy $;√l9üy $;K®D
%

$%
 3.60 

3.9.2 Source to boundary mapping 

The [ in eq. 3.58 is replaced by [$ from eq. 3.28 to give the following projection: 

 
â($[òN + @] = JJ

D2(M2)
L ê9cos$%9üy $ ∙ ≤¥;;

,
*

$,*O

× r(m, û()¬o@ (m)√q@ 9üy $; cos MD KMDKΓD 

3.61 

The sifting property of the delta function can be exploited since it only gives a non-zero value 

for üy $ = ≤¥. This removes the integral over angle. Figure 3.10 shows that cos MD = −h§D ∙ 	üy $ =

−h§D ∙ 	≤¥, hence: 

 â($[òN + @] = −J
D2(M2)
L r(m, û()¬o@ (m)√q@ 9≤¥;h§D ∙ 	≤¥KΓD

O
 3.62 
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If ®D is required to evaluate √q@  then it can be found by ®D = −•̂D ∙ 	üy $ = −•̂D ∙ 	≤¥. M2 can be 

found from ≤¥ by M2 = atan29≤¥s , ≤¥v;. The incident wave boundary weights ¨(
$ can be found 

by ¨(
$ = Ø$%â($. The discretised statement for source directivity in eq. 3.46 is substituted 

here, allowing â($ (and therefore ̈ (
$) to be found by â($ = ∞2`¨2, and the mutual orthogonality 

of sine and cosine integrals was exploited to get: 

 

∞2`[òN + @, ≈]

=

⎩
⎪
⎨

⎪
⎧−J

cos(≈M2)
L r(m, û()¬o@ (m)√q@ 9≤¥;h§D ∙ 	≤¥KΓD

O
if	≈ ≤ ƒ

−J
sin((≈ − ƒ)M2)

L r(m, û()¬o@ (m)√q@ 9≤¥;h§D ∙ 	≤¥KΓD
O

if	≈ > ƒ
 

3.63 

3.9.3 Reflection operator 

This section presents a representation of the reflection operation in eq. 3.29 as a matrix 

multiplication. Substituting eq. 3.39 into eq. 3.29 and then substituting [I(m, ®I) for [9m, üy $; 

in eq. 3.58, and unpacking all the combinations, gives: 

 
≤[òN + @, #ƒ + ≈]

= JJ ¬o@ (m)√q@ (üy I)J L(m, ®I, ®$)
%

$%
¬/(m)√l(üy $)K®$K®IKΓD

%

$%O
 

3.64 

For a flat element with constant normal vector, and where L is constant over an element, this 

can be separated into the product of two integrals: 

 

≤[òN + @, #ƒ + ≈]

= J¬o@ (m)¬/(m)KΓD
O

× J √q@ (üy I)J L(m, ®I, ®$)
%

$%
√l(üy $)K®$K®I

%

$%
 

3.65 

The outgoing wave boundary weights ¨.
I can be found by ¨.

I = Ø$%≤¨.
$. If a boundary is 

specularly reflecting with no absorption, then L(m, ®I, ®$) = ê(®I − ®$). In this case ≤ = Ø 

and ¨.
I = ¨.

$. 
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3.9.4 Boundary to boundary mapping 

This section aims to represent the propagation operation in eq. 3.32 from boundary to 

boundary as a matrix multiplication. Eq. 3.32 is substituted into eq. 3.58 and eq. 3.39 is used 

for the radiating directional power density [I9û, ≤¥;. Unpacking all the combinations of ò, #, 

@ and ≈ into a matrix ∞ww	 gives: 

 

∞ww[òN + @, #ƒ + ≈] 

= −JJ J
1
L ê9cos

$%9üy ∙ ≤¥;;¬o@ (m)¬/(û)√q@ 9üy $;√l9≤¥;
O

,
*

$,*O

× cos MD cos Me KΓeKMDKΓD 

3.66 

The sifting property of the delta function can be exploited to eliminate the integral over MD, 

setting üy $ = ≤¥ 

 

∞ww[òN + @, #ƒ + ≈]

= JJ
1
L ¬o

@ (m)¬/(û)√q@ 9≤¥;√l9≤¥; cos MD cos Me KΓeKΓD
OO

 

= −JJ
1
L ¬o

@ (m)¬/(û)√q@ (≤¥)√l(≤¥)h§e ∙ ≤¥h§D ∙ 	≤¥KΓeKΓD
OO

 

3.67 

In eq. 3.67, cos MD = −h§D ∙ 	≤¥ and cos Me = h§e ∙ 	≤¥ have been substituted. This produces a 

boundary-to-boundary propagation operator ∞ww involving two spatial integrals. The presence 

of the cos MD and cos Me terms means that all entries in ∞ww for any pair of elements that are co-

planar. The Nottingham group observe that the integrand of ∞ww can be singular for adjacent 

elements that are not co-planar i.e., two on opposite sides of a corner in the geometry. [16] uses 

the Telles transform to address this. It is to be noted that the 1/L singularity in the boundary-

to-boundary interaction process affecting adjacent but non-coplanar elements was regularised 

using the Sato transform [52]. A Sato transform of order ‚ ≥ 2 is given by: 

 æ(„) = æ̅ −
æ̅

2x$% 91 − æ
̅„;x 3.68 
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Where „ are the original integration points, and æ are the remapped integration points obtained 

using any Gaussian Quadrature rule. The location of the singularity æ̅ must be at +1 or −1 as 

this transform is valid only for endpoint singularities. 

3.10 MAPPING OF POWER AT RECEIVER 

In this section, the objective is to find the values of the set of coefficients √q and ¬q required 

to represent the directional energy arriving at receivers according to eq. 3.48. This is done by 

substituting statements for [9m, üy ; from Section 3.4 and Section 3.7 into eq. 3.49. 

3.10.1 Source to receiver mapping 

In this section, the representation for directional power distribution arriving directly from a 

source in eq. 3.25 is combined with the discretisation of D2(M2) in eq. 3.46 and substituted into 

eq. 3.49. Unpacking of all combinations @ and ≈ gives a contribution ∞2,:¨2 to ¨: where: 

 

∞2:[@, ≈] =
r(m, û()

R

×

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

1
91 + êq;+

cos(@M:) cos(≈M2) if	@ ≤ N	and	≈ ≤ ƒ

1
+ sin(

(@ − N)M:) cos(≈M2) if	@ > N	and	≈ ≤ ƒ
1

91 + êq;+
cos(@M:) sin((≈ − ƒ)M2) if	@ ≤ N	and	≈ > ƒ

1
+ sin(

(@ − N)M:) sin((≈ − ƒ)M2) if	@ > N	and	≈ > ƒ

 

3.69 

The delta function in eq. 3.25 has been exploited to remove the angular integral in eq. 3.49. 

This has sifted out the value of M: given by M: = atan29−≤¥s , −≤¥v;. We also have that M2 =

atan29≤¥s , ≤¥v;. The function r(m, û() is a visibility function that is 1 if the ray path is un-

occluded by boundaries and is 0 otherwise. 

For the ray from a source to a receiver, the respective Fourier coefficients √/	are computed 

as: 

 √/ =
1
πJ 	I./0(M)	cos(M)	KM

*y

(
 3.70 



Chapter 3: Theory 

 69 

¬/ =
1
πJ 	I./0(M)	sin(M)	KM

*y

(
 

Where I./0(M) is the incident intensity at the receiver at angle θ. The angular distribution of 

incident rays at the receiver can be described as a delta function δ(M − ME): 

 

√/ =
1
πJ [(M?)	δ(M − ME)	cos(M)	KM

*y

(
 

¬/ =
1
πJ [(M?)	δ(M − ME)	sin(M)	KM

*y

(
 

3.71 

Using the sifting property in angle, the coefficients are calculated for each ray from a source to 

the receiver in the enclosure: 

 
√/ =

1
π 	[	cos

(ME) 

¬/ =
1
π 	[	sin

(ME) 

3.72 

The Fourier series coefficients for source directivity with angle are now calculated are: 

 

√/ = &
D?(M?) × cos(#ME)

2+E
7z{E0|?

 

¬/ = &
D?(M?) × sin(#ME)

2+E
7z{E0|?

 

3.73 

For intensity received at a point, the Fourier series representation takes a similar form to the 

source directivity function: 

 DE(M) = √( +&[√/cos(#M)
1

/'%

+ ¬/sin(#M)] 3.74 

3.10.2 Boundary to receiver mapping 

This section explains how the propagation operation in eq. 3.32 from boundary to receiver 

is represented as a matrix multiplication. Eq. 3.32 is substituted into eq. 3.49 and eq. 3.39 is 
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substituted for the radiating directional power density [I9û, ≤¥;. Unpacking all combinations 

of #, @ and ≈ into a matrix ∞`: gives: 

 

∞`:[@, #ƒ + ≈]

=
r(m, û)
R

×

⎩
⎪
⎨

⎪
⎧ 1
91 + êq;+

× J¬/(û)√l(≤¥)h§e ∙ 	≤¥ cos @M: KΓe
O

if	@ ≤ N

1
+ × J¬/

(û)√l(≤¥)h§e ∙ 	≤¥ sin(@ − N)M: KΓe
O

if	@ > N
 

3.75 

The delta function in eq. 3.32 has been exploited to remove the angular integral in eq. 3.49. 

This has sifted out the value of M: given by M: = atan29−≤¥s , −≤¥v;. cos Me = h§e ∙ 	≤¥  has also 

been substituted. r(m, û) is the visibility function, which again can only be non-zero if the ray 

path is un-occluded. But now it also requires that h§e ∙ ≤¥ > 0 and h§D ∙ ≤¥ < 0. 

3.11 SUMMARY 

The overall framework of the EBEM algorithm is summarised in Figure 3.17. The Galerkin 

BEM framework utilized for EBEM allows comparison of different basis and testing functions. 

EBEM is formulated with a ‘Bubnov-Galerkin’ scheme for simplicity and symmetry in basis, 

and synergy with high-frequency BEM . A novel aspect of EBEM is that it discretises incoming 

and outgoing energy separately. This is again similar to high frequency BEM. Directional point 

sources and receivers have also been described with Fourier series in angle.  
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Figure 3.17 Framework of the EBEM algorithm 
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4 METHODOLOGY 

This chapter is divided into three sections: selection and description of the validation model, 

numerical integration, and numerical implementation of EBEM. First, a brief discussion of the 

possible validation models is presented followed by the justification of the final choice and an 

overview of its specifications. This is followed by a description of the Gauss-Legendre 

quadrature rule used for solving the EBEM integrals. The final section in this chapter 

documents the process of numerically implementing EBEM. 

4.1 VALIDATION MODEL 

Selection of a suitable algorithm to validate EBEM against is of utmost importance. The 

first pre-requisite of this validation model is the capability to model high frequencies in an 

energy-based manner similar to EBEM. The second requirement is the capability to include 

directional point sources and receivers like the ones in EBEM. Finally, it is desirable to be able 

to make comparisons between the boundary data obtained from the two models to scrutinise 

the approximation in EBEM independent of source and receiver properties.  

One obvious choice for the validation model would be classical Raytracing, which bears 

strong similarity with EBEM. But as already discussed, Raytracing requires volumetric or 

surface receivers, making it unsuitable to validate point receiver responses, which is the 

intention here. It will also be difficult to compute boundary direction maps with Raytracing.  
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ISM was chosen as a validation model. The IS construct can utilise the ∞}~ mapping function 

which will ease implementation and comparison with EBEM. Although ISM only models 

ideally specular reflections and is most accurate for modelling early reflections, it would be 

suitable as a validation model as the effect of the discretisation scheme in the EBEM model 

can be verified and compared against a solution mapping exact specular reflection paths. ISM’s 

simplicity and flexibility in implementation allows easy inclusion of directional source and 

receivers as well. The ISM specification with modifications from the standard approach is 

presented in the next section. 

4.1.1 Modified Image Source Model 

A 2D ISM is used for validation. As discussed in the previous section, one of the pre-

requisites for the validation algorithm is its ability to model point sources and receivers which 

have directionalities defined by Fourier series in angle. This would mirror the source and 

receiver descriptions in EBEM. To model source directivity utilising a Fourier series in angle 

in ISM, we first need to compute source angles for the original source in the room as well as 

each IS. These source and receiver angles defined in the 2D Cartesian co-ordinate system are 

measured with respect to the horizontal x-axis as shown in Figure 4.1. m‘ and û‘ denote the 

orientations of the x- and y- local coordinates at each point. ≤ denotes the ray from the source 

to the receiver. 

Figure 4.1 Computing source and receiver angles 

When the source in the room is mirrored against a boundary, the orientation of one of these 

co-ordinates is ‘flipped’ dependent on the coordinate direction along which the source is 

mirrored. This is shown in Figure 4.2. 

Source 

 

m‘? 

 ≤ 

θ? 

 

θE 

 

û‘? 

 

Receiver  
m‘E 

û‘E 
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Figure 4.2 Illustration of source co-ordinate flipping when a source is mirrored by an 

edge of the room 

 

 

This affects the computation of source and receiver angles and must be addressed. The effect 

of this over two reflection orders in both x- and y- directions is shown in Figure 4.3. 

Figure 4.3 Source co-ordinate angle 'flipping' with reflection order. Room shown with a 

solid line 

 

The first step in implementing an ISM is computing IS locations for a specific maximum 

reflection order, as a function of the room dimensions and the source location. To simplify the 

modelling and solution process for a rectangular room, the origin of the co-ordinate system was 

modelled at the centre of the room. For a rectangular room of dimensions Åv × Ås (in metres) 

Source Image source 
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with the source located at m?, the IS locations for reflection orders NB and Nd along the defined 

x- and y- directions are: 

 [q45	, ï45] = ÈÅv	, ÅsÍ × ÈNB	, NdÍ + m? × −1�Ä-	,	Ä.Ç 4.1 

Due to its structure and the need for similarity between the two models, the ∞}~ source-to -

boundary propagation process defined in the previous chapter is used to compute the power 

propagated from the original source and ISs to the receiver. This would also simplify 

application of Fourier series representation for the source and receiver directivities 

implemented in the EBEM algorithm.  

The coordinate orientation flipping at each IS position based on reflection order is 

implemented by inverting the sign of the respective coordinate at the image source position. In 

each coordinate direction, it is observed that the respective co-ordinate orientation is ‘flipped’ 

for odd reflection orders and flips back to its original orientation (that of the source in the room) 

at even reflections orders. This can be achieved with a term (−1)Ä, which alternates between 

values 1 and −1 based on the value of reflection order N. 

The desired coordinate flipped is this achieved by calculating the source angle with the 

following equation: 

 M? = atan29(−1)Ä. 	≤¥	. û‘?, (−1)Ä- 	≤¥ 	. m‘?; 4.2 

And ME = M? − +. Here, (−1)Ä- and (−1)Ä. implement the coordinate flipping in the x- 

and y- directions respectively.  

Similar to EBEM, ISM assumes locally reacting boundary conditions and angle dependent 

absorption can be implemented. Reflection angles for a second order IS is presented in Figure 

4.4. Pseudocode for the ISM algorithm is given in Figure 4.5. 
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Figure 4.4 Image source reflection angles 

 

Figure 4.5 Image Source validation model pseudocode 

for N$ in (−N,N) 
  for N% in (−N, N) 
    Compute IS locations for [N$, N%] 
    Compute ray vector R and ray length R 
    Compute reflection angle θ 
    Compute and square the angle-dependent Reflection coefficient R 
    Compute receiver coefficients with cylindrical spreading using the T&' process  
    Total power at receiver is computed from the coefficients 

Where: 

N is the maximum reflection order to be computed up to (entered by the user) 

NB is the reflection order along the x-axis 

Nd is the reflection order along the y-axis 

For NB, the negative values mean a reflection off the left wall and positive values mean a 

reflection off the right wall as the origin of the co-ordinate system is modelled at the centre of 

the room. Similarly, for Nd, negative values mean a reflection off the bottom wall and positive 

values mean a reflection off the top wall. 

 

M 

 

M 
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4.2 NUMERICAL INTEGRATION 

An important part of numerically implementing EBEM is solving the integrals defined in 

the previous chapter. In numerical computing and analysis, quadrature refers to the process of 

computation of definite integrals. The most common approach to numerically evaluating 

integrals is to assume the integrand follows some family of interpolating polynomials, and then 

from this information find a set of evaluation ‘abscissae’ and corresponding scaling weights 

that compute the integral optimally. If these integration points (or ‘abscissae’) are equally 

spaced, it is termed as Newton-Coates quadrature, otherwise it is Gaussian Quadrature (GQ). 

Commonly used numerical integration formulae, such as one based on a Taylor series with 

$ points will exactly integrate a polynomial of degree $. It generates $ number of weights for 

such an integration rule, and it can be chosen to satisfy $ linear equations. A greater degree of 

accuracy for a specific amount of numerical computation can be achieved if the need to model 

equally spaced abscissae is ignored. This is where GQ rules excel. In general, the accuracy of 

integration improves with $. GQ is able to approximate the interpolation polynomial better 

with the same number of abscissae. Now we can represent a function with a polynomial of 

degree 2$ − 1 as we have 2$ equations, $ for the abscissae and $ for the weights.  

The ray propagation processes involving the boundary, i.e., source-to-boundary, boundary-

to-boundary and boundary-to-receiver processes are described with boundary integrals, so are 

the mass and reflectance matrices. The solution requires the integrals to be evaluated over the 

entire boundary. The integration quantities to construct the solution matrices typically depend 

on •̂ and/or h§. As these quantities are discontinuous at the mesh nodes where ø is an integer, 

the boundary integrals are evaluated over each mesh element and the results are summed to 

obtain the boundary solution. This is described below: 

 dã(m)Kl
O

= J ã9m(ø);
Kl
Kø Kø

K

(
= &l/J ã9m(#, æ);Kæ

%

(

K

/'(

 4.3 

The latter integrals are suitable for evaluation with a GQ rule. In GQ a set of integration points 

and corresponding weights are determined first, and these values can be reused for numerous 

integration calculations, which is not possible with other quadrature rules. The sum of values 

of the function at the abscissae are multiplied by a corresponding weight to approximate the 

integral of the function in the given interval: 
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 J ã(æ)Kæ
%

$%
≈&[.ã(√.)

-

.'(

 4.4 

Where √. are the abscissae, [. 	are the weights and 2 is the order of the GQ rule. 

These abscissae √. are the roots of the interpolation polynomial and the weighting is used 

to emphasise a particular part of the integration interval than another. Orthogonal polynomials 

of degree $ defined in an interval [√, ¬] have $ distinct zeros in the open interval (√, ¬). The 

weights are derived using the following equation: 

 [. =
2

(1 − √.*)(N/′(√.))
 4.5 

Where N/′ is the derivative of the interpolation Polynomial of order. To transform the computed 

abscissae in the range −1 ≤ æ ≤ 1 to analogous values in an interval √ ≤ æ ≤ ¬, the following 

change of variable process can be used: 

 

−1 ≤ qÎ ≤ 1 ↔ √ ≤ q ≤ ¬ 

if				
qÎ − (−1)
1 − (−1) =

q − √
¬ − √ 

so	that,			q =
¬ − √
2 qÎ +

√ + ¬
2  

4.6 

Therefore, eq. 4.4 can be rewritten as: 

 

J ã(q)Kq
É

Ñ
= J ã Ì

¬ − √
2 qÎ +

√ + ¬
2 Ó

Kq
KqÎ

%

$%
KqÎ 

= J ã Ì
¬ − √
2 qÎ +

√ + ¬
2 Ó

¬ − √
2

%

$%
Kq 

=	
¬ − √
2 J ã Ì

¬ − √
2 qÎ +

√ + ¬
2 Ó

%

$%
KqÎ 

≈
¬ − √
2 	&w=f Ì

¬ − √
2 qÎ. +

a + b
2 Ó

Ä

='%

 

4.7 
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This would result in the following equation for the interval 0 ≤ æ ≤ 1 which can be used to 

evaluate the integrals over position in EBEM: 

 J ã(æ)Kæ
%

(
≈&

[.
2 ã Ì

1
2 +

√.
2 Ó

-

.'(

 4.8 

The theory behind choosing the abscissae is rooted in Legendre polynomials, and forms a 

subset of GQ called Gauss-Legendre Quadrature (GLQ). Roots of Legendre polynomials are 

real and distinct in the open interval (−1, 1). For the integration rule described in the previous 

section, the associated polynomials are Legendre Polynomials in this case, N/(q), with the #-

th polynomial normalised to give N/(1) = 1. The #-th Gauss-Legendre quadrature abscissae is 

the #-th root of N/(q) and the weights are calculated as: 

 [/ =
2

1 − q/*[N/@(q/)]*
 4.9 

Legendre Polynomials form an orthogonal system over the interval [−1,1] with a weighting 

function of [(q) = 1. For two Legendre Polynomials with degrees # and ò: 

 J N/(q)	No(q)	Kq
%

$%
=

2
2# + 1δo/ 4.10 

Where δo/ is the Kronecker delta. Because of the stated properties of Legendre polynomials, 

the GQ estimation of the integral of N(q) is exact as long as the order of N(q) is up to 2$ + 1. 

4.3 NUMERICAL IMPLEMENTATION 

This section documents the process of numerically implementing the EBEM algorithm. 

4.3.1 Geometry and Boundary Element mesh 

The geometry and boundary element mesh are implemented in the codebase as classes. As 

we are working in 2D, boundary elements will be 1D line elements. Only straight-line elements 

are considered for this study. A solution domain represented by a surface is bounded by a set 

of linear elements with these elements bounded by a set of end vertices. The boundary mesh is 

defined by an ordered set of element nodes, with position along the boundary defined with the 
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dimensionless parameter ø locally and their Cartesian coordinates defined globally. The mesh 

element length and number of degrees of freedom for each element are specified when creating 

the mesh object and are stored as internal parameters to streamline DOF handling. 

Figure 4.6 Schematic of a line segment and line loop objects and methods of parametrising 

local position on both 

4.3.2 Solution matrices 

Once the boundary mesh is built, the ∞cw, ∞ww, ∞wÖ, ∞cÖ, Ø and ≤ matrices are built in a pre-

computation stage before the solver section of the algorithm numerically implements the 

discretised form of EBEM following the algorithm structure in Section 3.3. The boundary 

integrals implementing the various acoustic propagation process are evaluated in the form of 

functions which evaluate their discretised form.  

The Gauss-Legendre quadrature scheme is used as default when using Legendre, Chebyshev 

or Lobatto but a uniform quadrature rule more suitable for PWC is also implemented. Suitable 

abscissae are also provided for PWL basis in angle. The spatial quadrature order is by default 

set to 5 and were integrated over the interval [0,1]. All of the EBEM boundary integrals are 

over position on the boundary, but Ø and ≤ involve angular integrals over [−1,1].  

The spatial basis implemented in the codebase is PWC. The codebase has been developed 

so the angular basis function type can be provided as an argument to the function calls. This 

can be: 

1. Legendre polynomials 

2. Chebyshev polynomials 

3. Lobatto polynomials 

4. Discontinuous PWC functions 

5. Continuous PWL functions 

(a) (b) 
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4.3.3 Implementation stages 

The EBEM numerical implementation is performed in three stages: 

4.3.3.1 Pre-computation stage 

1. Compute source-to boundary mapping matrix ∞wÖ using eq. 3.63 

2. Compute mass matrix Ø using eq. 3.60 

3. Compute Reflectance matrix ≤ using eq. 3.65 

4. Compute Boundary to boundary mapping matrix ∞ww using eq. 3.67 

5. Compute source to receiver mapping matrix ∞cÖ using eq. 3.69 

6. Compute boundary to receiver mapping matrix ∞wÖ using eq. 3.75 

 

4.3.3.2 Solution stage 

1. The coefficients for direct source to receiver propagation is computed as ∞cÖ¨c. This is 

the zeroth order reflection. 

2. The incoming boundary projections for first order reflection are computed as ∞cw¨c 

3. The corresponding incoming boundary weights are computed as ¨h
$ = Ø$%∞cw¨c 

4. The outgoing boundary weights are computed as ¨h
I = Ø$%≤¨h

$ 

5. The incoming boundary projections for second order reflection are computed as ∞ww¨h
I 

6. The corresponding second order incoming boundary weights are computed as 

¨Ü
$ = Ø$%∞ww¨h

I 

7. The corresponding outgoing boundary weights are computed as Ø$%≤¨Ü
$ 

8. Reflections can be advanced by matrix multiplications by repeating steps 5 and 6. 

4.3.3.3 Receiver response 

1. Once the boundary solution is computed for a required number of reflection orders Ç, 

receiver coefficients ¨Ö are computed by multiplying the outgoing weights at the final 

reflection order with the boundary to receiver mapping matrix ∞wÖ. 

2. Source to receiver direct propagation coefficients for direct sound are computed with 

∞cÖ. 

3. Omnidirectional power at receiver in D/ò can now be computed by 2+¨Ö[0], where 

¨Ö[0] is the omnidirectional term (at index zero) in the vector of receiver coefficients 

¨Ö.  
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5 RESULTS 

This chapter presents the results originating from the numerical implementation of the 

model discussed in the previous chapter. The main aim of this chapter is to compare EBEM 

results against their ISM equivalent and validate the codebase, and the formulation itself.  

First, validation was done for direct sound from the source to the receiver, which verifies 

the point source and receiver models and directivities. To verify the solution matrices that map 

incident and reflected power to and from the boundary, receiver directivity for early reflections 

is presented. To study the effect of the boundary mesh on the solution accuracy, a mesh 

convergence study was performed.  

An important feature of the developed EBEM algorithm is the ability of the codebase to 

readily change the angular basis functions, so their effect on accuracy and convergence can be 

studied. The effect of these is studied by examining boundary power distributions for different 

choices in angular basis functions. Finally, the power decay in the room was studied with 

reflection order and the steady state solution is obtained and verified. Together, this set of 

verification procedures validate the proposed EBEM formulation rigorously and provide 

valuable insight into its approximation and limitations. 
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5.1 TEST GEOMETRY AND SPECIFICATIONS 

Because this version of the EBEM does not implement diffraction, the validation case was 

limited to a rectangular room. This also meant that the visibility function discussed in the 

previous chapter has the value 1 in all cases, with all non-coplanar points on the boundary 

visible to each other. A rectangular room of dimensions 4ò × 5ò was simulated for 

verification. The centre of the room was modelled to be at the origin of the 2D Cartesian co-

ordinate system to simplify coding of the Image Source Method. The source was located at 

[−1,−0.5] and the receiver at [1, 1]. The room geometry, source and receiver locations and 

direct ray from the source to the receiver is shown in the Figure 5.1. 

Figure 5.1 Test room geometry with source and receiver locations 

Source and receiver directives of arbitrary order were defined. A source of order 3 was 

defined with √( = √% = √* = 1, √] = 1/2,	 and all ¬l = 0, and a receiver of order 5 was 

defined for results presented in this section, unless stated otherwise. A polar plot of the source 

directivity pattern defined is presented in Figure 5.2. 
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Figure 5.2 Source directivity polar plot 

To implement and study the discretised version of the EBEM model, a 2D Boundary 

Element mesh was constructed with a maximum element size of 0.25	ò and ƒ = 17, the latter 

dictating the order of angular discretisation. This leads to a system with $ = 56 elements and 

a total of 952 DOF. The meshed test room is shown in Figure 5.3. 

Figure 5.3 Meshed test room 
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5.2 DIRECT SOUND 

The zeroth order reflection, i.e., the direct sound from the source to the receiver, is presented 

in Figure 5.4. This sheds light on both source and receiver directivity models and verifies 

accurate mapping of incident power at the point receiver with arrival angle, independent of the 

mesh. The direct power propagated to the receiver (of order 5) is presented in Figure 5.4. It is 

evident that the main lobe in the polar plot points towards the source as expected. The direct 

power received from the source was 0.762	D/ò. This is the expected value accounting for 

cylindrical spreading from the source to receiver, over a distance of 2.5	ò. 

Figure 5.4 Zeroth order response (direct sound) at receiver 

 
The polar directivity pattern for direct sound for receiver orders 0, 1, 3 and 8 are shown in 

Figure 5.5. The width of the main lobe decreases with order as expected, with the direct power 

received being mapped accurately with the direct ray from the source to the receiver.  
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Figure 5.5 Zeroth order receiver polar plots for order (a) 0, (b) 1, (c) 3 and (d) 8 

5.3 RECEIVED POWER DIRECTIVITY 

This section presents the receiver directivity patterns for first and second order reflections. 

In Figure 5.6 these are presented for the different angular basis schemes and compared to ISM 

results. Although the EBEM was aimed at modelling the late-time diffuse part of room impulse 

responses – contrary to early reflections, which tend to be highly directional – analysing early 

reflections will validate the source-to-boundary, boundary-to-receiver and boundary-to-

boundary propagation processes. These results are produced for rigid boundary conditions, i.e., 

no absorption or scattering is included. They also show how well EBEM performs when 

modelling early reflections with high degrees of angular discretisation. 

 

 

 

(a) (b) 

(c) (d) 
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Figure 5.6 Received power directivity for: (a) first order reflection, (b) second order 

reflection 

 

All the discretisation schemes show correlation with the ISM results. The Legendre and 

Chebyshev schemes show identical directivity patterns to reported precision for both first and 

second order reflections and closely match the ISM results. Even with their discontinuous 

nature, PWC functions show good correlation with first and second order ISM results. On close 

observation, closer correlation can be seen for the first order than the second. This is expected, 

since more approximation is introduced with each reflection order. With continuous 

polynomials such as Legendre or Chebyshev as angular basis functions, error in total power 

(zeroth order directivity/omnidirectional) was 0.1% for first order reflections and 4.4% for 

second order reflection. For the PWL scheme, the errors were 0.6% and 4.7%.The error for 

the PWC scheme was found to be the highest at 4.5% and 18.8% respectively.  

5.4 POWER DISTRIBUTION ON THE BOUNDARY 

To provide insight into the boundary data structure caused by the reflection angle mapping 

and interpolation, the boundary power distribution is studied. This takes the form [(ø, ®). But 

(a) (b) 
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it is important to first describe the reflection angle mapping process and resulting plots to 

completely understand the effect of differing choices in basis functions contributing to the 

boundary distribution. This is explained for both EBEM and ISM before the plots are presented. 

Consider the rectangular room in Figure 5.8. Three different rays originating from the source 

and being reflected at the lower edge of the room are shown. 

Figure 5.8 Reflection of a source from a boundary: layout of source, receiver and 

connecting rays in a room 

The ray incident at the green cross is reflected at a negative angle M relative to the boundary 

normal vector. The ray incident at the blue cross is incident normal to the boundary, making a 

zero-degree reflection angle. Finally, the ray reflected at the yellow cross to the receiver makes 

a positive angle with the boundary. 

The boundary distribution plot easiest to explain the reflection angle mapping process is 

with a plot utilizing PWC functions as basis functions in both space and angle. Now the 

boundary power distribution will be discontinuous in both space and angle. This is shown in 

Figure 5.9. The x-axis here represents position along the lower edge of the room. With a 

maximum element length of 0.25ò, the lower edge of the test room with a length of 4ò will 

have 16 elements, shown by the x-axis tick values. The y-axis depicts the boundary tangential 

co-ordinate ®  parametrising reflection angle. The reflection angle can be in the range −+/2 ≤

M ≤ +/2 on the boundary, so ® on the boundary will be in the range −1 ≤ ® ≤ 1. 

Source 

 

Receiver 

M > 0 M < 0 M = 0 l ∝ ø	 
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Figure 5.9 Projection of the angles in Figure 5.8 onto boundary space with PWC spatial 

and angular basis 

 

In addition to the rays shown in Figure 5.8, the source radiates rays in every direction, arriving 

at the all the points on the boundary. Evaluating the reflection for each point on the lower edge 

of the room yields the red line in Figure 5.9 from ISM. This is the loci of the ray arrival direction 

from the source. It can be noted that the yellow, blue, and green crosses for the three reflection 

angles shown in Figure 5.8 fall on this red line. The EBEM power distribution follows this 

trend too, the only anomaly being the fading out around ® ≈ 0, which is due to the source 

directivity chosen – this position lines up with the null of the directivity pattern shown in Figure 

5.2. In the plots the that follow, this effect can be seen on the lower and upper edges of the 

room, but is missing from the left and right edges, as there is no null facing those edges. Power 

is being radiated towards these edges. 

Figure 5.10, Figure 5.11, and Figure 5.12 present the boundary power distribution plots for 

all four edges of the room using PWC, PWL and Legendre polynomials respectively as angular 

basis functions. This is starting from the lower edge in anti-clockwise direction. Each of these 

plots are generated with PWC basis in space. 
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Figure 5.10 Boundary power distribution plots for all four edges of the room with PWC 

basis in space and angle 

Using PWC functions for interpolating space and angle makes the boundary solution 

completely discontinuous in both as observed in Figure 5.10. This leads to a 2D ‘faceting’ of 

the boundary data into rectangular blocks as observed in Figure 5.9 in (ø, ®) space. It is seen 

the reflection angles, and hence the power on the boundary on the boundary is smudged across 

these rectangles. This shows approximation in both position and direction.  
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Figure 5.11 Boundary power distribution plots for all four edges of the room with PWL 

as angular basis and PWC basis in space 

PWL basis in angle results in continuous non-smooth stripes over the angular range. The peaks 

of the polynomials are observed to line up with the ISM results as you can see in Figure 5.11. 
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Figure 5.12 Boundary power distribution plots for all four edges of the room with 

Legendre polynomials as angular basis and PWC basis in space 

As Legendre, Chebyshev and Lobatto are continuous orthogonal polynomials, they result in 

smooth stripes over each DOF. Side lobing in ® is also observed for Legendre, Chebyshev and 

Lobatto which is typical of orthogonal polynomials. This is absent for PWL (Figure 5.11) as 

expected as these functions are continuous over the range of ®, but they are not smooth. But 

the peak of the distribution originating from these angular interpolation functions are observed 

to be aligned with the red line in each case, showing these peak power distributions are at the 

expected angular range with position on the boundary. Different peak values observed for 

different schemes are attributed to the differing ‘smudging’ present in the different schemes. 

5.5 MESH CONVERGENCE STUDY 

To investigate the effect of the Boundary Element mesh on the solution accuracy, a mesh 

convergence study was performed. The spatial resolution was increased by decreasing the 

maximum element size allowed, while the angular basis order was varied by changing ƒ (the 
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number of DOFs per mesh element). Together, these illustrate if and how the EBEM and ISM 

solutions converge and the dependence of this on the angular basis function used. Following 

the study of power directivities at the receiver earlier in this chapter, the convergence study 

was performed for first and second order reflections. Convergence was quantified based on two 

error metrics: 

1. Normalised Power Error: The error in total received power versus ISM. This is the 

metric used for the error values presented in Section 5.3. It presents the error in power 

arriving at the receiver independent of arrival angle. 

2. Normalised Root Mean Squared (RMS) Error: The RMS error calculated over all 

receiver coefficients (order ≥ 0), versus those computed with ISM. 

The normalised power error is for a zeroth order receiver response, i.e. irrespective of 

arrival direction (omnidirectional), and normalised Root Mean Squared error is computed 

over all the receiver coefficients. This would be the directional error when sense with a 

receiver of order 5. In both cases, normalisation was performed using the ISM value. 

5.5.1 Convergence with increasing Degrees of Freedom 

Figure 5.13 shows the error plots for first and second order reflections when the maximum 

mesh element size was fixed at 0.2ò and ƒ was increased from 1 to 20 (or 2 to 20 for PWL).  
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Figure 5.13 Mesh convergence plots: (a) Normalised power error and (b) RMS error for 

varying ƒ from 1 to 20 and fixed element size of 0.2m 

The order of the angular basis functions is dictated by ƒ, the number of DOFs for the mesh 

element. Higher values for ƒ will result in higher polynomial orders in angle, resulting in better 

accuracy. When the convergence study was performed for the varying DOFs for each element, 

we see expected trends. The Legendre and Chebyshev (and Lobatto, which is not shown on the 

plot) results are again identical and shows a clear convergence trend with increasing ƒ for both 

first and second order reflections. 

From Figure 5.13 it is clear that both omnidirectional and directional error values decrease 

with increase in number of DOFs and decreasing mesh element sizes. We see alternating areas 

of higher and lower error values in both plots with increasing DOF per element. Higher error 

values are observed in both cases at low ƒ values. This is particularly evident in the directional 

(a) 

(b) 
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(RMS) results. ‘Bands’ of high error values are observed in the directional results at low values 

of ƒ from 1 to 5 irrespective of the maximum mesh element length. 

5.5.2 Convergence with decreasing mesh element size 

Figure 5.14 presents similar error plots when ƒ was fixed at 20	and the maximum mesh 

element size was varied from 0.1ò to 1ò. 

Figure 5.14 Mesh convergence plots: (a) Normalised power error and (b) RMS error for 

varying element size from 0.1m to 1m and fixed Q=20 

Smaller element sizes lead to more elements in the mesh and smaller beams of power being 

reflected from the boundary, reducing the extent of approximation present. The first and second 

order error plots show clear convergence with the directional results (normalised RMS error) 

with decreasing element sizes. The element sizes although are seen to have a fairly weak effect 

(a) 

(b) 
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on the solution accuracy. This is more evident with the directional results in Figure 5.13. This 

is the normalised RMS error over the receiver coefficients. A similar trend is observed for the 

normalised error in total omni-dictional received power, but a weaker trend nonetheless. In 

contrast, PWC and PWL functions exhibit significant error values in all the cases presented 

here 

5.6 POWER DECAY IN THE ROOM 

Perhaps the single most subjectively important metric in Room Acoustics is Reverberation 

Time. In EBEM, that amounts to studying the power decay in the room with increasing 

reflection order. Results are presented for three different values of normalised boundary 

admittance ë/. The power decay curves are as expected. Higher values of normalised boundary 

admittance results in faster decay of sound in the room. The EBEM results presented in this 

section were computed with Legendre polynomials as angular basis. 
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Figure 5.15 Comparison of EBEM and ISM decay curves for different values of 

normalised boundary admittance, in (a) linear scale, (b) logarithmic scale 

 

5.7 STEADY STATE SOLUTION 

The steady state power distribution for EBEM can be computed in one step via a Neumann 

series. The EBEM results presented in this section were computed with Legendre polynomials 

(a) 

(b) 
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as angular basis. The incoming boundary weights for power mapped direct from the source are 

given by: 

 ¨b
$ = Ø$h∞cw¨c 

5.1 

And the corresponding outgoing weights are: 

 ¨b
I = Ø$h≤¨b

$ = Ø$h≤Ø$h∞cw¨c 
5.2 

For the next reflection order, the incoming weights are: 

 ¨h
$ = Ø$h∞ww¨b

I = Ø$h∞wwØ$h≤Ø$h∞cw¨c 
5.3 

And the corresponding outgoing weights being: 

 ¨h
I = Ø$h≤¨h

$ = Ø$h≤Ø$h∞wwØ$h≤Ø$h∞ww¨c 
5.4 

The steady state is the sum of these boundary weights over reflection order. This can be 

recognised as a Neuman series with the form: 

 ¨1
I =&[Ø$h≤Ø$h∞ww]E

1

E'(

Ø$h≤Ø$h∞cw¨c 
5.5 

The solution to this can be found by: 

 ¨1
I = [H − Ø$h≤Ø$h∞áá]$h	Ø$h≤Ø$h∞}á¨c 

5.6 

For validating this steady state power distribution solution, EBEM and ISM results were 

obtained by marching on in reflection order, with power received at each reflection order added 

to the response. These results are shown in Figure 5.16, and the steady state power computed 

using eq. 5.6 is overlaid. The EBEM results are seen to converge very well with the steady 

state-solution while ISM is seen to produce results with are 0.3	D/ò more than the EBEM 

solution. 
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Figure 5.16 Comparison of steady state solution for EBEM computed via a Neumann 

series compared against the incremental response at the receiver with reflection order for 

EBEM and ISM 

5.8 VALIDATING ANGLE DEPENDENT ABSORPTION 

Although the results in sections 5.6 and 5.7 validate boundary absorption implemented with 

the Reflection matrix ≤, validation of directional absorption requires further studies. To 

validate angle-based absorption, the first order reflection from a source to receiver via a single 

edge of the room is studied. Source and receiver directivities are modelled to be omni-

directional and their locations were arranged in a semi-circular manner as shown. The first 

order reflected power received is studied for 50 different pairs of source and receiver locations 

as shown. 
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Figure 5.17 Test room geometry, mesh nodes, source, and receiver locations for validating 

angular absorption 

The angle of reflection for each source-receiver combination is also noted. The same 

procedure was repeated with ISM and the results of received power vs angle of reflection is 

presented in this section shows the variation in power received vs reflection angle for different 

maximum element sizes in the mesh. The DOF for each element ƒ	was kept constant at 17 for 

the results in Figure 5.18 for Legendre polynomials. This is again compared to the ISM result 

depicted by the dashed line. The variation in the received power is seen to be at it most for 

larger element sizes. Although effect of element sizes is seen to be weaker as the reflection 

angle approaches 90°.  
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Figure 5.18 Variation of angular absorption with varying maximum element size (solid 

lines) for Legendre polynomials compared to ISM results (dashed line) 

 

Figure 5.19 shows the variation in received power for different values of ƒ for Legendre 

polynomials. As ƒ dictates the order of the interpolation polynomial used, it is observed that 

the angular dependency modelled increases with ƒ. The results agree more closely with ISM 

at higher values of ƒ. 
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Figure 5.19 Variation of angular absorption with varying DOF for each element, Q (solid 

lines) for Legendre polynomials compared to ISM results (dashed line) 

 

 

It is also important to study the polynomial fit achieved by the angular basis functions in 

interpolating the values of the angle dependent reflection coefficient. Figure 5.20 presents this 

for locally reacting boundaries that EBEM models. The residual in interpolation was found to 

be 1.9 × 10$%à for Local reaction with Legendre as interpolation polynomials. 
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Figure 5.20 Polynomial fits achieved for Local reaction Reflection coefficients with 

Legendre polynomials 

The RMS error in polynomial fit for increasing Q from 2 to 20 is shown for different angular 

basis functions in Figure 5.21. The RMS error decreases for all choices of angular basis 

functions with increasing Q. Legendre and Chebyshev provide the best fit and exhibit the 

smallest error as Q increases. 

Figure 5.21 RMS error in polynomial fits achieved for Local and Extended reaction 

Reflection coefficients with increasing Q for different angular basis functions 
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6 DISCUSSION & ANALYSIS 

This chapter discusses the results from the validation study presented in the previous 

chapter. Important aspects of the EBEM formulation such as the extent of approximation, 

integration accuracy and effect of different angular basis functions are studied and discussed. 

6.1 EFFECT OF DIFFERENT ANGULAR BASIS SCHEMES 

The effect of different angular interpolation functions on the results presented in the 

previous chapter is discussed in this section. 

6.1.1 On the boundary power distribution 

Boundary power distribution on the lower edge of the test room is compared for PWC, PWL 

and Legendre polynomials as angular basis are shown in Section 5.4. The effect of 

discontinuous vs continuous basis in angle can be clearly observed 

These results show sound diffusion at the boundary. Although we lose the high resolution 

of specular reflection paths that reflection-path-based GA models (the red line), these diffuse 

reflections are appropriate for modelling the late-time sound field when individual reflections 

are no longer perceptually distinguishable. Different polynomials exhibit varying degrees of 

energy smudging on the boundary as observed.  
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The orders of angular basis functions are dictated by ƒ, the number of DOFs per mesh 

element. This directly influences the accuracy of the solution along with mesh element sizes. 

A higher value of ƒ and smaller element sizes result in lesser degrees of approximation in the 

boundary power distributions, with smaller ‘pixels’ in (ø, ®) space, agreeing more with the 

ISM results. Figure 6.1 show examples of boundary power distributions for PWC scheme with 

increasing ƒ and $ values. 

Figure 6.1 Power distribution with PWC angular basis with (a) Q=10, N=22 (b) Q=17, 

N=56 (c) Q=30, N=140 

 

6.1.2 On convergence 

The mesh convergence study examines how the EBEM solution is affected by the size of 

the boundary mesh elements and the DOF for each of these elements.  

Contour RMS and power error plots for PWC and Legendre scheme are shown below. 

Although we observe fluctuation in accuracy, the error values for a specific basis polynomial 

order or maximum mesh element size are observed to be higher for PWC when compared to 

the Legendre scheme. These plots agree the observations in the previous section, with no clear 

evidence of convergence observed with PWC, even at very small element sizes and higher 

order families of PWC functions used for discretising angle. 

(a) (b) (c) 
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Figure 6.2 (a) RMS error and (b) Power error contour plots for PWC basis in angle 

 

Figure 6.3 (a) RMS error and (b) Power error contour plots for Legendre basis in angle 

 

6.2 EARLY REFLECTIONS 

Examining the received power directivities for early reflections not only illustrates how the 

EBEM formulation performs for early reflections and the effect each angular basis scheme, but 

also validates all the acoustic propagation processes. The first order reflection results would 

validate the source-to-boundary mapping matrix ∞cw and the boundary-to-receiver mapping 

matrix ∞wÖ. The second order reflection would also validate the boundary-to-boundary 

interaction matrix ∞ww. 

PWC scheme shows very good accuracy for first order reflections with a zeroth order total 

power error of 4.5% but exhibits a greater degree of approximation for the second order 

reflection with a corresponding error of 18.8% which is significant. Similar errors for first and 

(a) (b) 

(a) (b) 
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second order reflections for Legendre and Chebyshev schemes were 0.1% and 4.4% 

respectively. 

It is immediately obvious from the polar plots in Section 5.3 that the EBEM solution for 

Legendre and Chebyshev schemes are (and also Lobatto which is not shown here)  in very good 

agreement with the ISM results for both first and second order reflections. More importantly, 

these continuous orthogonal polynomials exhibit identical results for both first and second 

order reflections to the reported precision. This aligns with the findings of the Nottingham 

group in 2018 [53] where “tests conducted with Chebyshev polynomials did not lead to any 

qualitative differences in the numerical results”, but differs from their discussion in 2013 where 

they reported that low-order approximations with Chebyshev polynomials were very poor [15]. 

It is to be noted that these papers treat different models, which explain their different findings 

– [53] includes an additional diffusive term making the boundary integral operators compact, 

which is missing from [15]. 

The DOFs per mesh element (ƒ) is seen to have relatively little effect on total power at the 

receiver, which is consistent with success of the Radiosity model for this purpose. But ƒ has a 

strong effect on the directivity at the receiver. This is an aspect that high fidelity methods such 

as ISM captures well, and the EBEM formulation does too, at high angular resolution. A 

gradual transition between these two cases is seen as ƒ is increased. This demonstrates the 

Nottingham group’s claim that DEA interpolates between low fidelity methods, which is SEA 

in their work and Radiosity for boundary to boundary scheme such as EBEM and high fidelity 

methods, like Raytracing or ISM. 

As all choices of continuous orthogonal polynomials as angular basis yield identical results 

here. The mass matrix structure overcomes superficial differences in interpolation and allows 

all these continuous orthogonal schemes to perform identically. The mass matrices for all three 

continuous orthogonal polynomials as angular basis is shown below: 
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Figure 6.4 Mass matrices for (a) Legendre (b) Chebyshev and (c) Lobatto polynomial as 

angular basis 

 

It is evident from these plots that all three continuous polynomials construct different mass 

matrices and will produce independent solutions, with the Legendre scheme resulting in a 

diagonal matrix with Chebyshev and Lobatto schemes including non-diagonal schemes arising 

from how the discretisation scheme is set up.  

The conditioning numbers of the mass matrices used in this study is shown below for all 

possible choices of angular basis function. The conditioning numbers are seen to be 40 or 

below. All mass matrices are hence seen to be highly sparse and readily invertible. 

 

 

(a) (b) (c) 
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Figure 6.5 Conditioning numbers for mass matrices with different basis schemes 

 

6.3 INTEGRATION ACCURACY 

As seen in the previous chapter, the degree of approximation in the solution when using PWC 

as angular basis is significant when compared to other options. The discontinuous nature of 

PWC can be thought of a possible cause for this scheme not converging with ISM. The basis 

functions are smooth over each element on the boundary but the angular kernel is not. This is 

investigated further in this section. The integrands produced by boundary-to-boundary 

mapping matrices for PWC and Legendre basis in angle are studied to observe their 

distribution. We investigate integrands for boundary-to-boundary interaction matrices for two 

pairs of elements as shown. 
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Figure 6.6 Pairs of elements for which the boundary-to-boundary mapping integrands 

are studied 

 

 

 

 

 

 

The DOF combinations in which power was mapped between the radiating and receiving 

elements were obtained and plotted below. These results are produced for ƒ = 17 and a 

maximum element size of 0.2ò. 

Pair #1 Pair #2 
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Figure 6.7 Boundary to boundary mapping integrands for the first pair of elements in 

Figure 6.6 with PWC (left column) and Legendre (right column) as angular basis 

functions 
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Figure 6.8 Boundary to boundary mapping integrands for the second pair of elements in 

Figure 6.6 with PWC (top row) and Legendre (bottom row) as angular basis functions 

 

 

It is evident that the integrands to be evaluated are discontinuous for PWC while the 

transition is smooth for Legendre. These discontinuities in PWC are difficult to be integrated 

by Gaussian methods and can attribute to its lack of accuracy. GQ rules can also be affected by 

the location of the discontinuities in relation to the integration abscissae. 
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Figure 6.9 Mapping of power in discontinuous bins when using PWC basis in angle for 

two pairs of elements 

 

To investigate the integration accuracy further, the normalised error between Monte Carlo 

and GLQ integration for both pairs of elements in Figure 6.6 is plotted in Figure 6.10. GLQ 

methods are optimised for a given polynomial of a given order, and Monte Carlo integration 

will converge for any integrand at sufficiently large number of integration points. Although 

inefficient for the number of integration points used, the Monte Carlo estimates are guaranteed 

to converge to the true integral with the general trend of error being inversely proportional to 

the number of integration points. There is precedent for using this method to evaluate 

integration accuracy in [54]. A total of 10â integration points were used and the results are 

shown in Figure 6.10. The error plots for PWC and Legendre are seen to reduce with at a large 

number of integration points used for the Monte Carlo study and show convergence with the 

GLQ integration results. 
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Figure 6.10 Normalised RMS error between Monte Carlo and GLQ integration results 

for (a) first pair and (b) second pair of elements in Figure 6.6. 

6.4 ALGORITHMIC EFFICIENCY 

The computational efficiency of the EBEM algorithm was studied. A crucial part of the 

algorithm is the mass matrix which is used in all boundary mapping operations. Sparsity of this 

matrix will affect the computational load and memory requirements. For orthogonal basis in 

angle such as pairs of PWC or Legendre, the mass matrix is diagonal with $ƒ non zeros. For 

PWC discretisation in space and angle, the number of non-zero entries are lo × 2/ƒ where lo 

is the length of the òth element. For PWC basis in space and Legendre basis in angle, the 

number of non-zero entries are lo × 2/(2@ + 1). Higher number of non-zero entries were 

observed for PWL. Chebyshev polynomials are not orthogonal for the weighing in the 

discretisation scheme, which yields block diagonal mass matrices with 	$ƒ* non zero entries. 

(a) 

(b) 
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Another important operator in the algorithm is the boundary-to-boundary mapping matrix 

which is involved in each reflection. The number of non-zero entries in ∞ww for different basis 

schemes are shown in Figure 6.11: 

Figure 6.11 Number of non-zero entries in the boundary-to-boundary mapping matrix 

for PWC, PWL and Legendre basis 

 

Variation in logarithmic scale of the number of non-zero entries in the boundary to boundary 

interaction matrix with PWC and PWL basis functions are shown in Figure 6.12: 

Figure 6.12 Number of non-zero entries for PWC and PWL boundary to boundary 

interaction matrices in log scale 

 

Although the PWC scheme provides advantages for computational efficiency, producing 

highly sparse solution matrices, its discontinuous nature produces boundary integrals which 

are discontinuous, and are not very amenable to integration with Gaussian schemes.  Although 
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we have observed that PWC scheme results if highly sparse boundary to boundary interaction 

matrices and better conditioned mass matrix in comparison to other schemes, it discontinuous 

nature results in issues as discussed earlier in this chapter, and is not considered an ideal basis 

choice for such a formulation. Also, the simplicity of PWC functions often allows integrals to 

be computed analytically, which makes the code more efficient and avoids issues encountered 

with discontinuities.  
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7 CONCLUSIONS 

A “Surface-based” GA model within a Galerkin BEM framework is presented.  The 

Galerkin BEM framework, notably with the inclusion of the mass matrix expediates 

comparison between different basis and testing functions. The mathematical form and notation 

used for EBEM also emphasises synergy with high-frequency BEM, targeted as a step towards 

a unified mesh-based full-audible-bandwidth algorithm. The formulation also discretises 

incoming and outgoing energy separately, similar to high frequency BEM. It also implements 

directional point sources and receivers utilising Fourier series in angle. 

The EBEM formulation was validated against ISM for a rectangular room. The results show 

a high level of agreement with ISM for early reflections when the angular interpolation orders 

are sufficiently high. The EBEM model was found to converge with the ISM solution at small 

element sizes and high number of DOFs per element. Identical convergence trends and 

directional received power were observed for continuous orthogonal polynomials such as 

Legendre or Chebyshev or Lobatto as angular basis. Other options such as PWL or PWC 

exhibit a greater degree of approximation, even at high interpolation polynomial orders. 

Although PWC is beneficial from a computational standpoint with sparse and well conditioned 

solution matrices, it results in discontinuities in boundary integrands which cannot be 

accurately evaluated using GQ methods. This is found to be a factor contributing to its poor 

performance. 
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From the power distributions on the boundary, it is observed that PWC basis in both space 

and angle blocks the boundary data into rectangular blocks due its discontinuous nature, while 

Legendre or Chebyshev or Lobatto as angular basis result in smooth stripes with side lobing in 

angle. PWL on the other hand are continuous but not smooth over the angular range. 

Importantly, these polynomials are seen to approximate the peak values accurately. The 

approximation is seen to be controllable. Smudging of power over a range of reflection angles 

on the boundary is appropriate for modeling late-time sound fields in room acoustics as 

individual reflections at this stage are now perceptually distinguishable.  

The results demonstrate the Nottingham group’s claim that DEA interpolates between low 

fidelity methods, which is SEA in their work and Radiosity for algorithms such as EBEM and 

high fidelity methods, like Raytracing or ISM. 

7.1 FUTURE WORK 

The next steps in development of the EBEM formulation would be to add support for non-

convex and 3D geometry with visibility and validity checks. This extension would lead to the 

need to include corner diffraction to efficiently model sound fields in non-convex geometries. 

Other spatial basis functions could be utilised, like continuous PWL which would make the 

solution continuous on the boundary. High-frequency BEM creates radiation that is more 

‘beam-like’ when such smooth spatial basis functions are used. We postulate that this choice 

will allow the EBEM formulation to model low frequencies as well. 

 

 



References 

 119 

8 REFERENCES 

 

[1]  M. Vorländer, Auralization: Fundamentals of Acoustics: Modelling, Simulation, 

Algorithms and Acoustic Virtual Reality, 2nd ed., Cham, Swizerland: Springer, 2020.  

[2]  J. A. Hargreaves, “Synergies between the high-frequency Boundary Element 

Method and Geometric Acoustics,” in Proceedings of e-Forum Acusticum, 2020.  

[3]  S. Siltanen, T. Lokki and L. Savioja, “Rays or waves? Understanding the strengths 

and weaknesses of computational room acoustics modeling techniques,” in 

Proceedings of the International Symposium on Room Acoustics, ISRA, 2010.  

[4]  H. Kuttruff, Room acoustics, Crc Press, 2016.  

[5]  P. T. Calamia, B. E. Markham and U. P. Svensson, “Diffraction culling for virtual-

acoustic simulations,” Acta Acustica united with Acustica, vol. 94, no. 6, pp. 907-920, 

2--8.  

[6]  T. Cox and P. d'Antonio, Acoustic absorbers and diffusers: theory, design and 

application, Crc Press, 2016.  



References 

 120 

[7]  L. Savioja and U. P. Svensson, “Overview of geometrical room acoustic modeling 

techniques,” The Journal of the Acoustical Society of America, vol. 138, pp. 708-730, 

2015.  

[8]  H. Kuttruff, “A simple iteration scheme for the computation of decay constants in 

enclosures with diffusely reflecting boundaries,” The Journal of the Acoustical Society 

of America, vol. 98, no. 1, pp. 288-293, 1995.  

[9]  E.-M. Nosal, M. Hodgson and I. Ashdown, “Improved algorithms and methods for 

room sound-field prediction by acoustical radiosity in arbitrary polyhedral rooms,” 

The Journal of the Acoustical Society of America, vol. 116, no. 2, pp. 970-980, 2004.  

[10]  L. P. Franzoni, D. B. Bliss and J. W. Rouse, “An acoustic boundary element method 

based on energy and intensity variables for prediction of high-frequency broadband 

sound fields,” The Journal of the Acoustical Society of America, vol. 110, no. 6, pp. 

3071-3080, 2001.  

[11]  J. W. Rouse and L. P. Franzoni, “Improvement of a high-frequency broadband 

energy-intensity boundary element method to include high resolution specular 

reflection,” Journal of Computational Acoustics, vol. 13, no. 01, pp. 99-125, 2005.  

[12]  S. Siltanen, T. Lokki, S. Kiminki and L. Savioja, “The room acoustic rendering 

equation,” The Journal of the Acoustical Society of America, vol. 122, no. 3, pp. 1624-

1635, 2007.  

[13]  S. Siltanen, T. Lokki and L. Savioja, “Room acoustics modeling with acoustic 

radiance transfer,” in ISRA, Melbourne, 2010.  

[14]  G. Tanner, “Dynamical energy analysis—Determining wave energy distributions 

in vibro-acoustical structures in the high-frequency regime,” Journal of Sound and 

Vibration, vol. 320, no. 4-5, pp. 1023-1038, 2009.  

[15]  D. J. Chappell and G. Tanner, “Solving the stationary Liouville equation via a 

boundary element method,” Journal of Computational Physics, vol. 234, pp. 487-498, 

2013.  



References 

 121 

[16]  D. J. Chappell, Tanner, Gregor and S. Giani, “Boundary element dynamical energy 

analysis: A versatile method for solving two or three dimensional wave problems in 

the high frequency limit,” Journal of Computational Physics, vol. 231, no. 18, pp. 

6181-6191, 2012.  

[17]  D. J. Chappell, J. J. Crofts, M. Richter and G. Tanner, “A direction preserving 

discretization for computing phase-space densities,” SIAM Journal on Scientific 

Computing, vol. 43, no. 4, pp. B884-906, 2021.  

[18]  R. S. Langley, “A wave intensity technique for the analysis of high frequency 

vibrations,” Journal of Sound and vibration, vol. 159, no. 3, pp. 483-502, 1992.  

[19]  J. A. Hargreaves and Y. W. Lam, “The Wave-Matching Boundary Integral 

Equation—An energy approach to Galerkin BEM for acoustic wave propagation 

problems,” Wave Motion, vol. 87, pp. 4-36, 2019.  

[20]  J. A. Hargreaves, L. R. Rendell and Y. W. Lam, “A framework for auralization of 

boundary element method simulations including source and receiver directivity,” The 

Journal of the Acoustical Society of America, vol. 145, no. 4, pp. 2625-2637, 2019.  

[21]  J. A. Hargreaves, “A comparison between the high-frequency Boundary Element 

Method and Surface-Based Geometrical Acoustics,” in Internosie, Galsgow, 2022.  

[22]  J. C. Allred and A. Newhouse, “Applications of the Monte Carlo method to 

architectural acoustics,” The Journal of the Acoustical Society of America, vol. 30, no. 

1, pp. 1-3, 1958.  

[23]  B. S. Atal and M. R. Schroeder, “Study of Sound Decay Using Ray‐Tracing 

Techniques on a Digital Computer,” The Journal of the Acoustical Society of America, 

vol. 41, no. 6, pp. 1598-1598, 1967.  

[24]  A. Appel, “Some techniques for shading machine renderings of solids,” 

Proceedings of the April 30--May 2, 1968, spring joint computer conference, pp. 37-

45, 1968.  



References 

 122 

[25]  A. Krokstad, S. Strom and S. Sørsdal, “Calculating the acoustical room response 

by the use of a ray tracing technique,” Journal of Sound and Vibration, vol. 8, no. 1, 

pp. 118-125, 1968.  

[26]  M. Kleiner and B. I. Dalenbäck, “Auralization-an overview,” Journal of the Audio 

Engineering Society, vol. 41, no. 11, pp. 861-875, 1993.  

[27]  M. R. Schroeder, “Computer models for concert hall acoustics,” American Journal 

of Physics, vol. 41, no. 4, pp. 461-471, 1973.  

[28]  L. Cremer and A. Müller, “Die wissenschaftlichen grundlagen der raumakustik,” 

in Stuttgart: Hirzel, 1978.  

[29]  D. Mintzer, “Transient sounds in rooms,” The Journal of the Acoustical Society of 

America, vol. 22, no. 3, pp. 341-352, 1950.  

[30]  B. M. Gibbs and D. K. Jones, “A simple image method for calculating the 

distribution of sound pressure levels within an enclosure,” Acta Acustica united with 

Acustica, vol. 26, no. 1, pp. 24-32, 1972.  

[31]  A. Erraji, J. Stienen and M. Vorländer, “The image edge model,” Acta Acustica, 

no. 5, p. 17, 2021.  

[32]  R. Heinz, “Entwicklung und Beurteilung von computergestützten Methoden zur 

binauralen Raumsimulation,” in Shaker, 1994.  

[33]  I. Bork, “A comparison of room simulation software-the 2nd round robin on room 

acoustical computer simulation,” Acta Acustica united with Acustica, vol. 86, no. 6, 

pp. 943-956, 2000.  

[34]  C. Schissler, G. Mückl and P. T. Calamia, “Fast diffraction pathfinding for dynamic 

sound propagation,” ACM Transactions on Graphics (TOG), vol. 40, no. 4, pp. 1-13, 

2021.  



References 

 123 

[35]  A. Pohl and U. M. Stephenson, “A combination of the sound particle simulation 

method and the radiosity method,” Building Acoustics, vol. 18, no. 1-2, pp. 97-122, 

2011.  

[36]  D. Raudales, D. B. Bliss , J. W. Rouse and L. P. Franzoni, “Benchmark analytical 

solutions for steady state high frequency broadband sound fields in three rectangular 

enclosures,” The Journal of the Acoustical Society of America, vol. 145, no. 4, pp. 

2601-2612, 2019.  

[37]  B. M. Gibbs and D. K. Jones, “A Simple Image Method for Calculating the 

Distribution of Sound Pressure Levels within an Enclosure,” Acta Acustica united with 

Acustica, vol. 26, no. 1, pp. 24-32, 1972.  

[38]  D. Howard and J. Angus, Acoustics and psychoacoustics, Routledge, 2013.  

[39]  S. Siltanen and T. Lokki, “Diffraction modeling in acoustic radiance transfer 

method,” Journal of the Acoustical Society of America, vol. 123, no. 5, p. 3759, 2008.  

[40]  S. Siltanen, T. Lokki and L. Savioja, “Frequency domain acoustic radiance transfer 

for real-time auralization,” Acta Acustica united with Acustica, vol. 95, no. 1, pp. 106-

117, 2009.  

[41]  A. Pohl, Simulation of Diffraction Based on the Uncertainty Relation, PhD Thesis: 

Hamburg University, 2013.  

[42]  J. Bajars, D. J. Chappell, N. Søndergaard and G. Tanner, “Transport of phase space 

densities through tetrahedral meshes using discrete flow mapping,” Journal of 

Computational Physics, vol. 328, pp. 95-108, 2017.  

[43]  L. Savioja, “Modeling Techniques for Virtual Acoustics,” in Ph. D. thesis, 1999.  

[44]  T. J. Cox, B. I. Dalenback, P. D'Antonio, J. J. Embrechts, J. Y. Jeon, E. Mommertz 

and M. Vorländer, “A tutorial on scattering and diffusion coefficients for room 

acoustic surfaces,” Acta Acustica united with ACUSTICA, vol. 92, no. 1, pp. 1-15, 

2006.  



References 

 124 

[45]  J. Bajars, D. J. Chappell, N. Søndergaard and G. Tanner, “Computing high-

frequency wave energy distributions in two and three dimensions using discrete flow 

mapping,” in Proceedings of the 22nd International Congress on Sound and Vibration 

ICSV22, Florence, Italy, 2015.  

[46]  J. A. Hargreaves and T. J. Cox, “A transient boundary element method model of 

Schroeder diffuser scattering using well mouth impedance,” The Journal of the 

Acoustical Society of America, vol. 124, no. 5, pp. 2942-2951, 2008.  

[47]  [Online]. Available: https://dlmf.nist.gov/18.3. 

[48]  A. Lieu, G. Gabard and H. Bériot, “A comparison of high-order polynomial and 

wave-based methods for Helmholtz problems,” Journal of Computational Physics, 

vol. 321, pp. 105-125, 2016.  

[49]  J. Rowbottom and D. J. Chappell, “On hybrid convolution quadrature approaches 

for modeling time‐domain wave problems with broadband frequency content.,” 

International Journal for Numerical Methods in Engineering, vol. 122, no. 24, pp. 

7581-7608, 2021.  

[50]  J. A. Hargreaves and Y. W. Lam, “Acoustic cross-energy measures and their 

applications,” Proceedings of the international institute of acoustics and vibration, pp. 

1-8, 2015.  

[51]  T. Betcke, E. van 't Wout and P. Gélat, “Computationally Efficient Boundary 

Element Methods for High-Frequency Helmholtz Problems in Unbounded Domains,” 

in Modern Solvers for Helmholtz Problems, Birkhäuser, 2017, pp. 215-243. 

[52]  M. Sato, S. Yoshiyoka, K. Tsukui and R. Yuuki, “Accurate numerical integration 

of singular kernels in the two-dimensional boundary element method,” in Boundary 

elements X, Berlin, Springer, 1988, pp. 279-296. 

[53]  J. Bajars and D. J. Chappell, “A boundary integral method for modelling 

vibroacoustic energy distributions in uncertain built up structures,” Journal of 

Computational Physics, vol. 373, pp. 130-147, 2018.  



References 

 125 

[54]  J. A. Hargreaves, “Time Domain Boundary Element Method for Room Acoustics,” 

in PhD Thesis, University of Salford, 2007.  

 

 

 

 

 

 


