A Systematic Review of the Different Calculation Methods for Measuring Jump Height During the Countermovement and Drop Jump Tests

Jiaqing Xu^a, Anthony Turner^a, Paul Comfort^b, John R. Harry^c, John J. McMahon^b, Shyam Chavda^a and Chris Bishop^a

^a Faculty of Science and Technology, Middlesex University, London Sport Institute, UK

^b Directorate of Psychology and Sport, University of Salford, UK

^c Human Performance & Biomechanics Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, Texas

Corresponding author:

Name: Jiaqing Xu Address: As Per Above Email: <u>jx066@live.mdx.ac.uk</u>

Running-head:

Calculation Methods for Measuring Jump Height

Funding Statement:

No funding was received in support of this work.

Conflicts of Interest:

Jiaqing Xu, Anthony Turner, Paul Comfort, John R. Harry, John J. McMahon, Shyam Chavda and Chris Bishop declare that they have no conflicts of interest relevant to the content of this review.

Author Contributions:

All authors contributed to the initial development of the review, search criteria and collectively interpreted the results of the systematic review and meta-analysis. JX, AT and CB contributed to the implementation of the search strategy and application of the inclusion/ exclusion criteria and quality scoring system. JX drafted the manuscript and all authors contributed to editing and revising the manuscript and approved the final version prior to submission.

Data Availability Statement:

The data within this systematic review are secondary data and available through the relevant articles referenced throughout. Data are available upon request.

ABSTRACT

Background

The height obtained during the countermovement jump (CMJ) and drop jump (DJ) tests have been measured by numerous studies using different calculation methods and pieces of equipment. However, the differences in calculation methods and equipment used have resulted in discrepancies in jump height being reported.

Objectives

The aim of this systematic review was to examine the available literature pertaining to the different calculation methods to estimate the jump height during the CMJ and DJ.

Methods

A systematic review of the literature was undertaken using the SPORTDiscus, Medline, CINAHL, and PubMed electronic databases, with all articles required to meet specified criteria based on a quality scoring system.

Results

Twenty-one articles met the inclusion criteria, relating various calculation methods and equipment employed when measuring jump height in either of these two tests. The flight time and jump and reach methods provide practitioners with jump height data in the shortest time, but their accuracy is affected by factors such as: participant conditions or equipment sensitivity. The motion capture systems and the double integration method measure the jump height from the centre of mass height at the initial flat foot standing to the apex of jumping, where the centre of mass displacement generated by the ankle plantarflexion is known. The impulse-momentum and flight time methods could only measure the jump height from the centre of mass height at the instant of take-off to the apex of jumping, thus, providing statistically significantly lower jump height values compared to the former two methods. However, further research is warranted to investigate the reliability of each calculation method when using different equipment settings.

Conclusions

Our findings indicate that using the impulse-momentum method via a force platform is the most appropriate way for the jump height from the instant of take-off to the apex of jumping to be measured. Alternatively, the double integration method via a force platform is preferred to quantify the jump height from the initial flat foot standing to the apex of jumping.

KEY POINTS

- There are currently 5 different calculation methods to measure jump height during the countermovement and drop jump tests. However, each method has its own set of limitations due to factors such as: equipment selection, participant condition or the calculation process.
- The impulse-momentum method (via a force platform) is more reliable to quantify the jump height from the centre of mass height at the take-off instant to the apex of the jump during both countermovement and drop jump actions. This method removes many confounding variables when using the flight time method, such as the asymmetric take-off and landing position.
- The double integration method (via a force platform) provides reliable jump height from the centre of mass height at the normal standing to the apex of the jump. The double integration method requires less time on data processing and equipment preparation compared to motion capture systems.

1 1. INTRODUCTION

2 Jumping is commonly performed during competitive sports, which is an action requiring the 3 coordination of multiple joints and muscles [1, 2]. During vertical jumping, a main objective is to leave 4 the ground and move the body's centre of mass (COM) upwards as high as possible, whereby jump 5 performance is reflected by the value of the jump height (JH) [2]. Typically, JH is defined as the COM 6 displacement between the height of the COM during normal standing and the peak COM height (i.e., 7 apex) of the jump (denoted as JH-1 in this article) [3, 4]. Alternatively, JH can also be defined as the 8 COM displacement between COM height at the take-off instant and the apex of the jump (denoted as 9 JH-2 in this article, and can also be referred to as flight distance) [2]. Noting that both JH-1 and JH-2 10 are commonly applied to evaluate JH, it is important to appreciate that their definitions and how they 11 are determined are different [1, 5-9]. Specifically, the JH-1 considers the work of ankle plantarflexion 12 and the rise of the COM position before the take-off instant, whereas, the JH-2 ignores the take-off 13 COM height into its calculation and measures the flight distance which is only one component of JH-1 14 [1, 2, 10]. Whilst numerous jump types exist, two of the most commonly used in practice are the 15 countermovement jump (CMJ) and drop jump (DJ). The CMJ is a simple and practical test to measure 16 an athlete's lower body impulse capacity or rather, 'ballistic force-production capability' [6], 17 particularly when athletes are required to jump as high as possible [7, 8]. Thus, it is suggested that 18 practitioners measure metrics such as countermovement depth, time to take-off, JH and reactive 19 strength index modified (i.e., a ratio between JH and time to take-off) to provide an understanding of 20 both CMJ outcome measures and jump strategy utilised [11]. When considering the DJ, this test starts 21 by stepping off a box at a fixed height [12, 13], landing on the floor and rebounding immediately in 22 the vertical direction with the intention of minimising ground contact time and maximising JH [14, 15]. 23 The DJ is used to evaluate whether athletes can rapidly perform the stretch-shortening cycle (SSC) 24 [14]. This ability is typically reflected in the metric referred to as reactive strength index, which is 25 calculated as JH divided by ground contact time [14]. Given the CMJ represents a long SSC action (SSC 26 duration \ge 250 milliseconds [ms]) and the DJ represents a short SSC action (SSC duration \le 250 ms) 27 [16, 17], it is likely that monitoring JH during these two jump actions is warranted to provide a holistic 28 evaluation of an athletes' jump performance [17-19].

29 There are numerous pieces of equipment available to measure parameters required for JH calculations 30 during both of these jump tasks. For example, force-time data is recorded by force platforms (FP), or 31 the position-time data is recorded by three-dimensional (3D) motion capture systems [2]. 32 Subsequently, JH is obtained through vertical ground reaction force (vGRF) analyses and displacement 33 calculations from reflective marker positions, respectively [15, 20, 21]. In contrast, the FP or 3D motion 34 capture technologies may not always be favourable when budgets are finite, thus a linear position 35 transducer may provide a cheaper and more viable choice of equipment, when aiming to measure JH 36 [22, 23]. In addition, some FP or 3D cameras are not transportable and therefore, practitioners 37 typically use jump mats [15, 24, 25], simplified optical measurement systems (e.g., photocells mat or 38 laser beam) [21, 25-27] or smartphone applications [28] to record the flight time (FT) for JH-2 39 calculations. Practitioners also use hardware-only vertical jump systems (e.g., Vertec vanes jump 40 device or Sargent jump) to measure the 'jump-and-reach' height [29, 30]. Whilst other practitioners 41 select accelerometers to acquire peak velocity which occurs just prior to take-off (i.e., the instant that 42 the vertical COM displacement achieves zero) during CMJ or the touchdown velocity during DJ [18, 43 27, 31]. Among the aforementioned equipment, the FP and 3D motion capture systems are considered 44 the gold standard given their accuracy for calculating JH and all associated kinetic and kinematics 45 variables [21, 30, 32]. However, each piece of equipment has its strengths and weaknesses. For 46 example, some FP cannot provide the measured outcomes instantly, where the treatment of vGRF 47 data requires time and specific data analytical skills [33]. In addition, the motion capture systems 48 require rather extensive setup processes (e.g., calibration, precise marker attachment and data 49 processing in specific software)[15, 27]. Consequently, these characteristics largely prevent 50 practitioners from using such systems when working in the field [21, 27], resulting in the use of 51 smartphone applications or jump mats, which provide JH-2 values instantaneously. However, the 52 calculation method for these pieces of equipment is restricted to the imprecise FT method, owing to 53 the lack of vGRF data [29]. Ultimately, the technology and calculation method(s) used to report JH can compromise the validity, reliability, and accuracy of the data, which collectively determine its utility 54 55 in practice [21].

56 A number of different methods are available to calculate JH [1, 29, 32, 34]. These methods can be divided into two "groups" according to how rapidly or user-free the outcome is provided to 57 58 practitioners: i.e., indirect, and direct methods [32]. The indirect methods include the FT method, the 59 impulse-momentum (IM) method, and the double integration method, where these methods involve 60 several mathematical calculation processes and potential errors in their calculations. When applying indirect methods, JH is calculated based on the COM kinematics and kinetic parameters, such as the 61 62 FT and vGRF provided by the FP or accelerometer [1, 2, 32]. In the direct methods, the JH-1 is directly 63 provided by the vertical jump systems [20, 30, 31] or is acquired by the position-time data resulting from the motion capture systems (i.e., including 3D motion capture systems or two-dimensional (high-64 65 speed) video camera) [15, 35, 36]. However, at present, the recommendations for calculation methods 66 are somewhat inconsistent among existing studies. Noting that even when using the same equipment, 67 all methods also have both technology and user-generated limitations [2]. These apparent 68 discrepancies provide important considerations for practitioners regarding the process by which we 69 administer jump testing, the equipment we use, and the calculation methods employed to derive the 70 outcome measure. Therefore, it is important to understand how to accurately measure the JH during 71 the CMJ and DJ under different experimental designs.

The primary aim of this systematic review was to examine the available literature pertaining to the different calculation methods to estimate JH during the CMJ and DJ tests. More specifically, we sought to critically evaluate the reliability, equipment selections, and the strengths and weaknesses of each method.

76

77 2. METHODOLOGY

78 2.1 Study Design

This systematic review was conducted under the Preferred Reporting Items for Systematic Reviews
and Meta-Analysis (PRISMA) statement in 2020 [37]. A review protocol was not pre-registered for this
review.

82

83 2.2 Literature Search Methodology

Original and review journal articles were searched from SPORTDiscus, Medline, CINAHL and PubMed electronic databases (publication date from 2000 to 2022). Figure. 1 provides a schematic outline of the search methodology. The search strategy combined three main terms as: "Jump", "Method*" and "Jump Height*", where these terms were used and combined under Boolean's language with the operators AND and OR. Term 1: Countermovement, countermovement vertical, counter-movement, CMJ, Drop, DJ. Term 2: Calculat*, Measur*, Estimat*. Term 3: Vertical displacement, Cent* of mass vertical, COM, Flight. If full-text articles were not available in the aforementioned electronic

- 91 databases, then further searches were conducted in Google Scholar and ResearchGate[™] websites.
- 92 Additional studies were identified by reading through the reference lists of the database searched
- 93 studies. The final search date for literature was 20 January, 2022.
- 94
- 95

** Insert Figure 1 around here **

96

97	2.3 Inclusion Criteria

Studies were included if they met the following criteria: (1) implemented at least two or more 98 99 calculation methods or pieces of equipment in the outcome measure; (2) clearly described equations 100 of each calculation method, equipment information (i.e., type and sampling frequency) and jump 101 actions (i.e., CMJ or DJ); included healthy adult participants (i.e., aged \geq 18 years old); (3) presented 102 full data (mean and SD) and statistical significance in results; (4) the drafts were written in English and 103 were published in a peer-reviewed journal. For the purpose of this systematic review, the included 104 articles were required to describe methods used to measure JH during CMJ and/or DJ. As such, articles 105 that simply measured JH in their experimental designs were excluded.

106

107 *2.4 Grading article quality*

108 The quality scoring system used in the present study was adapted and modified from Bishop et al. 109 [38]. Each study was appraised using eight criteria (see Table 1) and a scale of 0–2 (i.e., zero = no, one 110 = maybe, and two = yes). As none of the JH measurement studies included in this systematic review 111 had training interventions, the sixth criteria pertaining to "Training duration practical" was removed 112 from the scale, leaving eight criteria yielding a maximum of 16 points. The total scores of each study 113 were then converted to a percentage ranging from 0-100%. To ensure that the article quality 114 assessment was equitable, only articles that scored > 75% were included in the final analysis [38], as 115 shown in Table 2.

116

117	** Insert Table 1 around here **
118	** Insert Table 2 around here **

119

120 **3. RESULTS**

121 3.1 Literature Search Results

122 A total of 6,557 articles were initially returned with an additional 4 articles included from other sources 123 [1, 32, 35, 36]. After excluding 5,237 duplicates and articles not published in sport-related journals, 124 1,320 articles were selected to be screened by title and abstract, followed by 48 articles being read to 125 ensure that they were related to the inclusion criteria. According to the quality score system and the 126 eligibility of full text of these articles, 21 articles scoring > 75% and being included in the systematic 127 review. Figure 1 illustrates the search strategy [37]. The assessment of the study quality is reported in 128 Table 2, where the mean quality score was 88% (range 81% to 100%). The characteristic of the 21 129 included studies is shown in Table 3.

130

** Insert Table 3 around here **

131

132 3.2 Study Characteristics

Of the 21 articles included in the final analysis (see Table 3), one of these studies included the JH measurement during DJ [35], JH during both CMJ and DJ were measured in one study [36], JH during CMJ was evaluated in 19 studies (the CMJ in 9 studies were performed without arm swing [1-3, 5, 15, 21, 27, 32, 39]; the CMJ in 8 studies were performed with arm swing [20, 25, 26, 28-30, 40, 41]; the CMJ with and without arm swing were required by authors in one study [24]; participants performed CMJ under loaded condition in one study [42]).

139 A different number of calculation methods and equipment to derive the outcome measure of JH were 140 utilised in each study. Within the 21 included studies, JH was calculated using different methods (\geq 2) 141 via a single piece of equipment (i.e., the FP) in 4 studies [1, 5, 39, 42]. The JH-2 calculated by a single 142 calculation method (i.e., the FT method) via different pieces of equipment (≥ 2) was compared in 1 143 study [25]. The JH in 16 studies was calculated using various calculation methods (≥ 2) via different 144 pieces of equipment (≥ 2) [2, 3, 15, 20, 21, 24, 26-30, 32, 35, 36, 40, 41]. Further to this, only 12 of the 145 21 included studies reported the selection of the reference standard or "gold standard" method, and 146 the selections differed between studies. Among these 12 studies, the FP was used as the reference 147 standard (sampling frequency from 200 Hz to 2000 Hz) in 6 studies [21, 24, 25, 27, 40, 41], while 148 motion capture systems was used as the reference standard in 5 studies [3, 15, 29, 32, 36], and a 149 photocell mat with motion capture systems as the reference standard in one study [26].

150

151 **4. DISCUSSION**

152 The aim of this systematic review was to critically evaluate the available literature relating to different 153 calculation methods to estimate JH during the CMJ and DJ. When collecting data in applied settings, 154 the equipment and the calculation methods employed may have a significant effect on the outcome 155 measure of JH. Given that a variety of equipment is available to collect FT data, the first sub-section 156 will briefly compare the JH-2 values derived from different pieces of equipment, followed by the 157 explanation of why the FT method over- or under-estimated the JH-2 compared to other calculation 158 methods. The subsequent four subsections will critically discuss the advantages and disadvantages of 159 the IM method, the double integration method, the jump and reach method and the motion capture 160 systems. Thus, the information in this systemic review will make suggestions for how to standardise 161 procedures, use equipment, and which calculation method to use when assessing JH during the CMJ 162 and DJ tests.

163

164 *4.1 Flight Time Method*

165 The FT method measures the time intervals between the instant of take-off and landing during vertical 166 jumping (JH-2). This time is then used in the following equation of uniform acceleration, as shown in 167 (Equation 1):

168 FT JH-2 =
$$ut + \frac{1}{2}at^2$$
, (Equation 1)

169 where u equals the initial velocity that is 0 m/s, t is the duration between the take-off and landing 170 instants, where the FT should be half of the t, a represents the absolute value of gravitational acceleration (-9.81 m. s⁻²) [2, 34]. As shown in Table 3, 20 of 21 included studies involved the FT
method in their experimental design, mainly because the FT method requires fewer and less-complex
data calculations and can be used with all equipment discussed here [5, 25].

174 From the equipment selection perspective, Brooks et al. [28] used a FP with the FT method as the reference standard and reported intraclass correlation coefficients (ICC) of 0.91 (90% confidence 175 176 interval [CI]: 0.87–0.94) for the accelerometer, and 0.97 (90% CI: 0.96–0.98) for the My Jump 2 177 smartphone application. When compared to the FP with the FT method, Heredia-Jimenez and 178 Orantes-Gonzalez [27] reported an ICC of 0.96 when using a photocells mat with the FT method and 179 0.93 when using an accelerometer with the FT method. These discrepancies in reliability values 180 between studies are likely to be because of the differences in device sampling frequencies, where 181 Brooks et al. [28] set the FP and accelerometer with the sampling frequencies of 400 Hz and 100 Hz, 182 respectively. In contrast, Heredia-Jimenez and Orantes-Gonzalez [27] set their FP and accelerometer 183 with the sampling frequencies of 200 Hz and 100 Hz, respectively, highlighting the importance of higher sampling frequencies for better quality or more reliable data. It is worth noting that, the 184 185 determination of FT is different between using the FP and accelerometer. When using the FP, FT is 186 identified as the time interval when the vGRF is equal to a force threshold value (e.g., eight Newtons [N]) [24]. Whereas the accelerometer determines the FT as the time interval when the vertical 187 188 acceleration is lower or equal to the gravitational acceleration (i.e., -9.81 m. s⁻²) [43]; thus, establishing 189 why errors appear in the accelerometer [27].

190 As evidenced by the studies included in this review, the optical measurement systems and jump mats are the most commonly applied equipment for practitioners in the field, but little is known regarding 191 192 which device offers the strongest reliability [21, 25, 27, 30]. García-López et al. [25] found that 193 compared to the FP with the FT method (0.327 ± 0.056 meters [m]), the under-estimation of the JH-2 194 appeared in both SportJump System Pro $(0.314 \pm 0.056 \text{ m}, P < 0.05)$ and ErgoJump Plus (0.269 ± 0.070) 195 m, P < 0.001) photocells mats using the FT method. In terms of these two devices, the ErgoJump Plus 196 showed a statistically significantly lower JH-2 compared to the FP along with poor to moderate 197 reliability (CV = 15.94%, ICC = 0.45–0.57). In contrast, the SportJump System Pro photocells mat 198 showed high reliability (CV = 2.98%, ICC = 0.95–0.97) compared to the reference FP (CV = 2.93%, ICC 199 = 0.96–0.97). The under-estimation of the optical measurement systems could be because these 200 systems were placed at a small height off the ground (i.e., 0.7 cm in García-López et al. [25]), where 201 both jump mats and FP were positioned on the ground. At the instant of take-off, the jumpers' feet 202 are no longer in contact with the ground but still interrupt the transmitter receiver circuit, leading to 203 an under-estimated ascending FT [8]. Whereas the transmitter receiver circuit is interrupted before 204 landing, where the feet have not contacted the ground yet, thus the descending FT is also under-205 estimated [8]. When using jump mats, the mechanical circuit of the jump mat is triggered by the 206 movement; thus, calculating the time interval between the detection of take-off and landing [25, 44]. 207 If the integrity and hardness are inconsistent across the entire mat surface, the movement which 208 triggers the switch inside the jump mat is likely to be different between different parts of the mat, 209 influencing the measurement of the FT, and thereby the JH-2 [45-47]. Accordingly, the under-210 estimated FT obtained by the optical measurement systems and jump mats would eventually result in 211 lower JH-2 than estimated by the FP [2, 8, 25]. Researchers have suggested adding the height of the 212 optical measurement devices to the JH-2 measured from these systems when using the FT method, in 213 an attempt to reduce the discrepancy between optical measurement systems and FP or jump mats 214 [25, 30]. In addition, practitioners are advised to consider the body mass of their participants when 215 using jump mats, since it seems likely that additional body mass could trigger the mechanical circuit 216 earlier [45].

217 Compared to other calculation methods, the FT method has several limitations, which numerous 218 studies have acknowledged [5, 32, 34, 36]. Both the FT and IM methods use the FP to measure the JH-219 2 from the instant of take-off during jumping, pointing out it is worth comparing these two methods 220 first [5, 36]. To accurately estimate the JH-2, the FT during the ascending as descending phases is presumed equal, which would require the jumper to maintain identical COM positions at the instants 221 222 of take-off and landing [5, 36]. However, the landing position is lower than the take-off position 223 because of the preparatory ankle dorsiflexion, hip and knee flexion to attenuate landing impact forces 224 [37], making it is hard to achieve a presumed parabolic trajectory of COM position [36, 48]. Thereby, 225 the FT can be artificially extended, which leads to greater JH-2 estimates [32, 34, 36]. To support this, 226 Aragón [3] reported statistically significantly larger JH-2 using the FT method (0.402 ± 0.067 m) than 227 the IM method (0.361 ± 0.066 m, P < 0.001). Reeve and Tyler [24] suggested that using the FP with FT 228 method resulted in statistically significantly larger JH-2 compared to the IM method by 2.42 ± 0.31 cm 229 (P < 0.001). Supported further by Moir [5], JH-2 calculated by the FT method (males: 0.36 ± 0.06 m; 230 females: 0.22 ± 0.05 m) showed 3-4% larger values than by the IM method (males: 0.35 ± 0.06 m; 231 females: 0.21 ± 0.05 m). Therefore, the asymmetric take-off and landing COM positions is the main 232 reason for the difference of JH-2 values calculated by FT method and IM method using the FP [36].

233 The FT method calculates the JH-2 via the time interval from the plantar-flexed take-off to landing on 234 the force-time data, where the take-off height of the jumper is not included in the calculation process. 235 Consequently, this makes the FT method under-estimate JH-2 compared to the double integration 236 method and motion capture systems (i.e., JH-1) [15, 36]. Dias et al. [15] reported that the JH-2 237 calculated by the FT method (27.59 ± 6.95 cm) was statistically significantly lower than the JH-1 238 calculated by the double integration method (36.44 ± 7.15 cm, P < 0.001) and motion capture systems 239 $(37.92 \pm 7.46 \text{ cm}, P < 0.001)$. In addition, a statistically significantly lower JH-2 was measured by the 240 FT method using the jump mat (38.6 ± 6.5 cm) compared to the JH-1 measured by the double 241 integration method using the FP (50.3 \pm 7.5 cm, P < 0.05) in the study by Buckthorpe et al. [41]. 242 Research from Wank and Coenning [36] also showed statistically significantly lower JH-2 estimated 243 from the FT method than the JH-1 from the motion capture systems in CMJ (P < 0.001) and DJ 244 0.001). Thus, the rise in height generated by plantarflexion of the ankles prior to the take-off instant, 245 largely explains the higher JH-1 values calculated by the double integration method and motion 246 capture systems [15, 36, 41]. However, this explanation is not in agreement with other studies, where 247 Leard et al. [29] revealed no statistically significant differences between JH estimated by the FT 248 method using jump mats (44.17 \pm 10.29 cm) and motion capture systems (43.79 \pm 10.29 cm, P = 0.972). 249 Noting that Leard et al. [29] did not make reference to how they define the JH and nowhere in their 250 methods section was it clarified that they calculated JH-1 or JH-2 via different methods. The most likely 251 interpretation could be that they measured the COM displacement from the instant of take-off to 252 landing during CMJ via different methods. Thus, the JH-2 values calculated by Leard et al. [29] may not 253 be significantly different between the FT method and the motion capture systems. In addition, both 254 Martínez-Martí et al. [26] and Slomka et al. [21] used the position-time data at the take-off and landing 255 to determine the FT, then calculating the JH-2 via the equation of uniform acceleration (i.e., Equation 256 1). Thereby, the JH-2 calculated by the FT method in their studies showed no statistically significant 257 differences from the motion capture systems (P > 0.001 and P > 0.05, respectively). Thus, the FT 258 method provides similar outcomes to the motion capture systems, but only if measuring JH-2 where 259 the take-off height is not considered [3, 21, 26]. One thing that should be noted is, Martínez-Martí et 260 al. [26] required participants to keep their lower extremities fully extended during the instant of take-261 off and landing, whilst Slomka et al. [21] recruited professional volleyball athletes who are likely to 262 have excellent and consistent jump technique. Cumulatively, these requirements might, to some

extent, maximise the symmetric COM position during take-off and landing, thereby minimising thediscrepancy between the FT method and other calculation methods.

265 Although the accuracy of the FT method is primarily determined by the aforementioned factors, this 266 method is still suitable for various sports testing environments because of its simple operation, fewer data processing and abundant equipment available (e.g., optical measurement systems, jump mat, FP 267 268 and smartphone applications) [21]. If the FT method is selected as the calculation method, some 269 corrective equations proposed by Bui et al. [30] or Wade et al. [2] could be used, to eliminate factors 270 such as the take-off and landing positions or foot size that might influence the accuracy of subsequent 271 data. In addition, given that there may be 1-2 cm differences between methods and equipment when 272 measuring JH, practitioners are suggested to ensure the equipment, methods and requirements are 273 consistent between test sessions [2, 21].

274

275 4.2 Impulse-Momentum Method

276 The IM method is based on Newtonian mechanics and related mechanical laws. Specifically, the IM 277 relation is derived from Newton's law of acceleration, which is also connected to the law of 278 conservation of energy [5]. Accordingly, the potential energy at the maximum height during the flight 279 phase is identical to the kinetic energy of the jumper at take-off [34, 36]. The net vertical force is 280 calculated from the vGRF reading from the FP minus the jumper's body weight. This net vertical force 281 is then numerically integrated, typically using the trapezoid rule, from the start of the propulsion 282 phase to the instant of take-off [5, 36]. Finally, the net impulse obtained via integration of the net 283 vGRF is equal to the vertical momentum of the jumper, which is the product of body mass and the 284 velocity at take-off [31]. This process is shown in Equation 2:

285
$$J = \int_{t_{start}}^{t_{take-off}} (F_{vGRF} - F_g) dt = m v_{take-off} - m v_{start},$$
(Equation 2)

where *J* is the net impulse, t_{start} and $t_{take-off}$ are the time at instant of the propulsion phase and takeoff, respectively. The v_{start} (v = 0) and $v_{take-off}$ are the velocity at t_{start} and $t_{take-off}$, respectively. The F_{vGRF} and F_g are the vGRF and the body mass of the participant, respectively. Finally, the $v_{take-off}$ is extracted from the Equation 2 by dividing the net impulse by the body mass, which the $v_{take-off}$ is subsequently used for the calculation of JH-2 via Equation 3:

where *g* represents the acceleration of gravity (-9.81 m. s^{-2}).

As previously mentioned, the accelerometer provides reliable but inaccurate JH-2 compared to the FP 293 294 using the FT method [27]. Not surprisingly, the JH-2 measured by the accelerometer was statistically 295 significantly higher than the FP using the IM method by 0.07 m (P < 0.001), along with the 296 accelerometer showing poor reliability (ICC = 0.47) [27]. Although both accelerometer and FP calculate 297 the JH-2 using the velocity at take-off via Equation 3, factors like the placement of the accelerometer 298 device and the trunk rotation with respect to the coronal and sagittal axes inaccurately quantify the 299 velocity of moving COM [20, 27, 43, 49]. Therefore, using the IM method via the FP provides a more 300 accurate and reliable JH-2 estimation than an accelerometer [27].

From the calculation method perspective, an early study by Moir et al. [39] confirmed that both FT and IM methods were highly reliable (CV < 2.9%, ICC > 0.87) when measuring JH-2. Due to the FT method often over-estimating JH-2 values, Slomka et al. [21] reported higher but not statistically

304 significant JH-2 values using the FT method compared to the IM method (P > 0.05), and both methods 305 presented excellent reliability (FT: CV = 0.10%, ICC = 0.92; IM: CV = 0.11%, ICC = 0.91). To investigate 306 which method is suitable to evaluate the loaded CMJ, Pérez-Castilla et al. [42] recruited seventeen 307 male participants and analysed their JH-2 during loaded CMJ (load range: 17 kilograms (kg), 30 kg, 45 kg, 60 kg, and 75 kg) performed in a Smith machine and with free-weight barbells. In accordance with 308 309 previous studies, they revealed that the reliability of JH-2 was comparable between the IM method 310 $(CV = 6.42 \pm 2.41\%, ICC = 0.88 \pm 0.04)$ and the FT method $(CV = 6.53 \pm 2.17\%, ICC = 0.88 \pm 0.06)$ during 311 the free-weight barbells loaded CMJ; but it was better for the FT method (CV = $5.95 \pm 1.12\%$, ICC = 312 0.91 ± 0.04) when the loaded CMJ was performed in a Smith machine (CV = $11.34 \pm 3.73\%$, ICC = 0.68313 ± 0.07 for the IM method) [42]. Results showed both methods were reliable to evaluate the loaded 314 CMJ, but the relative lower reliability in the IM method suggested that when measuring the JH-2 with 315 the Smith machine, the friction force with the linear bearings of the Smith machine reduces the 316 accuracy of the IM method [42]. Although both the FT and IM methods derive the JH-2 via the 317 equations of uniform acceleration, the JH-2 estimated by the FT method is affected by the change of 318 COM positions upon take-off and landing, where the change in COM positions is likely to generate 319 variations in the FT [5, 39, 50]. In contrast, the IM method calculates the JH-2 via the take-off velocity, 320 which depends upon the net vertical impulse (i.e., positive vertical impulse minus negative vertical 321 impulse) and jumpers' body mass, where the IM method is unaffected by the asymmetric take-off and 322 landing COM positions [39, 51]. Moir et al. [39] found that although the positive (CV = 1.7% - 5.5%, ICC 323 = 0.89 - 0.98) and negative vertical impulses (CV = 4.0-8.8%, ICC = 0.82-0.96) presented large variations, the take-off velocity was very reliable irrespective of genders (CV = 1.7-3.2%, ICC = 0.87-0.97). The 324 325 compensatory strategies within the motor system produce the reciprocal alterations in positive and 326 negative vertical impulses, thereby ensuring that the measured outcomes (i.e., JH-2 values) between 327 trials are preserved [39]. Thus, in accordance with previous investigations [5, 24, 39], the IM method 328 calculates more accurate and reliable JH-2 values compared to the FT method, when both methods 329 are calculated from FP.

330 Nevertheless, like the FT method, the IM method calculates the JH between the COM position at the 331 take-off and the apex of the jump (i.e., JH-2), and only accounts for a fraction of the work performed 332 during the jump [3, 5, 15]. For example, Wank and Coenning [36] measured CMJ and DJ performance 333 via the FP, and reported that in both jump actions, the IM method calculated statistically significantly 334 lower JH-2 than the motion capture systems (JH-1, P < 0.01) and double integration method (JH-1, P < 335 0.01). Similarly, the JH-2 measured by the IM method (29.8 ± 8.9 cm) was found to be statistically 336 significantly lower than the JH-1 measured by the double integration method (42.0 ± 9.4 cm, P = 0.517) 337 in a study by Chiu and Dæhlin [1]. Their findings highlighted that the IM method fails to measure the 338 work done by the plantarflexion of the ankles to evaluate the COM vertically before the take-off, which 339 explains why lower JH-2 values are estimated by the IM method. Although it was shown that the IM 340 method removes many of the confounding variables when using the FT method (e.g., take-off and 341 landing COM positions) [5], there are still concerns regarding using the IM method for the JH-2 342 measurement. First, compared to the FT method, the IM method involves the numerical integration, 343 which potentially generates some calculation errors [1, 2, 36], and requires accurate body mass 344 estimation and data treatment (i.e., filtering) [33]. Second, the accuracy of the IM method depends 345 on the precise selection of the instant of take-off, which means the "meaningful change in force" on 346 the force-time curve should be accurately selected [42, 52]. Otherwise, misidentifying the instant of 347 take-off by just 2-3 ms can result in a difference of about 2% in velocity where this imprecise velocity 348 value can further affect calculation of JH-2 via Equation 3 [18, 48]. Whereas only some of the included 349 studies defined the take-off instant as the vGRF being equal to 0 N [2, 21, 36], less than 8 N [24], less 350 than 10 N [42], or less than the peak residual (i.e., peak difference between vGRF and 0 N) during flight

351 [5, 39]. Therefore, future studies could consider defining the take-off instant as ± five times the vGRF 352 measured over a 0.3 s period during the flight phase where the participants are no longer in contact 353 with the ground [53]. The 0.3 s was chosen because participants are likely to produce the FT greater 354 than 0.3 s [5, 53]. This method might, to some extent, best represent the instant of take-off and 355 minimise the influence of noise from the FP [54]. Chavda et al. [54] in addition suggested to use the 356 vGRF extracted from only the middle part of the flight phase instead of over a 0.3 s period. This alternative way would also help to evaluate jumpers who cannot generate the FT longer than 0.3 s 357 358 (e.g., loaded jump conditions, participants with insufficient jump technique) [10, 54].

Furthermore, it would be possible to obtain the displacement-time data by twice integrating the forcetime data from initial standing still to landing [41], and then calculate the COM displacement (JH-2 value) from the COM height at take-off to the apex of flight phase. However, twice integration processes would accumulate more calculation errors, making the calculated JH-2 values inaccurate compared to the IM method [55]. Based upon the comparisons of this systematic review, when the FP is available for the data collection, practitioners are encouraged to calculate the JH-2 (i.e., the COM displacement before the take-off is ignored) using the IM method [5].

366 4.3 Double Integration Method

Given that the FT method calculated JH-2 according to the time intervals from take-off to landing [5, 368 34], the IM method integrates the vGRF from the initiation of the propulsion phase to take-off, in which the COM take-off height is unknown in both methods [5]. The double integration method integrates the force-time data twice from the movement initiation to the landing instant to obtain an entire displacement-time curve during jump actions [32, 36]. The COM displacement trajectory at its highest point is considered the JH, as shown in Equation 4,

373 DI JH-1 =
$$\iint_{t_{start}}^{t_{landing}} (F_{\nu GRF} - F_g) dt + h_0$$
, (Equation 4)

where t_{start} and t_{landing} are the time at instant of countermovement (or drop movement in DJ) and landing, respectively. The F_{vGRF} and F_g are the vGRF and the body mass of the participant, respectively. The h_0 in CMJ is the COM height of jumpers during initial standing still (i.e., $h_0 = 0$ m), and the h_0 in DJ is the drop height. It is worth noticing that the DJ measures via above equation is applicable only when the two-adjacent FP are available [56].

379 From the calculation method perspective, previous studies like Conceição et al. [32], Wank and 380 Coenning [36] and Wade et al. [2] have found that the double integration method is one of the most 381 reliable and accurate ways to evaluate the JH-1 when using the vGRF. In addition, all aforementioned 382 studies agreed that only the double integration method via FP could measure the JH-1 with the most negligible difference from the motion capture systems [2, 32, 36]. In contrast with the previous three 383 384 studies [2, 32, 36], Dias et al. [15] reported that the JH-1 measured by the double integration method 385 $(36.44 \pm 7.15 \text{ cm})$ was statistically significantly different from the motion capture systems $(37.92 \pm$ 386 7.46 cm, P < 0.01). Like the IM method, the double integration also relies on the reading of vGRF from 387 the FP and involves the numerical integration process [1, 25], where the sampling frequency of the FP 388 might somewhat influence the JH-1 measurement [1]. When FP was set at 2000 Hz, Conceição et al. 389 [32] and Wank and Coenning [36] revealed that there was no statistically significant difference 390 between the JH-1 measured by the double integration method and motion capture systems (P = 0.079391 and P > 0.01, respectively). Similarly using the FP with 1000 Hz, JH-1 was not statistically significantly 392 different between the double integration method (0.432 ± 0.15 m) and the motion capture systems 393 $(0.429 \pm 0.12 \text{ m}, P > 0.05)$ [2]. However, when the sampling frequency dropped to 500 Hz, a statistically significant difference between the double integration method and motion capture systems (P < 0.01) 394

395 was observed [15]. Therefore, it could be hypothesised that considering the motion capture systems 396 as the reference standard, the double integration method is accurate when the sampling frequency 397 of the FP is equal to or larger than 1000 Hz. Conceição et al. [32] explained that when using the FP 398 with a lower sampling frequency (i.e., < 1000 Hz), the recorded force-time data are likely to include 399 some fluctuations or undefined events during the quiet standing period and flight phase, which 400 eventually influences the estimation of body mass or movement initiation, thereby affecting the JH-1. 401 However, limited studies are included in this systematic review (n = 21), and authors in only four 402 studies measured the JH-1 values using the double integration method concurrently with the motion 403 capture systems [2, 15, 32, 36]. It would be recommended that future studies use the FP with various 404 sampling frequencies (e.g., 500 Hz, 1000 Hz, 1202 Hz and 2000 Hz) to measure JH (i.e., including both 405 JH-1 and JH-2). These JH values are then compared to the reference motion capture systems to 406 investigate whether the level of sampling frequency influences the accuracy and reliability of the 407 double integration method [2].

408 The double integration method is considered reliable during CMJ measures because this method starts 409 the twice integration prior to the movement initiation of CMJ (i.e., standing with flat feet), where the 410 initial standing height is a constant value, and a 'truly' zero acceleration is achieved which is the 411 requirement for accurate integrations [1, 2, 32, 36]. It is important to remember that the ankle 412 plantarflexion before take-off makes the COM move upwards or generates a positive vertical 413 displacement, in which the COM height at take-off is higher than the standing still [1, 3, 57]. As 414 mentioned above, neither the FT method nor IM method takes the COM height at take-off into 415 account in their calculation of JH-2 [1-3, 41, 48, 57]. In order to eliminate the discrepancy between 416 the IM and double integration methods, several studies were in line with applying twice integration 417 to the force-time curve (from the movement initiation to the take-off instant) to obtain the positive 418 displacement (i.e., S) generated by the ankle plantarflexion before the take-off, then adding this 'S' to 419 the IM method calculated JH-2, i.e., IM + S method [1, 3, 5, 57]. Moir [5] reported a high degree of 420 consistency across methods in males (ICC = 0.927, 95% CI: 0.887 - 0.955) and females (ICC = 0.934, 421 95% CI: 0.897 – 0.960). They also found that the IM + S method measured JH-1 with lower variability 422 (males: CV = 12.0%; females: CV = 15.3%) compared to the IM method (males: CV = 16.2%; females: 423 CV = 22.2%). Chiu and Dæhlin [1] observed a perfect agreement between the double integration and 424 IM + S methods (42.0 \pm 9.4 cm and 42.0 \pm 9.4 cm, P = 1.000) when measuring JH-1 via FP. Further to 425 this, no statistically significantly different JH-1 between IM + S method and the motion capture 426 systems (43.20 and 42.90 cm, P > 0.05) was found by Wade et al. [2]. Despite these results highlighting 427 a possible solution to reduce the discrepancy of calculated JH between the IM method, double 428 integration method and the motion capture systems, more studies would be required to investigate 429 whether the IM + S method can provide practitioners valid, reliable, and accurate JH (i.e., including 430 both JH-1 and JH-2). It is worth noting that the calculated positive displacement generated by the 431 ankle plantarflexion prior to take-off is influenced by some non-modifiable factors, like foot length, 432 where a longer foot length is likely to evaluate the COM height more when the ankle plantarflexion 433 angle is the same [1].

434 As proposed by Baca [35], that the double integration process could be applied in the backward sequence via a single FP if two-adjacent FP are unavailable during the DJ evaluation. In addition, 435 436 Costley et al. [12] mentioned that the drop height is an essential parameter that determines the 437 accuracy of measurement during the DJ. In this instance, the COM height (h_0) equals zero as the 438 jumpers have landed, so applying the integration process in reverse makes the calculation of drop 439 height in the forward integration process unnecessary [35, 36]. Noticing that the backward integration 440 requires the jumpers to stand still and remain rigidly upright position afterwards landing for at least 441 one second, which might challenge jumpers' maintenance of balance as the surface area of a single 442 FP is much smaller than two-adjacent FP [36, 56, 58, 59]. Although the double integration method has 443 been used in previous studies [2, 15, 32, 36], twice integrating the data accumulates measurement 444 errors and more linearity [2, 55], and this method is very sensitive to the accurate determination of 445 jumpers' body mass [10, 55]. However, compared to the motion capture systems that require 446 extensive equipment preparation and later data analysis, the double integration method using the 447 vGRF data recorded by a portable FP is more practical for those working in the field [15]. Thus, in 448 agreement with previous investigations [15, 32, 36], practitioners are encouraged to quantify the COM 449 displacement between the COM height at the initial standing and apex of the jump (i.e., JH-1) using 450 the double integration method (via the FP).

451

452 4.4 Jump and Reach Method

453 The jump and reach method via the vertical jump devices has been proposed to make the JH 454 measurement more convenient for various tests in the field because the method needs less 455 equipment and provides the outcome directly [30]. Practitioners commonly use the Vertec vanes or 456 the Sargent jump [40]. The Sargent jump is performed by jumpers who have tape or chalk on their 457 fingers, who then jump and slap the fingers against a wall [40]. Subsequently, the difference between 458 the standing touch height and jumping touch height is defined as the JH-1. Similarly, the Vertec vanes 459 device consists of several plastic swivel vanes (i.e., separated by half-inch (or 1.27 cm) increments) 460 mounted on a telescopic metal pole that can be adjusted to the jumpers' standing reach height, while 461 jumpers were told to jump and displace the highest vane they can. The JH-1 is then estimated by 462 subtracting the height of the highest vane touched during flight from the height of the vane touched 463 during quiet standing [40].

464 When comparing the difference in JH between methods, authors in six studies adopted the jump and 465 reach method, and existing results again appeared to be somewhat inconsistent. Both Bui et al. [30], 466 Brooks et al. [28], and Buckthorpe et al. [41] agreed that the JH-2 values measured by the FT method 467 were statistically significantly larger than the JH-1 values estimated from the jump and reach method 468 by at least 5 cm (P < 0.05, P < 0.05 and P < 0.001, respectively). Given that the Vertec device is 469 calibrated using flat feet standing on the floor, the jump and reach method (which measures JH-1) 470 involves the positive vertical COM displacement generated by the ankle plantarflexion prior to take-471 off [40]. In contrast, the FT method does not detect this displacement, which partially explains why 472 the over-estimation appears in the jump and reach method [10, 28]. In order to test whether the jump 473 and reach method is reliable compared to the FT method, it is suggested to measure the standing 474 reach height at an ankle plantarflexion situation instead of flat feet standing [28, 40, 60]. This 475 modification fixes the contrast variable at the JH-2 values and eliminates the effects of COM 476 displacement before take-off; thus, providing a fairer comparison between the FT method and the 477 jump and reach method [60]. In contrast, not all studies have agreed that the jump and reach method 478 always over-estimate JH. Nuzzo et al. [20] who required participants to touch the Vertec device with 479 both hands. The maximum JH-2 in their study was statistically significantly higher measured by the 480 jump mat using FT method (males: 57.25 ± 9.0 cm; females: 38.25 ± 6.0 cm) than the JH-1 measured 481 by the jump and reach method (males: 49.78 ± 9.1 cm; females: 31.65 ± 5.9 cm, P < 0.05). Furthermore, 482 the intersession reliability measures in this study indicated that in females, the jump and reach 483 method (CV = 8.6%, ICC = 0.80) was less reliable as opposed to the FT method (CV = 4.4%, ICC = 0.92); 484 in male a higher intersession reliability was found with the jump and reach method (CV = 5.9%, ICC = 485 (0.90) rather than the FT method (CV = 6.3%, ICC = 0.84) [20]. Of note as well, jumpers in this study 486 were also required to keep their heads and eyes level, and they could not look at the Vertec vanes. 487 These requirements might, to some extent, compromise the coordination of arm swing and prevent 488 jumpers from displacing the vanes at the peak height of their jumps, resulting in lower JH-1 values 489 [20]. Although similar results were given by Leard et al. [29], a lack of JH definitions makes it 490 challenging to interpret their findings. In study by Whitmer et al. [40], they did not reveal statistically 491 significantly different JH between the jump and reach method (JH-1: 0.48 ± 0.10 m) and FT method 492 using the jump mat (JH-2: 0.50 ± 0.12 m, P > 0.01). Whitmer et al. [40] estimated the FT (via the jump 493 mat) using proprietary algorithms instead of the simple projectile motion equation (i.e., Equation 1). 494 This algorithm added approximately 100 ms of time to the FT measured by the jump mat, thereby 495 achieving this closer comparison between the two methods. Authors in the same study also estimated the FT using the FP (0.524 ± 0.078 s) and found a statistically significantly lower FT compared to the 496 497 jump mat (0.629 \pm 0.077 s, $P \leq$ 0.01) [40]. However, a statistical comparison was missing between JH-498 2 calculated by the lower FT that comes about from the FP (via Equation 1) and JH-1 from the jump 499 and reach method. Thus, whether their result is consistent with previous studies that suggest the over-500 estimation appears in the jump and reach method, is unknown [28, 30, 41].

501 Despite the appeal of the jump and reach method, factors that influence the accuracy of the jump and 502 reach method should not be ignored. First, the accuracy depends on the timing of the touch, which is 503 the ability that jumpers displace the vane or touch the wall at the peak height of jumping. If touching 504 of the device does not appear during the peak height, the measured JH-1 via the jump and reach 505 method will be under-estimated [20, 29]. Second, in order to touch the device at the peak height, 506 jumpers are required to have good coordination of arm swing and jump, which means jumpers who 507 previously experienced jump training (e.g., volleyball spiking, basketball rebounding) or associated 508 with better skills on jump-and-reach test are likely to reach higher [20]. In comparison, those 509 participants without any jump test experience may need multiple familiarisation trials prior to the 510 data collection, to ensure these participants provide a valid JH-1 [20, 29]. Third, the insufficient range 511 of arm flexion may prevent jumpers from touching at the highest point, thereby resulting in an under-512 estimated JH-1 [20]. Fourth, the sensitivity of the Vertec device also influences its accuracy because 513 the space between each vane makes this device only measure the JH-1 in the 1.27 cm increments [20, 514 31]. In this instance, if jumpers touch the space between two vanes, the measured JH-1 is mistakenly 515 shown by the highest vane displaced rather than the actual touch point between two vanes. Therefore, this potential error explains why the over-estimation of JH-1 appears in the study as 516 517 mentioned earlier [28, 30, 41].

518 In addition, it is not surprising to see the JH difference between the jump and reach and other 519 calculation methods (e.g., the FT method), as they measured disparate biomechanical constructs, i.e., 520 the reaching height difference versus the FT, which the latter variable is associated with the jumpers' 521 COM displacement [20]. Consequently, the jump and reach method is recommended if practitioners 522 would like to know the maximal jump-and-reaching height, which is a specific test parameter in 523 volleyball and basketball [20, 61]. Otherwise, if practitioners are interested in quantifying the maximal 524 vertical COM displacement from the initial standing to the apex during jumping (i.e., JH-1), the double 525 integration method via the FP is preferred [15, 32, 36]. Alternatively, if the interest is to estimate the 526 maximal vertical COM displacement from the take-off instant to the apex during jumping (i.e., JH-2), 527 the IM method via the FP is recommended [5, 39].

528

529 4.5 Motion Capture System

530 The motion capture systems typically involve high-speed cameras or multiple 3D cameras. The 3D 531 motion capture system acquires the position-time data by tracking the reflective markers placed on 532 the trunk, pelvic and lower extremities [2], the left and right femoral condyles [32], or the total body bony landmarks (i.e., 47 makers) [36]. Subsequently, a mathematical body model reflects the COM
position is built, and the JH-1 is estimated by quantifying the peak COM height of the model during
the flight relative to the initial height taken while the participant is standing still [2].

536 Compared to the double integration methods via the FP, the motion capture systems eliminate issues 537 of integration errors, making the calculated JH-1 closer to the real value, which allows it to be widely 538 used as a reference standard [2, 32, 36]. As aforementioned, Wank and Coenning [36] revealed slightly 539 higher but not statistically significant JH-1 from the double integration method via the FP than the motion capture systems (P > 0.01). Similar results have been noted in Conceição et al. [32], the double 540 541 integration method via the FP only over-estimated the JH-1 by 0.15 ± 0.13 cm in contrast to the motion capture systems (P = 0.079). Although the difference is relatively minor, factors that affect the COM 542 543 estimation and accuracy of the motion capture systems should be highlighted. For example, 544 researchers in some studies only model parts of the total body for the COM estimation (e.g., pelvic 545 kinematic method [62] or two markers on the femoral condyles [32]), which these models' COM are 546 somewhat different from the body's COM estimated by the FP, as the FP measures the vGRF acting at 547 the true body's COM [62]. Of note as well, markers attached to the pelvic area are influenced by the 548 tilt or rotation of the pelvic during flight [32], markers attached to the lower limbs are affected by the 549 lower limb extension when taking-off [2], while the arm swing could raise the COM height at the take-550 off instant which may not be detected by pelvic markers [1]. Further to this, markers shifting relative 551 to the bony landmarks [2, 36], the inadequacy of the mathematical body model, software that used 552 to build the mathematical body model, and lower sampling rate (< 250 Hz) [35] can accumulate errors 553 when using the motion capture systems.

554 In addition, when evaluating the DJ with a high-speed camera placed in front of the jumpers, the 555 accuracy of JH measures is influenced by an improper drop technique [35]. In short, if the drop action 556 has started, but the foot is still in contact with the drop platform, the front placed camera tends to 557 under-estimate the vertical COM position, leading to an inaccurate drop height and rebound JH [35]. 558 To cover the deficit that using the motion capture systems alone may not accurately detect the 559 movement initiation, Baca [35] suggested using the motion capture systems concurrently with the FP to enhance the reliability of JH measurement during CMJ and DJ. Specifically, the key time points (e.g., 560 561 the movement initiation, touchdown and take-off) in jump actions are identified first on the force-562 time curve. These time points are then track-backed to find their vertical coordinates on the position-563 time data, for the subsequent calculation of JH [35].

564 Compared to the double integration method that requires the FP, estimating the JH-1 via the motion 565 capture systems is not recommended, given that the system involves numerous errors during COM 566 estimation and requires rather extensive setup processes [3, 5, 15]. Interestingly, Conceição et al. [32] 567 pointed out that the FP needs a reaction time to let the measured vGRF decrease to 0 N. Thereby, in 568 their study, the FT estimated from the velocity-time data via the FP (i.e., the period between the 569 maximum and minimum velocity) showed lower values than the FT estimated from the motion 570 capture systems (i.e., the period between the position data is zero) [32]. Noting that although the FP 571 and motion capture systems are able to measure the same parameters simultaneously, the outcomes 572 might somewhat differ.

573

574 4.6 Limitations and Suggestions for Future Research

575 Some limitations of this systematic review must be outlined. First, only two studies examining the JH 576 calculation during the DJ were included in this review. The limited number of DJ studies makes it 577 insufficient to provide any definitive conclusions regarding which method or equipment is best to 578 determine JH during this test. Thus, more studies are needed to quantify JH in the DJ using different 579 pieces of equipment and calculation methods. Second, no studies utilizing linear position transducers 580 met the inclusion criteria for the review. Therefore, it is difficult to say whether this device should be 581 recommended for practitioners, when aiming to quantify JH. Future research is encouraged to use 582 different devices to investigate the reliability of JH calculation methods during CMJ and DJ.

583 Given that different pieces of equipment are likely to have different amounts of error, future studies 584 should consider several factors that can generate discrepancies when comparing JH values measured 585 from the FP and motion capture systems. First, the FP and motion capture systems need appropriate 586 sampling frequencies to synchronise the force-time and position-time data (e.g., 2000 Hz and 250 Hz, 587 respectively) [35, 63], while the sampling frequency of the FP should be higher than 1000 Hz if 588 integration of force data is required [32]. Second, it is of great importance to clearly define the JH (i.e., 589 JH-1 or JH-2) whilst ensuring the JH values being compared between two devices are equal [2, 3]. 590 Further, given the inherent differences in how JH-1 and JH-2 are computed, a comparison would be 591 meaningless if the JH-2 (derived from the IM method via the FP) and the JH-1 (derived from the motion 592 capture system) were directly compared [3]. Finally, the identification of key time points (e.g., take-593 off instant and landing) should be consistent between devices, indicating an equal threshold should 594 be used to define these key time points during jumping [32].

595

596 5. CONCLUSION

597 The cumulative body of literature indicates that the measured JH is influenced by the calculation 598 methods and equipment employed. For measuring the JH from the COM height at the initial flat feet 599 standing to the apex of jumping (i.e., JH-1), the double integration method via the FP is encouraged 600 for practitioners, since this method measures the most comparable JH-1 values compared to the 601 motion capture systems. Of note as well, when two-adjacent FP are unavailable in the DJ 602 measurement, the double integration method is unable to calculate the initial standing height, and 603 the integration process must be processed reversely. The motion capture systems are not preferred, 604 given that this method requires accurate COM estimations and is primarily determined by the 605 equipment availability. For measuring the JH from the COM height at the instant of take-off to the 606 apex of jumping (i.e., JH-2), we recommended that practitioners use the IM method via the FP when 607 estimating JH-2 values in both CMJ and DJ, where the COM displacement before the take-off is ignored. 608 The IM method requires a simpler integration process than the double integration method and shows 609 excellent reliability. The FT method may be of use, because of its simple calculative process and 610 abundant equipment selection enables practitioners to conduct the test when working with large groups of athletes. However, some factors like the take-off and landing positions reduce the accuracy 611 612 of the FT method, and practitioners should be aware of this. Similarly, the jump and reach method is 613 the most convenient way to estimate the JH-1 and the maximum jump-and-reach height when testing 614 jumpers in a big squad, despite this method showing lower reliability in some studies. Therefore, if the 615 jump and reach method is the only option to quantify JH-1, practitioners are suggested to minimise 616 factors such as the coordination of jump and arm swing or timing of touch that affect the accuracy of 617 the jump and reach method before conducting the data collection. The findings of this systematic 618 review emphasise the strengths and weaknesses of each calculation method during the calculation of 619 JH in CMJ and DJ (as shown in both Table 4 and our complimentary infographic, Figure 2). Our findings 620 highlight the requirement for further investigation regarding the reliability of each calculation method 621 under different equipment settings.

622** Insert Table 4 around here **623** Insert Figure 2 around here **

REFERENCES

1. Chiu LZ, Dæhlin TE. Comparing numerical methods to estimate vertical jump height using a force platform. Meas Phys Educ Exerc Sci. 2020;24(1):25-32.

2. Wade L, Lichtwark GA, Farris DJ. Comparisons of laboratory-based methods to calculate jump height and improvements to the field-based flight-time method. Scand J Med Sci Sports. 2020;30(1):31-7.

3. Aragón LF. Evaluation of four vertical jump tests: Methodology, reliability, validity, and accuracy. Meas Phys Educ Exerc Sci. 2000;4(4):215-28.

4. Aragón-Vargas LF, Gross MM. Kinesiological factors in vertical jump performance: differences among individuals. J Appl Biomech. 1997;13(1):24-44.

5. Moir GL. Three different methods of calculating vertical jump height from force platform data in men and women. Meas Phys Educ Exerc Sci. 2008;12(4):207-18.

6. Krzyszkowski J, Chowning LD, Harry JR. Phase-specific predictors of countermovement jump performance that distinguish good from poor jumpers. J Strength Cond Res. 2022;36(5):1257-63.

7. Markovic G, Dizdar D, Jukic I et al. Reliability and factorial validity of squat and countermovement jump tests. J Strength Cond Res. 2004;18(3):551-5.

8. Glatthorn JF, Gouge S, Nussbaumer S et al. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J Strength Cond Res. 2011;25(2):556-60.

9. Kipp K, Kiely MT, Geiser CF. Reactive strength index modified is a valid measure of explosiveness in collegiate female volleyball players. J Strength Cond Res. 2016;30(5):1341-7.

10. McMahon JJ, Lake JP, Suchomel TJ. Vertical jump testing. Performance assessment in strength and conditioning. Routledge. 2018; Oct(9):96-116.

11. Bishop C, Turner A, Jordan M et al. A Framework to Guide Practitioners for Selecting Metrics During the Countermovement and Drop Jump Tests. Strength Cond J. 2022 Aug 23;44(4):95-103.

12. Costley L, Wallace E, Johnston M et al. Reliability of bounce drop jump parameters within elite male rugby players. J Sports Med Phys Fitness. 2017;58(10):1390-7.

13. Kibele A. Possible errors in the comparative evaluation of drop jumps from different heights. Ergonomics. 1999;42(7):1011-4.

14. Flanagan EP, Ebben WP, Jensen RL. Reliability of the reactive strength index and time to stabilization during depth jumps. J Strength Cond Res. 2008;22(5):1677-82.

15. Dias JA, Dal Pupo J, Reis DC et al. Validity of two methods for estimation of vertical jump height. J Strength Cond Res. 2011;25(7):2034-9.

16. Ramírez-Campillo R, Andrade DC, Izquierdo M. Effects of plyometric training volume and training surface on explosive strength. J Strength Cond Res. 2013;27(10):2714-22.

17. Schmidtbleicher D. Training for power events. Strength and power in sport. PV Komi. 1992;1:381-95.

18. McMahon JJ, Suchomel TJ, Lake JP et al. Understanding the key phases of the countermovement jump force-time curve. Strength Cond J. 2018;40(4):96-106.

19. Young WB, Pryor JF, Wilson GJ. Countermovement and drop jump performance. J Strength Cond Res. 1995;9(4):232-6.

20. Nuzzo JL, Anning JH, Scharfenberg JM. The reliability of three devices used for measuring vertical jump height. J Strength Cond Res. 2011;25(9):2580-90.

21. Słomka KJ, Sobota G, Skowronek T et al. Evaluation of reliability and concurrent validity of of two optoelectric systems used for recording maximum vertical jumping performance versus the gold standard. Acta Bioeng Biomech. 2017;19(2).

22. McBride JM, McCaulley GO, Cormie P. Influence of preactivity and eccentric muscle activity on concentric performance during vertical jumping. J Strength Cond Res. 2008;22(3):750-7.

23. Markström JL, Olsson C. Countermovement jump peak force relative to body weight and jump height as predictors for sprint running performances:(in) homogeneity of track and field athletes? J Strength Cond Res. 2013;27(4):944-53.

24. Reeve TC, Tyler CJ. The validity of the SmartJump contact mat. J Strength Cond Res. 2013;27(6):1597-601.

25. García-López J, Morante JC, Ogueta-Alday A et al. The type of mat (Contact vs. Photocell) affects vertical jump height estimated from flight time. J Strength Cond Res. 2013;27(4):1162-7.

26. Martínez-Martí F, González-Montesinos JL, Morales DP et al. Validation of instrumented insoles for measuring height in vertical jump. Int J Sports Med. 2016;37(05):374-81.

27. Heredia-Jimenez J, Orantes-Gonzalez E. Comparison of three different measurement systems to assess the vertical jump height. Rev bras med esporte. 2020; 26:143-6.

28. Brooks ER, Benson AC, Bruce LM. Novel technologies found to be valid and reliable for the measurement of vertical jump height with jump-and-reach testing. J Strength Cond Res. 2018;32(10):2838-45.

29. Leard JS, Cirillo MA, Katsnelson E et al. Validity of two alternative systems for measuring vertical jump height. J Strength Cond Res. 2007;21(4):1296.

30. Bui HT, Farinas M, Fortin A et al. Comparison and analysis of three different methods to evaluate vertical jump height. Clin Physiol Funct Imaging. 2015;35(3):203-9.

31. Magnúsdóttir Á, Karlsson B. Comparing three devices for jump height measurement in a heterogeneous group of subjects. J Strength Cond Res. 2014;28(10):2837-44.

32. Conceição F, Lewis M, Lopes H et al. An Evaluation of the Accuracy and Precision of Jump Height Measurements Using Different Technologies and Analytical Methods. Appl. Sci. 2022;12(1):511.

33. Harry JR. MATLAB Guide for Analyzing Countermovement Jump Strategies and Performance Over Time. Strength Cond J. 2021;43(5):44-53.

34. Linthorne NP. Analysis of standing vertical jumps using a force platform. Am J Phys. 2001;69(11):1198-204.

35. Baca A. A comparison of methods for analyzing drop jump performance. Med Sci Sports Exerc. 1999;31(3):437-42.

36. Wank V, Coenning C. On the estimation of centre of gravity height in vertical jumping. Ger. J. Exerc. Sport Res. 2019;49(4):454-62.

37. Page MJ, McKenzie JE, Bossuyt PM et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev. 2021;10(1):1-11.

38. Bishop C, Turner A, Read P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J Sports Sci. 2018;36(10):1135-44.

39. Moir GL, Garcia A, Dwyer GB. Intersession reliability of kinematic and kinetic variables during vertical jumps in men and women. Int J Sports Physiol Perform. 2009;4(3).

40. Whitmer TD, Fry AC, Forsythe CM et al. Accuracy of a vertical jump contact mat for determining jump height and flight time. J Strength Cond Res. 2015;29(4):877-81.

41. Buckthorpe M, Morris J, Folland JP. Validity of vertical jump measurement devices. J Sports Sci. 2012;30(1):63-9.

42. Pérez-Castilla A, García-Ramos A. Evaluation of the most reliable procedure of determining jump height during the loaded countermovement jump exercise: Take-off velocity vs. flight time. J Strength Cond Res. 2018;32(7):2025-30.

43. Picerno P, Camomilla V, Capranica L. Countermovement jump performance assessment using a wearable 3D inertial measurement unit. J Sports Sci. 2011;29(2):139-46.

44. McMahon JJ, Jones PA, Comfort P. A correction equation for jump height measured using the just jump system. Int J Sports Physiol Perform. 2016;11(4):555-7.

45. García-López J, Peleteiro J, Rodgriguez-Marroyo JA et al. The validation of a new method that measures contact and flight times during vertical jump. Int J Sports Med. 2005;26(04):294-302.

46. Harry JR, Barker LA, Eggleston JD et al. Evaluating performance during maximum effort vertical jump landings. J Appl Biomech. 2018;34(5):403-9.

47. Enoksen E, Tønnessen E, Shalfawi S. Validity and reliability of the Newtest Powertimer 300series[®] testing system. J Sports Sci. 2009;27(1):77-84.

48. Kibele A. Possibilities and limitations in the biomechanical analysis of countermovement jumps: A methodological study. J Appl Biomech. 1998;14(1):105-17.

49. Casartelli N, Müller R, Maffiuletti NA. Validity and reliability of the Myotest accelerometric system for the assessment of vertical jump height. J Strength Cond Res. 2010;24(11):3186-93.

50. Cormack SJ, Newton RU, McGuigan MR et al. Reliability of measures obtained during single and repeated countermovement jumps. Int J Sports Physiol Perform. 2008;3(2):131-44.

51. Ruddock A, Winter E. Jumping depends on impulse not power. J Sports Sci. 2015;34(6):584-5.

52. Owen NJ, Watkins J, Kilduff LP et al. Development of a criterion method to determine peak mechanical power output in a countermovement jump. J Strength Cond Res. 2014;28(6):1552-8.

53. McMahon JJ, Murphy S, Rej SJ et al. Countermovement jump phase characteristics of senior and academy rugby league players. Int J Sports Physiol Perform. 2017;12(6):803-11.

54. Chavda S, Bromley T, Jarvis P et al. Force-time characteristics of the countermovement jump: Analyzing the curve in Excel. Strength Cond J. 2018;40(2):67-77.

55. Vanrenterghem J, De Clercq D, Cleven PV. Necessary precautions in measuring correct vertical jumping height by means of force plate measurements. Ergonomics. 2001;44(8):814-8.

56. Grozier CD, Cagle GK, Pantone L et al. Effects of medial longitudinal arch flexibility on propulsion kinetics during drop vertical jumps. J Biomech. 2021;118:110322.

57. McMahon JJ, Jones PA, Comfort P. Comment on: "Anthropometric and physical qualities of elite male youth rugby league players". Sports Med. 2017;47(12):2667-8.

58. Wade L, Needham L, McGuigan MP et al. Backward Double Integration is a Valid Method to Calculate Maximal and Sub-Maximal Jump Height. J Sports Sci. 2022;40(10):1191-7.

59. McMahon JJ, Lake JP, Stratford C et al. A proposed method for evaluating drop jump performance with one force platform. Biomechanics. 2021;1(2):178-89.

60. Klavora P. Vertical-jump tests: A critical review. Strength Cond J. 2000;22(5):70-5.

61. Pehar M, Sekulic D, Sisic N et al. Evaluation of different jumping tests in defining position-specific and performance-level differences in high level basketball players. Biol. Sport. 2017;34(3):263-72.

62. Chiu LZ, Salem GJ. Pelvic kinematic method for determining vertical jump height. J Appl Biomech. 2010;26(4):508-11.

63. Holcomb WR, Lander JE, Rutland RM et al. A biomechanical analysis of the vertical jump and three modified plyometric depth jumps. J Strength Cond Res. 1996;10(2):83-8.

Criteria No	Item	Score
1	Inclusion criteria stated	0-2
2	Subjects assigned appropriately	0-2
3	Procedures described (equations, equipment setting, jump actions)	0-2
4	Dependent variables defined*	0-2
5	Assessments practical (easy to implement)	0-2
6	Statistics appropriate (reliability, significant differences)	0-2
7	Results detailed (mean, standard deviation)	0-2
8	Conclusions insightful (clear, practical application, future directions)	0-2
Total		0-16

Table 1. Study quality scoring system (adapted from Bishop et al. [38]).

*The fourth item includes the definition of first meaningful change in vGRF on the force-time curve, the instant of countermovement and drop action, instant of take-off and landing.

Reference				С	riteri	a Nu	mber		
	1	2	3	4	5	6	7	8	Total
Reeve and Tyler [24]	2	1	2	2	2	1	2	2	14 (88%)
Moir [5]	2	2	2	2	2	2	2	2	16 (100%)
Wade et al. [2]	2	1	2	2	2	1	2	2	14 (88%)
Moir et al. [39]	2	2	2	2	2	2	2	2	16 (100%)
Pérez-Castilla et al. [42]	2	1	2	2	2	2	2	2	15 (94%)
Dias et al. [15]	2	2	2	0	2	1	2	2	13 (81%)
Martínez-Martí et al. [26]	2	1	2	2	2	1	2	1	13 (81%)
Buckthorpe et al. [41]	2	2	2	2	2	1	2	2	15 (94%)
Whitmer et al. [40]	2	2	2	1	2	1	2	2	14 (88%)
García-López et al. [45]	2	2	2	2	2	2	2	2	16 (100%)
Heredia-Jimenez and Orantes-Gonzalez [27]	2	1	2	0	2	2	2	2	13 (81%)
Słomka et al. [21]	2	2	2	2	2	2	2	2	16 (100%)
Bui et al. [30]	2	2	1	1	2	1	2	2	13 (81%)
Leard et al. [29]	2	2	1	1	2	1	2	2	13 (81%)
Nuzzo et al. [20]	2	2	1	2	2	2	2	2	15 (94%)
Aragón [3]	2	1	2	2	2	2	2	2	15 (94%)
Conceição et al. [32]	2	2	2	2	2	0	2	2	14 (88%)
Chiu and Dæhlin [1]	2	2	2	2	2	0	2	2	14 (88%)
Wank and Coenning [36]	2	1	2	2	2	1	2	2	14 (88%)
Baca [35]	2	1	2	1	2	1	2	2	13 (81%)
Brooks et al. [28]	2	2	2	0	2	2	2	2	14 (88%)

 Table 2. The results of study quality scoring.

 Table 3. Characteristics of studies included in this systematic review.

Reference	Subjects	Jump	Calculation	Equipment	Reliability/Variability
		Actions	Method		
Reeve and Tyler [24]	15 Males; 8 Females	3 CMJ*; 3CMJ**	IM; FT	FP (1202 Hz) ***; Jump mat (1000 Hz)	Not provided
Moir [5]	50 Males; 50 Females	3 CMJ**	IM; FT; IM + S (by DI)	FP (1202 Hz)	A high degree of consistency across methods in males (ICC = 0.927; 95% CI: 0.887 – 0.955); in females (ICC = 0.934; 95% CI: 0.897 – 0.960).
Wade et al. [2]	15 Males; 9 Females	5 CMJ**	IM + S (by DI); IM + S (by MCS); MCS	FP (1000 Hz); MCS (200 Hz)	MCS and IM + S (by MCS) had lowest CV (2.8%). IM + S (by DI) method had highest CV (3.5%).
Moir et al. [39]	35 Males; 35 Females	3 CMJ**	IM; FT; IM + S (by DI)	FP (1202 Hz)	IM showed the highest intersessions ICC in males (0.88 – 0.96, CV: 1.7 – 2.8%); in females (0.94 – 0.97, CV: 2.2 – 3.0%).
Pérez-Castilla et al. [42]	17 Males	2 loaded CMJ in each weight (i.e., 17, 30, 45, 60, and 75 kg)	IM; FT	FP (1000 Hz); Smith machine	In free-weight barbell CMJ, IM ((CV = $6.42 \pm 2.41\%$, ICC = 0.88 ± 0.04) and FT (CV = $6.53 \pm 2.17\%$, ICC = 0.88 ± 0.06). In Smith machine CMJ, IM (CV = $11.34 \pm 3.73\%$, ICC = 0.68 ± 0.07) and FT (CV = $5.95 \pm 1.12\%$, ICC = 0.91 ± 0.04).
Dias et al. [15]	20 Males; 20 Females	15 CMJ**	FT; DI	FP (500 Hz); Jump mat (50 Hz); MCS (80 frames.s ⁻¹) ***	Not provided

Martínez-Martí et al. [26]	44 Males; 17 Females	3 CMJ*	FT; MCS	Accelerometer (100 Hz); Photocell mat (1000 Hz) ***; MCS (240 Hz) ***	Not provided
Buckthorpe et al. [41]	31 Males; 9 Females	21 CMJ*	FT; DI; JAR	Laboratory *** and portable FP (2000 Hz); Jump mat (N/A); Belt mat (N/A); Vertical jump device	Not provided
Whitmer et al. [40]	17 Males; 18 Females	4 CMJ*	FT; JAR	FP (1000 Hz) ***; Jump mat (100 Hz); Vertical jump device	Not provided
García-López et al. [45]	62 Males; 27 Females	3 CMJ*	FT	FP (1000 Hz) ***; Jump mat (1000 Hz); 2 Photocell mats (1000 Hz)	SportJump System Pro photocells mat showed high reliability (CV = 2.98%, ICC = 0.95 – 0.97) compared with FP (CV = 2.93%, ICC = 0.95 – 0.97).
Heredia-Jimenez and Orantes-Gonzalez [27]	20 Participants	2 CMJ**	FT; IM	FP (200 Hz) with IM method ***; Photocell mats (1000 Hz); Accelerometer (100 Hz)	Excellent reliability between equipment by using the FT method (ICC = $0.82 - 0.86$). Within the FT method, the photocells mat had higher reliability (ICC = 0.82) than the accelerometer (ICC = 0.74). Using accelerometer with the IM method showed poor reliability (ICC = 0.47).

Słomka et al. [21]	15 Males; 16 Females	5 CMJ**	FT; IM; MCS	FP (1000 Hz)*** Photocell mats (1000 Hz); MCS (120 Hz)	The photocells mat showed higher reliability (ICC = 0.98) than MCS (ICC = 0.90) compared with reference, but both are reliable.
Bui et al. [30]	23 Males; 18 Females	2 CMJ*	FT; JAR	Jump mat Photocells mat Vertical jump device	Not provided
Leard et al. [29]	25 Males; 14 Females	2 CMJ*	FT; JAR; MCS	Jump mat MCS*** Vertical jump device	Not provided
Nuzzo et al. [20]	40 Males; 30 Females	3 CMJ*	FT; JAR	Jump mat Accelerometer (200 Hz) Vertical jump device	The intrasession and intersession ICC was best in accelerometer for males (0.95 and 0.88, respectively) and females (0.91 and 0.92, respectively).
Aragón [3]	52 Males	5 CMJ**	FT; IM; IM + S (by MCS); MCS	FP (300 Hz); MCS (60 Hz) ***;	Reliability correlation coefficient for FT method (0.994), IM method (0.986), IM + S method (0.970), and MCS (0.994).
Conceição et al. [32]	14 Males; 14 Females	3 CMJ**	FT; DI; MCS	FP (2000 Hz); Jump mat; MCS (200 Hz) ***; Accelerometer (200 Hz); Self-made Abalakow jump belt (ABJ).	Not provided
Chiu and Dæhlin [1]	29 Males; 34 Females	3 CMJ**	FT; IM; DI; IM + S (by DI); work- energy method	FP (1000 Hz)	Not provided

Wank and Coenning [36]	15 Males	4 DJS; 4 CMJ	FT; IM; DI; MCS	FP (2000 Hz); MCS (2 Megapixel resolution) ***	Not provided
Baca [35]	5 Males	DJ from 0.39m**	FT; IM; MCS	FP (1000 Hz); MCS (250 Hz)	Not provided
Brooks et al. [28]	14 Males; 12 Females	3 CMJ*	FT; JAR	FP (400 Hz) ***; Accelerometer (100 Hz); Vertical jump device Myjump2 Application (via iPad Pro 240 frames. s ⁻¹ camera)	ICC was 0.91 (90% CI: 0.87–0.94) for the accelerometer, and 0.97 (90% CI: 0.96–0.98) for the Myjump2 application. Intrarater ICC for the Myjump2 application was 0.99.

* The countermovement jumps with arm swing. ** The countermovement jumps without arm swing. *** The reference standard. CMJ: countermovement jumps. DJ: drop jumps. IM: the impulse-momentum method. FT: the flight time method. DI: the double integration method. IM+S: a positive displacement (i.e., S) is added to the calculated result of the IM method, where the S value can be acquired via either the double integration method or the motion capture systems. JAR: jump and reach method. FP: the force platforms. MCS: the motion capture systems. ICC: Intraclass correlation coefficients. CV: coefficients of variation.

Table 4. Recommendations for	jump height calculation methods
------------------------------	---------------------------------

Calculation Method	Associated Equipment	Reliability / Variability	Error Factors
	Force Platform	CV: 0.10% – 6.53%, ICC: 0.84 – 0.98	Jump and landing technique.
			Lack of the take-off height detection.
Flight Time	Jump Mat	CV = 4.7% – 15.94%, ICC: 0.45 – 0.96	Movement detection sensibility.
	Optical Measurement System	CV: 0.20% – 2.98%, ICC: 0.82 – 0.98	Device is set above the ground.
Impulse-Momentum	Force Platform	CV: 0.10% – 11.34%, ICC: 0.88 – 0.97	Lack of the take-off height detection.
			Accurate selection of take-off instant.
Double Integration	Force Platform	CV: 0.10% – 0.16, ICC: 0.86 – 0.91	Twice Integration accumulates errors.
			Determination of jumpers' body mass.
			Accurate selection of movement starts.
			Low sampling frequency device (≤ 1000 Hz)
Jump and Reach	Vertec	CV: 5.9% – 8.6%, ICC: 0.80 – 0.90	Range of arm flexion.
			Incremental of device.
			Coordination of arm swing and jump.
			Including the take-off height (over-estimation).
Motion Canture System	Cameras	CV: 0 13% ICC: 0 90	Markers shifting
Wotion capture system	Cameras	ev. 0.13%, iee. 0.50	Cameras arrangement
			Marker attachment locations
			Inadequacy of the mathematical body model
			madequacy of the mathematical body model.

S		Recommendation	ons for Jump Height Calculation Method	I.				j.
		°@	Č	Wh	ich m	ethod i	s best	?
Calculation Method	Associated Equipment	Reliability / Variability	Error Factors		Percent of	strengths for ea	ch method	
	Force Platform	CV: 0.10% - 6.53%, ICC: 0.84 - 0.98	Jump and landing technique. Lack of the take-off height detection.	Equipment Availability	Reliability	Method	Data Processing Difficulty	Error Factors
Flight Time	Jump Mat	CV: 4.7% – 15.94%, ICC : 0.45 – 0.96	Movement detection sensibility.		000		000	
	Optical Measurement System	CV: 0.20% – 2.98%, ICC: 0.82 – 0.98	Device is set above the ground.	000	000	Flight Time	000	
Impulse-Momentum	Force Platform	CV: 0.10% – 11.34%, ICC: 0.88 – 0.97	Lack of the take-off height detection. Accurate selection of movement initiation.	000	000	Momentum	000	000
Double Integration	Force Platform	CV: 0.10% – 0.16, ICC: 0.86 – 0.91	Twice Integration accumulates errors. Determination of jumpers' body mass. Accurate selection of movement starts. Low sampling frequency device (< 1000 Hz)	000 000	000 000	Jump and Reach	000 000	000 000
Jump and Reach	Vertec	CV: 5.9% - 8.6%, ICC: 0.80 - 0.90	Range of arm flexion. Incremental of device. Coordination of arm swing and jump. Including the take-off height (over-estimation).	000 Excellent	000	Motion Capture System	000	
Motion Capture System	Cameras	CV: 0.13%, ICC: 0.90	Markers shifting. Cameras arrangement. Marker attachment locations. Inadequacy of the mathematical body model.	Good Average Poor The perce	000 000 000 ent scoring sys	tem involves 4 item	s and each item is	
				scored of	ut of 3, which p	rovides a total or s	um score out of 12.	

Figure 2. Recommendations for jump height calculation methods (Courtesy to <u>www.Visme.co</u>).

Appendix

PRISMA Checklist [28]

Section and Topic	ltem #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	Page 1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Page 2
INTRODUCTION	1		
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Lines 2-65
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Lines 65-75
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Lines 97-105
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Lines 83-93
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Lines 83-93
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Lines 83-105
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Lines 94-106
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Lines 82-118
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Lines 96-118
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Lines 106-118
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	N/A
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Lines 106-118
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Lines 112-118
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Lines 112-118

Section and Topic	ltem #	Checklist item	Location where item is reported	
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	N/A	
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	N/A	
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	N/A	
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	N/A	
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	N/A	
RESULTS				
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Lines 119-130	
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Lines 119-130	
Study characteristics	17	Cite each included study and present its characteristics.	Table 3	
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Table 2	
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Table 3	
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Lines 132-150	
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	N/A	
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	N/A	
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	N/A	
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	N/A	
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	N/A	
DISCUSSION				
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Lines 151-163	
	23b	Discuss any limitations of the evidence included in the review.	Lines 573-581	
	23c	Discuss any limitations of the review processes used.	Lines 573-581	
	23d	Discuss implications of the results for practice, policy, and future research.	Lines 582-592	
OTHER INFORMATION				

Section and Topic	ltem #	Checklist item	Location where item is reported
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	Lines 79-81
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Lines 79-81
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	Lines 79-81
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	Page 1
Competing interests	26	Declare any competing interests of review authors.	Page 1
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	N/A