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ABSTRACT: This article addresses theoretically the mixed convection hydromagnetic flow of 

electrically conducting viscoelastic nanofluid from a vertical permeable stretching sheet in a non-Darcy 

porous medium with Cattaneo–Christov double diffusion model to evaluate the heat transfer phenomena in 

steady boundary layer flow on a stretchable surface. In this regard thermal and solutal hyperbolic wave 

relaxation effects are included for non-Fourier and non-Fickian models. Heat absorption is also included in 

the analysis. The Buongiorno two-component nanoscale model is adopted for simulating Brownian motion 

and thermophoretic body force effects. A non-Darcy drag force model is employed for the porous medium 

and the Reiner-Rivlin second grade model for non-Newtonian characteristics. Via appropriate 

dimensionless similarity variables, the non–linear dimensional partial differential conservation equations 

for momentum, energy and concentration with associated boundary conditions are rendered into a non–

linear dimensionless ordinary differential boundary value problem. The homotopy analysis method (HAM) 

is utilized to solve the boundary value problem and the impact of emerging parameters including thermal 

relaxation parameters, non-Newtonian material parameter, Darcy permeability parameter, porous inertial 

parameter and Hartmann magnetic number on the momentum, heat and mass transfer characteristics are 

visualized graphically and in Tables. A 30th order approximation for HAM is shown to produce sufficient 

accuracy for the velocity and temperature fields and a 40th order estimates is adequate for the concentration 

field. It is observed that increasing the magnitude of (thermal and solutal relaxation parameters have the 

opposite effect on the thermal and concentration distributions. The novelty of the work is the simultaneous 

inclusion of multiple effects (non-Fourier and non-Fickian thermal relaxation hyperbolic wave models, 

non-Darcy drag effects and heat generation/absorption) which are relevant to rheological nanomaterials 

processing and also the deployment of homotopy analysis as an alternative to conventional numerical 

methods such as finite differences, finite elements and MATLAB solvers. The study is relevant to the 

manufacture of electro-conductive polymers (ECPs) and smart (functional) magnetic nano-liquids. 
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1. INTRODUCTION 

Thermosolutal convection i. e. simultaneous heat and mass transfer, finds numerous applications 

in many industrial applications including paper production, bioreactors, crystal growth, materials 

processing and coating systems. Buoyancy forces frequently arise in such flows. Conventional 

mathematical models of heat conduction employ the Fourier law [1]. Similarly, mass diffusion 

(species transport) is generally simulated with the Fick law. These approaches however have 

limitations since they neglect thermal and concentration relaxation characteristics which can arise 

in technological designs and can result in erroneous predictions of temperature and concentration 

distributions.  In the Fourier and Fickian models, both temperature profile and concentration 

profile are parabolic differential equations. By adding relaxation time, Cattaneo [2] generalized 

the Fourier model to a hyperbolic partial differential equation which capture the effect of heat 

waves. This non-Fourier model has resolved a number of challenging problems in thermophysics 

and thermal engineering analysis. Christov [3] further extended the Cattaneo model to consider 

material invariance (indifferent frame) and heat conduction. Many interesting studies have 

subsequently been communicated deploying this non-Fourier approach. Thermal convection in 

incompressible Newtonian fluid with the generalized non-Fourier Cattaneo–Christov model has 

been investigated by Straughan [4]. The non-Fickian model has also been popularized in modern 

species diffusion analysis and has served to enable more sophisticated simulations of mass transfer 

in technological processes. When both non-Fourier and non-Fickian approaches are combined, 

then generalized thermosolutal models can be developed. The resulting boundary value problems 

for viscous flows with heat and mass transfer are important in materials processing operations and 

are strongly nonlinear and generally require very robust numerical or semi-numerical/analytical 

methods for their solution. Hayat et al. [5] implemented Liao’s homotopy analysis technique which 

uses an embedding parameter for accelerated convergence, to simulate the effects of Cattaneo–

Christov double–diffusion, chemical reaction and heat source/sink on Walters'–B viscoelastic 

nanofluid flow from a stretching surface. Hayat et al. [6] further studied the dynamics of a second–

grade viscoelastic nanofluid from a  stretching plane with Cattaneo–Christov double diffusion. 

These studies showed that local Nusselt number (wall heat transfer rate) is elevated with non-

Fourier thermal relaxation time and Sherwood number (wall mass transfer rate) is enhanced with 

non-Fickian solutal relaxation time. 
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Yu Bai et al. [7] used a novel double-parameter transformation expansion method with the base 

function method (DPTEM-BF) to compute the Cattaneo–Christov double diffusive magnetized 

reactive stagnation point flow of a viscoelastic Oldroyd–B nanofluid from a stretching surface with 

thermal radiation flux. They noted that increasing thermal relaxation and solutal relaxation 

parameters elevate thermal and species (concentration) boundary layer thicknesses. Further studies 

deploying Cattaneo–Christov double diffusion include Ijaz and Ayub [8] who computed the 

influence of activation energy and dual stratification in nonlinear Walters-B viscoelastic 

convection from a permeable stretched sheet).  Ibrahim and Gadisa [9] used a finite element 

approach for computing non-linear convective flow of Oldroyd-B non-Newtonian fluid with from 

a non-linear stretching sheet with heat generation or absorption. Tulu and Ibrahim [10] combined 

the Cattaneo–Christov heat and mass transport model with thermal conductivity variation to 

analyze Casson nanofluid flow external to a stretching cylinder. Rawat et al. [11] used Runge–

Kutta–Fehlberg and shooting techniques to study numerically the Cattaneo–Christov double 

diffusion in Oldroyd–B convective flow from a stretching surface. All these studies confirmed that 

the non-Fourier and non-Fickian models produce results which diverge significantly from the 

classical Fourier and Fickian approaches. 

In recent years a new group of functional materials have been developed which combine polymeric 

properties with electromagnetic smart properties. Known as electro-conductive polymers (ECPs) 

[12] such complex materials are of great interest in naval, propulsion, fuel cell and biomedical 

industries. The simulation of the manufacturing of such fluids requires mathematical and 

computational models which combine magnetohydrodynamics (MHD) with rheological fluid 

dynamics.  Non–Newtonian models can be broadly divided into three general categories due to the 

shear stress-strain characteristics associated with different liquids and these are the differential 

form, integral form, and rate form. Magnetic polymeric fluids provide enhanced protection to 

engineering systems and are becoming increasingly popular for anti-corrosion coatings and also 

protection from other hazards. Engineers are also combining nanoscale properties with electro-

conductive polymers to develop the next generation of magnetic nano-polymers [13].  The 

Buongiorno two-component nanoscale model is useful for simulating heat and mass transfer in 

such coating fluids. Magnetohydrodynamic flows of both macroscopic and nanoscale non-

Newtonian functional fluids have stimulated considerable interest as they have direct relevance to 

enrobing, coating and surface deposition technologies in materials processing. In such systems, a 
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transverse or radial external magnetic field is imposed to generate a Lorentzian body force which 

interacts with the magnetic fluid and therefore offers an excellent mechanism for controlling 

momentum and thermal diffusion. Kumaran et al. [15] deployed an optimized second order Keller 

finite difference scheme, Buongiorno’s model and the tangent hyperbolic shear-thinning model to 

simulate the the boundary layer characteristics of enrobing flow of a magnetic functional nanofluid 

coating on a cylinder with chemical reaction, gyrotactic bioconvection and non-Fourier relaxation 

effects. Umavathi et al. [16] used MATLAB quadrature to compute the time-dependent squeezing 

flow, heat and mass transfer in a magnetic nanofluid with mixed boundary conditions as a model 

of smart lubrication. Abbas et al. [17] employed neural networks and second law thermodynamics 

to analyze the peristaltic pumping of magnetic Williamson non-Newtonian nanofluid in a 

deformable vessel. Several investigators have also considered Cattaneo-Christov double diffusion 

effects in magnetic non-Newtonian nanofluid transport. Hayat et al. [18] used the homotopy 

analysis method to study thermal and solutal relaxation effects with entropy generation in magnetic 

viscoelastic nanofluid flow along a Riga sensor. Hafeez et al. [19] studied the swirling flow of a 

magnetic Oldroyd-B elastic-viscous nanofluid with Cattaneo-Christov double diffusion from a 

rotating disk. They observed that increment in non-Fourier thermal and non-Fickian solutal 

relaxation time parameters result in a depletion in temperature and concentration values. They 

further showed that axial flow is decelerated with greater viscoelastic retardation time parameter, 

whereas greater nanofluid thermophoretic body force elevates temperatures. Ijaz et al. [20] studied 

the effects of Arrhenius activation energy, Joule magnetic heating, binary chemical reaction, dual 

stratification and Cattaneo–Christov double-diffusion on convective flow of a Walters-B nanofluid 

over a stretching sheet. They noted that heat transfer rate is enhanced with larger thermal relaxation 

parameter, whereas greater thermal and solutal relaxation parameters decrease both temperature 

and concentration fields. 

In many materials fabrication processes e.g. coating, porous media [21] are exploited since they 

offer an inexpensive filtration medium which can be used to regulate transport characteristics of 

completed products. A porous medium comprises solid matrix fibres with interconnected pores, to 

constitute a matrix structure. In boundary layer models of flow through porous media, which are 

appropriate for coating simulations, macroscopic models can be used and the most popular are the  

Darcy model law and Kozeny-Carman model, both of which are generally valid at low Reynolds 

numbers (viscous dominated flows). The advantage of such models is that they can be easily 
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accommodated in the framework of boundary layer theory and do not require morphological data 

to characterize the porous medium. They instead utilize a permeability (and also porosity) to 

describe the hydraulic conductivity of the medium. The simplicity of such models provides a 

reasonable estimate of the overall flow behavior in the porous media but cannot furnish details of 

the microscale flow field [22]. Several investigations have reported on the transport of magnetic 

functional liquids in Darcian porous media, for which the permeability is assumed to be isotropic.  

Shamshuddin et al. [23] analyzed thermocapillary magnetohydrodynamic convection in Copper-

water based nanofluid flow from a disk in Darcian porous media with radiative flux. Bhatti et al. 

[24] studied cross diffusion, hydrodynamic and thermal slip effects on magnetic Fe3O4-water-

based nanofluid transport from a nonlinear stretching sheet in Darcian porous media. Shamshuddin 

et al. [25] used the Adomian decomposition method (ADM) to compute the magnetized radiative-

convective non-Newtonian (Sisko) fluid flow over a bi-directional stretching sheet in a porous 

medium with homogeneous–heterogeneous reactions. In porous media, at higher Reynolds 

numbers, inertial drag effects can also be generated. These are usually simulated with the Darcy-

Forchheimer drag force model in which an additional second order Forchheimer drag force term 

is deployed. This model has emerged as very versatile in numerous areas of fluid mechanics 

including Taylor dispersion in blood coagulation flows in tissue [26] and coating of curved bodies 

with magneto-rheological liquids [27]. Revathi et al. [27] investigated the transient mixed 

convective nanofluid flow with an exponentially decreasing free-stream velocity distribution in 

non-Darcy porous medium. Khan et al. [28] used Mathematica software to simulate the effects of 

activation energy on magnetohydrodynamic mixed convection in Darcy-Forchheimer stagnation 

flow of Carreau nanofluid with thermal radiation. Umavathi et al. [30] investigated the effects of 

convective wall boundary conditions on reactive mixed convection in Darcy-Forchheimer porous 

media. Several articles have also addressed the impact of with Cattaneo–Christov double diffusion 

in Darcy-Forchheimer porous media boundary layer convection flows. Muhammad et al. [31] 

examined the Darcy–Forchheimer flow over an exponentially stretching curved surface with 

Cattaneo–Christov double diffusion using the NDSolve method. They showed that heat and mass 

transfer rates are elevated with increment in non-Fourier thermal and non-Fickian concentration 

relaxation parameters. Nayak et al. [32] studied entropy generation and Cattaneo-Christov double-

diffusion in hybrid viscoplastic nanofluid transport in Darcy-Forchheimer porous media from a 

curved surface with the bvp4c scheme in MATLAB. They showed that temperatures are boosted 
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with greater curvature parameter and Forchheimer number whereas concentration magnitudes are 

enhanced with Darcy parameter. 

The focus of the present study is to simulate, as a model for industrial magnetic polymeric coating, 

the mixed convection hydromagnetic flow of electrically conducting viscoelastic nanofluid from a 

vertical permeable stretching sheet in a non-Darcy porous medium with the Cattaneo–Christov 

double diffusion model (thermal and solutal relaxation effects). Heat absorption is also included 

in the analysis. The Buongiorno two-component nanoscale model is adopted for simulating 

Brownian motion and thermophoretic body force effects. The Darcy-Forchheimer drag force 

model is employed for the porous medium and the Reiner-Rivlin differential second grade model 

for non-Newtonian characteristics (relaxation and retardation). Via appropriate dimensionless 

similarity variables, the non–linear dimensional partial differential conservation equations for 

momentum, energy and concentration with associated boundary conditions are transformed into a 

non–linear dimensionless ordinary differential boundary value problem. The homotopy analysis 

method (HAM) [33] is utilized to solve the boundary value problem and the impact of emerging 

parameters including thermal relaxation parameters, non-Newtonian material parameter, Darcy 

permeability parameter, porous inertial (Forchheimer) parameter and modified Hartmann 

magnetic number on the momentum, heat and mass transfer characteristics are visualized 

graphically and in Tables. The novelty of the present study is the simultaneous consideration of 

non-Fourier and non-Fickian effects, magnetohydrodynamics, viscoelastic characteristics and 

also heat source/sink. The current study is relevant to the fabrication of the electroconductive 

nano-polymers in industrial coating flows.  

 

2.MATHEMATICAL MODEL  

Consider the two-dimensional, steady-state thermosolutal convection flow of a magnetized 

viscoelastic (second grade Reiner-Rivlin) nanofluid induced by a vertical permeable stretching 

plane adjacent to a non-Darcy porous medium, as a model of magnetic nano-polymer coating 

processing. The physical model is depicted in Fig. 1. A transverse static magnetic field is applied. 

Hall and ionslip effects are neglected as is Ohmic dissipation. The non-Fourier and non-Fickian 

Cattaneo–Christov double–diffusion model is employed [18-20].  The fluid emerges at 0y =  and 

is constrained within the range  0y   . The non-Fourier and non-Fickian Cattaneo–Christov 
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double-diffusion model is implemented to describe thermal relaxation and solutal relaxation 

effects. Heat generation/absorption is also considered. 

 

Fig.1. Physical image of the flow. 

Buongiorno’s nanofluid model [14] is employed which allows the inclusion of a nanoparticle 

species diffusion equation, and the contributions of thermophoresis and Brownian motion. Both 

thermal and nanoparticle species (solutal) buoyancy are included. The permeable sheet permits 

suction and injection. The stretching sheet velocity is defined by ( )wu x cx= , where c  is a 

dimensional constant. Under the boundary layer and Boussineq approximations, the appropriate 

conservation equations for second grade viscoelastic Buongiorno nanofluid thermo-magneto flow 

i. e. mass, momentum, energy and species concentration may be expressed extending the models 

in [6], [18] and [20] as:  
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  is dynamic viscosity, g   is the gravitational acceleration, F  is the Forchheimer quadratic inertial 

porous medium coefficient, ( ),T C   are thermal/concentration expansion coefficients, 1   is the 
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Brownian diffusion coefficients, respectively, 0Q  is the coefficient of heat absorption/generation 

[6], ( ),T C  are magnetic nanofluid temperature and concentration, ( )( ),w wu x v  for (stretching, 

suction/injection) velocities, k   is thermal conductivity of the magnetic nanofluid, c  is the sheet 

stretching rate, ( ),T C   are ambient liquid (temperature, concentration) respectively, ( ),w wT C  

are constant wall (temperature, concentration) respectively, ( ),t c   designate the relaxation times 

(thermal, solutal) and ( ),u v   are components of velocity in the ( ),x y   directions respectively. 

Introducing the following transformations: 
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The mass conservation Eqn. (1) is fulfilled automatically, and the momentum, energy and 

nanoparticle concentration boundary layer Eqns. ( ) ( )2 6−  emerge as: 
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Here ( )'  signifies differentiation with respect to  , K denotes second grade viscoelastic material 

parameter of the magnetic nanofluid,   is the permeability (Darcy) parameter, Ha  is modified 

Hartmann number, rF  is the local Forchheimer inertial coefficient, bC  is porous medium drag 
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coefficient, bC
 is porous medium drag coefficient per unit length, S  is the heat source/sink 

parameter i.e. for heat generation ( )0S   and for heat absorption ( )0S   variable, tN  is 

thermophoresis variable, Pr is Prandtl number, bN  is Brownian motion variable, 1   is mixed 

convection factor, N  is the ratio of concentration to thermal buoyancy forces, xGr  is the local  

Grashof number (thermal buoyancy parameter), xGr  is the local solutal Grashof number 

(nanoparticle species concentration buoyancy parameter), Rex  is local Reynolds number, Sc  is  

Schmidt number, ( )1 2,   represent the non-Fourier and non-Fickian relaxation times (thermal, 

solutal), h is the wall lateral mass flux parameter i.e. for suction ( )0h  and injection ( )0h  . 

These variables are defined as follows: 

 

 

( ) ( )

( ) ( )

( )

2

01
1 2

1 2

3 3 2
0 0

2 2

0

, , , , , , , ,

, Pr , , , ,
Re

Gr , Gr , Re ,

, , .

b b
r b t c

f

T f B w x x
t b

x x

T w C w

x x x

w

B f

B C x Cc
K Ha F C c c

K c c xK

D T T D C C Gr Gr
N N N

T Gr

g T T x g C C x cx

v Q
Sc h S

D c cc

 
    

 

 


  

 

  







 


 





= = = = = = =

− −
= = = = =

   − −
= = =   
   

= = =

  (7) 

The skin–friction coefficient at the stretching sheet (wall) may be defined as:  
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In non–dimensional variables, the appropriate expression is: 
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3.HOMOTOPY ANALYSIS METHOD (HAM) SIMULATION 

The nonlinear coupled ordinary differential boundary value problem defined by Eqns. (8)-(12) are 

solved by the Liao homotopy analysis method (HAM) [33]. This technique is extremely accurate 

and has been deployed in multiple nonlinear magnetic and non-Newtonian thermo-fluid dynamics 

problems. Recent applications include ionized dielectric rotating MHD generator viscous flows 

[34], thermal polymeric micropolar wedge coating flows [35], Hall magneto-fluid dynamics with 

microstructural effects [36], entropy generation in magnetic slip coating flows [37] and magnetic 

propulsion flows in ducts [38]. For the present problem, using HAM we make the initial guesses 

( )( ) , ( ), ( )o o of      , and define auxiliary linear operators ( ), ,fL L L 
 as follows: 

 

( )

( )

( )

0

0

0

1 ,

,

,

f e

e

e









 

 

−

−

−

= −

=

=

 (10) 

 

,

,

,

fL f f

L

L





 

 

 = −


= −
 = −

 (11) 

with 

 

( )

( )

( )

1 2 3

4 5

6 7

0,

0,

0,

fL A A e A e

L A e A e

L A e A e

 

 



 



−

−

−

 + + =



+ =


+ =

 (12) 

Here ( )1 7iC i = −  indicate the arbitrary constants. 

3.1 Convergence analysis  

When deploying HAM, it is critical to achieve accelerated convergence. This method 

involves an auxiliary parameter h  , which facilitate the selection of a convergence area of velocity 

( )0f  , temperature ( )0  , and nanoparticle concentration ( )0 . The auxiliary parameter h  

therefore plays a vital role. In Figs 2-3, the appropriate h–curves are visualized. It is evident that 

approved values of ,fh h  and h  in Figs. 2 and 3 are enforced over the ranges

1.5 0.1, 1.5 0.2fh h−   − −   −  and 1.5 0.3h−   − . The convergence of velocity ( )0f  , 
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temperature ( )0   , and concentration ( )0  are presented in Table 1. It is concluded that 30th 

order HAM estimate is sufficient for ( )0f   and ( )0    whereas the 40th order HAM of estimates 

is adequate for ( )0  respectively. 

 

 

Fig. 2. H– curve influence for ( ) ( )0 , 0f   . 

 

 

Fig. 3. H–curve influence for ( )0 . 

Table 1.  Convergence of HAM resolutions while = 0.1,t b rHa K N N N F S= = = = = = =  

1 2 1 Pr  1.1, 0.2Sc h  = = = = = = . 

Oder of HAM 

approximations 
( )0f −  ( )0−  ( )0−  

1 -1.0119 -0.7803 -0.5089 

10 -1.0075 -0.6744 -0.3257 

20 -1.0072 -0.6732 -0.3290 

30 -1.0073 -0.6737 -0.3270 

40 -1.0073 -0.6737 -0.3274 

50 -1.0073 -0.6737 -0.3274 
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4.RESULTS AND DISCUSSION 

Extensive computations of the HAM solutions have been conducted in symbolic software 

and all graphical visualizations for the influence of the emerging key physical parameters on the 

velocity ( )f  , temperature ( )   and concentration ( )   profiles and additionally the skin 

friction are shown in Figs. 4-22. 

 

 

         Fig. 4. Impact of ( )f   via .K  

 

Fig. 5. Impact of ( )f   via .  

 

    Fig. 6. Impact of ( )f  via .Ha   
 

 

Fig. 7. Impact of ( )f   via rF  



14 
 

Fig. 8. Impact of ( )f  via 1  Fig. 9. Impact of ( )f   via h . 

 

 

Fig. 10. Impact of ( )   via Pr.  

 

Fig. 11. Impact of ( )   via 1.  
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Fig. 12. Impact of ( )   via .tN   

 

Fig. 13. Impact of ( )   via .S   

 

Fig. 14. Impact of ( )   via .Sc  

 

Fig. 15. Impact of ( )   via .tN  

 

Fig. 16. Impact of ( )   via .bN    

 

Fig. 17. Impact of ( )   via 2 .    
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Fig. 18. 

1

2Rex xCf
−

 against .K  

  

Fig. 19. 

1

2Rex xCf
−

 against .rF  

 

 

Fig. 20. 

1

2Rex xCf
−

 against .Ha  

 

 

          Fig. 21. 

1

2Rex xCf
−

 against .N  
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Fig. 22. 

1

2Rex xCf
−

 against .  

In these figures data is extracted to represent as accurately as possible the actual characteristics 

of industrial flows [12, 13, 18].  The default data prescribed is as follows: 𝐹𝑟 = 𝜆 = 𝑁𝑡 = 𝑁𝑏 =

𝑆 = 0.1, 𝑁 = 𝐻𝑎 = 0.1,Pr = 𝑆𝑐 = 1.1, 𝛿1 = 𝛿2 = 𝜆1 = ℎ = 0.2, unless otherwise stated. 

Figs. 4–9  the effects of various physical variables on velocity ( )f   for different values 

of selected parameters e.g. viscoelastic second–grade material parameter K , permeability 

parameter  , modified Hartmann number Ha , local Forchheimer inertia coefficient rF , mixed 

convection parameter 1  , and suction/injection parameter h  are presented. Fig. 4. shows that 

velocity ( )f   increases via progressive increment in K . The second order viscoelastic 

parameter, 𝐾 =
𝛼1𝑐

𝜇
 and is inversely proportional to the dynamic viscosity of the magnetic 

nanopolymer. As K increases viscosity decreases and elastic tensile stresses increase which 

encourages flow acceleration in the boundary layer. This manifests with a strong elevation in 

velocity. K arises in the modified shear terms, +𝐾(2𝑓 ′𝑓‴ − 𝑓″2 − 𝑓𝑓𝑖𝑣) in the momentum 

(velocity) boundary layer Eqn. (8) and clearly exerts a substantial influence on the momentum 

characteristics. For the Newtonian case, K = 0 and clearly velocity is minimized. In all cases 



18 
 

asymptotically smooth distributions (monotonic decays) are computed from the wall to the free 

stream. Increasing viscoelastic parameter implies greater elastic effects in the nanofluid relative to 

viscous effects. Momentum boundary layer thickness is strongly reduced with greater values of K, 

since flow acceleration is induced. The inclusion of a non-Newtonian model is therefore 

demonstrated to produce more realistic results than purely Newtonian models. Fig. 5. shows the 

evolution in velocity field ( )f  through the boundary layer transverse to the vertical stretching 

sheet, with variation in Darcy permeability parameter, 𝜆 =
𝜐

𝐾∗𝑐
. This parameter appears, as 

expected, only in the momentum boundary layer Eqn. (8), via the Darcian linear drag (impedance) 

term,  −(𝜆)𝑓 ′ which is clearly negative and resistive. As −(𝜆 + 𝐻𝑎2)𝑓 ′ increases, the permeability 

decreases, and this increases the Darcian resistance leading to flow deceleration i. e. a decrease in 

velocity magnitudes. For the case 𝜆 = 0, infinite permeability arises i. e. the porous media fibers 

vanish and clearly the flow velocity is a maximum. The damping of the velocity field is clearly 

achieved with lower permeability (greater presence of solid matrix fibers in the porous medium) 

which is a useful mechanism therefore for flow regulation in materials processing. Momentum 

boundary layer thickness is therefore increases, with greater values of Darcy parameter, 𝜆 . Fig. 6. 

depicts the response in velocity ( )f   to a change in modified magnetic parameter, Ha. With 

increasing values of this parameter, the Lorentzian magnetic drag simulated via the term −(𝐻𝑎2)𝑓 ′ 

in Eqn. (8) is enhanced. This decelerates the flow strongly and increases momentum boundary 

layer thickness. Strong damping in the flow is therefore achievable with the imposition of a strong 

transverse magnetic field. This permits the manipulation of smart coating characteristics in 

magnetic polymer materials synthesis operations [12]. The impact of Forchheimer inertial porous 

medium drag parameter, rF on ( )f   profiles is illustrated in Fig. 7. Increment in Forchheimer 

parameter induces a strong decrease in ( )f   , and an associated elevation in momentum 

boundary layer thickness. Inertial drag therefore has a strong dampening effect on the boundary 

layer flow. When Fr = 0 the Darcy case is retrieved and inertial effects are negated. Effectively 

therefore while the flow percolates in the porous medium at Reynolds numbers above the Darcy 

limit, the net effect of Forchheimer quadratic drag, −(1 + 𝐹𝑟)𝑓 ′2 is to decelerate the flow. Fig. 8. 

illustrates the influence of mixed convection parameter,  1  on velocity ( )f  . For this graph, the 

data prescribed i.e.  0.1,t b rHa K N N S N F= = = = = = = = Pr 1.1,Sc= = 1 2 0.2h = = =  
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implies weak magnetic field and Darcy and Forchheimer impedance are also relatively weak. 

Distinct from the Darcy, Lorentz magnetic and Forchheimer inertial body forces, the thermal and 

species buoyancy forces, as simulated via the coupling term, +𝜆1(𝜃 + 𝑁𝜙) in the momentum Eqn. 

(8) are assistive i. e. they aid in momentum development.   Velocity ( )f  therefore rises with 

increment in 1  since higher values of 1  correspond to the greater thermal buoyancy force (relative 

to the species buoyancy force) which energizes the boundary layer via thermal convection currents. 

Momentum (hydrodynamic) boundary layer thickness is therefore decreased with greater mixed 

convection parameter values. Fig. 9. displays the impact of suction/injection parameters on the 

non–dimensional linear velocity ( )f   and in this plot the data prescribed is 

= 0.1,  Pr  1.1,t b rHa K N N N F S Sc= = = = = = = = = = 0.1,Ha K= 1 2 1 0.2  = = = . It is 

noted that with increasing suction ( )0h   decreases, the fluid velocity ( )f   is also reduced, 

since lateral mass flux via the permeable wall out of the boundary layer causes adhesion of the 

boundary layer to the sheet and destroys momentum. Momentum boundary layer thickness is 

therefore increased with greater wall suction. On the other hand, the velocity ( )f   increases 

with increment in injection parameter ( )0h  , since blowing mass via the wall assist momentum 

and leads to a thinner momentum boundary layer thickness (flow acceleration). 

Figs. 10–13 visualize the impacts of Prandtl number Pr ,  thermal relaxation variable 
1 , 

thermophoresis variable tN  and heat generation / absorption parameter S  on the temperature 

( )  . Increment in Pr  reduces strongly the values of ( )   as exposed in Fig. 10. Data has been 

extracted from [13].  Thermal boundary layer thickness is therefore also reduced with greater 

values of Pr . Prandtl number expresses the relative rate of momentum and thermal diffusion. 

When Pr = 1 both momentum and heat diffuse at the same rate. For Pr > 1 momentum diffuses 

faster than heat and vice versa for Pr <1. With increment in Pr , thermal diffusivity is weaker, and 

the thermal conductivity is also reduced of the magnetic nanofluid. This decreases the rate of 

thermal diffusion in the liquid and induces a cooling effect via a decrease in temperatures in the 

boundary layer. Generally, it is observed that higher Pr  produces lower temperatures throughout 

the regime whereas lower Pr generates higher temperatures. The influence of non-Fourier thermal 
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relaxation parameter, 1  on  ( )   is depicted in Figure 11, for which the data prescribed is 

tHa K N= = =  0.1,b rN N F S= = = = = 2 1 Pr  1.1, 0.2Sc h = = = = = . It is perceived that the 

temperature ( )   is reduced with increasing thermal relaxation 1 . Thermal boundary layer 

thickness is therefore decreased. The implication is that a classical Fourier model (for which 1  = 

0 and therefore the non-Fourier terms, 𝑷𝒓 𝑆 𝛿1𝑓𝜃′ + 𝑷𝒓 𝛿1 (−𝑓𝑓 ′𝜃′ − 𝑓2𝜃″ − 2𝑁𝑡𝑓𝜃′𝜃″ −

𝑁𝑏𝑓𝜃′𝜙″ − 𝑁𝑏𝑓𝜃″𝜙′) in Eqn. (9) would vanish) over-predicts the temperatures. To achieve more 

accurate results the non-Fourier model is required, and temperatures predicted are lower with 

stronger thermal relaxation effects. Larger relaxation time implies that the liquid needs more time 

to transport heat to neighboring elements and this delay manifests in temperature decay i. e. ( ) 

decay and an associated decrease in thermal boundary layer thickness. Fig. 12. exhibits the 

influence of tN
 

on ( )  , for 0.1,b rHa K N S N F= = = = = = =  

1 2 1Pr 1.1, 0.2Sc h  = = = = = =  are fixed. It is evident that with increment in tN  there is a 

substantial boost in ( )  . The thermophoresis force is amplified with enhancement in tN  which 

corresponds to more intensive migration of nanoparticles from the hot zones in the boundary layer 

to cold zones. This migration of nanoparticles generates thermal energy transfer which heats the 

regime and increases thermal boundary layer thickness. Fig. 13 shows the influence of the heat 

source/sink parameter S  on ( )  . It should be remarked that with greater values of 0S   (more 

intense heat generation such as in a hotspot in materials coating), ( )   and thermal boundary 

layer upsurge, whereas the reverse effect is induced for 0S   (heat sink in which heat is drained 

from the coating material and leads to cooling). Clearly it is possible to manipulate temperatures 

significantly with a heat source/sink. Againm in all Figs. 10-13, smooth distributions are computed 

in the free stream (all plots are monotonic decays from the wall) and this confirms that an 

adequately large infinity boundary condition has been used in the homotopy computations.  

Figs. 14–17 visualize the effects of Schmidt number Sc , thermophoresis variable tN , 

Brownian motion variable bN  and concentration (non-Fickian solutal) relaxation factor 2 on 

nanoparticles species concentration, ( )  . The impact of Sc  verses ( )  is exhibited in Fig 
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14.  Here  ( )   decreases for greater values of Sc  (the other parameters are prescribed as  

0.1,t b rHa K N N N F S= = = = = = = = 1 2 1Pr 1.1, 0.2h  = = = = = ). Schmidt number 

expresses the relative rate of momentum diffusion and species (nanoparticle) diffusion. It also 

embodies the ratio of velocity and species boundary layer thicknesses. Data is extracted from [13] 

to represent actual species diffusion in viscoelastic nanofluids in materials processing. Physically, 

an increment in Sc  corresponds to a reduction in molecular diffusivity of the nanoparticles- this 

results in a decline in magnitudes of concentration, ( )  . Concentration boundary layer thickness 

is therefore also reduced. Figs. 15 and 16 illustrate the impact of tN  and bN stimulus on ( )  . 

When  tN  is increased, an enhancement is seen in ( )  , while opposite trend is seen for bN . 

Greater thermophoretic body force encourages migration of nanoparticles from the hot regions to 

the colder regions under a temperature gradient. This enhances species diffusion and elevates 

concentration boundary layer thickness (Fig. 15). However greater Brownian motion relates to the 

intensification in ballistic collisions of nanoparticles due to a reduction in the size of nanoparticles 

[14]. Species diffusion is therefore inhibited with greater random motion and the concentration 

boundary layer thickness is reduced. These trends have been confirmed in numerous other studies 

including [15], [18] and [19] i. e. the influence of thermophoresis and Brownian motion are 

opposite on the nanoparticle species concentration field. The evolution in concentration, ( ) 

with non-Fickian concentration relaxation variable 2  are captured in Figs. 17. An enhancement 

in 2  produce smaller ( )  with fixed values of all other physical parameters 

0.1,t b rHa K N N N F S= = = = = = = = 1 1Pr 1.1, 0.2Sc h = = = = = . This is particularly 

pronounced at intermediate distances from the wall (stretching sheet). A delay in the diffusion of 

nanoparticle species is incurred with greater solutal relaxation effect. This produces lower values 

of concentration compared with the conventional Fickian species diffusion model which over-

predicts concentration magnitudes. Concentration boundary layer thickness is therefore also 

depleted with increasing solutal relaxation effect. Again, similar observations have been reported 

in many other studies including [31] and [32], confirming the validity of the present homotopy 

simulations.  
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Finally, Figs. 18–22 illustrate the variation of wall skin friction coefficient (dimensionless 

shear stress at the permeable stretching sheet surface) i.e. ( ) ( )
1

2Re 1 3 0 ,fx xC K f
−

= + plotted 

against mixed convection parameter, 𝜆1 =
𝐺𝑟𝑥

𝑹𝒆𝑥
2   for some selected parameters. Magnitude of skin 

friction coefficient is elevated with increase in local inertia coefficient rF  (Fig. 19), enhanced with 

greater magnetic number, Ha  (Fig. 20) and also greatly boosted with increase in Darcy 

permeability parameter (Fig. 22). However, skin friction coefficient is strongly reduced with 

increment in viscoelastic material parameter K  (Fig. 18) and also ratio of concentration to thermal 

buoyancy force, N . 

 

5. CONCLUSIONS  

Inspired by novel developments in electroconductive polymeric coating flows, in the present 

article, a novel mathematical model has been developed for mixed convection hydromagnetic flow 

of electrically conducting viscoelastic nanofluid from a vertical permeable stretching sheet in a 

non-Darcy porous medium with the Cattaneo–Christov double diffusion model (thermal and 

solutal relaxation effects). Heat absorption/generation has been included and the Buongiorno two-

component nanoscale model employed. A Darcy-Forchheimer drag force model has been 

implemented for the porous medium and the Reiner-Rivlin differential second grade model for 

non-Newtonian characteristics (relaxation and retardation). The novelty of the work is the 

simultaneous inclusion of all these multiple effects which are relevant to rheological nanomaterials 

processing and also the deployment of homotopy analysis as an alternative to conventional 

numerical methods such as finite differences, finite elements and MATLAB solvers. Via 

appropriate dimensionless similarity variables, the non–linear dimensional partial differential 

conservation equations for momentum, energy and concentration with associated boundary 

conditions have been transformed into a non–linear dimensionless ordinary differential boundary 

value problem. The homotopy analysis method (HAM) has been employed to solve the boundary 

value problem. The main findings of the present analysis may be summarized as follows:  

(i) Velocity ( )f   is elevated (and momentum boundary layer thickness decreased) with 

increasing mixed convection parameter 1  whereas velocity is depleted (and momentum 

boundary layer thickness is increased) with greater Darcy permeability parameter . 



23 
 

(ii) Velocity ( )f   is boosted (and momentum boundary layer thickness depleted) with 

greater second order viscoelastic (non-Newtonian) parameter K  whereas velocity is 

decreased (and momentum boundary layer thickness is elevated) with increment in the 

Forchheimer inertial drag parameter, rF .   

(iii) The wall temperature ( )  and thermal boundary layer thickness are reduced with 

increasing non-Fourier thermal relaxation parameter, 1 .  

(iv) Temperature ( )  is enhanced (as is thermal boundary layer thickness) with greater heat 

generation ( 0S  ) whereas the converse effects are computed with greater heat absorption 

( 0S  ).  

(v) Nanoparticle concentration ( )  is elevated as is species boundary layer thickness with 

increment in thermophoresis parameter ( tN ) whereas the opposite behaviour is observed 

with an increment in Brownian motion parameter ( bN ).  

(vi) Nanoparticle concentration ( )  and species boundary layer thickness are decreased with 

greater values of non-Fickian solutal relaxation parameter, 2 .  

(vii) Magnitude of skin friction coefficient is boosted with increase in local inertia coefficient 

rF , magnetic number, Ha  and Darcy permeability parameter. 

(viii) Skin friction coefficient is strongly depleted with increment in viscoelastic material 

parameter K  and also ratio of concentration to thermal buoyancy force, N . 

(ix) Homotopy analysis method (HAM) provides an excellent semi-numerical approach for 

studying nonlinear magnetic nanopolymer coating flows.  

 

The present study has ignored magnetic induction effects which arise at higher values of magnetic 

Reynolds number. These may be considered in future simulations [39]. Furthermore, alternative 

non-Newtonian nanofluid formulations may be examined including Williamson nanofluids [40], 

Carreau nanofluids [41] and Stokes polar couple stress nanofluids [42, 43] these will be explored 

imminently.  
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