
COORDINATION OF DEVELOPMENT AND
OPERATIONS ACTIVITIES IN AGILE

SOFTWARE DEVELOPMENT

Ruth W. Macarthy

UNIVERSITY OF SALFORD

SCHOOL OF COMPUTING, SCIENCE AND ENGINEERING

JANUARY 26, 2023

This document is toward the degree of Doctor of Philosophy

Contents

1 Introduction 1

1.1 Problem Context . 1

1.2 Research Motivation . 3

1.3 Aim, Objectives and Research Questions 3

1.3.1 Aim . 3

1.3.2 Objectives . 4

1.3.3 Research Questions . 4

1.4 Research Contribution . 6

1.5 List of Publication . 7

1.6 Structure of Thesis . 7

2 Literature review 9

2.1 Introduction . 9

i

2.2 Software Development Methodologies – Coordination Strategies
for Development Activities . 10

2.2.1 Socio-Technical Nature of Software Development 10

2.2.2 Agile Software Development 11

2.2.2.1 Scrum . 13

2.2.2.2 Extreme Programming 13

2.2.2.3 Lean Software Development 14

2.2.2.4 Kanban . 15

2.2.2.5 Dynamic Software Development Method (Dy-
namic System Development Method (DSDM)) . 15

2.2.2.6 Agile Roles 16

2.2.2.7 Agile Ceremonies 16

2.2.2.8 Agile Artefacts 16

2.2.3 Continuous Integration - an Emerging Software Develop-
ment Practice . 17

2.3 Tailoring Software Development Practices 18

2.3.1 Method Engineering . 19

2.3.2 Situational Method Engineering 20

2.4 Information Technology (IT) Operations 26

2.4.1 Continuous Delivery - an Emerging IT Operation Practice 27

ii

2.5 Coordination of Work between Development and IT Operations in
Software Development . 28

2.6 DevOps – A Development-to-Deployment Coordination Strategy . 30

2.6.1 The Nature of DevOps 32

2.6.2 The Impact of DevOps 34

2.7 Tailoring in DevOps Implementation 35

2.8 Summary . 39

3 Research Design 40

3.1 Introduction . 40

3.2 Research Model . 41

3.2.1 Research Philosophy . 41

3.2.2 Research Logic . 42

3.2.3 Methodological Choice 43

3.2.4 Research Strategy . 43

3.2.5 Research Time Horizons 45

3.3 Research Purpose and Research Outcome 45

3.4 Research Approach . 46

3.5 Phase 1 - Exploring DevOps Implementation in Practice 48

3.5.1 Research Sites . 49

iii

3.5.2 Data collection . 50

3.5.2.1 Recruiting Participants 50

3.5.2.2 Data Transcription 52

3.5.3 Data Analysis: Based on Grounded Theory 52

3.5.3.1 Open Coding 53

3.5.3.2 Constant Comparison Method 54

3.5.3.3 Memoing and Sorting 55

3.5.3.4 Saturation . 56

3.6 Phase 2 - DevOps Implementation strategies and Elements of
influence . 58

3.6.1 Research Sites . 58

3.6.2 Data collection - Theoretical Sampling 59

3.6.2.1 Recruiting Participants 59

3.6.2.2 Data Transcription 60

3.6.3 Data Analysis: Based on Grounded Theory 60

3.6.3.1 Open Coding 60

3.6.3.2 Constant Comparison Method 60

3.6.3.3 Memoing and Sorting 61

3.7 Phase 3 . 62

iv

3.7.1 Model Creation Process 62

3.8 Model Evaluation . 62

3.8.1 Evaluation Site . 62

3.8.2 Model Evaluation Structure 63

3.9 Pre-Workshop Engagement with DevCo9 63

4 Taxonomy of DevOps Implementation in Practice, Benefits, and Chal-
lenges 65

4.1 Introduction . 65

4.2 Description of DevOps . 66

4.2.1 DevOps as a Culture . 66

4.2.2 DevOps as a Job Description 67

4.3 Approaches to DevOps . 68

4.3.1 Developers-Ops mode 68

4.3.2 Developers-Outsourced Ops mode 69

4.3.3 Developers-DevOps mode 69

4.3.4 DevOps bridge team mode 70

4.4 Taxonomy of DevOps approaches 72

4.5 DevOps Teams’ Responsibilities 73

4.5.1 Boundaries of Responsibilities 74

v

4.6 DevOps Practices . 79

4.6.1 Continuous Integration, Continuous Delivery (CI/CD), and
Tooling . 79

4.6.2 Collaboration and Knowledge Sharing 80

4.7 Benefits of DevOps Adoption . 81

4.7.1 Improved delivery speed and more frequent releases . . . 81

4.7.2 Better Collaboration . 81

4.7.3 Software Quality improvement 82

4.7.4 Faster feedback Loop . 82

4.7.5 Reliability and Repeatability of Deployments 82

4.8 Challenges of DevOps Adoption 82

4.8.1 Unclear Definition . 82

4.8.2 Changing Technology stack 83

4.8.3 Undefined and complex skillset 83

4.8.4 Determination of Appropriate DevOps infrastructure Plat-
form . 84

4.8.5 Resistance to change . 84

4.8.6 Requirement changes . 84

4.8.7 Provisioning hardware in on-premises platforms 85

vi

4.8.8 Unidentified Dependencies 85

4.8.9 Poor Code Quality . 85

4.9 Summary . 85

5 Strategies for DevOps Implementation: The Roles of Skillset and
Automation 87

5.1 Introduction . 87

5.2 Diagnostic Assessment . 88

5.3 Strategies For DevOps Implementation 89

5.3.1 Platform Strategy . 89

5.3.1.1 Platform Infrastructure Engineering 90

5.3.1.2 Required Skillset and Capabilities 91

5.3.2 Greenfield Application Strategy 92

5.3.2.1 Considerations of Greenfield Application Strategy 93

5.3.2.2 Required Skillset and Capabilities 93

5.3.3 Monolithic Decomposition 94

5.3.3.1 Considerations for Monolithic Decomposition . 95

5.3.3.2 Required Skillset and Capabilities 96

5.3.4 Process Improvement . 97

5.3.5 Cultural Improvement 99

vii

5.3.6 Advocacy . 101

5.3.6.1 Considerations for Advocacy Strategy 103

5.4 Skillset And DevOps Implementation Strategies 103

5.4.1 Individual Technical Skills Acquisition 104

5.4.2 Organisational Staff Training 105

5.5 Automation In DevOps Implementation Strategies 106

5.5.1 Data Migration . 107

5.5.2 Infrastructure Provisioning 107

5.5.3 Configuration Management 108

5.5.4 Test automation . 108

5.6 Summary . 109

6 DevOps Strategy Determination Model Creation 110

6.1 Introduction . 110

6.2 An Examination of the role of Skillset in DevOps Strategies . . . 110

6.3 An Examination of the role of Automation in DevOps Strategies . 112

6.4 Theories Generated from Data Analysis 112

6.5 Devops Strategy Determination Model Creation 113

6.5.1 Similarities between DevOps Strategies and Method Engi-
neering . 114

viii

6.6 Introducing SIDSEM – A Situational DevOps Strategy Engineer-
ing Model . 115

6.7 Component parts of Proposed model 116

6.7.1 Strategy Administration and Strategy Base 117

6.7.2 Selection and Assembly of Strategy Fragments 120

6.7.2.1 Project environment and characterisation 122

6.7.2.2 Selecting appropriate strategy fragments 123

6.7.2.3 Assembling selected fragments 123

6.7.3 Process Automation . 125

6.7.3.1 Automation candidate selection 126

6.7.3.2 Process Automation Guidelines 126

6.7.4 Metrics Collection/Continuous Improvement 127

6.8 Summary . 127

7 DevOps Strategy Engineering Model Evaluation 129

7.1 Introduction . 129

7.2 SIDSEM Focus Group Workshop with DevCo9 130

7.3 Focus Group Workshop Findings 130

7.3.1 Pattern OF Work Coordination 132

7.3.2 Project Characterisation 132

ix

7.3.3 Automation . 133

7.3.4 Metrics and Continuous Measurement 134

7.4 Discussion on the model: Focus Group View 134

7.4.1 Relatability . 134

7.4.2 Suitability . 135

7.4.3 Clarity . 135

7.5 Call to action: Model implementation Recommendations 136

7.6 Focus Group Suggestion: Model Artefact Repository 137

7.7 Practical Instantiation of the DevOps Strategy Model – SIDSEM . 138

7.7.1 Repository Structure . 139

7.7.2 Strategy Base . 139

7.7.3 Project Structure . 140

7.7.4 Strategy Selection and Assembly 140

7.7.5 Process Automation . 141

7.7.6 Metrics Collection and Knowledge-sharing 142

8 Discussion 143

8.1 Introduction . 143

8.2 Answering Research Questions (RQs) 143

x

8.2.1 RQ1: How do practitioners describe and implement De-
vOps in practice? . 144

8.2.1.1 RQ1a - What are practitioners’ perceptions of
DevOps definition and description? 144

8.2.1.2 RQ1b - How are DevOps functions different
from IT Operations and development teams’
functions? . 145

8.2.1.3 RQ1c: How is DevOps implemented in practice? 145

8.2.1.4 RQ1d: What strategies are employed in DevOps
implementation? 146

8.2.2 Research Question 2: “How can organisations tailor De-
vOps implementation to suit their organisational context?” 149

8.2.2.1 RQ2a - What elements influence the approach
taken by organisations to implement DevOps? . 149

8.2.2.2 RQ2b: How can DevOps implementation be
tailored to suit on organisational context? 150

8.3 Contribution to Theory . 152

8.4 Contribution to Practice . 153

8.5 Limitations of the Study . 154

8.5.1 Confirmability . 154

8.5.2 Dependability . 155

8.5.3 Internal Consistency . 155

xi

8.5.4 Transferability . 155

9 Conclusion 156

9.1 Summary of Thesis . 156

9.2 Reflection . 159

9.3 Future Work . 161

References 162

A Ethics Approval 182

B Interview Guide 185

C Consent Form 190

D Participant Information Sheet 193

E Interview Transcript Sample 198

F Participants’ Description 216

F.1 Phase 1 participants . 216

F.2 Phase 2 participants . 218

xii

List of Figures

2.1 The configuration process for SME 22

2.2 SME construction . 23

2.3 ISO Model . 25

3.1 Adapted Research Onion (Saunders et al., 2019) 41

3.2 Classification of the research . 47

3.3 Summary of Research Phases . 48

3.4 Open coding process . 53

3.5 Data analysis steps . 54

3.6 Constant Comparison process . 54

3.7 Data analysis steps . 55

3.8 Memo Generation process . 56

3.9 Data analysis steps . 56

3.10 Data analysis steps . 57

xiii

3.11 Phase 1 research methodology 57

3.12 Diagnostic assessment memo generation 61

3.13 Organisational DevOps Strategies memo generation 61

3.14 DevOps strategies memo generation 61

3.15 Model creation process . 62

3.16 Model evaluation process . 64

4.1 Developers-Ops mode . 68

4.2 Developers-Outsourced Ops mode 69

4.3 Developers-DevOps mode . 69

4.4 DevOps bridge team mode . 70

4.5 Taxonomy of DevOps approaches 72

4.6 Responsibilities in Developers-Ops Mode 74

4.7 Responsibilities in Developers-Outsourced Ops Mode 75

4.8 Responsibilities in Developers-DevOps Mode 76

4.9 Responsibilities in DevOps Bridge Mode 78

4.10 CI/CD Pipeline . 79

6.1 Methods in DevOps Strategies 113

6.2 SIDSEM – A Situational DevOps Strategy Engineering Model . . 117

xiv

6.3 Model Component Parts . 118

6.4 Process-focused meta-model . 120

6.5 Product-focused meta-model . 122

6.6 Situational Factors - adapted (Clarke & O’Connor, 2012; of Gov-
ernment Commerce, 2002; Slama et al., 2015; Firesmith & Henderson-
Sellers, 2002; Kornyshova et al., 2007; Kalus & Kuhrmann, 2013;
Giray & Tekinerdogan, 2018) . 124

6.7 Project Characterisation . 125

7.1 SIDSEM evaluation engagement with DevCo9 131

7.2 DevOps Implementation Path . 136

7.3 Repository structure . 139

7.4 Strategy base . 140

7.5 Project structure . 141

7.7 Process automation . 141

7.6 Project structure . 142

7.8 Metrics Collection . 142

8.1 DevOps Implementation Path . 147

xv

List of Tables

2.1 SME notions(Aydin, 2007) . 26

3.1 Description of organisations in Phase I of the study 50

3.2 Description of Participants - Phase 1 51

3.3 Participants’ description . 59

4.1 DevOps implementation approaches in the study 71

4.2 Difference between developers, DevOps and IT Ops 77

6.1 Product fragment . 121

6.2 Process fragment . 123

xvi

Acronyms

CD Continuous Delivery

CI Continuous Integration

DSDM Dynamic System Development Method

IS Information Systems

ISD Information Systems Development

ISO International Organisation for Standardisation

IT Information Technology

OMG Object Management Group

Ops Operations

SC Situational Characteristics

SFIA Skills Framework for the Information Age

SME Situational Method Engineering

WIP Work in Progress

XP eXtreme Programming

xvii

Dedication

Memory is the treasury and guardian of all things - Marcus Tullius Cicero

This thesis is dedicated to the memories of my dear Father-in-law, Chief. (Engr)
Osuonuokpenen Emmanuel Macarthy (JP), my sweet grandmother, Mrs. Obioma
Fred Egbo, my aunt, Madam Mercy Fred Egbo (Ingilaye) and my gentle-spirited
friend, Joyce Ishikaku Iwugo, who all passed on during my study. May their souls
rest in peace.

xviii

Acknowledgement

Amen: Blessing, and glory, and wisdom, and thanksgiving, and honour, and power,

and might, be unto our God for ever and ever. Amen – Revelation 7:12

My deepest thanks to my husband Motese Emmanuel Macarthy, for being a study
mate and no.1 supporter; my loving parents, Pastor Dandy S. and Mrs Stella
Mac’Odo, for their unwavering trust in me - supporting all my endeavours (no
matter how daring or small); my siblings: Seiya, Tonye, Daniel, Tutumola, Tari,
and Owebi for the many ways you cheered me on through this study.

I thank the Petroleum Technology Development Fund (PTDF) for the opportunity
to carry out this research and the immense support through the journey.

My profound gratitude to my supervisor Prof. Julian Bass for providing inspiration
and guidance, challenging me to be my best, showing unlimited patience, trusting
my ideas, and supporting me through the trying times of the study. I wholeheartedly
thank Dr. Tarek Gaber, my second supervisor, for his unconditional support.

My sincere thanks to all those who supported me through this process; friends,
colleagues, peer reviewers, IA and IE assessors, examiners, practitioners who
contributed to this study. I am most grateful.

xix

DECLARATION OF ORIGINALITY

I hereby declare that work presented in this thesis is original and the outcome of a
PhD research carried out by me.

I certify that, to the best of my knowledge, this thesis is consistent with copyright
requirements. All views, techniques, and quotations used from other studies have
been fully acknowledged with references. This thesis has not been previously
submitted for the award of any academic degree at the University of Salford or any
other university.

I further declare that I have dedicated full time to carry out this research under
the guidance of my supervisor and in line with the regulation of the University of
Salford.

Ruth Wakeni Macarthy

xx

ABSTRACT

DevOps is described as a software engineering culture and philosophy that utilises
cross-functional teams, to build test and release software faster and more reliably
through automation. As an emerging concept, its definitions and best practices are
still ambiguous. However, interest in DevOps and its adoption continue to rise sig-
nificantly among industry practitioners. The unclear nature of the concept presents
organisations with a wide range of unstructured choices, and few guidelines to
navigate through a plethora of valuable information. To contribute to understanding
of the subject and to a more structured implementation, this study employs a mixed
method qualitative approach to investigates the practice of DevOps in four phases.

Phase one investigates the perceptions of DevOps and its associated practices,
based on interviews with 11 industry practitioners across nine organisations. Phase
2 critically examines the DevOps implementation through interviews with 14
practitioners who lead DevOps transformation in their respective organisations. In
both phases, transcripts of interviews were coded and analysed using a method
informed by grounded theory.

The first phase identifies four different modes of DevOps implementation. A novel
taxonomy is presented, which maps the approaches to cloud and on-premises
deployment environments. In phase 2, six strategies of DevOps implementation
were identified and uniquely characterised, with a critical examination of the roles
of skillset and automation in the strategies. A combination of literature and theories
generated from our data analysis led to the extension of an existing situational
method engineering model, to create a novel model for DevOps implementation in
phase three.

The model is evaluated by engaging with expert practitioners in a Focus Group
workshop. The evaluation shows that the model provides clarity and better un-
derstanding DevOps implementation to practitioners. Arising from the workshop,
a physical instantiation of the model was created in a repository. This version-
controlled repository provides practitioners with the opportunity to collaboratively

xxi

xxii

determine their DevOps strategy and keep track of the improvement journey.

This thesis concludes that organisations can implement DevOps in a structured and
well-informed manner following the guidelines provided by our model.

Chapter 1

Introduction

1.1 Problem Context

The software industry is driven by the need for faster deployment of quality prod-
ucts. As software development is a complex socio-technical process, its delivery
is dependent on the collaborative effort of people and teams with various skill
sets and levels of expertise (Sharp & Robinson, 2008; Dingsøyr et al., 2012).
Sydow et al. (2004) described the integration of such teams, to work as a unified
whole, as coordination. Inter-dependencies that require synchronisation, feedback,
information-sharing, and conflict resolution demand optimal management of activ-
ities in software development. According to Rodrigues et al. (2020); Van de Ven et
al. (1976) effective coordination drives productivity. The pursuit of this goal of ‘co-
ordination’ has necessitated the evolution of software development methodologies
from the waterfall model to various forms of agile methods in recent times, along
with associated practices. This continuous evolution is aimed at optimal service
delivery. Organisations in the software development industry strive to keep up to
date with these changes to maintain or increase market shares, optimise profit, and
meet ever-growing customers’ expectations. One of such emerging concepts is
DevOps (Development and Operations).

1

CHAPTER 1. INTRODUCTION 2

DevOps is described as “a set of practices that advocate the collaboration between
software developers and IT operations where the aim is to shorten the feedback loop
while aligning the goals of both the development and IT operations departments”
(Hüttermann, 2012). The concept is centred around aligning the goals of previously
siloed teams and extending agile practices to IT operations activities. The strategy
promises benefits such as faster delivery, improved quality and security, and better
collaboration. Global giants like Spotify, Amazon, Netflix, LinkedIn, and Google
have adopted DevOps and reported improved software delivery (Erich et al., 2017;
Dı́az et al., 2018; Wiedemann et al., 2019). Transitioning to DevOps may not be
an easy task for organisations (Gill et al., 2018a). Firstly, existing literature claim
that information around the concept and its adoption is still quite unstructured and
scattered (Leite et al., 2019). This is to be expected as it is a developing movement
and there is no accepted definition of DevOps. The scarcity of research around
guidelines for its implementation poses a challenge for organisations seeking
to adopt DevOps, as they must weave through an overwhelmingly diverse body
of information and string together DevOps practices for themselves. Although
work has been done around DevOps adoption, an in-depth investigation into its
implementation in practice is still lacking in literature (Leite et al., 2019).

Tailoring of practices is quite common and encouraged in software development.
Even with well-established methodologies, studies report differing outcomes of
similar tailored methodologies. Ståhl & Bosch (2014) showed how the variant
implementation and interpretation of continuous integration (CI) in practice can
cause a disparity in the realisation of its adoption goals. This perceived variability
agrees with the study by Bass & Haxby (2019), which identified three groups of
activities that must be managed by the product owners in a large-scale software
development (SD) project: scale, distance, and governance. Tailoring DevOps
implementation is even riskier as it is an emerging concept with no consensus on
its definition and its practices.

CHAPTER 1. INTRODUCTION 3

1.2 Research Motivation

Effective coordination of activities and the interrelationship among the actors is key
in software development. In practice, coordination is tailored to suit organisations’
specific needs. As consequence, outcomes from the adoption of similar method-
ologies are mostly unpredictable. According to a DevOps survey, although there
is an increasing interest in research into DevOps, subjects such as the pathway to
implementation and organisational factors influencing such decisions are still less
studied than investigations into its nature and value derived from its adoption (Leite
et al., 2019). In their work, Leite et al. (2019) stated that while engineers need to
learn how to re-engineer their systems and qualify themselves for DevOps-related
positions, managers seek to know how to introduce DevOps to their organisations
and how to assess the quality of already adopted DevOps practice. Luz et al.
(2019) claim that “It is still unclear how one could leverage such rich, yet scattered,
information in an organised and structured way to properly adopt DevOps.” This
stance agrees with Gill et al. (2018b) insistence on “a need for clear understanding
and guidelines to support effective DevOps adoption for ISs”

The forgoing motivates this research to identify existing patterns of work coordi-
nation in software development, investigate the factors driving such patterns, and
develop a model to guide DevOps implementation. I believe this would contribute
to the understanding of tailoring DevOps and improve the chances for its successful
implementation.

1.3 Aim, Objectives and Research Questions

1.3.1 Aim

This research aims to investigate the patterns of work coordination between de-
velopment and operations activities in organisations and propose a model for a

CHAPTER 1. INTRODUCTION 4

structured DevOps implementation. For this study, the term “development” is
used to describe the activities required to create an application from designing,
programming, documenting, and testing, to bug fixing to meet users’ needs. Opera-
tions describe activities involving the deployment, performance monitoring, and
management of software applications.

1.3.2 Objectives

This study attempts to investigate work coordination between development and
operations teams, and factors that influence the approaches taken by organisation
by:

1. Identifying approaches and strategies used to achieve work coordination in
DevOps

2. Investigating the elements that influence the approach to DevOps implemen-
tation taken by organisations in the study.

3. Developing and evaluating an adaptive model to guide successful DevOps
implementation, based on the identified relationships between the “elements
of influence”, and emerging theories.

1.3.3 Research Questions

The chosen research methodology (Grounded Theory) does not encourage having
preconceived research problems which can cause the research to be influenced by
existing literature (Hoda et al., 2010), but rather allows the emergence of concepts
(Glaser, 1978, 1998). This study chose an investigation into the rationale and
evidence-based decision-making in organisational DevOps implementation, and
the elements of influence as a general area of interest. Two main questions emerged

CHAPTER 1. INTRODUCTION 5

from the investigation for which the research provides answers. The sub-questions
provide finer details to the inquiry. The research aims to answer the questions:

Research Question (RQ)1: “How do practitioners describe and implement De-
vOps in practice?”

• RQ1a: What are practitioners’ perceptions of DevOps definition and descrip-
tion?

• RQ1b: How are DevOps functions different from IT Operations and devel-
opment teams’ functions?

• RQ1c: How is DevOps implemented in practice?

• RQ1d: What strategies are employed in DevOps implementation?

Research Question 2: “How can organisations tailor DevOps implementation to
suit organisational context?”

• RQ2a: What elements influence the approach taken by organisations to
implement DevOps?

• RQ2b: How can DevOps implementation be tailored to suit on organisational
context?

The study is divided into four (4) phases to address the research questions.

Phase 1: Data collection and analysis to understand practitioners’ perception of
DevOps (RQ1a, RQ1b, RQ1c).

Phase 2: Data collection and analysis of DevOps implementation to examine the
strategies employed and the determinants of the strategies (RQ1d, RQ2a).

Phase 3: Development of model based on findings (of phases 1 and 2) and compar-
ison with literature (RQ2b).

CHAPTER 1. INTRODUCTION 6

Phase 4: Model Evaluation.

1.4 Research Contribution

This research is an in-depth study of the approaches to work coordination in agile
software development and the factors of influence. Specifically, the contributions
of the study to knowledge and practice are as follows:

1. At the end of phase 1, I provided an empirical taxonomy of DevOps im-
plementation. This classification describes developers’ interaction with
On-premises IT operations, Outsourced Ops, DevOps teams, and DevOps
bridge teams. The taxonomy is a novel mapping of the identified approaches
to on-premises and cloud-based deployments, and the facilitators of DevOps
practices in the different approaches. Furthermore, I identified three distinct
groups of activities in the fourth mode: provisioning and maintenance of
physical systems, function virtualization and creation of automated pipelines,
and development, deployment, and maintenance of applications, which (I
believe) may have given rise to the implementation of DevOps as bridge
teams.

2. A further investigation into the approaches to DevOps taken by the organi-
sations in the study led to the identification of 6 strategies used by organi-
sations to implement DevOps: Platform, Greenfield Application, Monolith
Decomposition, Process Improvement, Cultural Improvement, and Advo-
cacy. Except for the platform strategy which has previously been explored
in literature, no study was found that identified or investigated the other 5
strategies. Following the guidelines of Grounded Theory, phase 2 culminated
in the theory that a striking correlation exists between the skillset and the
strategy adopted by organisations to implement DevOps.

3. The generation of theories around the factors influencing the determination
of approaches and strategies of DevOps implementation. A comparison

CHAPTER 1. INTRODUCTION 7

of the theories and findings with literature led to the development of an
adaptive model for DevOps implementation in organisations. This model
was evaluated with an expert focus group. Using the model, we assessed
the DevOps implementation of the organisations, identified gaps in their
processes, and recommended actions to further improve their agility. The
practitioners suggested a file structure to document the application of the
model. The study thus concludes with the creation of a repository that reflects
the model and is aimed at enabling a practical implementation of it.

1.5 List of Publication

The following papers are based on findings from this research:

• Macarthy, R. W., and Bass, J. M. (2020). An empirical taxonomy of DevOps
in practice. In 2020 46th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA) (pp. 221-228). IEEE (Macarthy & Bass,
2020)

• Macarthy, R. W., and Bass, J. M. (2021). The Role of Skillset in the Determi-
nation of DevOps implementation Strategy. In 2021 IEEE/ACM Joint 15th
International Conference on Software and System Processes (ICSSP) and
16th ACM/IEEE International Conference on Global Software Engineering
(ICGSE) (pp. 50-60). IEEE (Macarthy & Bass, 2021)

1.6 Structure of Thesis

The rest of this thesis is organised as follows:

Chapter 2 – Literature Review gives an in-depth description of related concepts.
Focused on the coordination of work between development and IT operations

CHAPTER 1. INTRODUCTION 8

teams, the chapter describes agile software methodologies, continuous practices,
tailoring, and the state-of-the-art of DevOps.

Chapter 3: Research Design presents the philosophical stance of the study and
provides a detailed description of the research methodology followed.

Chapter 4: Taxonomy of DevOps Implementation in Practice, Benefits, and
Challenges is a detailed presentation of the finding from phase 1 of this study,
which is exploratory. It provides a thorough examination of practitioners’ percep-
tion of DevOps.

Chapter 5: Strategies for DevOps Implementation. The Roles of Skillset and
Automation describe findings from phase 2. The chapter provides an extensive
investigation of DevOps implementation in organisations and the factors that
influence the strategies and approaches taken.

Chapter 6: Model Creation - This chapter contains the creation process and
description of a situational DevOps strategy engineering model. The model is
based on findings presented in chapters 4 and 5, and literature.

Chapter 7: DevOps Strategy Engineering Model Evaluation is an expert Focus
Group engagement to discuss the model. The chapter serves as an insight into
practitioners’ perceptions and describes the physical instantiation of the model
created based on feedback from the participants.

Chapter 8: Discussion critically explores the study findings and answers the
research questions. The chapter also presents the contribution to theory and
practice. The limitations of the study are also discussed.

Chapter 9: Conclusion gives a concise summary and contributions of the thesis.
A reflection on the entire Ph.D. is also given. The chapter concludes with useful
directions for further research.

Chapter 2

Literature review

2.1 Introduction

The purpose of this chapter is to acquaint the reader with existing literature on
efforts toward software development process improvements. This is evidence that
the study is built on an extensive review of the literature and a good grasp of the
research area, as required of any meaningful research (Boote & Beile, 2005). The
presented literature was retrieved from various databases based on search criteria
such as “software development methods”, “agile methods”, “software development
improvement strategies”, “DevOps”, “work coordination in software development”
etc. The databases include academic materials like books, reports, conference
proceedings, journals, and articles. A rigorous analysis of the literature herein
presented is the foundation of the research gap identification.

The chapter begins with an overview of the socio-technical nature of software
development and methodologies for work coordination of development activities.
Continuous integration is explored next, as an emerging development practice.
Thereafter, the concept of tailoring software development methodologies is investi-
gated, which narrows down to method engineering and then to situational method

9

CHAPTER 2. LITERATURE REVIEW 10

engineering. IT operations and continuous delivery is presented next. Finally, the
coordination of work between development and IT operations is examined, leading
to DevOps as a development to deployment coordination strategy.

2.2 Software Development Methodologies – Coordi-
nation Strategies for Development Activities

The evolution of software development methodologies can be viewed as consequent
on the quest for optimised coordination of work among the actors in the process, and
standardisation. Its continual improvement is aimed at the faster delivery of quality
software. Beecham et al. (2010) describes coordination as specific activities related
to identifying common goals and objectives, agreeing, allocating, and planning
tasks among distributed teams. The complexity of computer-related systems,
however, continues to increase alongside changing technology and requirements
for such systems. Consequently, the degree of unpredictability of the software
development process rises exponentially (Schwaber & Beedle, 2002) pushing the
goalpost of optimised coordination even further away.

2.2.1 Socio-Technical Nature of Software Development

The available literature on improving the process of software development and
delivery is extensive. While some studies have investigated the technological
aspects of the delivery process (Haghighatkhah et al., 2018; Kersten, 2018b,a,c;
Mäkinen et al., 2016; Mårtensson et al., 2018; Shahin et al., 2017; Ståhl et al.,
2017), others examined the processes and social interactions (Ali et al., 2016;
J. Highsmith & Cockburn, 2001; Dennehy & Conboy, 2017; Vlietland & van Vliet,
2015; Hummel et al., 2015). Debois (2008) draws attention to three layers of agile
infrastructure: technical, projects, and operations. He identified the challenges in
these layers and proposed mitigation strategies, one of which is the need to improve

CHAPTER 2. LITERATURE REVIEW 11

collaboration between projects and operations. The Agile Manifesto (Beck et al.,
2001) emphasises the crucial role played by human interactions in software devel-
opment and delivery. The use of tools to improve software development has also
been widely studied. Building on Humble & Farley’s (2010) recommendation of
automation on the software deployment pipeline, Mäkinen et al. (2016) researched
the state of practice in Finnish software companies to investigate the connection
between tooling and continuous delivery. They concluded that organisations with
less manual processes delivered software value faster. Their work is similar to
the study done by Ståhl & Bosch (2013), as both focused on tooling in contin-
uous practices implementation. However, while Ståhl & Bosch (2013) focused
on continuous integration, their study extends to continuous deployment. Also,
Ståhl et al. (2017) pointed out the significance of traceability for the successful
execution of large-scale integration and continuous delivery and presented Eiffel,
a traceability tool (Continuous practices are described later in this chapter). On
the flip side, Kromhout (2017) stated that while tools are important, they do not by
themselves solve complex socio technical challenges like those seen in software
development. They agree with Conway’s law that any system designed by an
organisation will reflect the organisation’s communication structure. The study
emphasises the importance of human communication and interactions of activities
in the software delivery process. In the same vein, the culture of an organisation is
said to be a determinant factor in the extent of its adoption of software development
practices (Leidner & Kayworth, 2006; Fruhling & Tarrell, 2008; Cao et al., 2009).
For instance, Gupta et al. (2019) explained the impact of IT department cultures on
software development practices using the four Competing Values Model (CVM)
cultural constructs: hierarchical, rational, group, and development. They tested the
relationship between the cultural forms and two groups of agile practices: social
and technical.

2.2.2 Agile Software Development

Agile software development is a philosophy of iterative and incremental devel-
opment that has emerged to address the rapidly changing software environment

CHAPTER 2. LITERATURE REVIEW 12

(Schwaber & Beedle, 2002) and manage complexity at the development phases
of software projects (Lei et al., 2017). J. A. Highsmith & Highsmith (2002) de-
scribes it as a socio-technical process that emphasises short-cycled iterative social
interaction among the different individuals and teams involved in the software
development process. Following its advent, variant methodologies such as eXtreme
Programming (XP), Scrum, Kanban, Lean software development, and Dynamic
system development method (DSDM) have emerged, which align with the prin-
ciples of the Agile manifesto (Beck, 2000) on varying levels (Dingsøyr et al.,
2012; Lwakatare et al., 2016). Common themes span these methods like “let
the architecture emerge”, “deliver quickly and often”, “empower team”, “build
for change”, and “frequent customer input stem from the requirement-changing
premise” (Bass, 2016; Dove & Turkington, 2008; Dingsøyr & Lassenius, 2016).
Iteration is also a universal practice for all agile software development approaches.
It “produces a working portion of the final product”(Dybå & Dingsøyr, 2008).This
depiction agrees with similar literature (Boehm & Turner, 2004; Cockburn, 2004;
J. A. Highsmith & Highsmith, 2002). According to the Agile manifesto and some
agile methods, teams should be self-organising and cross-functional(Gutierrez et
al., 2018). (Erickson et al., 2005) define agility as follows:

Agility means to strip away as much of the heaviness, commonly associated with
the traditional software-development methodologies, as possible to promote quick
response to changing environments, changes in user requirements, accelerated
project deadlines, and the like. Previous research has categorised agile practices
into social and technical categories (Chow & Cao, 2008)(McHugh et al., 2011).
Hummel et al. (2015) advocated for the constructs “social agile practices”, which
they define as practices that aid collaboration and social interactions, and “technical
agile practices”, which refers to the coding and test-related activities in software
development. Communication is promoted in Agile methods and is predicated on
the interconnection of activities in the delivery pipeline. Although agile principles
promote the idea of coordination and collaboration, especially between developers
and users (Yu & Petter, 2014), it does not have prescribed methods of achieving it
(Dingsøyr et al., 2012). Also, most of its principles like more frequent delivery are
focused more on development process (Debois, 2008).

CHAPTER 2. LITERATURE REVIEW 13

Scrum, Extreme Programming (XP), Lean software development, and Dynamic
systems development method (DSDM) are described in the following sections.
Agile roles, ceremonies, and artefacts come thereafter. This would pertain mainly
to Scrum and XP, as they are the most widely adopted agile methods (Pikkarainen
et al., 2008).

2.2.2.1 Scrum

Scrum, as described by Schwaber & Beedle (2002), is an approach that employs an
empirical process control model to manage the software development process, and
progressively adapts to changing circumstances. Scrum accentuates the need for
active participation of customers, users, management, and developers in the setting
of goals and evaluation of work at specific intervals to achieve business value at a
faster pace (Schwaber & Beedle, 2002; Vlietland & van Vliet, 2015). Short devel-
opment iterations in Scrum (sprints) enable quick feedback and consequent actions.
Sprints are usually thirty-day (30) time-boxes of specific features development and
delivery. Scrum is said to be a common Agile method in practice (Lei et al., 2017;
Sverrisdottir et al., 2014). Scrum teams are self-organising, cross-functional teams
responsible for the development and delivery of product features (Schwaber, 2004;
Bass, 2014; Lei et al., 2017). The team is enabled by the structure of ceremonies
and artefacts. Scrum of Scrums describes a team of the leaders of other Scrum
teams.

2.2.2.2 Extreme Programming

Beck (2000) describes Extreme Programming (eXtreme Programming (XP)) as
“an attempt to reconcile humanity and productivity” and a “social change” that
encourages goal-oriented team spirit with its values, principles and practices.
They assert that these make XP highly adaptable to the complexity and changes
associated with software development. XP seeks to optimise software development
at a lower cost, with reduced defects and higher return on investment by prescribing

CHAPTER 2. LITERATURE REVIEW 14

best practices for software development. Iyawa et al. (2016) claim that a deep level
of interaction between customers and software developers is enabled by XP.

One of XP’s most prominent practices is pair programming. Proponents of pair
programming assert that it improves code quality (Beck, 2000). Meyer (2018)
however claims that “that pair programming has no significant advantage or disad-
vantage compared to other techniques such as code inspection.” He suggests that
it be used on occasion. Other practices are test-first programming, whole team,
continuous integration, ten-minute build, incremental deployment, etc.

2.2.2.3 Lean Software Development

Lean software development (Poppendieck & Poppendieck, 2003) is an adaptation
of Lean thinking in manufacturing (Ohno, 1988), from which the principles of
waste elimination, learning amplification, deferring commitment, delivering as
fast as possible, team empowerment, building integrity, and see the whole were
derived. The focus of this approach is value creation for the customer, providing
quality codes and minimal cost (Yadav et al., 2018). Therefore, any effort that
will not be paid for by the customer is considered a waste. The authors translated
software waste to be: partially done work, extra processes, extra features, task
switching, waiting, motion and defects. To amplify learning and build in integrity,
Poppendieck & Poppendieck (2003) advocates for five actions: variability in
development in the creation of appropriate solutions, short repeated development
cycles, early feedback, iteration, and refactoring. Lean suggests an iteration that is
time-bound, long enough to support meaningful value to the customer, and provide
frequent feedback to the team. Like most agile methods, Lean advocates common
ownership of code to facilitate synchronisation. Value stream mapping is used
in Lean software development to provide insight into the internal working of the
process/system and expose waste. The approach has also been employed in other
investigations (Mujtaba et al., 2010).

CHAPTER 2. LITERATURE REVIEW 15

2.2.2.4 Kanban

The Kanban software development approach is founded on the just-in-time philoso-
phy. Kanban specifies what work is to be done at specific times by prioritising tasks,
defining workflows, and lead time to delivery (Anderson, 2010). This approach
centres on the use of a Kanban board to keep track of the progress of tasks and
identify bottlenecks in the development process. The basic principles of Kanban
are limit work in progress (Work in Progress (WIP)), pull value through the devel-
opment process, process visibility, fixed backlog, and embedded. Kanban promises
benefits like planning flexibility, shortened time cycles due to practices like code
review and mentoring, visual metrics (use of control charts, and cumulative flow
diagrams to track work efficiency (Abrahamsson et al., 2009; Dybå & Dingsøyr,
2008). Anderson (2010) stated that “Kanban has been shown to improve customer
satisfaction through regular, dependable, high-quality releases of valuable soft-
ware”. Although there are no explicit artefacts in Kanban methodology, backlogs,
graphs, reports, and the Kanban cards are resultant artefacts of the method. Unlike
Scrum, Kanban has no fixed sprints or cycle time and there are no defined roles
or ceremonies. Kanban and Continuous Delivery complement each other as both
focus on just-in-time value delivery(Lei et al., 2017).

2.2.2.5 Dynamic Software Development Method (Dynamic System Develop-
ment Method (DSDM))

DSDM is described as an interactive and incremental agile framework for project
delivery. The approach divides projects into three phases: pre-project, project
life-cycle, and post-project. DSDM is guided by nine (9) underlining principles:
frequent delivery, team empowerment, user participation, just-in-time develop-
ment, iterative and incremental development, roll-backs, fixed initial high-level
scope, continuous testing, and efficient and effective communication (Stapleton,
2003). Core techniques used in DSDM are timeboxing, configuration management,
modeling, and MoSCoW (Must have, Should have, Could have, and Won’t have).
DSDM prescribes a lot of roles for effective project management. They include

CHAPTER 2. LITERATURE REVIEW 16

the Executive sponsor, Visionary, Project Manager, Technical Coordinator, Team
Lead, Solution Developer, Solution tester, etc.

2.2.2.6 Agile Roles

Three major roles are defined in scrum: the Scrum Master (who interfaces between
Management, customers, and developers), the Product Owner (who is responsible
for the “Product Backlog”), and Scrum teams. XP (Beck, 2000), on the other hand,
defines roles such as testers, interactive designers, architects, project managers,
product managers, executives, technical writers, users, programmers, etc.

2.2.2.7 Agile Ceremonies

Agile ceremonies are meetings with specific time frames. They are aimed at help-
ings teams plan, keep track, and update stakeholders. Scrum observes daily scrum
where team members discuss what was achieved the day before, impediments
faced, and what is to be achieved before the next meeting. This is similar to the
Daily stand-up meeting in XP. A sprint planning meeting is held before any sprint
in Scrum, and a sprint review meeting is held at the end of the sprint to evaluate the
performance and deliverable of the Scrum team in the previous sprint (Lei et al.,
2017; Schwaber & Beedle, 2002). Similar meetings such as weekly and quarterly
meetings are also observed in XP.

2.2.2.8 Agile Artefacts

Agile artefacts are the information needed for the development of a product, or the
product itself. Product Backlog, Sprint Backlogs, and Product increments. Product
Backlog is a list of all conceivable features requested for a product, organised in
order of priority by the Product Owner. Sprint Backlog contains items or features
to be developed in a sprint. Product increments are new features and increments

CHAPTER 2. LITERATURE REVIEW 17

added to the product at the end of each sprint (Schwaber & Beedle, 2002; Lei et al.,
2017). Bass (2016)identified “25 artefacts, organised into five categories: feature,
sprint, release, product and corporate governance”, which enabled consistency in
Large-scale offshore software development programmes. Artefacts in XP include
user story cards, quarterly themes, acceptance tests, release plans, iteration plans,
task cards, design, unit test cases, and customer & developer communication
records (Beck, 2000).

2.2.3 Continuous Integration - an Emerging Software Develop-
ment Practice

To further improve the software development process, continuous practices are
emerging. One of such is continuous integration. Continuous integration (CI)
(Beck, 1999; Duvall et al., 2007) is a software development practice built on
automation (Fowler & Foemmel, 2006). It encourages the committing of changes
made to codes to the version control repository at least once a day. The CI
server polls from the version control repository to identify changes made, builds,
integrates, and inspects the whole software for conformity to rules and error
checking (Duvall et al., 2007), to safeguard against broken builds. Continuous
integration ensures the integrity of the software is maintained at any point in
time and feedback is received as soon as possible. Software becomes more un-
deployable as the time spent to get it to a production-like environment increase
(Duvall et al., 2007).

As a practice, continuous integration is independent of any tool (Fowler & Foemmel,
2006). It complements other development practices like developer testing, coding
standard adherence, refactoring, small releases, and collective ownership. Values of
CI include reduction in risk and repetitive manual processes, continual generation of
deployable software (Fowler & Foemmel, 2006; Goodman & Elbaz, 2008), project
visibility (Fowler & Foemmel, 2006), increased developer productivity (Goodman
& Elbaz, 2008) and greater confidence in the product. Regression testing is a large
part of CI, as it ensures that changes checked in do not negatively impact previously

CHAPTER 2. LITERATURE REVIEW 18

verified functionalities (Engström & Runeson, 2010; Haghighatkhah et al., 2018).
There is no standard for the implementation of CI in practice. Consequently,
organisations achieve dissimilar results from their execution (Ståhl & Bosch, 2013).
Ståhl & Bosch (2014) isolated the consequences of CI implementation to adopted
variants of it. There are however some constraints to adopting CI. Organisations
see increased overhead in maintaining the Continuous Integration (CI) system,
frequent change, too many failed builds, and additional hardware/software costs.
Some see the activities being performed in CI as developers’ basic responsibilities.

2.3 Tailoring Software Development Practices

As generally accepted in information systems development (Information Systems
Development (ISD)), there is no one-size-fits-all approach to creating and deliv-
ering software systems (van Slooten & Brinkkemper, 1993; Henderson-Sellers
& Gonzalez-Perez, 2005). Information systems researchers have argued on the
practical direct application of prescribed methodologies (Avison, 1996; Baddoo &
Hall, 2003; Glass, 2003). The appropriateness and suitability of accessing a suite
of methodologies rather than insisting on one for all projects in an organisation
is argued. (Avison, 1996) suggested the possibility of an era of software devel-
opment without “control, standards or training” emerging from the viewpoint of
the inability of generic methodologies to address important social, political, and
organisational factors.

Ginsberg & Quinn (1995) defines tailoring as “the act of adjusting the definition
and/or particularising the terms of a general description to derive a description
applicable to an alternate (less general) environment”. Process tailoring is well
established in the literature. A systematic literature review (Kalus & Kuhrmann,
2013) identified 49 criteria whose “relevance to particular projects (they claim) can
significantly influence the resulting software process”. This ‘relevance’, however,
seems subjective from the study. They also formulated 20 actions considered
to be standard measures to address project situations and related them to the

CHAPTER 2. LITERATURE REVIEW 19

tailoring criteria identified. For tailoring to apply, processes and practices must
be well-defined (Ginsberg & Quinn, 1995). Kalus & Kuhrmann (2013) conclude
that the factors affecting the tailoring of software development practices are well
understood. However, the consequences of the criteria remain abstract and should
be interpreted on a project basis.

Cameron & Quinn (2011) pointed out that to achieve an enduring improvement
in organisational performance, processes and procedures must be integrated with
organisational change. The adoption of any Agile method or continuous practice
is perceivable as an organisational change. However, processes and procedures
of similar Agile adoption differ in practice. Furthermore, Agile methods were
intended for small, self-managing, collocated teams. As such, its application to
large-scale projects requires tailoring (Bass, 2016; Dingsøyr et al., 2017). Tailoring
of the practices and roles by organisations results in differing outcomes even when
the same methodologies are adopted. Ståhl & Bosch (2014) showed how the variant
implementation and interpretation of CI in practice can cause a disparity in the
realisation of its adoption goals. This perceived variability agrees with the study
by Bass & Haxby (2019), which identified three groups of activities that must be
managed by the product owners in a large-scale SD project: scale, distance, and
governance.

2.3.1 Method Engineering

Method engineering was introduced by Bergstra et al. (1985) and was referred to
as “Methodology engineering” by Kumar & Welke (1992). Brinkkemper (1996)
and van Slooten & Brinkkemper (1993) however insisted that the term “method
engineering” is more appropriate. This is more generally accepted. Brinkkemper
(1996) defines method engineering as “the engineering discipline to design, con-
struct, and adapt methods, techniques, and tools for the development of information
systems”. Harmsen et al. (1994) defines a method as “an approach to perform
systems development project, based on a specific way of thinking, consisting of
directions and rules, structured systematically in development activities with corre-

CHAPTER 2. LITERATURE REVIEW 20

sponding development products.” This agrees with Brinkkemper (1996) definition
which says “an information systems engineering method is an integrated collection
of procedures, techniques, product descriptions, and tools for effective, efficient
and consistent support of the Information Systems (IS) engineering process.”

2.3.2 Situational Method Engineering

SME emerged from ISD process research to address the need to provide method
engineers and organisations with structured flexibility to “tailor” software develop-
ment methods according to their unique context (Bucher et al., 2007). According to
Brinkkemper (1996), “a situational method is an information system development
method tuned to the situation of the project at hand. Similarly, Henderson-Sellers
et al. (2014) described SME as “an alternative approach to software development
method based on local conditions”. Several terms such as “project environment”
(Brinkkemper et al., 1998; Harmsen et al., 1994), “project situation”(Karlsson &
Ågerfalk, 2004), “reference context” (Baumoel, 2005), “situation” (Rolland, 1998)
are used in reference to “situation” in SME.

The importance of situational characteristics and factors is well understood in
literature (Brinkkemper, 1996; Harmsen et al., 1997; Rolland & Prakash, 1996),
and has been the focus of many SME research. All the studies I reviewed agree
that the characteristics of the relevant development situation need to be explained
and generic methods should be adapted according to situational characteristics.

Situational characteristics are noted to be considered at levels such as organisation,
process, or projects (Hoppenbrouwers et al., 2011). Bucher et al. (2007) proposed
a set of extensions to the method engineering meta-model to make allowance
for a differentiation between “context” and “project type” in Situational Method
Engineering (SME) approaches, and grouped the adaptation mechanism of method
engineering into 2:

1. Situational method configuration – which is the tailoring of a single base

CHAPTER 2. LITERATURE REVIEW 21

method to a specific development situation.

2. Situational method composition – which involves the “selection and orches-
tration of artefacts fragments” from several methods, to construct a new
situational approach based on a specific project situation. This seems to be
the more generally accepted approach to SME.

Exploring the situational method composition seems more suited for my work.
Based on Brinkkemper (1996)and Harmsen et al. (1994), the composition process
is divided into 3 phases following well-defined construction principles:

1. Identifying situational characteristics.

2. Decomposing generic artifacts into artifacts fragments

3. Composing artifacts fragments into situational method

Some other studies provide guidance for identifying situational characteristics
(Situational Characteristics (SC)). The application of the MADIS modeling frame-
work to characterise both the problem situation and the artefacts fragments (Essink,
1986) was proposed by (Punter & Lemmen, 1996). This essentially viewed the
software development process from various levels of abstraction: object system
modeling, conceptual IS modeling, data system modeling, implementation model-
ing, etc at similar domains. Rolland & Prakash (1996) identified SC by problem
domain and subject area, exploring factors like complexity and risk within the
problem domain. It is not clearly explained in the study why these factors were
chosen. The use of 17 contingency factors to describe the environment of the
method application was proposed by Van de Ven et al. (1976). Brinkkemper (1996)
insists that “engineering a situational method requires standardised building blocks
and guidelines, so-called meta-methods to assemble these building blocks.” Figure
2.1 shows the configuration process for SME proposed by Brinkkemper (1996) to
guide the assembly of the “building blocks” into situational methods.

CHAPTER 2. LITERATURE REVIEW 22

Figure 2.1: The configuration process for SME

Fig 2.2 is Henderson-Sellers et al. (2014) description of SME construction. The
method engineer selects method parts from a method base (“which are all confor-
mant to an element in the metamodel”) and constructs an organisationally specific
methodology using proven construction guidelines and situational factors. They
stated that the situational characteristics are “integrated with the method parts
extracted from the method base”.
Comparing Fig 2.1 and Fig 2.2, similar notions such as “method base”, and “method
parts” etc are found.

CHAPTER 2. LITERATURE REVIEW 23

Figure 2.2: SME construction

Method Base is described as a “repository” of method parts (Brinkkemper, 1996;
Harmsen et al., 1997; Rolland, 1998). According to Henderson-Sellers et al. (2014),
method parts are “small portions of a methodology, either a methodology that
already exists or a methodology to be formed”, that describe in detail a specific task,
technique, work product, etc.. They insist on the standardisation and conformity
of each part to “a higher-level definition given in a meta-model”. Various authors
describe method parts with terms such as method fragments, method chunks, and
method components.

Method Fragments: Harmsen et al. (1994) coined the term “method fragment” and
explained it as “. . . a description of an IS engineering method or a coherent part
thereof”. The term was popularised by Brinkkemper (1996). The description agrees
with that of Ter Hofstede & Verhoef (1997) – “a coherent part of a metamodel,
which may cover any of the modeling dimensions at any level of granularity”.
According to Henderson-Sellers et al. (2014), the fragmentation and structure of
the method knowledge base make it straightforward for more fragments to be
added to the method base, arising from specific organisational tailoring.

Method Chunk: Some authors explore method parts at a higher level of granularity
and refer to them as method chunks (Rolland & Prakash, 1996; Rolland, 1998).
This is described as “the combination of a process part plus a product part.

CHAPTER 2. LITERATURE REVIEW 24

Method Component: Ro¨stlinger A (1994) viewed methods as comprising trans-
ferable and reusable components. Method components consist of “descriptions
for ways of working (a process), notion and concepts. Here, a process is the
description of the rules and order of action performance. Notion refers to the rules
for documentation, including syntax and diagrammatic representations. The basic
categories of processes and notions are referred to as concepts.

Metamodel: A metamodel is a detailed description of a specific task, technique,
work product, etc. For example, how to draw a use case diagram (Henderson-
Sellers et al., 2014). This in itself is a model. ISO (2014) explores meta-modeling
in the following domain areas:

1. Work units: a description of the work required to obtain the expected system.

2. Work product: This describes the artefacts to be used or created to achieve
the expected system.

3. Producers: This describes the roles, teams, and tools required to carry out
the work units and produce or make use of the work products.

4. Stages: A description of the phases of interaction between work units, work
products, and producers in the delivery value chain.

5. Model units: Building blocks for the construction of work units.

According to ISO (2014), the International Standard to define Software Engineering
Meta-model for Development Methodologies (SEMDM), “combines key advan-
tages of other metamodeling approaches (Firesmith & Henderson-Sellers, 2002;
Gonzalez-Perez & Henderson-Sellers, 2005; Hawryszkiewycz, 2002; Schuppenies
& Steinhauer, 2002), allowing the seamless integration of process, modeling, and
people aspects of methodologies. Thus, the standard facilitates methodology assem-
bly from a repository of method fragments and the interaction between the various
domain areas (Gonzalez-Perez, 2007), unlike Object Management Group (OMG)’s
model Schuppenies & Steinhauer (2002) representation of subjects strictly by

CHAPTER 2. LITERATURE REVIEW 25

“instance-of” relationships (usually organised in meta-levels). Figure 3 shows
Gonzalez-Perez (2007) representation of the structure of International Organisation
for Standardisation (ISO)/IEC 24744.

Figure 2.3: ISO Model

They describe three domains: metamodel, methodology, and endeavour. Rather
than the “instance-of” relationship, metamodel here is shown to be related to
both methodology as well as endeavour. Consequently, endeavours such as work
products can be used to construct method fragments and populate repositories.

Brinkkemper (1996) suggested a framework for hierarchical meta-modeling from
3 orthogonal dimensions: perspective, abstraction, and granularity, for the classifi-
cation of method fragments.

Table 1.1 summarises Aydin (2007) key notions of SME.

CHAPTER 2. LITERATURE REVIEW 26

Table 2.1: SME notions(Aydin, 2007)

Notion Basic View Extension
Situation Characterised by several factors

that influence or are being influ-
enced by a method fragment

The limited parts of reality
that the agency perceive, rea-
son about, and live in

Context Described in terms of aspects of
collectives in the process

Dynamic interplays among
collectives of work practice as
situated and characterised by
the agency

Agency Adheres to the enactment of pro-
posed fragment in the work prac-
tice

Interlays among fragments
with a certain intention in and
for the context

Method
fragment

Description of a methodical arte-
fact or any coherent part thereof

Comes into play with the
agency in the context when
structuring one’s thinking and
actions

2.4 Information Technology (IT) Operations

The delivery of a working software application to the intended user, and its efficient
management is the end product of any software development effort (Hall et al.,
1999). This delivery is made possible through the instrument of IT operations. IT
operations include activities around the release of software such as installation
and configuration, and maintenance activities like monitoring, updating, recon-
figuration, redeploying, and decommissioning of the software (Cao et al., 2009).
Essentially, the development team hands over the software to the operations team
at this point, which is a huge ceremony. For many organisations, it is a long, tiring
process, shrouded by unpredictability. This puts all the actors under immense
pressure and results in blame games when there are failures.

Several studies propose frameworks and approaches to improve the software deliv-
ery process. Hall et al. (1999) suggested a Software Dock framework that “creates a
distributed, agent-based deployment framework to support the ongoing cooperation
and negotiation among software producers themselves and among software produc-
ers and software consumers”. This framework was at developers providing their

CHAPTER 2. LITERATURE REVIEW 27

customers with high-level deployment services. Talwar et al. (2005) discuss service
delivery approaches such as script-based, language-based, and model-based, and
the trade-off between initial cost and repeated costs in relation to automation. To
reduce the complexity of deployments caused by dependencies and interaction
between the product being installed, virtualization is employed (Dearle, 2007).
Virtualization is creating a level of abstraction away from the physical systems
and running several virtual systems on a single hardware. According to Schumate
(2004), service deployment in such an environment consists of 5 steps: creation,
generalisation, testing, distribution, and update. Despite these strides towards a
more simplified deployment process, service delivery continued to be a huge deal
for organisations.

2.4.1 Continuous Delivery - an Emerging IT Operation Practice

Continuous delivery (Continuous Delivery (CD)) is a practice that ensures software
is always kept in a releasable state (Chen, 2015; Proulx et al., 2018; Siqueira et al.,
2018). It seeks to answer the question: how are the activities in software develop-
ment coordinated to achieve speed, efficiency, and reliability in software delivery?
(Humble & Farley, 2010; Rodrı́guez et al., 2017; Leppänen et al., 2015). This
concept shares similar ideas and philosophy with Lean development. Perceived
benefits include faster time to market, team empowerment, error reduction, and
deployment flexibility (Chen, 2017; Leppänen et al., 2015). Continuous delivery
stands on the pillars of automation and feedback (Humble & Farley, 2010). Its
principles include creating an auditable release process, frequent releases, auto-
mated testing, and keeping everything in version control- to provide access to all
versions of the stored file and its meta-data (Humble & Farley, 2010). However,
challenges in Continuous Delivery implementation such as resistance to change,
manual and non-functional testing, process alignment, domain constraints, and
tooling have been identified in both literature and practice (Chen, 2015, 2017;
Leppänen et al., 2015).Chen (2017) recommended the establishment of dedicated
teams with multi-disciplinary members as a mitigating strategy for some of the
above-mentioned challenges: an alignment with the DevOps philosophy.

CHAPTER 2. LITERATURE REVIEW 28

Of importance in Continuous Delivery is configuration management – “the process
by which all artifacts to your project, and the relationships between them, are
stored, retrieved, uniquely identified, and modified” (Humble & Farley, 2010).
Configuration management is to facilitate environment reproduction, traceability of
changes in any environment, and visibility. The end-to-end process from a commit
to the release of a feature/application to production is termed the deployment
pipeline. A large portion of waste in the software development process stems from
movement through testing and operations teams. Visibility on the deployment
pipeline provides an insight into the bottlenecks of the delivery process (Chen,
2017), and is achieved using value stream mapping (Humble & Farley, 2010).

The implementation of continuous practices is seemingly a promising way to im-
prove software delivery. Coordination and communication among team members
have been identified as key factors in the successful adoption of Continuous prac-
tices (Shahin et al., 2017). While continuous practices promise faster delivery of
value to customers, the impact of the processes and interactions within the value
stream cannot be undermined. Its success is heavily dependent on the seamless
collaboration of the teams working on various aspects of the delivery process and
an efficient product flow from one stage to another (Mäkinen et al., 2016).

2.5 Coordination of Work between Development and
IT Operations in Software Development

Coordination has been defined as “the integration or linking together of different
parts of an organisation to accomplish a collective set of tasks” (Van de Ven et
al., 1976), and “managing dependencies between activities” (Malone & Crowston,
1994). Dependencies exist in multi-team projects and require synchronisation, feed-
back, information-sharing, and conflict resolution (Dingsøyr et al., 2017; Galbraith,
1973), the degree of which is directly proportional to the level of complexity and
uncertainty of the project (Dietrich et al., 2013; Kraut & Streeter, 1995) argued
that “coordination becomes much more difficult as project size and complexity

CHAPTER 2. LITERATURE REVIEW 29

increases,” and identified deficiency in coordination as the cause of most problems
in software development. The study established scale, uncertainty, and interde-
pendence as some characteristics influencing coordination. According to Noll et
al. (2011), “the key barriers to collaboration in global software development are
geographic, temporal, cultural, and linguistic distance”. The authors proposed “site
visits, synchronous communication technology, and knowledge sharing infrastruc-
ture to capture implicit knowledge and make it explicit” as solutions. Hoegl &
Weinkauf (2005) emphasised the importance of managing task inter-dependencies
as the quality, performance, and development time of multi-team projects is highly
reliant on the “coordination pattern.” Software development has applied approaches
like technical tools, modularisation, and formal procedures like version control
to enable coordination. These techniques contributed to productivity but did not
sufficiently address the challenge of coordination (Kraut & Streeter, 1995).

Coordination is usually attained through mechanisms such as meetings, workshops,
phone calls, and IT communication tools (Dietrich et al., 2013). The study investi-
gated coordination in multi-team projects through identification of mechanisms,
modes, and patterns in practice. Prior collaboration studies to theirs were either
on single-team projects or organisations themselves, which significantly differs
from multi-team projects. While organisational coordination can be achieved
through such things as validated procedures, written policies, and job descrip-
tions (Galbraith, 1973), the same cannot be said of more transients structures
like projects with flexible requirements and team-members (Dietrich et al., 2013;
Kerzner, 1998). Dietrich et al. (2013) discovered three patterns of coordination:
centralised, decentralised, and balanced patterns, expressed in either group or
individual mode of personal coordination, or impersonal coordination mode. These
modes were previously identified by Kraut & Streeter (1995) and (Van de Ven et
al., 1976). The study also shows significant impact of coordination on the outcome
of “information sharing, workflow fluency between teams, efficiency of projects
and learning”. Determinant factors of coordination pattern selection identified in
organisations are innovation (Dietrich et al., 2013), technological and workflow
correlations between teams (Van de Ven et al., 1976; Andres & Zmud, 2002), and
task “decomposability” (Nidumolu, 1996). (Van de Ven et al., 1976) found that

CHAPTER 2. LITERATURE REVIEW 30

a higher degree of uncertainty in projects forces the adoption of group mode of
coordination. This was further established by (Dingsøyr et al., 2017) and agrees
with (Kraut & Streeter, 1995) study which suggested informal, interpersonal com-
munication under uncertain conditions. Dietrich et al. (2013) however considers
uncertainty and complexity in the light of coordination patterns in projects and
suggested that the decentralized pattern is better suited for projects with a high
degree of uncertainty. An investigation by Dingsøyr & Lassenius (2016) into
factors influencing the performance of co-located teams proposed such factors to
include team collaboration and shared mental models which, they stated, is an
important tool for understanding team collaboration patterns. Although the study
alludes to the possible existence of such patterns, an in-depth explanation of the
concept was not provided. Dingsøyr et al. (2017) also studied the usage of group
coordination mode in large-scale software development projects that showed the
transition between scheduled and unscheduled meetings. The focus of the study
seemed to be limited to development teams. It did not also take the patterns of
coordination between development and operations activities into consideration.

2.6 DevOps – A Development-to-Deployment Coor-
dination Strategy

A recent attempt to handle coordination in software development is the introduction
of DevOps (Len et al., 2015; Kim et al., 2016; Senapathi et al., 2018). DevOps
(Development and Operations) is described as an emerging software engineering
culture and philosophy that utilises cross-functional teams (development, opera-
tions, security & QA) to build test, and release software faster and more reliably
through automation (Dyck et al., 2015; Kim et al., 2016; Senapathi et al., 2018).
From literature, it is understood that DevOps seeks to bridge the gap between
the conflicting priorities of the development and operations teams. According
to Bass et al.(Len et al., 2013), “DevOps community advocates communication
between the operations staff and the development staff as a means of ensuring that

CHAPTER 2. LITERATURE REVIEW 31

the developers understand the issues associated with operations.” However, for
Rowe & Marshall (2012), the actual gaps to be bridged are “disconnects between
processes, measurements, technologies, and data.” I view the above as a more
granular description of the “gap” between development and deployment teams.
Nybom et al. (2016) stated that three possible approaches to bridging the gap are:
“Mix responsibilities: assign both development and operations responsibilities
to all engineers, or Mix personnel: increase communication and collaboration
between Dev and Ops, but keep existing roles differentiated, or Bridge team: create
a separate DevOps team that functions as a bridge between Devs and Operations
(Ops)”.

In their study, López-Fernández et al. (2021) provides a taxonomy of DevOps team
structures which they described as i) interdepartmental Dev & Ops collaboration -
the temporary collaboration between development and operations teams for specific
project, ii) Interdepartmental Dev-Ops team - the unification of development
and operation teams, characterised by shared product ownership, iii) Boosted
cross-functional DevOps team - using DevOps experts to ”boost” development
teams till they become DevOps teams themselves, and iv) Full cross-functional
DevOps team - product teams with both development and operations skills. Their
classification was based on factors such as Leadership from management, shared
product ownership, collaboration frequency, organisational silos, cultural silos, and
autonomy. They compare the teams structures and performance and conclude that
“companies that implement the most mature team structures (i.e., iii and iv) achieve
better software delivery performance indicators”. (Leite et al., 2022) also carried
out a study to understand the reasons behind the various DevOps structures adopted
by organisations and identified 4 structures: segregated departments, collaborative
departments, API-mediated departments, and single department. Their description
is similar to that of López-Fernández et al. (2021). However, they provide causes
of such structures like startups are inclined to single departments and the bid to
overcome existing delivery bottlenecks leading to API-mediated departments.

The DevOps cycle is described as comprising eight main phases that encompass the
phases of the software development life cycle (include reference). They include:

CHAPTER 2. LITERATURE REVIEW 32

1. Plan: This comprises business value and requirements definition.

2. Code: The code phase involves the design and the creation of software code

3. Build: This involves configuration management and version control, and the
use of automated tools for code compilation and packaging code for future
production releases.

4. Test. The test phase involves continuous testing activities (manual or auto-
mated) to ensure optimal code quality.

5. Deploy. This phase can include activities and tools that help to move product
releases into production.

6. Operate. The process of managing software in production.

7. Monitor. This involves the collection of relevant metrics and information
about issues from specific software releases in production.

In practice, various tools are associated with each of these phases. An example
of this is shown in Table 2-1. This table is not intended to be a representation
of the DevOps tools ecosystem, as tools are also often classified for activities in
the DevOps cycle such as continuous integration, continuous delivery, security,
logging, configuration management, communication, etc., but is rather an example
showing the multifariousness of DevOps tools ecosystem (Include reference).

2.6.1 The Nature of DevOps

DevOps is described as a software engineering culture and philosophy that utilises
cross-functional teams, to build test, and release software faster and more reli-
ably through automation. According to available literature, benefits derived from
DevOps adoption include faster delivery, improved quality & security, and better
collaboration (Nybom et al., 2016; Roche, 2013; Lwakatare et al., 2019). Senapathi
et al. (2018) stated that “teams are happier and more engaged”, and shared technical

CHAPTER 2. LITERATURE REVIEW 33

knowledge between operations and development teams increased collaboration
between them after DevOps implementation. Erich et al. (2017) claim that existing
literature shows no agreement on the definition or scope of DevOps, nor evidence
of its effectiveness. Smeds et al. (2015) insist that the foremost views can be
identified in the blogosphere: the view that DevOps is a cultural movement to
facilitate rapid software development and deployment, and the argument that it is
rather a job description requiring both development and IT operation skills (Nybom
et al., 2016; Senapathi et al., 2018; Smeds et al., 2015). The former view seems
more predominant in available peer-reviewed literature. Humble (2012) stated
clearly in his blog post that “there’s no such thing as a ‘DevOps team’.” He how-
ever explains that IT operations teams can sometimes be referred to as ‘DevOps
teams’ when they fulfill some specific responsibilities such as the automation of
deployment pipelines and provision of support for developers. Hüttermann (2012)
also insisted that DevOps is neither a job description nor a department or a unit
in an organisation. He stated that “DevOps describes practices that streamline
the software delivery process, emphasising the learning by streamlining feedback
from production to development and improving the cycle time.” Willis (2010),
agreeing with Hüttermann (2012) stance, identifies four significant characteristics
of DevOps in a blog post as culture, automation, measurement, and sharing. This
blog post was referenced in Nybom et al. (2016). However, the 2014 State of
DevOps report shows a growing number of DevOps teams (Forsgren et al., 2014).
The ambiguity and conflicts in the description of the concept have resulted in organ-
isations taking different approaches to DevOps. Senapathi et al. (2018) identified
four DevOps descriptions in literature: merging of development and operations
for closer collaboration, development that supports operations, centralised group,
and incentive alignment. Although the paper states the approach taken by the
organisation under study, details of an actual implementation are scanty. Wahaballa
et al. (2015) presented a road map for the standardisation of DevOps terminologies
and practices. The argument that DevOps should be a job description is mainly
seen in blog posts. However, none has been referenced here as I could not find
peer-reviewed literature with such reference. In addition, the scope of DevOps
differs in its adoption (Erich et al., 2017). While some organisations view De-
vOps as just “deployment automation” by select cross-functional teams, others like

CHAPTER 2. LITERATURE REVIEW 34

International Business Machines (IBM) consider it to be “improved automation,
integration, collaboration, and optimisation of development and operations” (Rowe
& Marshall, 2012).

Although there are no prescribed ceremonies in DevOps, it advocates practices like
continuous integration, continuous delivery, continuous deployment, automated
testing, infrastructure-as-code, and automated releases. There are however chal-
lenges such as the lack of appropriate skill-sets while implementing DevOps. Other
issues such as the fast-evolution of technology stack and tools as well as resistance
to change have been identified in the adoption journey (Smeds et al., 2015; Nybom
et al., 2016; Senapathi et al., 2018).

2.6.2 The Impact of DevOps

Beyond anecdotal evidence (Rembetsy & McDonnell, 2012) and survey data,
however, empirical study of the impact of DevOps on the software value stream
is scarce in literature (Erich et al., 2017). Senapathi et al. (Senapathi et al.,
2018) carried out an exploratory case study to provide empirical evidence of
the impact of DevOps adoption in a New Zealand organisation, where DevOps
was perceived as “embedded Ops.” They found the employment of automation
and cross-functional teams as facilitators of DevOps value delivery. Kersten
(2018c) introduced a flow framework to create a value stream integration diagram
which he said would give perspective to how DevOps worked in practice. The
framework measured the flow velocity, efficiency, time, and flow load against
the business results like value, costs, quality, and happiness. The diagram is
said to provide a real-time summary of tools, their interconnection, and artefacts
within a value stream. Kersten (2018b) classified flow items all flow items in the
value stream to be features, defects, risk, and debt which he said abstracts a layer
away from Kruchten (1995) positive/ negative versus visible/invisible quadrant.
Flow techniques are employed by organisations to identify bottlenecks in their
delivery process. Dennehy & Conboy (2017) investigated the adoption of flow
techniques using Activity Theory and suggested research into the combination

CHAPTER 2. LITERATURE REVIEW 35

of flow techniques with Activity theory, which he asserts would give a richer
perspective to “contradictions and congruencies” on the software development
value stream. (Ali et al., 2016) combined flow technique with value stream mapping
to identify waste. The study is however limited to the specification stage of the
development process.

2.7 Tailoring in DevOps Implementation

Studies have established discrepancies in the implementation of DevOps in var-
ious organisations (Nybom et al., 2016). While tailoring is widely accepted and
even advocated for in the software development industry (Bass & Haxby, 2019;
Fitzgerald et al., 2006; Kalus & Kuhrmann, 2013), its results are unpredictable
(Ståhl & Bosch, 2014). The concept of tailoring practices in DevOps is quite tricky.
This may also be attributed to the ambiguity surrounding the definition of the
concept itself. In addition, there are no prescribed practices for DevOps besides
enablers such as automation and continuous practices. Two limitations to applying
the tailoring criteria, applicable to Agile software development, identified in the
literature to DevOps implementation are:

1. The tailoring criteria are applied uniquely to individual projects. DevOps
implementation on the other hand is perceived as an organisation-wide
change in the sense that the same structural or cultural change is expected
across teams in an organisation.

2. Tailoring works on the principle of the variability of standards within each
project. DevOps advocates for standardisation and automation of processes
within organisations. Although fragments of various methods are used in
DevOps, making the traditional tailoring of the software development process
is a subset of the DevOps implementation pattern.

To address the points raised above, I extract the organisational level tailoring criteria

CHAPTER 2. LITERATURE REVIEW 36

from the tailoring criteria identified in literature (Kalus & Kuhrmann, 2013). This
abstracts away from tailoring within projects to “tailoring” on an organisational
level, to enable the evaluation of DevOps implementation within organisations. My
research direction is informed by future work pointed out by Leite et al. (2019)
and Wiedemann & Schulz (2017) who both insist that an in-depth study into
organisations implementation of DevOps is critical to the successful adoption of
the concept in the software industry.

Literature on DevOps adoption is mainly on DevOps capabilities, technological
and cultural enablers, and the benefits and impediments to its adoption (Chen,
2017; Erich et al., 2017; Leite et al., 2019; Smeds et al., 2015). Amaro et al.
(2022) conducted a Multivocal Literature Review to understand the relationship
between capabilities and practice, and better map DevOps implementation. The
study concludes that “capabilities” is a dynamically evolving aspect of DevOps.
They stated team collaboration and communication as the most crucial ones.

Rodrigues et al. (2020) showed correlations between business strategies, business
values, firm capabilities, and firm performance. They describe business strategies
as capacity utilisation, rate of product/service innovation, modernisation, and
automation of processes, efforts to achieve economies of scale, etc. Business values
are presented as intermediate benefits derived by organisations such as support in
decision making, quality of information, product/service quality, on-time delivery,
etc. Firm capabilities, as mentioned in the study are relatable to the software
development tailoring criteria identified in literature (Kalus & Kuhrmann, 2013),
except that the latter takes into consideration projects peculiarities. I equate firm
capabilities in my proposed study to tailoring criteria, extracting only organisational
level characteristics. I describe this as the organisation context. This consist of
organisation domain, organisation size, team size, team distribution, degree of
innovation, domain knowledge, technology knowledge, tool knowledge, process
knowledge, system architecture, communication, financial controlling, legal aspect,
and culture. This research groups technology knowledge, tool knowledge, and
process knowledge as a skillset in relation to DevOps implementation.

CHAPTER 2. LITERATURE REVIEW 37

Seven skill categories required to set up DevOps teams: full-stack development,
analysis, functional, decision-making, social, testing, and advisory skills - with 36
concrete skills were presented by Wiedmann and Wiesche. They also highlighted
the combination of distinct development, operations, and management skills nec-
essary to successfully work within such teams. The global skills and competency
framework for a digital world (Skills Framework for the Information Age (SFIA))
describes an assembly of resources related to about 30 professional skills and
competencies required for DevOps which they claim “reflects that successful ap-
proaches to DevOps need much more than simply deploying technical tools to
automate development and operational IT tasks”. They divided this into seven (7)
levels of responsibility (Society, 2012). No literature, however, was found that
provides an investigation into the relationship between skillsets and the approach
an organisation adopts to implement DevOps.

The impact of DevOps practices on the software development process has also
been studied by (Hummel et al., 2015; Perera et al., 2016). organisations are faced
with numerous paths to DevOps implementation. Little is known about how to
string together the wealth of information scattered in the literature, to successfully
implement DevOps based on a specific organisational context. The question,
“What informs organisations mode of implementation of DevOps?” remains largely
unanswered (Leite et al., 2019; Luz et al., 2018, 2019) present a model for DevOps
adoption, comprising of three (3) steps:

• In the first step, a company should disseminate that the goal of DevOps
adoption is to establish a collaborative culture between development and
operations teams.

• In the second step, a company should select and develop the most suitable
enablers according to its context. The enablers are means commonly used to
develop the collaborative culture and its concepts.

• In the third step, a company should check the outcomes of the DevOps
adoption to verify the alignment with industrial practices and to explore them
according to the company’s needs.

CHAPTER 2. LITERATURE REVIEW 38

The study, however, does not sufficiently provide answers to the following ques-
tions:

1. What factors would determine the selection of a “suitable enabler”?

2. What is the relationship between these factors and the enablers?

These queries are aligned with my research questions in the sense that I query the
roles of elements of organisational context in the implementation of DevOps, not
only regarding team topology but as it affects the strategy of implementation.

According to Wiedemann et al. (2019) “DevOps requires a custom solution for
each organisation”. Kromhout (2017) also emphasised the importance of paying
more attention to the mode of DevOps implementation in organisations.

According to reports (Forsgren et al., 2014) its popularity is fast rising among
software development practitioners. From the literature herein presented, substan-
tive research exists around understanding the concept of DevOps and its practices.
However, there is evidence that the multifaceted nature of available information
on DevOps would be quite daunting for some who wish to embark on the journey
(Senapathi et al., 2018; Riungu-Kalliosaari et al., 2016). Luz et al. (2019) claims
that “It is still unclear how one could leverage such rich, yet scattered, information
in an organised and structured way to properly adopt DevOps.” This presents the
transition to DevOps as a decision to be made with careful consideration. Surveys
such as that conducted by Leite et al. (2019) show an increasing interest in research
into DevOps. However, subjects such as the pathway to implementation and organ-
isational factors influencing such decisions are still less studied than investigations
into its nature and value derived from its adoption (Leite et al., 2019). They stated
that while engineers need to learn how to re-engineer their systems and qualify
themselves for DevOps-related positions, managers seek to know how to introduce
DevOps to their organisations and how to assess the quality of already adopted
DevOps practices. As there are no specific guidelines, changes to the operating
culture can either be successful and yield the benefits promised by DevOps, or fails

CHAPTER 2. LITERATURE REVIEW 39

and be detrimental to the organisation’s operational stability and much more. This
indicates a need to critically examine the interactions between the activities and
parts of DevOps implementation in organisations.

This research is motivated by a general lack of scholarly guidance in the deter-
mination of a suitable path to DevOps implementation. It attempts to organise
information on the various components of DevOps to help practitioners better align
their coordination activities and avoid pitfalls. The research will also investigate
DevOps approaches and their determinants. This would provide substantial value
to both understanding and implementing the concept.

2.8 Summary

The chapter presents available literature on software development methodologies,
agile software development, and continuous practices. The concept of tailoring
software development practices (including method engineering and situational
method engineering) is herein introduced. The concept and nature of DevOps are
explored. An in-depth analysis of the literature exposed the scarcity of knowledge
on the suitable pathways to DevOps implementation. This gap is also identified by
a recent DevOps survey (Leite et al., 2019), and forms the foundation of the study.
The next chapter describes the methodologies used to carry out the study.

The research adopts an exploratory multi-case study approach to investigate De-
vOps implementation in industrial settings, based on interviews with practitioners.
My data will be analysed using an approach informed by grounded theory, which
would allow theories to emerge, grounded in the data (Glaser & Strauss, 1967;
Glaser, 1992; Stol et al., 2016).

Chapter 3

Research Design

Research Design

3.1 Introduction

Research methodologies provide structured and progressive guidance, suitable
for specific kinds of academic investigations. Research is thus substantiated by
adherence to the prescribed guidelines of chosen methodologies and should be
carried out systematically. The design of this research takes guidance from the
research onion(?).

This chapter presents the research structure and the steps taken to answer the
research questions. It also presents the justification for the suitability of the
methodologies to achieve the aims and objectives of this research. Section 3.2
describes the methodological options available and the choices for this research.
The research purpose and outcome are discussed in Section 3.3. This is followed
by a full description of the research design including data collection and analysis,
and the DevOps strategy model development and evaluation.

40

CHAPTER 3. RESEARCH DESIGN 41

3.2 Research Model

A research model is the theoretical image of the object of study (Palvia et al., 2006).
The determination of an effective research structure “involves interconnection and
interaction among different design components” (Maxwell, 2012). Figure 3.1 is
an adapted research onion showing possible choices for each layer of the research
structure. The “methodological choice” layer shows the 3 basic types rather than
the possible variations of them.

Figure 3.1: Adapted Research Onion (Saunders et al., 2019)

3.2.1 Research Philosophy

Research philosophies are “underlining assumptions of what constitutes valid re-
search” and the appropriate method to employ. Four epistemological perspectives
established in literature are positivism, interpretivism (or constructivist), criti-
cal research (or participatory), and pragmatism (Myers & Avison, 2002; Myers,
1999). Positivism assumes that the world is ordered and regular, that reality
can be objectively measured and described using instruments (Myers & Avison,
2002). Constructivism (interpretivism) seeks to understand the world and events

CHAPTER 3. RESEARCH DESIGN 42

through human perceptions (Sekaran & Bougie, 2016). Critical realism aligns
with positivism in the assumption of objective truth but argues against objective
measurement (Sekaran & Bougie, 2016). Pragmatism believes that the questions
under investigation would determine what research approach would produce useful
knowledge for the research (Sekaran & Bougie, 2016).

This research takes a pragmatic approach. Pragmatism favours no specific approach
to research. The pragmatic viewpoint allows whatever research methods serve
the purpose of the research, including the combination of both positivism and
interpretivism (Petersen & Gencel, 2013). Pragmatism views current truth as
tentative, which may change over time (Sekaran & Bougie, 2016)

The researcher’s aim is to understand the use of agile practices in the coordination
between software development and IT operations activities. In particular, the study
will investigate DevOps implementation based on the practitioners’ perceptions.
A pragmatic approach is thus suited for this investigation considering the socio-
technical nature of software development. Phases 1 and 2 of the research are
mostly influenced by interpretive philosophy (grounded theory is used to generate
theories). Phases 3 and 4 are more of a multi-method approach, as a model is
developed and evaluated based on multiple philosophies.

3.2.2 Research Logic

Research logic refers to the method of reasoning adopted by the research (Machamer
& Silberstein, 2008). It is broadly classified as deductive (top-down approach be-
ginning with theories), inductive (bottom-up approach, from specific observations
to broader generalisations), or abductive approach (begins with observation and
seeks conclusions from them).

This research takes an abductive reasoning approach. The research is an investiga-
tion of DevOps implementation software development companies. The DevOps
concept and its practices are still ambiguous in the available literature. The re-

CHAPTER 3. RESEARCH DESIGN 43

searcher consequently believe that beginning with theories or focusing on specific
aspects of the concept would limit an in-depth examination of the intended inquiry.
The research begins with exploratory phases of observations and identification
of patterns, then the formulation of hypotheses and theories based on analysis of
findings. Abductive research guides the researcher’s effort to develop ‘creative
interpretations’ of the phenomena studied (Charmaz, 2009). The study takes a
further step to develop an adaptive model founded on the theories and evaluates
the model with a software development team.

3.2.3 Methodological Choice

Three common approaches or methodological choices to conduct research are
quantitative, qualitative, and mixed methods. The methods are designed for specific
types of research questions (Williams, 2007).

In line with the pragmatic nature of this study, the research questions under con-
sideration determine the method to adopt. A qualitative method is employed to
investigate questions related to the interactions between software development
teams and IT operations, the complexity of human behaviours, and DevOps imple-
mentation in the agile software development industry. The qualitative approach
helps the researcher explore, understand, and interpret the underlying motivation,
opinion, and possible reasons for observed phenomena (Creswell & Creswell,
1994, 2017). The investigations are carried out by collecting descriptive and con-
ceptual data through case studies and grounded theory study (Williams, 2007).
Mixed methods are used to develop and evaluate an adaptive DevOps strategy
implementation model.

3.2.4 Research Strategy

Several strategies are employed in conducting research, depending on the type of
inquiry. Quantitative research is mostly associated with experiments, surveys, and

CHAPTER 3. RESEARCH DESIGN 44

archival research. Other research strategies like exploratory, case study, ethnog-
raphy, action, grounded theory, and narrative inquiry are related to qualitative
research (Williams, 2007).

This study employs multiple strategies. Essentially, it is a case study research with
data analysis informed by grounded theory, aimed at influencing practice. Case
study research (Merriam, 1988). is concerned with the investigation of empirical
data collected from a multifaceted real-life occurrence, over a period. Case study
is widely used in software engineering research (Iyawa et al., 2016; Boehm &
Huang, 2003). Runeson & Höst (2009) provides guidelines for carrying out case
study research in software engineering. A case study has defined boundaries and
generates an elaborate description and in-depth understanding of the phenomenon
under study. The case study in phase 1 is DevOps implementation from the
perspective of software practitioners doing DevOps for at least 2 years. The case
study for phase 2 is DevOps implementation from the perspective of software
practitioners that have led the movement in organisations.

Grounded theory research is concerned with the construction of theories through
the collection and analysis of data, without preconceived hypotheses. Grounded
theory begins with a broad query about a topic and provides an in-depth under-
standing of social behaviours through the application of inductive reasoning (Heath
& Cowley, 2004). Grounded theory followed a well-established set of techniques
and procedures. Grounded theory enabled the investigation into the multifaceted
nature of DevOps-aware software development from practitioners’ perspectives,
and the generation of theories.

A DevOps implementation model is developed and evaluated with a team of
software developers within an organisation, based on prior-generated theories.
Following the evaluation, a physical instantiation of the model is created in a
GitHub repository to enable practitioners to implement the model and keep track
of its usage. This is more related to action research. Action research is a strategy
in which the action researcher is also a participant in the research. Action research
is aimed at solving organisational problems. Knowledge is co-generated with

CHAPTER 3. RESEARCH DESIGN 45

collaborating participants and the research culminates in transformative change
(Clark et al., 2020).

3.2.5 Research Time Horizons

Research time horizons define the time taken to research the phenomenon. Ideally,
this should be dependent on how much time is required to gather relevant informa-
tion (Philips et al., 2008). The time horizon however is dependent on the availability
of research sites and resources. Research could choose either cross-sectional or
longitudinal studies.

This research employs cross-sectional time horizons. Phases 1 and 2 uses cross-
sectional study involving semi-structured interviews to investigate DevOps im-
plementation across multiple practitioner sites. This time horizon is also used
in the evaluation of the developed model. Cross-sectional study involves the
collection of data from different samples, over a period, to study a phenomenon
(Olsen & St George, 2004). Participants are selected based on specific variables
of interest. A cross-sectional study allows the researcher to investigate numerous
characteristics and their relationships. Cross-sectional studies do not culminate in
cause-and-effect conclusions of variables.

3.3 Research Purpose and Research Outcome

Research purpose defines what the research aims to achieve (Robson & McCartan,
2015). The four purposes of research include exploration, description, explanation,
and prediction. To answer the question of what software engineering research is
for, Beecham et al. (2013) conducted a study to ascertain the impact of Global
Software research on practice.

The eventual purpose of this research is that its findings will be used in some

CHAPTER 3. RESEARCH DESIGN 46

way to influence the practice of DevOps and its implementation in organisations.
This aligns with Beecham et al. (2013)’s conclusion that studies such as this are
performed largely to solve industry-related problems. The repository created in
this study will also contribute to future research on the subject matter.

The research outcome is the result and endpoint of the research. The research out-
come is categorised into basic research and applied research(Robson & McCartan,
2016).

This research begins with the exploratory aim of gaining a better understanding
of DevOps and its implementation in software development organisations. Ex-
ploratory research is an inquiry into research questions with little or no previous
investigation, or a problem that lacks clear definitions. Exploratory research is
mostly a preliminary examination of a broad idea that narrows to specific problems.
It involves extensive data collection for an in-depth study of the phenomenon.
Findings from exploratory research serve as a focus for future research. Building
on initial findings, the study further explores the factors influencing organisations
choices of strategies for DevOps implementation. Thereafter, a DevOps strategy
implementation model is developed and evaluated based on findings.

Findings from applied research are usually applicable and may be implemented to
make improvements or changes to an existing situation(Robson & McCartan, 2016).
As an outcome, this is applied research as it tries to solve real-world problems by
applying the developed model to improve software development practices within a
development team in an organisation. The classification of this study is summarised
in figure 3.2

3.4 Research Approach

The research design refers to structuring the research in such a way that the different
components of the investigation can integrate to provide logical answers to the
research questions (Maxwell, 2012). This research is divided into four (4) phases.

CHAPTER 3. RESEARCH DESIGN 47

Figure 3.2: Classification of the research

A brief description of the phases follows immediately and is summarised in Figure
3.3. Section 3.5 to 3.7 provide details of the activities and strategies employed in
each phase.

Phase 1

Phase 1 is exploratory. It involves data collection on DevOps in general, through
semi-structured interviews of software development practitioners. Data analysis is
informed by grounded theory.

Phase 2

Phase 2 builds on the findings from phase 1. It involves a more defined data
collection on DevOps implementation in organisations. This phase is explanatory.
The primary source of data is through semi-structured interviews of software prac-
titioners directly involved in the implementation of DevOps in their organisation.
Data analysis is also informed by grounded theory.

Phase 3

CHAPTER 3. RESEARCH DESIGN 48

Phase 3 is the development of a DevOps strategy implementation model. This
model is based on findings from phases 1 and 2, and existing literature.

Phase 4 The evaluation of the model is carried out in this phase. Arising from the
evaluation, an instantiation of the model is created in a GitHub repository.

Figure 3.3: Summary of Research Phases

3.5 Phase 1 - Exploring DevOps Implementation in
Practice

Phase 1 of the study is an investigation into the understanding and implementation
of DevOps in practice. This phase is informed by Grounded Theory approach
basically due to the ambiguity of the subject of DevOps in literature and the scarcity
of empirical research into its implementation in practice. Following the guidelines
of Grounded Theory will allow for the analysis of new concepts from the data
collected and the generation of theories grounded in the data.

Grounded theory is considered a suitable qualitative research method to study the
social interactions characteristic of software development. The method has been
used in numerous Information systems research, especially to study agile software
implementation (Hoda et al., 2012; Len et al., 2015; Patton, 2002). Grounded
theory is thus suited for my investigation into the implementation of DevOps in
software development and software-intensive organisations.

CHAPTER 3. RESEARCH DESIGN 49

For a basic understanding of the concept, I engaged in light literature review as
prescribed in classical Grounded Theory (Glaser, 1978; Hoda et al., 2010). This
facilitated effective discussions during interviews. However, an in-depth study was
done to understand and carry out Grounded Theory.

The research sites, data collection, and data analysis of phase 1 is described in
sections 3.5.1 to 3.5.3.

3.5.1 Research Sites

This section provides short descriptions of some sites of the research. Organisa-
tions represented in the study are SMEs and large businesses (intensive software
development companies, financial and public institutions) based in the UK, Nether-
lands, and Africa. The diversity in the research sites provides richness to the
data and lends credence to the results. One of the participating organisations is
a multinational bank in the Netherlands that deliver services to corporations and
other financial institutions through in-house solutions deployed both on-premises
and cloud-based platforms. The company is one of the largest in the world and
has a significant presence in Europe, with offices around the world. Another is a
large international software development company based in Africa. Some of the
organisations have collocated teams, while others were geographically distributed.
Table 3.1 summarises the demographics of the participating organisations.

As the primary unit of analysis is software development practitioners doing DevOps
for at least 2 years, a detailed description of the study participants is presented in
Appendix F, rather than that of the organisations. Eleven practitioners from nine
organisations participated in the study.

DBA1 and DBA2 were both interviewed and have thus been included in the list
of participants. However, the description of their processes was not particularly
DevOps related. The data gathered from these participants were excluded from the
data analysis. Table 3.2 summarises Phase 1 participants’ descriptions.

CHAPTER 3. RESEARCH DESIGN 50

Table 3.1: Description of organisations in Phase I of the study

Organisation FinCo1 FinCo2 FinCo3 FinCo4 ITCo RegCo FreeCo PubCo FinCo5
Size Large SME SME Large Large SME SME Large SME
Business
Type

Financial Financial Insurance Financial IT Con-
sulting

Regulatory IT Con-
sulting

Public Financial

Team Lo-
cation

Distributed Co-
located

Co-
located

Distributed Distributed Co-
located

Co-
located

Co-
located

Co-
located

Team
Types

Developers
DevOps
Ops

Developers
DevOps
Ops

Developers
DevOps
Ops

Developers
DevOps
Ops

Developers
DevOps

Developers
DevOps

Developers
Ops

Developers
Ops

Developers

Tools GitHub,
Kuber-
netes,
Ansible,
Docker,
Azure
DevOps,
Ter-
raform,
Istio

GitHub,
Sonar-
Cube,
Docker,
Azure
DevOps,
Sele-
nium,
Vera-
code,
Slack

Kubernetes,
GitLab,
Ansible,
Docker,
Bamboo,
Jenkin,
Ter-
raform,
Vault

Jenkins,
Jira,
Slack,
Gitlab

Github,
AWS
cloud
forma-
tion and
other
AWS
tools,
New
Relic,
Slack,
Ter-
raform

Gitlab,
Slack,
Kibana,
Grafana,
Jenkins,
Jira, Ter-
raform

Azure
DevOps,
Skype,
Slack,
Github

- Github,
Docker,
Ansible,
Azure
DevOps,
Ter-
raform,
Slack

Practices Scrum
meet-
ings
CI/CD

Scrum
meet-
ings
CI/CD

Scrum
meet-
ings
CI/CD

Scrum
meet-
ings
CI/CD

Scrum
meet-
ings
CI/CD

Scrum
meet-
ings
CI/CD

Scrum
meet-
ings
CI/CD

Scrum
meet-
ings

Scrum
meet-
ings
CI/CD

Software
Methodol-
ogy

Scrum,
Spotify

Scrum Scrum,
Kanban

Scrum,
Spotify

Scrum Scrum,
Kanban

Scrum Scrum Scrum

3.5.2 Data collection

This section describes the data collection process. The source of data collection
was interviews with 11 practitioners across nine organisations (as shown in Table
3-1). The interviews were conducted over four months in 2019.

3.5.2.1 Recruiting Participants

The data collection process begins with the technique of initial purposive sampling,
due to the difficulty in getting organizations to participate in research. Purposive
sampling is a non-random sampling technique where the researcher intentionally

CHAPTER 3. RESEARCH DESIGN 51

Table 3.2: Description of Participants - Phase 1

Participant
Code

Job Title Years of
Experience
in SD

Years of
DevOps
practice

DvOps1 DevOps Engineer 18 4
DvOps2 DevOps Engineer 12 7
DvOps3 DevOps Engineer 20 4
DvOps4 Senior DevOps Engineer 7 3
DvOps5 Network DevOps Engineer 31 5
DvOps6 DevOps Engineer 9 3
Dvr1 System Developer 14 3
Dvr2 Software Engineer 3 3
Dvr3 Software Developer 15 2
DBA1 Oracle Apex Developer 9 -
DBA2 Oracle Apex Developer 19 -

chooses participants based on specific qualities they possess(Etikan et al., 2016).
Request for participation was sent to suitable professional contacts who themselves
participated and further made recommendations to other practitioners. The partici-
pants were from different functional areas of software development. This includes
developers, IT operations professionals, DevOps engineers, etc.

Prior to the recruitment of participants, Ethics approval to carry out the study was
obtained from the University of Salford with approval number STR1819 – 51 (see
Appendix A). Each participant was given an information sheet that explained the
research and told them that the interviews will be recorded. The consent form
included options for their choice of anonymity. Interviews were conducted over
Skype and lasted an average of 45 minutes. A bespoke semi-structured interview
guide was designed, which also contained a range of open-ended questions re-
lating to practitioners’ perceptions and practices of DevOps (see Appendix B).
The questions in the interview guide were divided into sections of organisational
structure, agile roles, developers and operations coordination, software develop-
ment process, and code deployment. Initial questions were generated from both

CHAPTER 3. RESEARCH DESIGN 52

experience with investigating agile methods and a light literature review of DevOps.
These questions passed through several iterations of reviews by the researcher
and were modified and evolved as data collection progressed following a constant
comparison process.

During the interviews, questions were tailored to suit the interviewee’s role. Ques-
tions in sections that did not apply to the role of the interviewee were not asked.
The open-ended questions were asked at the end of the semi-structured sections.
These open-ended questions provided an opportunity for the participant to discuss
topics in the interview guide further, or raise other related issues not mentioned
(Adams, 2015). All interviews were recorded with the consent of the participants.
Participants’ consent were mostly collected on a form (see Appendix C). The form
contained information about the study and a request for consent with options. This
form was part of the documents for Ethics approval. Recording the interview helped
the interviewer concentrate on the topics of discussion rather than on note-taking.

3.5.2.2 Data Transcription

Recordings of the interviews were transcribed verbatim to avoid distortion in mean-
ing (Appendix E). The researcher also tried to capture non-verbal communication
during the interviews such as laughter and pauses by manually transcribing the
interviews. These non-verbal communications enrich the context of what is being
said by the participant. All interviews were conducted in the English language.
This eliminates the loss of words through translation. Transcripts were transferred
to Nvivo, a qualitative analysis software.

3.5.3 Data Analysis: Based on Grounded Theory

Data analysis of phase 1 follows the prescription of classical grounded theory. In
line with the guidelines of the method, phase 1 involves four main aspects of data
analysis: open coding, memoing, constant comparison, and saturation.

CHAPTER 3. RESEARCH DESIGN 53

3.5.3.1 Open Coding

I began with the identification of concepts found within the interview transcripts
(Glaser & Strauss, 1967), which involved line-by-line coding of participants’
responses without any pre-determined codes. The authors used brief descriptive
phrases to represent codes e.g. communication, DevOps enablers, DevOps teams’
responsibilities, etc. In the first instance, the codes were handwritten onto hard
copies of the interview transcripts, producing 21 codes. A second transcript was
independently coded using the Nvivo software, from which 28 codes emerged.
In Nvivo, the coding process involved highlighting selected text and creating a
node to describe the selected text. Figure 3.4 shows the formation of codes from
interview quotes.

Figure 3.4: Open coding process

After an initial comparison of the two independent transcripts, the codes were
merged into a single set of codes. These were preliminary codes that evolved as
data analysis progresses. Subsequent transcripts are coded with already identified
codes as well as newly identified codes. Data was then grouped into categories
using concept classification (Glaser, 1978), which becomes saturated as new data is
(Glaser & Strauss, 1967). The data analysis steps achieved at this stage are shown
in Figure 3.5.

CHAPTER 3. RESEARCH DESIGN 54

Figure 3.5: Data analysis steps

3.5.3.2 Constant Comparison Method

I used a constant comparison technique to iterate between data collection and
analysis, constantly comparing data within itself and other instances of the same
case, without any preconceived outline. The technique was used to refine categories
and their properties, define and write the theory (Glaser & Strauss, 1967)(Adolph et
al., 2011). This approach is “close to the common-sense approach which one might
use when trying to understand something which is complex and puzzling” (Robson
& McCartan, 2015). Figure 3.6 is an example of a “within instance” comparison
and merging of codes.

Figure 3.6: Constant Comparison process

The data analysis steps achieved at this stage are shown in Figure 3.7.

CHAPTER 3. RESEARCH DESIGN 55

Figure 3.7: Data analysis steps

3.5.3.3 Memoing and Sorting

In this research, I used memos to capture and refine concepts, and to express the
relationship between concepts identified using open coding as they develop into
categories (Glaser, 1978). Based on the identified codes, brief notes on topics were
made containing quotations from transcripts as primary evidence, from which 10
memos emerged. Memo writing helped to elucidate and converge ideas originating
from the codes, and sharpen categories evolving as new transcript data is added
(Glaser & Strauss, 1967). This is a key stage in theory generation (Adolph et
al., 2011). Figure 3.8 is an example of the emergence of memos from codes and
categories generated from the data.
The memos were evaluated to identify relationships which, combined with swim
lane diagrams of functional areas of software development, formed the basis for my
initial findings. The memos were constantly updated throughout the data analysis
process.

As the data collection seemed near saturation, the memos were sorted to form a
theoretical outline. Sorting “puts the fractured data back together” (Glaser, 1978).
The sorting was based on the relationship between categories, comparing one
memo to the other. This formed the initial structure of the theories. The data
analysis steps achieved at this stage are shown in Figure 3.9.

CHAPTER 3. RESEARCH DESIGN 56

Figure 3.8: Memo Generation process

Figure 3.9: Data analysis steps

3.5.3.4 Saturation

As expected, evidence began to converge at the later stage of the research, and
the addition of new interviews had less and less impact on the categorisation.
Saturation is said to have occurred in the research when new categories no longer
emerge. There are arguments for theoretical and data saturation, and some hybrid
forms. While the aim of the study is not to distinguish between theoretical and
data saturation, it adopts Glaser (1978) definition of “Saturation means that no

CHAPTER 3. RESEARCH DESIGN 57

additional data are being found.” Emerging theories were identified from memos
of transcripts, more data is collected and coded, and constantly compared with
the existing codes and memos until no additional information seemed apparent.
Although this is not a claim of saturation, I believe that at this point in my work, I
can examine the theory emerging from the analysis of the data.

The data analysis steps achieved at this stage are shown in Figure 3.10.

Figure 3.10: Data analysis steps

Figure 3.11 summarises the research method employed in phase 1 of the study.

Figure 3.11: Phase 1 research methodology

CHAPTER 3. RESEARCH DESIGN 58

3.6 Phase 2 - DevOps Implementation strategies and
Elements of influence

Phase 2 aims to investigate the rationale and evidence-based decision-making in
organisational DevOps implementation, and the elements of influence. This phase
is also guided by grounded theory methods. This is because this aspect of the
study is also exploratory, although it builds on findings from the previous phase.
I describe the research sites, data collection, and data analysis in the sections
following.

3.6.1 Research Sites

I provide a brief description of some participating organisations in this section. Or-
ganisations represented in the study are all large enterprises (software development
companies as well as software-intensive companies, in the financial, healthcare,
and industrial sectors based in the UK, USA, and Africa). For instance, one of the
participating organisations is an international airline based in the USA. They de-
liver services to millions of customers through in-house solutions deployed on both
on-premises and cloud-based platforms. Another is a large international software
development company based in Africa. Some of the organisations had co-located
teams, while others were geographically distributed. Classification of organisa-
tions in this study is based on staff count, adopted from the EU Recommendation
2003/361.

The primary unit of analysis for this phase was software development practitioners
and senior IT managers that have led DevOps implementation in organisations.
This was to provide us with an organisational level perspective of the elements that
influence DevOps implementation. Seventeen practitioners each from a separate
organisation participated in this phase. Appendix F describes the participants.

Table 3.3 summarises Phase 2 participants’ descriptions.

CHAPTER 3. RESEARCH DESIGN 59

Table 3.3: Participants’ description

Code Position SD Ex-
perience
(years)

DevOps
practice
(years)

DevCo1 CTO CTO 31 9
FinCo7 Lead Senior DevOps Engineer 13 8
MultCo1 Mgr Engineering Manager 11 5
DevCo2 MD Principal Consultant 31 9
DevCo3 Lead Principal Architect 16 6
DevCo4 CEO Principal Consultant 32 11
DevCo5 Lead Lead DevOps Engineer 19 8
FinCo8 TM Technical Manager 29 9
FinCo9 Lead Global DevOps Lead 16 8
DevCo6 DOps Senior DevOps Engineer 14 5
DevCo7 Lead Lead Site Reliability Engi-

neer
11 4

DevCo8 Chief Chief Consultant 9 9
DevCo9 Chief Chief Consultant 23 7
DevCo10 Head Head of Software Dev. 21 7

3.6.2 Data collection - Theoretical Sampling

Theoretical sampling is the process of data collection for generating theory whereby
the analyst ”jointly collects, codes, analyses the data and decides what data to
collect next and where to find them, to develop his theory as it emerges.” (Glaser,
1978)

3.6.2.1 Recruiting Participants

In the second phase, data collection was through interviews with 14 senior IT
managers and DevOps transformation leads each from various organisations. Some
participants also provided us with documentary evidence of their processes. The in-
terview was conducted over seven months in 2020, following the process previously
described.

CHAPTER 3. RESEARCH DESIGN 60

The recruitment of participants for the phase was matched with the primary unit of
analysis. This was initially done by a LinkedIn profile search of experts in DevOps
groups who claimed to have experience in organisational DevOps implementation.
Thereafter, I progressed to recruit participants through the snowball sampling
method.

3.6.2.2 Data Transcription

As described in phase 1, interviews were transcribed verbatim and transferred to
Nvivo software for analysis.

3.6.3 Data Analysis: Based on Grounded Theory

Data analysis of phase 2 also followed the techniques of open coding, constant
comparison, memoing, theoretical coding, and saturation

3.6.3.1 Open Coding

Open coding followed the same process described in phase 1: line-by-line coding of
transcripts using short descriptive phrases. Seventy-nine (79) codes were generated
from open coding in phase 2. Some codes were merged using a constant comparison
process, yielding 40(forty) core codes.

3.6.3.2 Constant Comparison Method

Constant comparison in this phase involved within the transcript, between tran-
scripts of the same phase, and with codes previously generated in phase 1, to
determine relationships. It follows the same process previously described.

CHAPTER 3. RESEARCH DESIGN 61

3.6.3.3 Memoing and Sorting

Memoing in this phase followed the same process described in Phase 1. Examples
of the memo generation process are shown in Figure 3.12 - Figure 3.14.

Figure 3.12: Diagnostic assessment memo generation

Figure 3.13: Organisational DevOps Strategies memo generation

Figure 3.14: DevOps strategies memo generation

CHAPTER 3. RESEARCH DESIGN 62

3.7 Phase 3

3.7.1 Model Creation Process

The model creation is based on theories generated from findings in phases 1 and 2,
and literature. This process mainly involved an examination of the models used in
tailoring agile software development methodologies and the selection of a suitable
model. The selected model was extended to accommodate the findings of the
research. These steps are shown in Figure 3.15.

The model consists of 4 parts. Parts 1 and 2 directly relate to the selected tailoring
model for agile software methodologies. A comparison between both models
is presented in chapter 6. Parts 3 and 4 mainly reflect findings from this study
and seek to address the requirements for the implementation of DevOps in an
organisation.

Figure 3.15: Model creation process

3.8 Model Evaluation

3.8.1 Evaluation Site

The evaluation of the created model was carried out with DevCo9. DevCo9 is a
UK-based international software provider, specialised in oil and gas engineering
and management solutions. This includes software such as maintenance and
optimisation, safety, risk assessment, as well as inventory and asset management.
DevCo9 has a global team distributed around Europe, America, the Middle East,

CHAPTER 3. RESEARCH DESIGN 63

Asia, and Africa. They deliver services to millions of customers through solutions
deployed on cloud-based platforms. In-house services are both cloud native and
on-premises. The organisation also provides consultancy for studies such as drilling
and well operations, assets and integrity management, etc.

3.8.2 Model Evaluation Structure

The evaluation of the model consists of four main parts:

1. A pre-workshop engagement with DevCo9

2. A focus group workshop involving the presentation of the model

3. Recommendation of actions to improve agility in the the organisation, based
on the model.

4. The creation of a repository to aid practical usability of the model, based on
participants’ suggestion.

3.9 Pre-Workshop Engagement with DevCo9

The pre-workshop engagement with DevCo9 was a discovery meeting to evaluate
how relevant SIDSEM would be to their context. One of the techniques used for
this activity was an interview. A pre-determined interview guide was used which
contained questions relating to the software development process and collabora-
tion. Two expert stakeholders were interviewed. Each interview lasted about 40
minutes. The interviews were transcribed and analysed. The discovery meetings
also involved a discussion of my research findings and a general description of
the model. A participant information sheet (Appendix D) was provided to each
participant. As an outcome, a 2-hour workshop was agreed on with a team of
software development experts in DevCo9.

CHAPTER 3. RESEARCH DESIGN 64

A summary of the evaluation activities is presented in Figure 3.16

Figure 3.16: Model evaluation process

Chapter 4

Taxonomy of DevOps
Implementation in Practice, Benefits,
and Challenges

4.1 Introduction

This chapter represents findings from Phase 1 of the study. The findings, which can
be described as preliminary, were gained from an analysis of interview transcripts.
The chapter gives the reader an in-depth exposition of DevOps implementation
in practice, as understood by the researcher. I also present a novel taxonomy of
DevOps implementation derived from the findings.

The next session describes DevOps in practice. This is followed by approaches
to DevOps implementation, then I explore the DevOps teams’ responsibilities.
Thereafter, I present the identified difference between developers, DevOps, and IT
Ops teams. Findings on CI/CD practices, collaboration, benefits, and challenges
of DevOps implementation are then presented. Out of the nine organisations that
participated in the study, eight had adopted DevOps culture and implemented

65

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 66

its practices across the organisation. The remaining organisation has thus been
excluded from the finding herein presented.

4.2 Description of DevOps

This section presents the description of DevOps from practitioners’ perspectives.
The participants generally describe DevOps as improved collaboration between
developers and IT Ops teams. Some interviewees also described DevOps as end-
to-end automation of the software development pipeline, aimed at providing better
software quality, and creating a seamless workflow of products in the shortest
possible time. These descriptions appear to fall into two main groups: DevOps as
a culture, and as a job description.

4.2.1 DevOps as a Culture

Based on participants’ descriptions, the researcher understands “DevOps as a
culture” to mean a way of thinking and approach to working. This “culture” is
portrayed as an intentional collaboration between developers and IT Ops specialists.
DevOps as a culture was widely reported among interviewers. In FinCo1, the
DevOps team assists developers in re-configuring their codes for containerisation.
“And, so we joined with the team and we told them how we’re actually working.
And together with them, we tried to, we need to adjust the application because it
was not container aware. So, together with them, we altered the code a little bit, so it
was container-ready”. [Finco1 DOps1]. Knowledge is shared and there is a mutual
understanding of basic activities across the boundaries of teams. This informal
knowledge sharing is said to be achieved through the collaborative resolution of
code-related challenges. Similarly, [Finco1 DOps2] mentioned knowledge flow
from developers to DevOps Engineers: “So as I mentioned, there’s a couple of
proper developers, we have a great resource because they teach us, nope, sit back,
look. What are you trying to achieve? And write it properly from scratch rather

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 67

than just couple together something”.

DevOps teams in these organisations are conversant with the codes of developers
and help where necessary. Developers are also made aware of how the automated
infrastructure works, though not directly involved in its creation or maintenance.
According to some practitioners, a level of confidence is brought about by a
basic understanding of other aspects of the process and familiarity with the other
actors. Intra-team collaboration is reported as brainstorming and coding together
when issues are encountered. Collaboration in FinCo2 involves the DevOps team
creating users’ stories from requirements, breaking them into manageable tasks,
and delegating these tasks to developers through Azure DevOps.

4.2.2 DevOps as a Job Description

Some interviewees had the job title of ‘DevOps Engineer’ and worked in distinct
DevOps teams or departments. “We don’t actually have developers in our team.
So, in our case. . . it’s just DevOps” [Finco1 DOps1]. They further described
their team as “platform builders” for developers, “who support them and host their
applications on our platform”. Here, DevOps is being presented as a job description,
with DevOps Engineers responsible for carrying out “DevOps functions”, which
I describe in the DevOps teams’ responsibility subsection. Some participants
expressed concern that having separate DevOps teams might not be the right way
to implement the concept, however, others affirmed that the approach allowed
developers to focus on providing value for the business, as they are not encumbered
with the extra burden of creating and managing automated CI/CD pipeline for their
deployments.

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 68

4.3 Approaches to DevOps

The results show that organisations adopt several approaches to implement DevOps.
Practitioners try to adopt acclaimed DevOps-related best practices in a seemingly
suitable way. However, according to participants, the choice of an approach to
DevOps implementation is largely unstructured. This means that the determination
of the most suitable DevOps practices does not follow any specific guidelines. From
my analysis, I present a taxonomy of DevOps implementation: four dissimilar
modes describing developers’ interaction with Ops, Outsourced Ops, DevOps,
and DevOps Bridge teams. It is important to note that the developers’ teams
encountered in the study include QA and security experts.

4.3.1 Developers-Ops mode

Developers-Ops mode of DevOps implementation depicts the instance where
senior developers performed automated infrastructure management alongside de-
velopment activities in a hybrid cloud deployment environment. The IT Ops
team supports the physical infrastructure and on-premises hosted applications,
while developers wrote application codes, deployed their codes through CI/CD
pipelines, and managed applications themselves. Here, senior developers were
seen as the facilitators of DevOps practices. Figure 4.1 is a pictorial representation
of Developers-Ops mode.

Figure 4.1: Developers-Ops mode

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 69

4.3.2 Developers-Outsourced Ops mode

The Developers-Outsourced Ops mode is like the Developers-Ops mode described
above. Senior developers also write infrastructure codes to create and manage
deployment pipelines, the difference being that its deployment environment is
cloud-based, eliminating the need for Ops experts. Figure 4.2 describes the mode.

Figure 4.2: Developers-Outsourced Ops mode

4.3.3 Developers-DevOps mode

Figure 4.3 depicts the Developers-DevOps mode where DevOps teams create,
deploy, and manage both the cloud infrastructure and deployment pipelines. De-
velopers’ applications are also deployed and maintained by the DevOps team.
Describing this mode, [Regco Dvr] said “it allowed developers to focus on pro-
viding value for the business”. This claim was clearly expressed by some other
participants. Here, developers are not responsible for application deployment and
management. Completed applications or features are handed over to the DevOps
teams for deployment and management, who are the DevOps practices facilitators.

Figure 4.3: Developers-DevOps mode

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 70

4.3.4 DevOps bridge team mode

DevOps bridge team mode was the mode widely used in my study. This mode
(shown in Fig. 4.4) was found in a hybrid environment of cloud and on-premises
deployment. Here, DevOps teams interface with both developers and IT Ops to
drive the practices of DevOps like configuration management, continuous inte-
gration and continuous delivery, automated testing, deployment, monitoring, and
metrics collection. Developers provide business solutions, leaving the creation,
deployment, and management of both the cloud infrastructure, virtual systems, and
deployment pipelines to the DevOps teams. These teams are provided services of
on-premises infrastructure by the Ops team. Essentially, the DevOps teams are
customers to the Ops team, and service providers to developers. It is important
to note that in this approach to DevOps, everyone is responsible for their actions.
Developers create codes, deploy them through CI/CD pipelines, monitor, and
manage applications. In the same vein, the DevOps team deploys its infrastructure
through the pipelines they create. However, the bridge teams are the facilitators of
the DevOps process.

Figure 4.4: DevOps bridge team mode

Further investigation to understand this approach revealed three main classes of
activities: provisioning and maintenance of physical systems, function virtuali-
sation and creation of automated pipelines, and development, deployment, and
maintenance of applications (Continuous practices).

At the physical level, participants clearly explained that the systems in their on-
premises data centers needed to be configured and managed by IT Ops teams.
Access is thereafter granted to DevOps engineers, who built automation into these

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 71

systems. [Finco1 DOps2] describes the situation as “There’s one team that does
the physical installation, cabling of the hardware. There’s another team that does
the installation of some sort of the OS, and there’s another team that customises
that OS and we get access to install our [tools]... So, we are the consumers of it.”

Using automation tools, DevOps engineers create pipelines to enable continuous
practices such as continuous integration/continuous deployment, continuous test-
ing, etc. Scripts are created for configuration management and the deployment of
infrastructure-as-code. In FinCo1, FinCo2, FinCo3, and FinCo4, these activities
are solely the responsibility of the DevOps teams. Applications and solutions
are subsequently developed and deployed through automated pipelines. The pro-
cesses are mostly automated, however, code review and user acceptance tests were
described as manual processes.

Table 4.1 shows the distribution of the organisations according to their approaches
to DevOps implementation. While the aim is not to study the frequency of each
approach, it is interesting to point out that the DevOps bridge team approach seems
quite popular in the study. The researcher thinks that this might be a result of
organisations trying to understand the concept while trying to maintain stability in
their operations.

Table 4.1: DevOps implementation approaches in the study

Approach Organisation Deployment platform
Developers-Ops collab-
oration

FreeCo1 Hybrid Cloud

Developer-Outsourced
Ops

FinCo5 Cloud

Developers-DevOps
collaboration

ITCo1, RegCo1 Cloud

DevOps bridge teams FinCo1, FinCo2,
FinCo3, FinCo4

Hybrid Cloud

Despite the seeming prevalence of bridge teams in the study, some interviewees
thought it was not the right approach to DevOps implementation, as “there is still
segregation between development and infrastructure in some way.” [Finco1 DOps1]

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 72

4.4 Taxonomy of DevOps approaches

Based on practitioners’ descriptions already presented, Fig. 4.5 is a quadrant
showing a novel taxonomy of DevOps implementation identified in the study.
This classification describes the interaction of developers with various teams and
presents a summary of the activities in each mode of DevOps implementation. The
elements of interest are the application deployment environment, the facilitators of
DevOps practices, and the team structures found in their interactions. It might be
valuable to study how these elements influence one another in the determination
of the approach organisations take to implement DevOps. The taxonomy thus
provides a foundation for such investigation, which is beyond the scope of this
study. The x-axis in the quadrant shows the application deployment environment.
The y-axis shows the facilitators of DevOps practices.

Figure 4.5: Taxonomy of DevOps approaches

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 73

4.5 DevOps Teams’ Responsibilities

The DevOps teams in the study are tasked with migration from existing platforms
to either cloud-based or an automated on-premises environment, and its subsequent
maintenance. Generally, they act as an intermediary between IT operations and
developers, providing the means to an end in software development (SD), by creat-
ing automated pipelines on both physical and virtual servers to enable continuous
integration and continuous delivery. In Finco1 and ITCo1, DevOps teams are
organised around specific products. Beyond provisioning automated platforms and
maintenance of the environment, however, there are slight variations in the respon-
sibilities of the DevOps teams encountered in the study. For example, the DevOps
team in Finco2 is tasked with development cycle automation and tool unification.
More than that, they coordinate the activities of the software development process,
serving as scrum masters in some instances. As [DvOps2] describes it, “We bring
the same tools between developers and operations to like a common ground in
the whole of our software life cycle. . . tracking of the day-to-day activities by
organising scrum meetings, of the operations team, the product owners and things
like that and the developers to also. . . aggregating requirements from the business
to developers.”

The two participants from Finco1 are in two separate DevOps teams, working on
cloud and on-premises platforms respectively. Team 1 is a cloud team responsible
for onboarding in-house solutions, which are resident in on-premises datacentres,
to public cloud platforms. The team creates automated deployment pipelines using
Kubernetes, and virtual services to route applications, providing the mechanism for
faster deployment. [DvOps1] puts it this way, ” I’m part of the cloud team, and this
basically is a new team which was launched a couple of months ago. And the goal of
the team is to investigate the movement to the public cloud. What we try to do is, we
try to give them the right tools. So that basically means that we define the pipeline”.
Team 2 however works on an on-premises container hosting platform. They create
pipelines to enable Continuous integration/continuous delivery. They write codes,
peer-review, and deploy pipeline solutions, through automated pipelines.

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 74

In RegCo1 and ITCo1, the DevOps team is responsible for all deployments. Devel-
opers hand over applications to these teams, who then oversee the journey through
the CI/CD pipeline. The team also monitor the applications and function first line
of support.

The responsibilities described are shown in the swim lane diagrams in Figures 4.6
to 4.9, based on participants’ descriptions of the identified approaches.

Figure 4.6: Responsibilities in Developers-Ops Mode

4.5.1 Boundaries of Responsibilities

An interesting point observed is participants’ insistence on a distinction between
“pure developers” and the DevOps engineers and IT operations. For instance,
some DevOps engineers interviewed constantly referred to developers as “them”.

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 75

Figure 4.7: Responsibilities in Developers-Outsourced Ops Mode

Some participants expressed the view that software developers should spend their
time working on their products and not be bothered with what goes on “beneath
the hood” of the infrastructure side of the platform if they can deploy solutions
seamlessly. As DvOps1 said: “Yes, they’re purely development teams. They create
APIs, beacon APIs or full-term applications, or just parts of websites...The only
thing that we actually want them to do is to write the code and we should know
how to start your application. And they create the docker file which comes with it.
And we try... from there we try to pick up the rest.”

Also, while the DevOps team works to give developers the best tools to get their
work done, developers are expected to take responsibility for their products. This
suggests boundaries of responsibilities. Another observed instance is the distinction

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 76

Figure 4.8: Responsibilities in Developers-DevOps Mode

between DevOps and IT Operations. DvOps3 describes the situation as ”There’s
one team that does the physical installation, cabling of the hardware. There’s
another team that does the installation of some sort of the OS, and there’s another
team that customises that OS and we get access to install our [tools]... So, we
are the consumers of it. We don’t really care but we...we’re the next chain in
line, we know that there’s many teams before [us]. We expect the other teams
to deal with those processes, and deal with their impediments and deliver it”
The distinction is seen in the responsibility for product codes and delivery, the
deployment pipeline and automated infrastructure management, and the physical
infrastructure administration. Table 4-2 summarizes the activities of developers,
DevOps, and IT Ops teams identified in the study.
All deployments in the study, from developers and DevOps teams, go through

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 77

Table 4.2: Difference between developers, DevOps and IT Ops

Task Developers DevOps Teams IT Ops
Coding Write code for

products and
features

Write codes for
tools and virtual
functions

Write scripts for
functions

Continuous
Integration

Use CI/CD
pipeline to
continuously
merge code to
master branch

Use CI/CD
pipeline to con-
tinuously merge
code to master
branch

-

Deployment Deploys own
solutions to
both cloud and
on-premises
platforms us-
ing automated
tools

Deploys own
solutions to
both cloud and
on-premises
platforms using
automated tools

Deploys devel-
opers’ solutions
to on-premises
physical and
virtual systems

Infrastructure
manage-
ment

Manages cloud
infrastructure
(1 instance)

Automation
pipeline man-
agement on
both cloud and
on-premises
infrastructure

Physical infras-
tructure manage-
ment

Other identi-
fied respon-
sibilities (1
instance)

- Translates re-
quirements to
user stories,
scrum masters,
assigning tasks
to developers,
project tracking/-
monitoring

-

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 78

Figure 4.9: Responsibilities in DevOps Bridge Mode

automated pipelines. Here, I see an intersection of an activity (deployment) between
the developers and the DevOps team, however, Table 4-2 creates a distinction
between the types of deployments carried out by each group.

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 79

4.6 DevOps Practices

4.6.1 Continuous Integration, Continuous Delivery (CI/CD),
and Tooling

CI/CD practices are quite similar across the organisations in my study. All the
participants described a push CI/CD pipeline model. Developers commit codes
to the repository via an automated pipeline. Following predefined rules, the code
is built. Depending on the build outcome, a successful build is moved through
test environments and is finally deployed to production. Deployment is triggered
by a manual approval process after verification of acceptance criteria in the test
environment. This model of deployment is also practised by the DevOps teams.
Their infrastructure scripts go through the CI/CD pipeline to production. Figure
4.10 is a representation of the pipeline.

Figure 4.10: CI/CD Pipeline

Tools used for CI/CD implementation differ from organisation to organisation.
For example, Finco1 uses the GitLab repository, helm charts to manage their
Kubernetes clusters, Docker and Azure container registry for containerization,
YAML files for configuration management, Ansible, Terraform scripting, and Istio.
Communication is facilitated by internal tools and portals. In Finco2, automated
pipelines are created by Azure DevOps. Developers’ codes are written in .net or
C sharp and committed to a GitHub repository. Sonarcube or Veracode is used to
test for vulnerability. They use Docker for containerization and Selenium for web
testing. For Finco3 Bamboo is used for CI/CD, they are currently transitioning to
Jenkins. Terraform scripting for cluster creation, Ansible for pipeline creation, and
Vault for ticket management. Docker Swarm for container orchestration.

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 80

Continuous deployment was not mentioned in any of the organisations. In some
cases, deployment to production is triggered after manual approval has been given
during a sprint. In others, changes are left till the end of the sprint before their
deployment to a live environment. DvOps4 described a situation where deployment
is done during a sprint or left till its end respectively, depending on whether it is an
application or infrastructure code.

“So, I will start with the DevOps engineer. We would basically push this build into
a git repository. Um, it would sit there um, until the end of the sprint when we,
when we roll out the changes that we’ve been working on. . . now for a developer,
it’s slightly different. Because they would. . . they have the luxury to deploy there
and then.” This distinction between deployments of developers and DevOps teams
was not noticed in any other organisation.

4.6.2 Collaboration and Knowledge Sharing

In Finco1, the DevOps team1 assisted developers to reconfigure their codes for
containerization. DvOps1 said: “And so we joined with the team and we told them
how we’re actually working. And together with them, we tried to, we need to
adjust the application because it was not container-aware. So, together with them,
we altered the code a little bit so it was container-ready”[DvOps1]. Knowledge is
shared and a mutual understanding of basic activities across the boundaries of teams.
This is achieved through a collaborative resolution of code-related challenges.
DvOps3 described knowledge flow from developers to DevOps Engineers. “So as I
mentioned, there’s a couple of proper developers, we have a great resource because
they teach us, nope, sit back, look. What are you trying to achieve? And write
it properly from scratch rather than just couple together something” [DvOps3].
DevOps teams understand the codes of developers and offer help where necessary.
Developers are also made aware of the workings of the automated infrastructure,
though not directly involved in its creation or maintenance. According to DvOps1,
a level of confidence is brought about by the basic understanding of other aspects
of the process and familiarity with the other actors. “And of course, there’s the gray

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 81

area where you need to teach them how the transition from codes to infrastructure
works. I can see that whenever it’s clear, they would eventually see that ok, we don’t
have to mind, you know. It’s done automatically for us. Which is pretty convenient
because we like to write code.” [DvOps1] Collaboration is further fostered by
teams working closely together, and the willingness to explain one’s activities
to others. The above is identified as important for collaboration by some other
participants. Intra-team collaboration is seen in brainstorming and coding together
when issues are encountered. Collaboration in Finco2 involves the DevOps team
creating user stories from requirements, breaking them into manageable tasks, and
delegating these tasks to developers through Azure DevOps. (if their build is done
in the cloud and deployment on-premises, how is this coordinated? who writes and
maintains the scripts for the on-premises server such as security, network, etc)

4.7 Benefits of DevOps Adoption

4.7.1 Improved delivery speed and more frequent releases

Participants claim that the implementation of DevOps in their organisation in-
creased their delivery speed and enabled a more frequent release of value. These
benefits are aided by embracing continuous practices and automation.

4.7.2 Better Collaboration

Participants report that both developers and IT operations teams (and indeed other
teams involved in the software development process) make a conscious effort to
align their individual goals. This is because collaboration is one of the core cultural
values of DevOps. This collaboration enables building trust between teams and
fosters inter-team support to tackle challenges and deliver value.

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 82

4.7.3 Software Quality improvement

One result of improved collaboration between developers and IT operations is
improvement in software quality. Quality metrics have wider coverage. Continuous
testing brought about by automation is said to also contribute to improved quality.
Defects are more easily identified, and because visibility is increased in the value
stream, solutions to challenges are found faster.

4.7.4 Faster feedback Loop

Participants claim that DevOps has improved the speed of feedback for developers.
This is brought about by automation, continuous measurement, and continuous
feedback. This fast feedback and collaboration between developers and IT opera-
tions enable prompt response to change and accelerate release cycles.

4.7.5 Reliability and Repeatability of Deployments

The practice of automation in DevOps is reported to improve the reliability and
repeatability of deployment. This is further strengthened by continuous testing and
real-time metrics collection. As automation reduces the possibility of errors from
manual processes, releases are more stable and frequent.

4.8 Challenges of DevOps Adoption

4.8.1 Unclear Definition

The lack of a specific definition for DevOps was not categorically stated as a
challenge in its implementation. The researcher, however, concludes from the

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 83

analysis that practitioners’ perception of DevOps is instrumental to the benefits
or otherwise derived from employing the concept. While some organisations
consider it as a job function and focused on its implementation as such, hiring
DevOps engineers to carry out DevOps functions, others seem more holistic in their
approach, trying to improve the culture of collaboration and knowledge sharing.
Thus, varying outcomes are realised which stems from implementation based on
individual understanding of the concept.

4.8.2 Changing Technology stack

One challenge mentioned by some participants is keeping up with the fast-changing
technology stack and making decisions on the best tools for their specific needs.
DevOps teams are constantly faced with the need to upgrade as new versions of
tools become available, accruing technical debt during such transitions while trying
to meet the requirements of newer versions. As DvOps1 said, ”because it’s, you
know, this movement is just going so fast, these tools exploding but sometimes you
just have to make a choice and say, ok we’re gonna use this product the upcoming
year and we can see afterward, yes.”

4.8.3 Undefined and complex skillset

An interesting point noted in the study, which I see as a challenge is that no
two participants had the same repertoire of skillset required for a DevOps-aware
organisation. This difference apparently originates from differing views of the
concept. The complexity of the DevOps skillset makes it difficult to determine
re-skilling requirements. Also, learning the tools required for automation and
building CI/CD pipelines is considered quite challenging by some practitioners.
To enable better collaboration, developers and IT operations teams also needed
to train in each other’s skills. Some practitioners considered this an unnecessary
addition to their workload.

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 84

4.8.4 Determination of Appropriate DevOps infrastructure Plat-
form

Another challenge is creating a suitable organisational-wide infrastructure. While it
seems effortless to create automated pipelines for a few teams of both development
and operations deployments, scaling the platform to accommodate all the varying
needs of an entire organisation seems more challenging to the DevOps teams. This
oftentimes requires making changes to the infrastructure code and its redeployment.
As consequence, the hosted applications must also be redeployed.

4.8.5 Resistance to change

DvOps1 expressed the unwillingness of some development teams in FinCo1 to
transform their legacy systems into automation-pipeline-ready chunks. This makes
it difficult to scale automation across the organisation. Only greenfield applications
and a few willing legacy software teams are currently on the automated cloud
platform. Some developers also struggle with the trade-off between infrastructure
access and easier deployment.

4.8.6 Requirement changes

For a DevOps team such as DvOps2 that seems to be in direct contact with
developers, requirement changes can pose a challenge to optimising the delivery
cycle. Although this seems to be more of a challenge for developers. However,
because this DevOps team seems to serve multiple purposes such as scrum masters,
project managers, infrastructure builders, and writing user stories, requirement
changes affect them directly too.

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 85

4.8.7 Provisioning hardware in on-premises platforms

The provisioning of hardware sometimes poses difficulty to on-premises platforms.
DevOps teams in Finco1 have no direct access to the physical hardware, which
is controlled by system administrators. The interface between these two teams is
sometimes tricky. “we need to deliver XYZ, and if there are impediments, then we
need to look at the escalations which all go through the, eh, PO, product owner...we
would use the tools that they have to request new hardware, and we end up back of
the queue like everyone else, pretty much.” This challenge can probably be seen as
a limitation of on-premises deployment platforms. The team sometimes bypasses
official request channels to get their work done faster.

4.8.8 Unidentified Dependencies

Unidentified and unclear dependencies within an organisation and information
segregation on APIs were also stated as challenges in DevOps implementation

4.8.9 Poor Code Quality

Some DevOps engineers with infrastructure backgrounds expressed dismay over
the poor code quality of their scripts as opposed to that of core developers.

4.9 Summary

This chapter presents a critical examination of DevOps implementation in prac-
tice, through an exploratory case study, based on interviews with 11 industry
practitioners across nine organisations. Transcripts of interviews were coded and
analysed using a method informed by Grounded Theory. Beginning with the de-

CHAPTER 4. TAXONOMY OF DEVOPS IMPLEMENTATION 86

scription of DevOps, the chapter digs into the approaches taken by organisations
to implement the concept. The researcher presents a novel empirical taxonomy of
DevOps implementation, describing developers’ interaction with On-premises Ops,
Outsourced Ops, DevOps teams, and DevOps bridge teams. The taxonomy maps
DevOps approaches to on-premises and cloud-based deployments and identified
the facilitators of DevOps practices in the different modes. I further identified three
distinct groups of activities in the fourth mode: provisioning and maintenance of
physical systems, function virtualisation and creation of automated pipelines, and
development, deployment, and maintenance of applications, which may have given
rise to the implementation of DevOps as bridge teams. The chapter also describes
the benefits derived from DevOps implementation and the challenges encountered
by participants are presented. Based on my findings, I conclude that DevOps is
perceived as both a culture and a job description, and these two views are not nec-
essarily mutually exclusive. Also, the different modes of DevOps implementation
seem driven by other organisational factors beyond its perception.

Chapter 5

Strategies for DevOps
Implementation: The Roles of
Skillset and Automation

5.1 Introduction

Chapter 5 describes findings from the analysis of interview transcripts of phase
2. The data was collected and analysed as described in Chapter 3. The chapter
takes the research a step further by providing an in-depth investigation into the
pathways to DevOps implementation in organisations and the factors influencing
these choices.

Firstly, the methods of diagnostic assessment by the organisations in my study are
presented. This is followed by strategies of DevOps implementation. The classi-
fication of these strategies (except for platform) is novel and has been published
by the researcher (Macarthy & Bass, 2021). The concept of DevOps skillset and
its role in DevOps strategies is explored thereafter. This is followed by the role of
automation as described by participants.

87

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 88

5.2 Diagnostic Assessment

Participants described various discovery processes used by their organisations.
for instance, an organisation used a diagnostic assessment provided by DevOps
Research Associates (DORA) as a survey tool. This provided some sort of spatial
diagram of the various strengths and weaknesses of the organisation across different
dimensions and was used for management decisions on how to proceed with their
DevOps implementation. Some others describe some sort of lean engineering
approach. [DevCo1 CTO] describes a discovery process where some consultants
were invited to workshops with representation from all the different parts of the
business (testing, development, database, security, operations, etc). They used
techniques like value stream mapping and event storming to identify the most
critical constraint that the organisation faced at that time and sought iterative
processes of alleviating those constraints using DevOps patterns and practices.
DevCo3 MD said “Try and identify where the costs are in their. . . their work from
idea to useful software in the hands of users. And then you can kind of use that as
an opportunity to start to improve the quality of feedback usually quite quickly and
efficiently or just removing waste from the processes.”

Basically, the organisations tried to get an agreement as to what specifically they
are trying to improve, where are they now and where are they trying to get to.
Once they have the definition of what the specific goal is, the next step seems
to be the determination of strategy. Two important things to note here are the
fact that practitioners are concerned about the identification of agile or DevOps
maturity levels of the organisation and the constraints (mostly in terms of practices,
processes, and technology). The constraints that the organisations face very much
depend upon the organisation and the industry context.

Some constraints reported by practitioners include instability of their production
environment - for which they decided to invest in making it less error-prone,
configuration management of services - for which they implemented a configuration
management tool, etc. Apart from the initial discovery process, some participants
also report continuous diagnostics as part of their continuous improvement efforts.

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 89

Once set goals are achieved, the entire diagnostics process is repeated. In DevCo1,
the respondent talked of an employee competence discovery process that was used
to “put the right people with the right skills in the right teams”.

It raises concern however that only two organisations mentioned the initial discov-
ery process involving employee competency. This suggests that available IT skills
competency may not be widely considered a factor in organisational diagnostic
assessment for DevOps implementation. The question is how does the available
skillset affect the strategy employed by the organisation?

5.3 Strategies For DevOps Implementation

This section describes the strategies employed by the organisations in the study,
to implement DevOps. Essentially, this differs from my previous classification
of approaches to DevOps based on deployment environment and job functions in
the sense that the strategies seem like initial steps taken by organisations in their
DevOps journey. The strategies seem to lead up to the approaches described in
my taxonomy. The researcher classifies the strategies into 6 groups: Platform,
Greenfield application, Monolithic decomposition, Process improvement, Cultural
improvement, and Advocacy.

5.3.1 Platform Strategy

Some of the organisations in the study formed teams who developed and managed
platforms that allowed the abstraction of software development operational needs
onto the platform. This strategy is focused on providing self-service to developers
to deploy code on this platform. The researcher found two origins of platform teams.
1. Instances of the technical efforts of this team to implement DevOps practices
and increase the flow of change for applications they were already working on.
These were mainly cross-functional software development teams, with some level

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 90

of autonomy. Once this effort is successful and they gain management buy-in, they
“morph” into Platform teams, as the infrastructure they create provides services
that can be reused by other development teams. The team is consequently charged
with the responsibility of evangelising, on-boarding, and coaching other teams.
“And we kind of have to just lobby people that we have. They go out to different
teams and different managers and tell them, hey listen. You know we have this
cool thing. We work with Kubernetes. We would like your team to be part of it.”
[DvOps1 Finco1].

In one instance, the researcher encountered the intentional transformation of an
operations team into a platform team. 2. The organisation brings in consultants
who constitute the platform team, with the sole purpose of transforming their
organisation into a DevOps-oriented one. This team of engineers (which is a self-
sufficient “squad”) is embedded within the organisation. The team is responsible
for the building and delivery of small pieces of infrastructure to enable Contin-
uous Integration and Continuous Delivery (CI/CD) for select applications. As
that relationship continues, they scale up to an organisation level platform team.
[DevCo2 lead] describes this as the consultancy model. The self-sufficient ”squad”
basically provides DevOps as a service for a specific time frame, while training the
organisation’s engineers to take over. Thereafter, the platform is handed over to the
organisation’s engineers who continue to provide platform services to other devel-
opment teams in the organisation. This strategy can be placed in both quadrants 3
and 4 of my taxonomy (Figure 4.5).

5.3.1.1 Platform Infrastructure Engineering

Participants tell us that their organisations begin with a small piece of infras-
tructure providing just enough services to enable end-to-end delivery of a small
application. Basically, the Platform team focuses on automation and creation of
the infrastructure part, which is then offered as a service to development teams.
This encompasses the lowest levels such as network and security, provisioning
application gateway, firewalls, etc.

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 91

The platform team is expected to understand and master quite a wide range of tools
and technology, to successfully provide the required services to the development
team who depend on them. This includes helm charts to manage Kubernetes
clusters, YAML files, Azure container registry, Terraform scripting, Istio, GitLab
for repository creation, Ansible for deployment, automated pipelines are created
by Azure DevOps, SonarQube or Veracode for vulnerability testing, docker for
containerisation, Selenium for web testing, Terraform scripting for cluster creation,
Vault for ticket management, Docker Swarm for container orchestration and a host
of other available tools. Although all the tools mentioned above are not compulsory
or used in every single Platform team, the end-to-end delivery process requires a
high level of expertise in combining these tools to ensure an easy flow of change.
A high level of engineering maturity is described by participants as present in
Platform teams.

“so this whole infrastructure stack we create by using Terraform xx in which we
can use and deploy infrastructure as code. So I create all the Terraform scripting
and modules and I glue everything together. And we also build pre-fab pipelines
for our customers so, the pipeline is YAML and everything. So all we want to do,
all we want the teams to do actually, write their codes and put it in a repository,
hook up our pipeline YAML, and then the application should be container-aware
of course, and then it should flow into our platform.” [DvOps1 Finco1]

5.3.1.2 Required Skillset and Capabilities

The following are skills and capabilities identified by participants as essential for
the successful implementation of platform teams:

1. High network and security skills

2. High Testing and Quality assurance

3. High IT infrastructure architecting and operability

4. High metric and monitoring skills

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 92

5. Good development and coding skills

6. Good grasp of a variety of CI/CD tools and technologies

5.3.2 Greenfield Application Strategy

[DevCo3 MD] described a strategy used by their organisation where a pioneering
team is selected to begin their DevOps implementation with a new suite of cloud
applications. The team was made up of innovative and forward-thinking devel-
opers, security and IT operations professionals, pulled from other teams in the
organisation. “Cause those teams um. . . began with more of a clean slate. And so
that gives them the opportunity to kind of more aggressively adopting some of the
new kind of continuous delivery and DevOps practices.” [DevCo4 CEO].

Here, the newly formed team created and maintained CI/CD pipelines. They were
also responsible for the development and deployment of applications. The team
was unencumbered with the existing structure of the software development process
in the organisation and are rather allowed a great deal of autonomy and innovation.
Some interviewees describe this team as a selected in-house team that was highly
skilled to carry out DevOps practices. As the processes got established, they began
onboarding other applications and extended the practices to other teams. Thus, this
strategy can be viewed as experimentation by organisations to establish the values
of practices. Greenfield applications strategy was accompanied by migration to
the cloud by some of the organisations. The researcher classifies this as leading to
the approaches to DevOps described in quadrants 1 and 2 of my taxonomy (Figure
4.5), depending on whether the applications reside in the cloud or on-premises.

Pioneer teams described by practitioners are cross-functional teams with develop-
ment, security, and IT operations capability. The team is self-sufficient and able to
carry out end-to-end value delivery without external dependencies, as they operate
outside of the main organisational IT infrastructure. To achieve the purposes of
exploration and implementation of new practices, the team is granted a high level
of autonomy to make decisions and be innovative. Practices validated by this team

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 93

are subsequently adopted by other teams in the organisation.

Team members are expected to try out cutting-edge practices to speed up delivery
time and decrease downtime. Particularly, participants mentioned continuous
practices such as CI/CD, continuous testing, continuous monitoring, continuous
measurement, continuous feedback, continuous innovation, etc.

5.3.2.1 Considerations of Greenfield Application Strategy

• Collaboration capability (if the team is not co-located)

• Openness to innovation

• Level of acceptable autonomy

5.3.2.2 Required Skillset and Capabilities

Based on participants’ descriptions, the team Greenfield application teams are
expected to possess the skills such as:

1. High degree of innovation and independence

2. High decision-making ability

3. High-risk evaluation ability

4. High IT infrastructure architecting and operability skills

5. High development and coding skills

6. Expert understanding of CI/CD

7. High network and security skills

8. High testing and quality assurance skills

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 94

9. High metrics and monitoring skills

10. Excellent grasp of CI/CD tools and technology

5.3.3 Monolithic Decomposition

As opposed to the greenfield application strategy, some organisations in the study
engage in the aggressive decomposition of monolith applications into modular
components. DevCo3 MD described a situation where the organisation had the
bulk of its software historically written as a big, complicated monolith. They had
not been able to release software into production for five years. As is seen in many
situations, the need to increase feedback and delivery speed drives organisations
with large monoliths towards modular decomposition.

“One of the first things that [we] started to do is that we started to try and ‘modu-
larize’ the stuff in the organisation. We wanted to speed . . . speed up the feedback
process. So, we started looking at the technical aspects of that, and we started
looking at ways in which we could decompose [our] software into more modular
components”

This strategy leverages microservices-based architecture to reduce dependencies
and increase the rate of delivery. This is initially done by selected pioneering
team(s) for selected products. For example, DevCo2, a company that builds
complex scientific instruments (from the operating system firmware and device
drivers that run on the devices themselves to sophisticated applications in the
cloud, delivering access to the information that the devices generate), had their
system based on a huge monolith. Their monolith consisted of many services
with dependencies between them, coupled to a single database schema. This made
it difficult to make any changes to the application. As this was in a regulated
industry and they were required to be regulatory-compliant, they had a culture of
enforcing standardised approach to the development and delivery of services, as
well as technology. To implement DevOps practices in the organisation, which
would help improve the quality and the pace of their feedback, they decided to

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 95

decouple the monolith and modernise their pre-existing software development
practices. The researcher also encountered this strategy in organisations that were
in non-regulated industries. Common characteristics found in the monoliths in
this study are coupling at the database level and interwoven dependencies between
services.

5.3.3.1 Considerations for Monolithic Decomposition

The following were identified by participants as important considerations when
decoupling monolithic services:

• Microservices must be aligned to business capability

• Independence of the development and delivery of the microservice

• Team location

• Available skillset

Participants tell us that there is no best method to decouple monoliths, in their
opinion. They described the following as ways in which monoliths were decoupled
in their organisation. An important point is that the decomposition must be done
in such a way that the resultant service structure supports the independent flow of
change.

1. Decomposition to achieve specific business capabilities: breaking down
the monolith into modules and features that individually address a business
capability e.g., pricing, messaging, logging, lost baggage claims, etc.

2. Decomposition according to business domains: Monoliths here are divided
along specific domain lines e.g., user management, payment management,
etc. A huge collaboration between business experts and technologists is
required to achieve this.

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 96

3. Decomposition to enable regulatory compliance: In DevCo2, their single
application was decoupled in such a way that specific services can still
fulfill regulatory requirements without interfering with the flow of change of
other services. To enable DevOps capabilities for these regulated services, a
participant describes a concept called continuous compliance:

“they’re required to be regulatory-compliant as part of their ‘releasability’.
So, they’re also working on ideas like continuous compliance, so they can
automate as much as possible of the compliance function and get feedback
um. . . within a few hours or a day ideally”.

The teams described by participants in this strategy are cross-functional feature
or product teams. This strategy was noticed in hybrid (cloud and on-premises)
environments. Here the silos of development and operations were maintained, and
the organisations rather worked on the improvement of collaboration and addressing
cultural differences between the teams. The teams were however organised around
boundaries of decomposition. This strategy is classified under quadrant 2 of Figure
4.5

5.3.3.2 Required Skillset and Capabilities

Depending on the team, participants identified the following skills as required for
the successful flow of change in decoupled applications.

Cross-functional teams:

• Design and architectural skills

• Development and coding skills

• Testing and quality assurance

• User interface design

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 97

• Basic CI/CD tools and technology

• Database management

Operations:

• Infrastructure management (cloud and on-premises)

• Networking and security

• Metrics monitoring

• Good grasp of CI/CD tools and technologies

• Basic coding skills

5.3.4 Process Improvement

Another strategy seen in the study is DevOps implementation efforts in organisa-
tions directed at improving the efficiency of the build system, to address technical
problems in the build of their software. It is described by some interviewees as
an intentional, proactive approach to improving the overall software development
process. This is achieved by identifying bottlenecks in their work from ideas to
useful software in the hands of users, improving the quality and speed of feedback,
and removing waste from the processes. In this strategy, organisations try to adopt
continuous integration and continuous delivery, configuration management, and
other process-related practices. The focus is mainly to replace manual processes
with automation.

“So, DevOps is about the ability to go quickly and regularly from idea to working
software in the hands of users [DevCo2 MD]. Similarly, [DevCo4 CEO] said “So,
I talk about it as basically um, the implementation of lean manufacturing and
applying principles of lean manufacturing to helping uh, software value streams
achieve agility, uh, stability, efficiency, uh quality, security, and satisfaction.”

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 98

Depending on what the organisation aims to achieve, they carry out a more targeted
value stream assessment and start identifying the different stages in the value
stream. For example, if it’s a lead time goal, and if they define lead time as the
time from check-in until ready for delivery, then that defines the boundaries of the
value stream, and they look carefully at what is the current time. Time pre-stage
and process, wasted time, time to set up between stages, etc. They determine
if the contributing factors are people, process, and technology components, that
contribute to those timings. They then focus on the relevant part of the value
stream to provide specific solutions. Participants describe philosophies such as
Six Sigma, CSI, using Kanban boards to visualise, manage and improve workflow
and visibility, Lean Manufacturing, and the DMAIC (Define, measure, analyse,
improve, control) methods.

The steps to process improvement found in the study are summarised as follows:

• Define the goals

• Identify and analyse bottlenecks

• Identify aspects that will benefit from automation

• Automate identified processes

• Measure and feedback

A popular concept among practitioners focused on process improvement is con-
tinuous improvement. This essentially means that the improvement process is
carried out iteratively and organisations focus on incremental changes and small
achievable goals.

A considerable aspect of process improvement is the modernisation of supporting
infrastructure and tool base. There seems to be a focus on things like version
control systems and CI/CD tools to improve the quality and the pace of their
feedback.

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 99

This strategy was observed in organisations with technically challenging and
complex software systems. One of the participating organisations built scientific
devices in a regulated industry. Their software development consisted of specialist
cross-functional teams, centred around specific products.

Participants say that their organisation changed hugely as a result of process
improvement. They now have many smaller cross-functional teams than they
started with. And they established a deployment pipeline as a service. They are
also creating automated deployment mechanisms and feedback channels, different
multi-layered tests, and automated testing. This improvement provides feedback to
development teams quickly and efficiently. They also provide infrastructure sets
easy to generate environments that people can work from.

Participants tell us that for process improvement to succeed, teams need to be given
sufficient autonomy and decision-making capabilities mainly around processes
to automate. The teams that adopted this strategy are mostly cross-functional,
self-sufficient small teams.

“[We] came from a culture of enforcing that kind of standardised approach, and
they are now relaxing that a little bit and allowing a little bit more flex...a little bit
more autonomy decision-making in the teams.”

The skillset for process improvement is similar to that identified for platform
strategy.

5.3.5 Cultural Improvement

Some organisations start DevOps implementation by trying to bridge different parts
of the organisation and have conversations around collaboration improvements.
So, they focus on addressing cultural differences and breaking down some of the
barriers. This is especially seen in organisations with geographically distributed
teams. [DevCo3 MD] describes an approach of cross-site visitations to enable

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 100

individualistic relationships and aid better collaboration. Another tactic is the use
of local proxies to represent the idea of a product owner. Organisations also employ
technical ideas like version control, deployment pipeline, and continuous delivery
mechanisms, to provide more global clarity of feedback.

Some participants in this study insist that the strategy of implementing DevOps is in
its name: integrating development and operations and breaking down pre-existing
silos. [DevCo1 CTO] puts it this way “it is obviously a portmanteau of development
and operations. . . it is removing silos inside the IT department to make the fast
(delivery) of work and flow of values em eliminating silos and intensifying the. . .
activities that are focused on customer outcomes and um...output.” This is similar
to the opinion of FinCo7 Lead, “So, . . . everybody is in it together and if an
application engineer does, em, you know, commits something that breaks or affects
the operations engineer, they shouldn’t be able to kind of, just wash their hands off
and walk away. Em.. so there’s a whole kind of philosophical piece to it.”

Some organisations start DevOps implementation by trying to bridge different parts
of the organisation and have conversations around collaboration improvements.
So, they focus on addressing cultural differences and breaking down some of the
barriers. Cross-site visitations were used to enable individualistic relationships and
aid better collaboration. This is especially seen in organisations with geographically
distributed teams. Another tactic is the use of local proxies to represent the
idea of a product owner. Organisations also employ technical ideas like version
control, deployment pipeline, continuous delivery mechanisms, to provide more
global clarity of feedback. It is not to say that these organisations did not employ
other strategies along their DevOps transformation journey, but rather that the
establishment of better collaboration was their initial focus. This strategy can be
classified in quadrant 2 of Figure 4.5.

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 101

5.3.6 Advocacy

This basically describes a scenario where a centre of excellence is the unit re-
sponsible for working with the development, operations, and product teams in an
organisation. The way the transformation worked was getting the right specialist
from operations, the right developer, and the right product owner putting them into
one group which was then siloed off into what was known as advocates. Essentially,
“DevOps specialists” are hired by the organisation to help grow the internal De-
vOps culture. They work with those different product teams to be able to increase
their level of agility and start implementing best practices associated with DevOps
in each of those teams. In this strategy, the focus is more on improvements in
collaboration. “So, the advocacy model helps those teams to engage properly
because in that advocacy model, em, the member of the members of the centre of
excellence is not actually doing tangible work relating to those products. They’re
focusing on the DevOps aspects, so they’re able... the centre of excellence work to,
to do what they need to in a quick and efficient manner.” [Devco4 Lead].

Participants tell us that the organisation must decide on what success looks like
at the beginning of the transformation. For continuous assessment, the centre of
excellence carried out monthly assessments with the teams they were currently
working with. This includes records of what they were up to and what they needed
to improve on. They consequently worked with the teams to achieve the needed
improvements. This cycle is repeated until the centre of excellence felt that the
team was able to carry on and measure themselves. When this level is achieved
and the advocacy team feels they could add no more significant amount of benefit,
they move on to the next team. Metrics such as deployment frequency, lead time,
and velocity (getting an idea of how you are performing as a team DevCO4 Lead)
were mentioned in this strategy.

Participants mention software development methods such as scrum, extreme pro-
gramming, and practices like continuous integration/continuous delivery, continu-
ous feedback, minimal viable products, loosely coupled architecture, minimising
hand-offs, delivering small batches, transparency, and eliminating overhead, and

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 102

testing, using APIs and dedicated teams.

Advocacy is said to provide a third party with a fresh start: “what the advocacy
model brings in that capacity for an organisation like that is that the people you
bring in have no history of the organisation. Those people are the ones that are
more likely to influence the (change) in an organisation rather than the people that
have been there 20, 25 years.” [Devco4 Lead].

Targets are also easy to evaluate and measure. There are also fewer initial team
restructuring and interruptions.

While participants say that the strategy is centred around products, it was not clear
what product size is suitable for this strategy.

From participants’ descriptions, it can be understood that the Advocacy strategy
does not require an initial restructuring of traditional teams. The essence here is to
foster and ensure better collaboration between the teams through the intervention
of a “third party” (Centre of Excellence). As the COE has an overview of the entire
software delivery value chain, they can steer the teams towards an unobstructed
and more productive collaboration. Consequently, inter-team interactions and
dependencies are better optimised.

“So, the advocacy model works really, really well for organisations that are quite
traditionally siloed where they have teams of developers, teams of operations,
teams of business analysts, and they got really worked together, and they got teams
of architects, and everyone’s got very siloed off. So, the advocacy model helps
those teams to engage properly”

At some point in this strategy, participants tell us that the centre of excellence tries
to implement the “E-shaped professionals” model (having a vertical element of
focus on process and frameworks skills, which is important to understand lean, and
agile, and value stream management. And then these horizontal strokes talk about
human skills, automation, functional, and technical skills) for the organisation. At
which time, team restructuring, and topology change is implemented.

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 103

5.3.6.1 Considerations for Advocacy Strategy

• Budget availability to hire a specialist team

• Amount of time an organisation is willing to dedicate to the transformation

• Openness to change

• Size and age of organisation: “so, the size of the organisation was a really
big factor. Ok. So they, they are a huge organisation with over a hundred
thousand employees. An organisation like that, that has a lot of history, old
systems, old processes, lots of red tapes to take apart because of the size
and age of the organisation, and we really had no choice to use an advocacy
model” [Devco4 Lead].

5.4 Skillset And DevOps Implementation Strategies

The skillset required for DevOps is a topic that came up quite often during inter-
views with participants, mostly in their description of DevOps implementation.
Although participants state that they are unaware of any exhaustive list of the skills
required to fully implement DevOps in an organisation, they report skills needed
to carry out activities such as automated provisioning of environment, with experi-
ence in cloud adoption, configuration management, creating automated deployment
mechanisms, automated testing, and continuous practices like integration, delivery,
testing, feedback, and monitoring as having the most impact in their DevOps jour-
ney. Like in every other area of software development, participants report the need
for soft skills to successfully implement DevOps on a team or an organisational
level. Skills like leadership, emotional intelligence, critical thinking, and strategic
thinking were identified as important to be able to clearly articulate the vision and
the goals, and measure progress towards that goal and achieve the success of that
goal.

The absence of industry accepted skillset for DevOps is seen as a major challenge

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 104

as organisations have varying requirements to that effect, and practitioners claim
not to be quite certain of the necessary skills to acquire.

Participants identified skill gaps as a major bottleneck facing organisations that
seek to implement DevOps. In this study, only 2 participants mentioned an upfront
evaluation of available skills as part of their discovery process. Some participants
report that their organisations realised that there were not enough skills to success-
fully carry out their chosen approach to DevOps implementation some months into
the transformation. Sometimes, the skills required may exist somewhere in the
organisation but not in the team implementing DevOps. That would then lead to
the problem of team redesign, which requires HR interference and consultation.
Other times, the required skills do not exist within the organisation.

[DevCo2 Lead] says “Em.. what I was brought in to do was support the security
transformation. However, after about 3 months, it became very clear that their
DevOps skillset wasn’t mature enough for. . . to be able to deliver the security
transformation, so I ended up spending a lot of my time maturing the DevOps team,
before I could then do the actual work that I was tasked with delivering”

Interestingly, participants think that the rate of change in technology and tool-set,
especially in cloud computing continues to widen the gap.

Depending on the direction the organisation takes, staff may be trained or self-
trained. Consultants also report the informal training on staff. We find this direction
to be correlated with the diagnostic analysis at the beginning of the DevOps
initiative. The inclusion of skills evaluation in the diagnostic analysis propels
organisations toward staff training on lacking skills

5.4.1 Individual Technical Skills Acquisition

Individual IT engineers may sometimes invest their own time and effort in acquiring
the skills needed to implement DevOps by paying for their training on e-learning

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 105

platforms like Udemy. They attend conferences, and meetups and spend time
getting acquainted with some toolsets. The acquisition of DevOps-related skills by
individual IT engineers is not structured, however, as there is no industry laid out
path on what skills are needed at any stage of DevOps implementation. Also, since
the organisation is not directly involved at this stage, and there is no structured
relevance to the actual roles of these engineers, these skill acquisitions seem rather
geared towards individual marketability and career furtherance. Participants also
described a situation where challenges in their work drive them to search for tech-
nical solutions. This opens up opportunities for DevOps skills acquisition aligned
with their functions. We find some of these becoming the pioneering DevOps
teams in some organisations. However, even when these skills are acquired, some
organisations are not quite ready or willing to implement new ways of working or
adopt new technologies. In response to the latter, DevCo1 CTO says “so they go
you know, I’m not gonna stay here. I’ll go somewhere else, knowing that every-
where else is crying out for these skills, and I’m gonna be very very marketable.
. . . . go on to . . . contracting and work for multiple clients or organisations that
need implementing and they have the ability to use their best skills.” This is seen in
organisations more focused on better collaboration and DevOps as a culture rather
than on technology.

5.4.2 Organisational Staff Training

As briefly stated earlier, the organisational training of staff can directly be related
to skill-related diagnostic analysis carried out at the beginning of the DevOps
initiative. Organisations try to fill identified skill gaps by training staff to acquire
the skills required to carry out DevOps practices such as CI/CD pipeline creation,
configuration management, version control, collaborative tools, etc. According
to participants, such training is however dependent on the degree to which the
organisation focuses on skills acquisition. Consequently, training is reported to be
either minimal - ([DevCo1 CTO] describes it as “sheep-keeping”) or concentrated.
“You take all your staff and you run them through some training program...and they
spend one or two days learning the skills. And then, oh you’re DevOps certified

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 106

now, or you’re agile certified now. Um.. go forth and be agile.” Participants
describe this as an ineffective learning technique, as it is difficult to absorb that
level of information (particularly with the scope of DevOps) in such a short period.
Sometimes, it takes a while before the vision of DevOps transformation is put into
action. By which time most people have forgotten what they learned from the
training course. On the other hand, practitioners also report the use of coaches
who come along and work with the teams and prepare training materials for them.
These are most often consultants that help the teams perform better by refining
their processes and technology. A lot of time is spent here maturing the skills
required to carry out the DevOps initiative in the organisation.

The exclusion of an assessment of skills at the beginning of DevOps initiative, I
find, adversely affects the implementation and organisation in the following ways:

• More time spent in achieving goals

• Dissatisfaction of employees

• High turnover

• Initiative abandonment

5.5 Automation In DevOps Implementation Strate-
gies

Automation is identified as an integral part of some DevOps implementation
strategies in this study. Based on practitioners’ descriptions, I define automation as
the use of technology to perform tasks previously done manually. Some participants
explained that automation is usually profitable for often-carried-out repeatable tasks
in software development. They say this reduces the need for human interference
and thus the introduction of human errors.

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 107

The identified advantages of automation are summarised as:

1. Time is freed up for more productive work by developers

2. increased efficiency

3. Quality of product/service is increased

4. Error reduction

5. Deployments and service delivery speed is increased

6. Security is enhanced

In the study, automation is observed in areas such as data migration, infrastructure
provisioning, testing, configuration management, and orchestration.

5.5.1 Data Migration

This involves the movement of data from one location to another in a computerised
manner. Automation here plays the role of ensuring that huge amounts of data can
be cleaned, processed, and transferred efficiently and predictably. Cloud migration
from on-premises locations was mostly described by participants as part of their
organisations’ DevOps implementation efforts, in the bid to achieve flexibility,
especially with regard to on-premises infrastructure limitations.

5.5.2 Infrastructure Provisioning

Automated provisioning was identified as a key aspect. Participants describe this
as a reliable and efficient means to manage access to internal resources such as
data, software applications, and IT infrastructure. Basically, this is implemented
as Infrastructure as code (IaC). IaC enables the authorisation of multiple user

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 108

access and resource allocation requests based on predetermined permission levels.
Thus, users can quickly access IT infrastructure and data without waiting for long
approval lines associated with manual provisioning processes. This also makes the
management of the resources easier as changes are made by code.

5.5.3 Configuration Management

Configuration management is described in the study as the capability to keep track
of changes in applications, the environment hosting the application, infrastructure,
etc, and ensure version control. We find that configuration management spans
both development and operation activities. It consists basically of 1) an artefact
repository - this is used for file storage. 2)source code repository - containing all
versions of code and 3) a database for configuration management. Automating
this process ensures that the hosting environment is accurately maintained in an
optimal state and resources such as infrastructure, operating systems, configuration
files, etc are managed efficiently.

5.5.4 Test automation

Test automation is described as using software tools to manage and test software,
to ascertain its expected performance and requirements, before deploying it to
production. Most participants report the use of tools such as unit, API, and
regression testing tools to achieve test automation. They claim that automated
testing increases accuracy and improves the detection of bugs as well as usability.
Overall, practitioners tell us that automated testing contributes immensely to their
team’s agility and product quality.

CHAPTER 5. STRATEGIES FOR DEVOPS IMPLEMENTATION 109

5.6 Summary

This chapter gives an in-depth exposition of the strategies of DevOps implementa-
tion in the study. The researcher presents a published novel classification of the
strategies (Macarthy & Bass, 2021), identified as platform, greenfield application,
monolithic decomposition, process improvement, cultural improvement, and advo-
cacy. The roles of skillset and automation are also exposed in the chapter; however,
they will be further discussed in the Discussion chapter. These factors, along with
others identified subsequently in literature, will be employed in the creation of a
model for DevOps strategy determination.

Chapter 6

DevOps Strategy Determination
Model Creation

6.1 Introduction

This chapter examines the findings already presented in this thesis and demonstrates
the formation of theories. Based on the theories generated and further findings
from literature, a model for the implementation of DevOps is created. The next
section critically examines the roles of skillset and automation in DevOps strategies.
Thereafter, theories formed are given. Then the model creation process is shown,
culminating in the presentation of the model itself and its description.

6.2 An Examination of the role of Skillset in DevOps
Strategies

Although skills are required for almost any task in software development, our
findings indicate a striking sort of correlation between the strategies adopted by the

110

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION111

organisations to implement DevOps and the skillset. In the case of the pioneering
in-house teams in the platform strategy, the teams acquire the skills required to
successfully carry out DevOps practices, which they utilise to build platforms for
themselves. With management buy-in, these platforms are extended outside the
team. It clearly shows organisations leveraging available skills to carry out DevOps
transformation. The engagement of consultants to constitute a platform team and
lead the transformation by evangelising, on-boarding, and coaching teams signifies
the absence of the required skillset in the organisation.

This is also an indication that other factors influence the choice of an appropriate
strategy for an organisation beyond skillset. However, participants from organisa-
tions with in-house platform teams claim that the organisations went the way of
platforms largely because their team already had the capability. This is similar to
the greenfield approach, except that here, the team is constituted by the organisation
to deliver brand new applications in the cloud using DevOps practices. This team
serves as a model to evaluate the changes to follow. In a way, organisations can
reasonably envisage the outcome of the changes they wish to implement following
results from the model team.

In DevCo2, even though they had adopted the monolith decomposition strategy
primarily because of their set goal, they soon realised that the required expertise
was absent. “The team that I mentioned, the one driving the changes, saw the lack
of ‘DevOps skills’ as being a key barrier. The tech in the org had stagnated a bit
and they saw the adoption of what they thought of as ‘agile and DevOps tools’ as
being a big step forward. So, they hired and trained to bring in skills in new tech,
Git, JIRA and later Docker and Cloud tech.” [DevCo2 MD]. Cultural improvement
and advocacy strategies show the least dependence on pre-existing DevOps skills.
The organisations are rather focused on improving collaboration. “to do things
like implement minimum viable product and implement the loosely coupled ar-
chitecture... You know, architecture sits with solutions architecture and enterprise
architecture. Em, minimum viable product sits with product management, so there
are two separate teams that you need to engage with and bring on that same journey
toward . . . to be able to get to where you want to be”.

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION112

Even DevOps enthusiasts without the required skills will need to be trained, de-
pending on the choice of strategy. Participants in this study described how the
non-inclusion of skill identification at discovery resulted in delays in the achieve-
ment of goals as focus shifted to upskilling further down the line. In the same vein,
strategies that overlook skills already acquired by employees might lead to the
migration of those employees to places where their skills will be put into good use.

We believe the following skill-related questions are pertinent for choice of an appro-
priate strategy for an organisation: Are the DevOps skills for the strategy available
in the organisation? Would the strategy require hiring of professionals with the
required skills? Are there budgetary constraints to acquiring these professionals?
Would immediate upskilling be required to facilitate the strategy? How much team
re-design would be needed for such strategy?

6.3 An Examination of the role of Automation in
DevOps Strategies

6.4 Theories Generated from Data Analysis

Following Grounded theory process of systematic and detailed data analysis, this
research arrives at the theories below. Theory is used here in the sense of the
theoretical outline generated as a result of sorting and coding (Hoda et al., 2012)

1. A striking correlation exists between the skillset and the strategy adopted by
organisations to implement DevOps. Thus, the choice of organisational De-
vOps implementation strategy should generally be based on a consideration
of technologies, processes, culture, and skillsets as top-level concerns.

2. The inclination of an organisation towards upskilling is relevant in the deter-
mination of the DevOps implementation strategy to adopt.

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION113

3. Automation seems like a key enabler of some DevOps implementation
strategies. Automation should be structured and planned out.

4. Metrics and continuous measurement are critical to a successful implementa-
tion of a DevOps strategy

These four theories contribute to the design of component parts of the DevOps
strategy determination model, which will be presented and discussed.

6.5 Devops Strategy Determination Model Creation

A critical examination of the DevOps implementation strategies identified in this
study shows observable differentiation in concepts like team structure, skillset,
project type, responsibilities, and intra-team collaboration and autonomy. While
I do not claim that this is an exhaustive list of differences in the strategies, I
focus on these areas as the analysis of data collected bring them to the fore.
Within each strategy, I noticed that the software development method employed
cannot be clearly differentiated. This means that variants of similar methods were
described by participants in different strategies. For example, agile practices like
pair-programming, daily stand-up meetings, retrospectives etc were mentioned
across the strategies with no apparent link to the characteristics of the strategy
beyond “tailoring” for specific projects. Figure 6.1 illustrates my understanding of
the occurrence of software development methods within DevOps implementation
strategies.

Figure 6.1: Methods in DevOps Strategies

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION114

6.5.1 Similarities between DevOps Strategies and Method Engi-
neering

Some of the characteristics of “method” described by these researchers are similar
those of the DevOps implementation strategies previously mentioned:

1. The strategies are all specific approaches or processes to carry out a system
development project.

2. The way of thinking of each strategy is clearly identified and different from
others

(a) Platform strategy focuses on creating platform-as-a-service to other
teams in the value chain.

(b) Monolithic decomposition strategy is directed towards the decoupling
of huge monolith into loosely coupled, easily managed services.

(c) Greenfield application strategy focuses on the implementation of De-
vOps using a brand-new application in new environment, unfettered
by the restrictions of an existing one, providing a lot of autonomy and
room for experimentation by select team.

(d) Process improvement focuses on identifying and removing waste in
the overall value chain while implementing practices to improve the
flow of change.

(e) Cultural improvement aims at improving collaboration between vari-
ous teams on the software delivery pipeline.

(f) Advocacy is the use of “centres of excellence” to sell the idea of better
collaboration and DevOps practices to individual software develop-
ment teams in the organisation.

3. The structure of development activities in each strategy can be clearly identi-
fied and differentiated.

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION115

4. Just as a method is not applied in a textbook prescribed manner in practice,
the strategies described in this study may not be found in the same ways in
organisations outside of the study.

From both definitions previously cited, methods have well-defined directions and
rules. The DevOps implementation strategies can therefore not be directly classified
as methods. However, Figure 6.1 shows that methods are subsections of the
strategies. Also, the strategies share a distinctive feature with Situational Method
Engineering (SME): a focus on the project at hand. The identified characteristics
and distinguishing features of DevOps strategies provide foundation for the design
of a model for strategy determination.

Considering the similarities between method and the DevOps implementation
strategies, I propose the adaptation of Brinkkemper (1996) structure of SME to
the determination or creation of DevOps strategy for an organisation. This study
therefore leverages Brinkkemper’s structure of SME and extends its principles to
account for specific characteristics of DevOps implementation strategies, according
to my research findings.

6.6 Introducing SIDSEM – A Situational DevOps
Strategy Engineering Model

Figure 6.2 shows SIDSEM. The light blue arrows and boxes show the main mod-
ifications made to Brikkemper’s model, following the findings of this study.The
theories stated in section 6.4 contribute to the development of the model in the
following ways:

Based on Section 6.4 (1), I have separated skillset from the general factors for
characterising a project. My analysis uniquely identifies the significant role of
skillset in the various DevOps strategies. To determine a suitable strategy, an
individual comparison of selected DevOps strategy fragments with existing skillset

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION116

is required. This ensures an ability to fulfil the bespoke strategy when assembled.

In accordance with my second theory (Section 6.4 (2), the inclination of an or-
ganisation towards upskilling is identified as contributory factor to the selection
of suitable strategy fragment. This is presented as “training” in the model. Strat-
egy fragments can thus be chosen despite the lack of skillset for fulfilment if the
organisation is able to acquire the necessary training.

Following my third and fourth theories [Section 6.4 (3 and 4)], automation, metrics
and continuous measurement are presented as key components of the model. These
will be described shortly.

6.7 Component parts of Proposed model

The model presented in Figure 6.2 consists of 4 basic components:

1. Strategy administration and strategy base

2. Selection and assembly of strategy fragments

3. Process automation

4. Metrics and continuous measurement

These components are shown in Figure 6.3.
The Strategy administration and strategy base, and Selection and assembly of strat-
egy fragments stem from the comparison made in section 6.5.1. However, methods
have been replaced with DevOps strategies in my model. Process automation has
been added to the original model, as it is an enabler to some DevOps implemen-
tation strategies. Metrics and continuous measurement differs from the original
model in the sense that teams do not wait till the end of the project to measure the
impact of changes made to their processes. Metrics and continuous measurement
is an encouragement to teams to proactively and constantly use collected metrics
to evaluate their processes.

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION117

Figure 6.2: SIDSEM – A Situational DevOps Strategy Engineering Model

6.7.1 Strategy Administration and Strategy Base

This component part comprise of:

1. Strategy administration – DevOps implementation strategies are selected
from literature (findings from this research) and broken down to fragments

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION118

Figure 6.3: Model Component Parts

of products and processes following prescribed metamodels. The Method
Engineer (this could also be anyone responsible for software development
processes)

• Identifies DevOps implementation strategies from literature.

• Selects suitable strategies – Our study identified 6 strategies in practice.
The Method Engineer is however not restricted to these.

2. Strategy base – Method base is described as a “repository” of method parts
(Brinkkemper 1996; Harmsen 1997; Rolland et al. 1998). According to

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION119

Henderson-Sellers, method parts are “small portions of a methodology, either
a methodology that already exists or a methodology to be formed”. They
insist on the standardisation and conformity of each part to “a higher-level
definition given in a metamodel”. Comparing this to the DevOps strategies
identified in my study, I refer to the strategy base as a repository of fragments
of the six strategies, alongside knowledge and experience gathered during
strategy administration, continuous measurement, and knowledge sharing.

I describe DevOps strategy fragments are small parts of the identified strategy that
represent recognizable aspects of it. This aligns with Ter Hofstede and Verhoef
(1997) definition of method fragment as – “a coherent part of a metamodel, which
may cover any of the modelling dimensions at any level of granularity”. To
determine and represent the fragments of the DevOps strategies, I ask the following
questions:

• How do we divide the strategies into reusable/adaptable fragments?

• How will the fragments be characterised?

• How will the fragments be coupled to form a situational strategy?

To answer these questions, I follow the principles of ISO (2014) - an international
standard definition of a meta-model for software development methodologies, and
the Perspective dimension of meta-modelling for situational method engineering
proposed by Brinkkemper (1996). I describe the process-focused meta-model as
shown in Figure 6.4
Our product-focused meta-model is described in Figure 6.5.
A metamodel is a structural description of tasks (processes), techniques, work
products etc (Brinkkemper, 1996). The metamodel guides the Method Engineer on
how to break down the selected strategies to reusable fragments - specific processes
(e.g., new pipeline set up) or products (e.g., automation log). Based on the data
analysis and the meta-models I have described in the tables above; I give examples
of product-focused and process-focused DevOps strategy fragments. The capability

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION120

Figure 6.4: Process-focused meta-model

levels follow the definition of Society (2012), the global skills and competency
framework for the digital world. The Method Engineer creates the fragments and
stores them in the strategy base. Table 6.1 is an example of a product fragment.

This fragment can however be further broken down to smaller bits such as design
version control, integrate source control, implement and manage build infras-
tructure, implement code flow, implement continuous integration etc. A process
fragment is described in Table 6.2

6.7.2 Selection and Assembly of Strategy Fragments

Fragments are selected from the strategy base (depending on the organisational
context - goals/objectives, skillset etc.). Selected fragments are assembled depend-

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION121

Table 6.1: Product fragment

NewPipelineSetup: Platform
Name: New Pipeline Setup
Purpose: Create a channel to ensure the seamless movement of codes/software solutions
from development to deployment and monitoring. This may be based on new business
requirement, platform migration, or cost saving.
Description: The integration of tools and automation of processes (for core infrastructure
deployment or configuration of core services) to develop, test, and deploy new codes
rapidly.
This is an automation of the software delivery process by using connected tools, which
eliminates the need for manual intervention. It ensures a reduction in software delivery
time as well as potential human errors, resulting in high quality codes, faster and more
frequent deployments. This task requires the combination of continuous practices to ensure
the various aspects of the pipeline are properly integrated to provide the expected seamless
delivery. One of such practices is continuous integration and continuous delivery (CI/CD).
This ensures that multiple developers can independently work on small parts of a new code
and integrate it in a shared repository, automatically test for bugs, deliver bug fixes, and
release new features at high frequency.
Another essential practice for this task is continuous monitoring, which provides real-time
overview of the organisation’s IT infrastructure and services to both operations and security
teams (or other relevant teams, depending on the team structure), and aid the provision of
real-time support for critical processes.
Minimum capability level: 2 - proficient in a programming language, extensive knowledge
in system administration, distributed systems.
Actions:
Creates a delivery pipeline by:

• Selecting suitable CI/CD tools

• Establishing source control for conflict-free collaboration

• Setting up suitable build server

• Including automation tools for testing

Artefacts needed
Business requirements document
Outcome
• A delivery pipeline is set up
• Any other artefacts produced e.g documentation
Components: • CI/CD
• Continuous testing
• Continuous monitoring
• Continuous measurement
• Continuous feedback
Techniques:
• Infrastructure as code
Actors:
Product owners, IT Operations, IT Security, Developers (depending on the team structure),
DevOps team (depending on the team structure).

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION122

Figure 6.5: Product-focused meta-model

ing on their technical relationships. To further describe this segment, I divide it into
project environment and characterisation, selecting appropriate strategy fragments,
and assembling selected fragments :

6.7.2.1 Project environment and characterisation

The project environment describes situational factors of both the supplier and the
customer organisations, grouped in facets. Figure 6.6 shows situational factors
identified in literature:
The Method Engineer should:

• Identify the relevant project / organisational factors (from situational factors.

• Classify each factor as low, normal, or high (depending on the level of
involvement of that characteristic).

• Determine the relevant facets based on high involvements.

• Define the project context.

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION123

Table 6.2: Process fragment

AutomationBacklog: Platform
Name: Automation log
Description and content: the key aspect in any devops team is automation. Business
processes (in the context of infrastructure deployment and configuration) can be automated
and as a result, each time a process runs it will generate a log describing its status, and
errors.
Producers: Logs are generated by computer processes and traditionally were stored on
flat files. With the advance of distributed systems, logs have increased exponentially and
are stored and processed for further analysis in central databases where engineers can
investigate particular incidents.
Actions:
When processing logs, the timestamps integrity needs to be guarded. The rest of the log
message may be transformed to fit a certain standard.
Artefacts needed:
A logging pipeline, and a log database

These steps are shown in Figure 6.7

6.7.2.2 Selecting appropriate strategy fragments

The Method Engineer should:

• Compare the context with the strategy fragment description to determine
suitability

• Compare the required skills of the strategy fragment with the skillset to
determine availability

• Determine the possibility of skills training where required

• Choose most applicable strategy fragments

6.7.2.3 Assembling selected fragments

building custom strategy from fragments.

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION124

Figure 6.6: Situational Factors - adapted (Clarke & O’Connor, 2012; of
Government Commerce, 2002; Slama et al., 2015; Firesmith &
Henderson-Sellers, 2002; Kornyshova et al., 2007; Kalus &
Kuhrmann, 2013; Giray & Tekinerdogan, 2018)

Many approaches exist to assemble method fragments in Information system de-
velopment. We suggest assembly by association and assembly by integration, for
simplistic useability. The method engineer should evaluate the technical relation-
ship of the chosen fragments.

Assembly by Association: This should be used when the chosen strategy fragments
have different system engineering functionalities/goals.

• Identify Links between the concepts

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION125

Figure 6.7: Project Characterisation

• Fragments should be ordered in complimentary fashion. E.g. The outcome
of one fragment could be input to another fragment

Assembly by integration: To be used when the chosen strategy fragments have
similar system engineering functionalities/goals.

• Identify and merge common elements

• Fragments should be ordered in complimentary fashion

6.7.3 Process Automation

This component part of the model comprise of automation candidate selection and
process automation guidelines

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION126

6.7.3.1 Automation candidate selection

This is the identification of candidate processes for automation in the customised
DevOps strategy. It includes an upfront evaluation of the benefits of such automa-
tion and the determination of the impacts on specific metrics and business goals.
Characteristics of IT processes for automation include:

• High volume transactions

• Time-sensitive transactions

• High value transactions – impact of error

• Frequent access to multiple systems

• Limited human intervention

• Limited exception handling

• Process prone to error or rework

• Ease of decomposition into clear IT processes

• Clear understanding of manual cost

6.7.3.2 Process Automation Guidelines

After selecting the processes to automate, the following steps are recommended:

1. Identify the process owners and other stakeholders – clearly understood
workflow.

2. Create automation plan –steps involved as well as possible outcomes

3. Estimate time needed to automate the process

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION127

4. Choose the right tool – evaluate existing technology stack to determine a
suitable and easy-to-integrate tool.

5. Set up change management plan – e.g staff training and tutorials for those
interacting with the process.

6.7.4 Metrics Collection/Continuous Improvement

The organisation determines the metrics to collect based on the goals pursued. The
collected metrics are used to aid continuous improvement, which could include
making changes to the process and implementing other DevOps strategy fragments.
We recommend the following steps for continuous improvement:

1. Collect pre-determined metrics

2. Analyse the metrics to determine impact of the changes made to your process

3. If change is successful, record outcome and experience accumulated in the
strategy base. Else, go to step 6

4. Plan knowledge sharing of experience

5. Identify other DevOps improvements to make repeat the model

6. If change is unsuccessful, re-evaluate the processes to determine required
modifications.

6.8 Summary

This chapter presents to the reader the steps taken to create a novel DevOps strategy
model based on findings in this study. The model is intended to provide guidance
to organisations both for a successful DevOps implementation, and continuous

CHAPTER 6. DEVOPS STRATEGY DETERMINATION MODEL CREATION128

improvement. The component parts of the model are described and prescribed
steps clearly explained.

Chapter 7

DevOps Strategy Engineering Model
Evaluation

7.1 Introduction

This chapter conveys to the reader the steps taken to evaluate the DevOps strategy
engineering model – SIDSEM. Firstly, a focus-group workshop with expert practi-
tioners of the participating organisation is presented. Thereafter, the findings from
the workshop are described. Quotes are used from the workshop to demonstrate
participants response to the model. A call to action follows, consequent on the
findings. The proposed action involves the implementation of parts of the pro-
posed model relevant to the context of the participating organisation. The chapter
concludes with the instantiated repository of SIDSEM, created in response to par-
ticipants suggestion. It aims to further improve the practical usability of SIDSEM.
According to Robson & McCartan (2016), “evaluation is often concerned not only
with assessing worth or value but also with seeking to assist in the improvement of
whatever is being evaluated”. This is Phase 4 of the study.

129

CHAPTER 7. MODEL EVALUATION 130

7.2 SIDSEM Focus Group Workshop with DevCo9

The workshop consisted of two main sessions. First, I gave an overview of the
study which was mainly driven by the question of how to successfully implement
DevOps in an organisation. To answer that question, I presented 3 focal steps
in my research: 1. Identify existing patterns of work coordination in DevOps
implementations 2. Investigate the patterns that influence such patterns 3. Develop
a model to aid appropriate implementation of DevOps. The research findings were
then presented. This included the taxonomy of DevOps approaches, the strategies
of DevOps implementation, and a mention of SIDSEM. Before the introduction
the model, several starter questions were discussed. These questions were aimed at
information gathering of the current state of their software development process
and practices. 1. How would you characterise your project environment? 2. How
do you determine DevOps / Agile practices to implement? 3. How do you decide
on processes to automate? 4. What metrics is most relevant to your business goals?
Each question was explained clearly, with simple examples, to eliminate ambiguity.

The second part of the workshop consisted of the presentation of the model by
the researcher, and the evaluation of DevCo9 software development process with
the model, by the Focus Group. The researcher clearly described its component
parts and implementation process. The evaluation was a comparison of the their
existing processing with the components and proposals of the model. Thereafter,
the participants had an in-depth discussion on the model’s potential to improve the
agility, operational efficiency and reliability of a software development team. The
engagement with DevCo9 is summarised as shown in Figure 7.1.

7.3 Focus Group Workshop Findings

Findings from the evaluation of DevCo9’s software development process with
SIDSEM is presented in this section.

CHAPTER 7. MODEL EVALUATION 131

Figure 7.1: SIDSEM evaluation engagement with DevCo9

CHAPTER 7. MODEL EVALUATION 132

7.3.1 Pattern OF Work Coordination

In relation to the DevOps taxonomy previously presented in this study and presented
in the workshop, the Focus Group identified the approach to DevOps in DevCo9 is
outsourced Ops. However, the organisation also has several on-premises legacy
applications which was managed separately by an Ops team. The DevOps strategy
employed is Greenfield application. Newer applications are cloud-native. They
are developed and managed using tools like Docker and platforms like AWS. The
development teams are mainly expert developers familiar with. The team seem to
be highly innovative and self-motivated to learn new ways of delivering quality
service to their clients. The team also involves in continuous knowledge-sharing of
newly acquired software development skills. This is most times a formal, planned
meeting. Knowledge sharing also happened informally during brainstorming
sessions.

“Yeah, so I think our teams, mostly developers, so anything we do would be
outsourced operations. So, it’s developer outsourced OPS... We generally just start
from scratch because our legacy stuff just isn’t, we can’t really upgrade the legacy
stuff to do what we kind of need it to do.” [DevCo9 TechLead].

”And the choice of software practices is based upon how we feel that the soft-
ware industry is currently going at the moment and where we think it’s heading.
If we feel that it will benefit us yeah. We definitely do some training around
that.”[DevCo9 Dev1]

7.3.2 Project Characterisation

Projects usually originate from the business and are evaluated from the business
point of view. To characterise their projects, the team does a requirement analysis
then puts it forth for approval, based on available budget. A major consideration for
projects is the technical requirements. The team also identify the skillset required
for the project to determine its feasibility.

CHAPTER 7. MODEL EVALUATION 133

“Because they’re coming from a traditional consultancy firm. They’re not the
technical side of it isn’t really demanded from them, so it’s they don’t really
understand exactly how the tech works. So, in a sense, that gives us a little bit of
freedom to be able to go back and say this would be the best way to do it, and this
these are the reasons why, so we can kind of lead that.” [DevCo9 TechLead].

“How do we determine what our agile practice is simple, and it’s a good question.
I haven’t got a clue. All of them are maybe reactive.” [DevCo9 Mgr]

“Yeah, well, I think I’ve. I don’t know if we’d say well where we active. I
think we’re proactive. Like if you look at our solutions, we do have like a lot of
documentation around them. I was just reading about Kubernetes and I was like,
oh, this sounds interesting. This would really help out [DevCo9]. I went away and
played with it and got it to a point where I could understand it. And then I showed
it to horse and then we decided to move forward with it.”[DevCo9 TechLead]

7.3.3 Automation

Automation of processes in DevCo9 is reactive as opposed to it being planned and
structured. The development team had weekly backlog review, like a sprint, and
evaluate priorities, depending on what is on the backlog. Although, automation
is not the focus of these reviews, the decision of the team to automate processes
may arise depending on the perceived user needs and the bid to increase speed of
development.

“Uh, currently I decide on which processes to automate based on the amount of
emails that I get.” [DevCo9 TechLead] Balancing between time spent in automating
processes and delivering expected business value is a challenge. The workshop
participants agreed on the difficulty encountered by the team when trying to
automate processes and meet up expectations of solution delivery at the same time.
“ We try and get some kind of automated process, [but] we obviously we have
limited time. But it would be alongside their tasks.” [DevCo9 Dev1]

CHAPTER 7. MODEL EVALUATION 134

7.3.4 Metrics and Continuous Measurement

Metrics in DevCo9 is mainly around the performance of their applications. It
involves investigating incidents by reviewing system logs. The efficiency of their
processes or outcome of changes are not measured by any metrics.

”So, we don’t monitor velocity or anything like that, that’s another weakness, so,
that’s something we can we can certainly improve on but the metrics we have is
mainly on database side. . . how many active connections we have, what throughput
is, how many request in every second, what percentage of cpu usage is being
utilised, how much storage is being utilised. The performance metrics are what
provided us by the service we use. We’ve not created anything ourselves yet that
will help us monitor how we’re performing around our applications.”

7.4 Discussion on the model: Focus Group View

7.4.1 Relatability

DevCo9 did not currently use a formal model to structure their software develop-
ment processes. However, the Focus Group agree that the component parts of the
model was relatable to them.

“So I think this is brilliant. I don’t know. Honestly, I think it’s amazing. . . I can,
I’m looking at this now. I can understand I’ve actually been involved in every
single one of these boxes and I could give an example for each and every single
box and and know exactly what I did. I just did it without knowing that these boxes
existed”[DevCo9 Dev1]

CHAPTER 7. MODEL EVALUATION 135

7.4.2 Suitability

All the participants agreed that the model would be suitable for the improvement
of their software development processes.

“I think it could be applied pretty well too. So what was it? Definitely areas of
it can be applied pretty well to some of our processes. Regarding iterative steps
of selection, strategy, fragments and assembly of strategy fragments, we kind of
do that in it’s a bit. It’s about, yeah, yeah, we could do aspects of this, and I think
definitely regarding selecting the processes to automate that would help. . . . Like
the selection of strategy fragments and then falling back to training to improve the
skill sets and the application of the appropriate skill sets for the different strategy
fragments.” [DevCo9 Dev1]

7.4.3 Clarity

The model presentation initially seemed intricate to some of the participants. The
researcher attributed this to the fact that this was not a fully-mature DevOps team.
To reduce the perception of complexity, the team was given the simplified DevOps
Implementation model. This version contained the basic parts of the model with a
full description of the activities and guidelines to implement them, which seemed
better understood by the practitioners.

“Uhm, well, it seems a little bit complex at first when you first look at it so. But it
may be daunting for some organisations when they first look at it. When I first saw
it was. But once you explained, I think it’s a bit more clear” [DevCo9 Mgr]

CHAPTER 7. MODEL EVALUATION 136

7.5 Call to action: Model implementation Recom-
mendations

The findings from the workshop demonstrate the while there is no formal model for
DevOps implementation in DevCo9, the expert team had intuitively carried out the
activities in components 1 and 2 of the proposed model. Components 1 and 2 are
quite similar with the original Brinkkemper’s model. The major difference being
my focus on DevOps implementation strategies where the previous model was
concerned with software development methods. However, the information gathered
from the workshop also show a lack of a clear structure of process automation
and continuous measurement. These make up parts 3 and 4 of my model. Figure
7.2 shows the proposed actions to help DevCo9 better improve their DevOps
implementation.

Figure 7.2: DevOps Implementation Path

CHAPTER 7. MODEL EVALUATION 137

7.6 Focus Group Suggestion: Model Artefact Repos-
itory

Following the discussion on the model, the Focus Group suggested the inclusion
of folder structure to demonstrate what is being produced at each step of the model.
This suggestion is presented below:

• New project (folder)

– step zero (folder - requirements before beginning)

* skill sets file

– step one (folder)

* selected strategies files

* meta model files

* strategy fragment files

– step two (folder)

* situational factors grouped by facets file

* selected suitable fragments file

* Skills required vs skill sets file

* Assembled fragments file

* Merge strategy fragments

– step three (folder)

* Process automation of strategies file

* Automation plan file

* Change management plan file

CHAPTER 7. MODEL EVALUATION 138

– step four (folder)

* metrics collection file

* Impact of change file (if successful)

* Outcome of change record file (if unsuccessful)

* Knowledge sharing plan file (if unsuccessful)

* Devops improvements file (if unsuccessful)

7.7 Practical Instantiation of the DevOps Strategy
Model – SIDSEM

In response to section 7.7, a practical instantiation of the model has been created
in a GitHub repository (Macarthy, 2022). This repository has public access, so
practitioners can clone and modify its content following the guidelines of the model.
The repository further enhances the applicability of the model in these aspects:

1. As GitHub includes version control, practitioners can collaboratively work
on improving their practices with a clear view of the entire process, while
keeping track of all modifications and changes.

2. The structure of the repository reflects all component parts of the model. As
practitioners apply the model, they can keep track of their DevOps journey
through a continuous update of the repository for each specified step. This is
consistent with the iterative nature of agile practices. The repository provides
structured and easily accessed information around an organisations’ software
development practices.

3. Records from this repository could be used to further study DevOps and the
performance of the different DevOps strategies.

The rest of this section describes the repository.

CHAPTER 7. MODEL EVALUATION 139

7.7.1 Repository Structure

Figure 7.3 shows an overview of the repository. It consists of two main parts:
the strategy base and individual projects. The content of the strategy base is the
same for a given organisation. It changes with the method engineers’ exposure to
DevOps state-of-the-art. The project component is however modified according to
the context of individual projects. These are described later.

Figure 7.3: Repository structure

7.7.2 Strategy Base

Figure7.4 depicts the strategy base. It consists of strategy literature, meta-models,
and strategy fragments files.

The strategy literature should contain documents relating to the description of
DevOps strategies.

The meta-model files describe the meta-model structure used to create strategy
fragments.

Created fragments are stored in the strategy fragments files, and accessible by all

CHAPTER 7. MODEL EVALUATION 140

projects.

Figure 7.4: Strategy base

7.7.3 Project Structure

Each instance of a project consists of the other three (3) components of the model:
strategy selection and assembly, process automation, and metrics and knowledge
sharing. Figure 7.5 illustrates this.

7.7.4 Strategy Selection and Assembly

Following the guidelines of SIDSEM, the method engineers (or any practitioner
responsible for the process determination in the software development value chain)
selects suitable fragments from the strategy base, merge related fragments and
assemble them, identify the required skillset and training where applicable. Each
of these steps are recorded in the appropriate file as shown in Figure 7.6.

CHAPTER 7. MODEL EVALUATION 141

Figure 7.5: Project structure

7.7.5 Process Automation

Figure 7.7 shows the process automation documentation. It contains documents
related to identified automation candidates, automation plan, and change manage-
ment plan.

Figure 7.7: Process automation

CHAPTER 7. MODEL EVALUATION 142

Figure 7.6: Project structure

7.7.6 Metrics Collection and Knowledge-sharing

Lastly, figure 7.8 depicts the metrics collection and knowledge sharing aspect of
the model. It contains documents such as collected metrics, outcomes of change,
impacts of change, further improvement and knowledge-sharing plans.

Figure 7.8: Metrics Collection

Chapter 8

Discussion

8.1 Introduction

This chapter examines and interprets research findings in conjunction with related
literature, to answer the research questions. The reader is also presented with
the contribution of the study to theory and practice. The chapter concludes with
identified limitation of the study.

8.2 Answering Research Questions (RQs)

The aim of this research is to propose a model for tailoring DevOps implementation
based on organisational context. This goal propelled an in-depth investigation into
the patterns of work coordination between development and operations activities
in organisations and the elements of influence. To realise the goal, this research
answers the two focal questions presented in section 1.3.

143

CHAPTER 8. DISCUSSION 144

8.2.1 RQ1: How do practitioners describe and implement De-
vOps in practice?

The purpose of this question is to explore the state of the practice of DevOps in
comparison with literature. RQ1 was divided into 4 sub-questions to specifically
address components parts of the main question. The answer to RQ1 is presented in
line with the sub-questions.

8.2.1.1 RQ1a - What are practitioners’ perceptions of DevOps definition and
description?

A critical examination of the findings shows DevOps being described by practition-
ers in the study as not just a culture and specific job description, but also distinct
teams separate from both developers and operations teams. Although members of
these teams have backgrounds in either software development or operations, the
nomenclature “DevOps” now separates them from their original silos and classifies
them as a unique team of “platform builders” as DvOps1 described it. This seems
consistent with the 2014 State of DevOps report of a growing number of DevOps
teams (Forsgren et al., 2014). In Humble (2012), it is mentioned that Ops teams
may sometimes be referred to as “DevOps team” in some organisations when they
build self-service platforms, provide tool chain, training and support developers
and the platforms. However, he argues strongly that the insertion of “another layer
of indirection between the dev and ops team and call it a ’Devops team’” is not
the right way to address the existing gap. Intriguingly, most teams under study fit
nicely into both sides of Humble’s argument - they are teams between developers
and operations teams who provide all the above-mentioned services. This research
found no consensus on the definition of DevOps (Erich et al., 2017). In a way, this
is not an unexpected finding as most of the practice seem to stem from literature.
Participants were observed severally referring to literature during the interviews.
There seem to be an agreement on the purpose of DevOps among practitioners
as most participants claim that the practice had increased agility in their software

CHAPTER 8. DISCUSSION 145

development. These claims echo the assertions of other studies (Smeds et al., 2015;
Lwakatare et al., 2019). Measurement of such improvement to agility includes
delivery speed, recovery from failure time, and deployment frequency etc.

8.2.1.2 RQ1b - How are DevOps functions different from IT Operations and
development teams’ functions?

To answer the above question, I described the functions in DevOps practices
identified in the study. Generally, the responsibilities from development to de-
ployment include creating a piece of software, testing, building and maintenance
of automated deployment pipelines, integration, deployment, providing metrics,
and platform migration. However, personnel carrying out these functions vary,
depending on the DevOps approach adopted by an organisation (the approaches
will be discussed in the next section). A summary of the differences is presented in
Table 4.2. From the table, a clear distinction in functions is particularly noticed in
the Developers-DevOps-Ops mode (Figure 4.5). In this approach, IT Ops teams
provide services to DevOps teams in the form of physical infrastructure, DevOps
teams provide services to developers in the form of tooling and automated pipelines,
while developers provide business value in the form of applications, features etc.
The responsibilities of the DevOps teams can simply be described as creating a
bridge between previously siloed development and IT operations activities (Nybom
et al., 2016).

8.2.1.3 RQ1c: How is DevOps implemented in practice?

A novel taxonomy of four approaches to DevOps, based on interviewees’ de-
scription of the concept and their practice of it, demonstrates how DevOps is
implemented in practice. This is shown in Figure 4.5. As described in Chapter
4, the approaches are developers’ interaction with On-premises Ops, Outsourced
Ops, DevOps teams, and DevOps bridge teams. These approaches describe the
collaboration between developers and DevOps teams based on automation, mixed

CHAPTER 8. DISCUSSION 146

responsibilities of developers without an IT Ops team, developers working with
DevOps teams only, and DevOps teams serving as a bridge between developers
and IT Ops teams respectively. The identified approaches are similar to (Nybom et
al., 2016) and (López-Fernández et al., 2021). Nybom et al. (2016) suggested three
possible approaches of mixed responsibilities, mixed personnel, and bridge team,
in which they provided evidence and analysed one of the said approaches (mixed
responsibilities). This study however differs from theirs in the following ways:
firstly, I provide empirical data confirming practitioners’ implementation of all
three approaches mentioned in their studies. Secondly, I present a novel mapping
of the approaches to on-premises and cloud-based deployments, thereby presenting
a fourth approach - which is essentially a variant of mixed responsibilities but can
only be found in cloud-based deployment environment. Thirdly, I identified the
“facilitators” of DevOps practices in the four approaches. López-Fernández et al.
(2021) presented a taxonomy of 4 team structures: i) interdepartmental Dev & Ops
collaboration, ii) Interdepartmental Dev-Ops team - the unification of development
and operation teams, iii) Boosted cross-functional DevOps team, and iv) Full
cross-functional DevOps team. Their characterisation was based on factors such as
Leadership from management, Shared product ownership, etc.

Table 4.1 shows Devops bridge team approach to be the most common encountered
in the study. While this is not a quantitative study to investigate the frequency of
occurrence of each approach, this study assumes that the seeming popularity of
the approach might be because DevOps is still evolving, and organisations try to
minimise interruptions to existing structures.

8.2.1.4 RQ1d: What strategies are employed in DevOps implementation?

The study identified 6 distinct strategies adopted by organisations to implement
DevOps namely, Platform, Greenfield Application, Monolith Decomposition, Pro-
cess Improvement, Cultural Improvement, and Advocacy. Based on participants
description, these strategies seem like subsets of the taxonomy of DevOps ap-
proaches in Fig. 4.2 (Dev-Ops, Dev-OutOps The same as Developer-Outsourced

CHAPTER 8. DISCUSSION 147

Ops approach, Dev-DevOps, and DevOps bridge teams). They seem to be the
initial steps taken by the organisations in their DevOps journey. This is described
in the Fig. 8.1. The path that leads from individual strategies to the approaches in
Figure 4.2 is not explored in this study. Relating this to the study by Leite et al.
(2022), I see links between Greenfield application strategy and single department
structure usually adopted by startups, monolith decomposition strategy and API-
mediated departments, both of which seek to overcome bottlenecks, and cultural
improvement strategy and collaborative department.
The 2020 State of DevOps Report (Brown et al., 2020) provides an in-depth
investigation into internal platforms, describing advantages such as improved
efficiency of application teams, improved governance, continuous infrastructure

Figure 8.1: DevOps Implementation Path

CHAPTER 8. DISCUSSION 148

improvement, and an end to context-switching. It also identifies lack of time,
standardisation, and technical skills within the team as challenges. My study
differs from this in the sense that I identified and described five more strategies not
previously explored in literature, to the best of my knowledge.

Comparing these strategies with the definition of DevOps by Donovan Brown,
“DevOps is the union of people, process, and products to enable continuous delivery
of value to our end users” (Guckenheimer, 2018), I see the elements of people,
process, and technology in various degrees. However, the organisations seem to
begin their implementation of DevOps with focus on either one or two of these
elements. The Platform and Greenfield application strategies seem to be the most
“techno-centric”. A lot of emphasis is placed on appropriate tool-set to speed
up the delivery and feedback process. There is minimal and often no need for
initial restructuring of teams or organisational redesign, and no mention of training
at the onset. Reasonable effort is also put into improving the processes in soft-
ware development. Monolith Decomposition and Process improvement strategies
are both “process-centric” and “techno-centric”. Effort is put into improving the
overall software development process by identifying where the costs are in their
work from idea to useful software in the hands of users, improving the quality and
speed of feedback, and removing waste from the processes. Some participants
also emphasise the importance of automation, CI/CD pipelines, and configuration
management. As one interviewee said, “So, I talk about it as basically um, the im-
plementation of lean manufacturing and applying principles of lean manufacturing
to helping uh, software value streams achieve agility, uh, stability, efficiency, uh
quality, security and satisfaction.” [DevCo4 CEO]

Cultural improvement and Advocacy strategies are more “people-centric”. The
concerns in these strategies are better collaboration between development and
operations teams, and consequently better visibility of activities and actions on
the route to value delivery. The initial focus here seems to be around organising
people, making sure they have the right skills and they’re in the right team, and then
organising the flow of work in adherence to agile and lean thinking, eliminating
waste, and ultimately speeding up the work.

CHAPTER 8. DISCUSSION 149

Based on the findings of the study, it can be said that while organisations try to
implement DevOps through the strategies described, there seem to be no existing
structured way to determine which strategy best fits specific situations. Accord-
ing to Conway’s law (Conway, 1968), “organisations which design systems are
constrained to produce designs which are copies of the communication structures
of these organisations” This study observes that the implication of this differs
from one DevOps strategy to another. For instance, in the Greenfield application
strategy, such constraints as identified by Conway’s law are almost unobserved as
its structure is unencumbered with dependencies of the organisation. This leads
the reader to the second research question.

8.2.2 Research Question 2: “How can organisations tailor De-
vOps implementation to suit their organisational con-
text?”

This question explores the possibility of designing an adaptive model for DevOps
implementation and is answered within two sub-questions.

8.2.2.1 RQ2a - What elements influence the approach taken by organisations
to implement DevOps?

Clearly, from literature(Lwakatare et al., 2019; Amaro et al., 2022) and my findings,
DevOps has a lot of intricacies in possibilities. At any point in time, the goals of an
organisations must be clearly defined otherwise much effort would be put different
directions without meaningful value (Leite et al., 2019). The State of DevOps
report insists that some organisations still struggle with DevOps implementation,
sometimes leading to failure Brown et al. (2020). Findings of this study that practi-
tioners are mostly concerned with identifying their present technical capabilities
and the constraints facing them. Evidently, most decisions made on the adoption of
DevOps patterns and practices are predicated on these discoveries. We see a strong

CHAPTER 8. DISCUSSION 150

connection between the technical capabilities, the constraints, and the approach
taken by the organisations to implement. For example, in DevCo3, “People that had
no history of the organisation were brought in to influence collaboration which was
one of the major constraints. So, just going into an organisation like that, that has a
lot of history, old systems, old processes, lots of red tapes to take apart because of
the size and age of the organisation, and we really had no choice to use an advocacy
model.” [DevCo3 Lead. This agrees with the conclusion drawn by Rodrigues et al.
(2020). However, the technical capabilities and constraints alone does not seem to
be the only determinants of the approach taken by the organisations to implement
DevOps. Two participants mentioned skillset availability evaluation as part of their
discovery process. According to DevCo4, the decision of the strategy to employ
was largely left to the consultants: “we try to measure that and see where the, given
whatever their goals are, you know, where we could make improvements. And
after that, it’s mostly just um, you know consultants doing their work, using their
experience to recommend solutions.” [DevCo4 CEO]

The literature review previously presented show that many factors influence the
approach to software development practices adopted by organisations (Kalus &
Kuhrmann, 2013; Bass, 2016; Amaro et al., 2022). This study finds these assertions
to be true. Analysis of the findings suggests that skillset is critical in the determina-
tion of the DevOps strategy to adopt. The significance of skillset and automation
in the six DevOps strategies is extensively described in chapter 6, leading to the
development of SIDSEM and answer to the final research question.

8.2.2.2 RQ2b: How can DevOps implementation be tailored to suit on or-
ganisational context?

This question was predicated on the gap identified by Leite et al. (2019) and
Lwakatare et al. (2019). The studies both insisted on the need for a more structured
DevOps implementation in organisations. An examination of the research find-
ings culminated in the development of a novel model for DevOps implementation
(described in chapter 6). The theories generated from the study necessitated the ex-

CHAPTER 8. DISCUSSION 151

tension of Brinkkemper (1996) structure of Situational Method Engineering. While
Brinkkemper’s model suited the tailoring agile software development methods, it
does not extend to IT operations process management nor address the influencing
factors of DevOps implementation identified in the study. This necessitated a mod-
ification of the accepted Brinkkemper’s model, which recognises the key role of
skillset in the determination of DevOps strategies, and the importance of structured
automation and continuous measurement.

Organisational context is well-researched, especially with regards to agile software
development. This study describes situational factors summing up to organisational
context in chapter 2. To utilise the model, organisations should clearly understand
the individual strategies identified in the study. This essentially is the responsibility
of the method engineer, who should use the meta models described in chapter 6
to break down each of the strategies to usable fragments. This provides limitless
ways to tailor DevOps implementation that suits the context of the organisation.

Clarity and understandability are essential for the acceptance of a model. Findings
from the focus group workshop demonstrates practitioners seeming acceptance of
the model. Although the complete model seemed complicated to the practitioners
at first, they related to the simplified version of the model which helped their
understanding of the complete one. The practitioners also suggested the inclusion
of a file structure for the model. This is an indication of their understanding of
its structure. The model consists of 4 basic parts: 1. Strategy administration
and strategy base 2. Selection and assembly of strategy fragments 3. Process
automation 4. Metrics and continuous measurement Parts 1 and 2 are similar to
Brinkkemper (1996) and Henderson-Sellers et al. (2014) models. In principle,
these parts correspond in functionality with the above-metioned models. This re-
search findings show clearly the active roles of process automation and continuous
measurement in achieving the goals of DevOps. The step-by-step description of the
model provided in chapter 6 increases the usability of the model. The applicability
of the model is demonstrated in the Focus group using it to identify the gaps in
their DevOps implementation and possible actions to further improve their agility.
This lends credence to the suitability of the model to review and improve software

CHAPTER 8. DISCUSSION 152

development processes. In response to the suggestion of a file structure for the
model, a repository was created (Macarthy, 2022). This provides a practical means
to document DevOps strategy implementations and keep track of improvements
and other changes.

SIDSEM is thus recommended as guidance for organisations who wish to imple-
ment DevOps or assess their software development processes, with the goal of
improving their agility.

8.3 Contribution to Theory

In line with the interrelated theory structure proposed by Gregor (2006), this thesis
contributes to DevOps body of knowledge through the instrumentality of the Theory
of Analysis, the Theory of Explaining, and the Theory of Design and Action. The
theory of Analysis “describe or classify specific dimensions or characteristics
of individuals, groups, situations, or events by summarising the commonalities
found in discrete observation” (Fawcett, 1978). This thesis presents a theory of
analysis by proposing a taxonomy DevOps approaches taken by organisations. The
classification maps the approaches to cloud and on-premises deployments, as well
as the facilitators of the practices. The theory of Explaining clarifies “primarily how
and why some phenomena occur” (Gregor, 2006). This thesis provides illumination
on the strategies organisations employ to implement DevOps. It also examines the
the influence of skillet in the determination of a strategy and the role of automation
in the strategies. Results indicate exigent correlation between these elements and
the identified strategies. The Theory of Design and Action gives prescription for
the construction of a process or product. This thesis demonstrates the Theory of
Design and action through the development and validation of a model seeking to
provide guidance for DevOps implementation in organisations. which is predicated
on.

This research displays novel findings centred around the existing nature of DevOps

CHAPTER 8. DISCUSSION 153

implementation in the software industry, and prescribed steps to improve agility
in service delivery with the instrumentality of the proposed model. The results
and outcomes presented in this study are contributory to filling the research gaps
in DevOps implementation. To the best of the researcher’s knowledge, based on
extensive search of existing literature, no previous work presents findings as have
been provided by this research. The creation of a repository for implementation and
documentation of the model usage presents an opportunity for future researchers
to collect and further investigate the concept.

8.4 Contribution to Practice

The DevOps implementation model has implications for practitioners. This section
presents the implications of the model for management, methods engineers, and
software development practitioners (developers, IT operations, DevOps engineers,
SREs, Security, QA etc).

For the management of organisations, this study aids clearer understanding of
the concept of DevOps. SIDSEM throws more light on whether an organisation
should be restructured to adopt DevOps (Leite et al., 2019). As organisations
seek the least disruption to their processes during such transformations, the model
would help them decide which strategy is most suitable to adopt based on their
organisational context. The model also presents an upfront view of the requirements
and expectations of the chosen strategy, further improving their decision process.
As such, this model could as a tool for decision makers to carve a path for their
software delivery, such as deciding to invest in relevant training or technologies.

This research provides an in-depth analysis of the different DevOps strategies to
Methods engineers. It describes the activities, requirements, and other constituents
of the identified strategies. Method engineers can thus break down the strategies to
component fragments and piece them together using the SIDSEM.

Software development practitioners can benefit from the taxonomy of DevOps

CHAPTER 8. DISCUSSION 154

approaches presented in the study. The taxonomy clearly identifies the roles
and responsibilities in the different approaches. SIDSEM provides a structured
approach to automation for improved agility. In the absence of methods engineers,
the model would help steer the teams towards suitable tailored strategies for their
DevOps implementation.

The creation of a repository (Macarthy, 2022), which serves as a physical repre-
sentation of the model further improves its usability in practice. Practitioners can
implement suitable strategies of DevOps using the model, and document the entire
process using the repository.

8.5 Limitations of the Study

The study adopts the assessment for rigor and trustworthiness in qualitative research
as proposed by Guba & Lincoln (1994): confirmability, dependability, internal
consistency (credibility), and transferability. I believe I have done my best to avoid
researcher’s bias by closely following the research methodology as prescribed by
classical Grounded Theory. We describe how this was achieved in the following
subsections.

8.5.1 Confirmability

Confirmability denotes the researcher’s ability to present a chain of evidence
showing that the data is a true representation of participants’ responses, and not
the researcher’s bias or opinion(Adolph et al., 2011; Cope, 2014; Krefting, 1991).
Data was collected through semi-structured interview and transcribed by hand. The
study follows the prescribed guidelines of Grounded Theory to analyse collected
data, from coding to the generation of theory. To ensure confirmability, I described
how conclusions and interpretations in the study were established based on codes
from transcripts and memos written from related codes. All findings are based on

CHAPTER 8. DISCUSSION 155

participants ‘quotes.

8.5.2 Dependability

Dependability refers to the repeatability of the study (Adolph et al., 2011; Cope,
2014; Krefting, 1991).The exact methods of data collection, data analysis and
interpretation are clearly described in this thesis. A sample of interview questions
can be seen in Bass & Macarthy (2020). The step-by-step description makes it
possible for another researcher to carry out the same study.

8.5.3 Internal Consistency

Internal consistency indicates credibility and consistency of finding (Adolph et
al., 2011; Cope, 2014; Krefting, 1991). To ensure credibility, interviews were
transcribed verbatim by hand. Also, participants’ responses are clearly described
in this thesis. Appendix E is a transcript from an interview in the study. For
consistency, I compared the codes across the organisations in the study till concrete
theories were formed.

8.5.4 Transferability

Transferability describes the applicability of the study to other settings (Cope, 2014;
Krefting, 1991), and useful theories can be derived from findings (Adolph et al.,
2011). Although this study investigates DevOps implementation in 29 organisation
and a model was developed based on the finding, I do not claim extendibility to
all organisational contexts as the model has not been tested beyond 1 organisation.
I however believe that my findings are relevant in decision making for DevOps
implementation.

Chapter 9

Conclusion

9.1 Summary of Thesis

The software development process is characterised by interconnections of several
activities carried out by different actors and teams. As the demand for more agility
in software service delivery continue to rise, so does the need for coordination and
collaboration among the stakeholders. Recent events like the Covid-19 pandemic,
which has necessitated working from home, has placed more demand on better
coordination. An extensive literature review of coordination in software devel-
opment is presented in this thesis, exploring the efforts of software development
methodologies from waterfall to agile methods. These methodologies were how-
ever targeted at the development phase alone. Recent contributions to coordination
extend the goal of agility to IT operations and the other teams in the delivery value
chain, most popular of which is DevOps.

DevOps is described as a cultural movement in software engineering aimed at
building, testing and releasing software faster and more reliably through automation.
According to available literature, benefits derived from DevOps adoption include
faster delivery, improved quality and security, and better collaboration. The 2020

156

CHAPTER 9. CONCLUSION 157

State of DevOps report shows a rising trend of its adoption among practitioners and
organisations. Despite its increasing popularity, there are differing descriptions of
the concept, resulting in various dissimilar ways of implementation. While some
studies characterise it as an organisation-wide culture to foster better collaboration
between IT Ops and development teams, DevOps has also been portrayed as
a job description by others. Furthermore, current studies identify the lack of
guidelines for organisations to successfully implement DevOps. The random
ways of implementation and tailoring of practices in the name of DevOps is
considered risky as it might lead to significant financial losses and upheaval of
the organisation’s software development process. The aim of this research is to
investigate the patterns of work coordination between development and operations
activities in organisations and propose a model for DevOps implementation. To
achieve the aim, two main research questions emerged from Grounded Theory
process: Research Question 1 -“How do practitioners describe and implement
DevOps in practice?” Research Question 2 - “How can organisations tailor DevOps
implementation to suit organisational context?” These questions were further
divided into sub questions to enable a more detailed investigation.

This study adopts a multi-method approach. Chapter 3 -Research design clearly
explains the rationale and philosophical choices of the study. The research is
divided into four phases, each of which is extensively described along with the
applied methodology. To understand its implementation in practice, phase 1
presents an exploratory study based on interviews with 11 DevOps practitioners
across nine organisations. Data was analysed by a method informed by Grounded
Theory. The empirical findings in this phase provide new understanding of DevOps
implementation, based on the descriptions by the practitioners in the study.

Firstly, an in-depth analysis of the data resulted in the development of a taxonomy of
DevOps implementation in practice. Four modes of implementation are identified,
categorised as developers’ interactions with: Ops, Outsourced Ops, DevOps teams,
and DevOps bridge teams. Secondly, a novel mapping of these approaches to cloud
and on-premises deployment environments is presented (Macarthy & Bass, 2020).
Thirdly, the facilitators of DevOps practices in these modes are identified. Finally,

CHAPTER 9. CONCLUSION 158

further analysis of the fourth approach exposed three distinct groups of activities:
provisioning and maintenance of physical systems, function virtualisation and
creation of automated pipelines, and development, deployment and maintenance of
applications. This, I believe, may have given rise to the implementation of DevOps
as teams between developers and operations teams, as each group of activities
require specific skillsets. The findings revealed that DevOps is indeed perceived by
participants as both a culture and a job description. However, the two views did
not seem mutually exclusive.

Phase 2 is an in-depth investigation of DevOps implementation based on interviews
with DevOps practitioners from 18 organisations, based on findings from phase
1. This followed the same analysis method as phase 1. The findings include
six strategies identified to be used by organisations for DevOps implementation:
platform, greenfield application, monolith decomposition, process improvement,
cultural improvement, and advocacy (Macarthy & Bass, 2021). Except for the
platform strategy, all the others are uniquely characterised by this research. The
roles of skillet and automation in each strategy was investigated. The actual
relationship between the skillset and DevOps strategy has not been established.
However, there are indications from my findings that the skillset impacts on the
identified strategies in areas such as the duration and overall outcome of the
implementation effort. This leads us to the conclusion that a striking correlation
exists between the skillset and the strategy adopted by organisations to implement
DevOps.

The findings from these phases, and the theories generated, combined with literature
led to the development of a model for DevOps implementation in phase 3. This
model is a extension of Brinkkemper (1996) situational method engineering model,
to address the identified requirements of DevOps. The model was validated in
phase 4 using an expert focus group. The focus group evaluated their software
development process with the model and identified ways in which they could
further improve their agility.

The answers to the research questions are discussed in chapter 8, reflecting the

CHAPTER 9. CONCLUSION 159

findings from the 4 phases of the study. The main contributions of this thesis
are: a novel taxonomy of DevOps approaches in practice, the identification and
characterisation of 6 DevOps strategies, and the development of a novel model for
DevOps strategy implementation.This study also provides the instantiation of the
model in a GitHub repository, providing practitioners with a practical means of
applying the model and documenting their DevOps journey.

This thesis concludes that amid the ambivalence about the definition and practices
of DevOps resulting in the unstructured implementation of the concept, the model
developed in the study can guide organisations to make informed decisions on the
most suitable DevOps strategy to employ according to their organisational context.

9.2 Reflection

The PhD journey is mostly about how one has developed as a researcher. Deciding
on a PhD was not as easy choice as I already had an industry-based career in
computer networks. I also had a family to think about. The corporation I worked
with decided to train researchers for the R&D division and I was chosen for the
highly competitive Petroleum Technology Development Fund (PTDF) scholarship.
As hard as it was, I could not pass up the opportunity to make a contribution to the
field of information systems through a PhD.

It is highly unlikely to predict how things will go at the start of the PhD but certainly,
changing circumstances will impact you both academically and personally. In
this section, I reflect on the main stages of this study from choosing the goal,
deciding on the methodology of inquiry, collecting and analysing data, and making
contributions.

The area of inquiry I chose is still developing. Deciding on the aim and objectives,
and crafting the research questions was not a straightforward task. This was mainly
because of the methodology I chose to kick-off the investigation - Grounded Theory.
The research questions developed along with the study. Understanding the different

CHAPTER 9. CONCLUSION 160

methodologies and the role they play in research is key for anyone who wishes to
embark on a PhD study. It is also important to ensure your supervisor is conversant
with your chosen methodology. Guidance in the application of a methodology is
indispensable if one must develop their knowledge on conducting research.

I collected data in two iterations and both times, it was challenging for various
reasons. In the first instance, I was new to the UK and did not know how to
reach software development practitioners. Thanks to my supervisor who willingly
introduced me suitable industry associates, I started with purposive sampling then
carried on with snowballing method. The second phase of data collection was at the
peak of Covid-19. Physical offices were closed up, organsations were restructuring,
and it was almost impossible to speak with practitioners, most of whom were
struggling with personal impacts of the pandemic. I could not collect data for
more than 5 months. I resorted to seeking participants on LinkedIn. This involved
determining their suitability through a painstaking examination of their profiles. I
daringly contacted industry leaders in the DevOps movement through LinkedIn.
Thankfully, I got some responses. Again, I employed snowballing method and
collected a substantial amount of data.

Applying the guidelines Grounded Theory in the data analysis was difficult in my
first iteration. I needed to understand how to code the transcripts both by hand and
using Nvivo. By the second iteration, I could not recommend the methodology
enough for exploratory investigations. It was rewarding to see theories emerging
from the process.

Writing up is a stage to pay close attention to. I would say this process is incremen-
tal and starts at the beginning of the PhD. It builds up from the literature review
and other written works in the first year, to publications achieved during the study.
Some might not be useful for the final version of the thesis but one would not start
from scratch.

In the course of this journey, I had several family losses, my father-in-law, my
grandmother, my aunt to a ghastly motor accident, and a dear friend cut down in
her prime. All of these impacted my studies significantly. I had other personal

CHAPTER 9. CONCLUSION 161

struggles to deal with too, not to mention the upheaval caused by the pandemic. I
am thankful that I am able to complete this study.

9.3 Future Work

DevOps is still an emerging concept and its popularity continues to grow. More
research is required to further explore the nature of the concept and arrive at a
formal definition. This study did not explore the relationship between the identified
strategies and the approaches to DevOps implementation. An investigation might
be relevant to provide organisations with information on possible team topologies
that might arise from the strategies they adopt. Further research on this topic
needs to be undertaken before the association between the skillset and strategies in
DevOps implementation is more clearly understood. The model developed in this
study is evaluated using an expert focus group workshop. Further validation of the
model needs to be carried out, to establish its suitability as guidance for DevOps
implementation. The next step with this research would be recruiting organisations
to use the model together with the repository.

References

Abrahamsson, P., Conboy, K., & Wang, X. (2009). ‘lots done, more to do’: the

current state of agile systems development research (Vol. 18) (No. 4). Taylor &
Francis.

Adams, W. C. (2015). Conducting semi-structured interviews. Handbook of

practical program evaluation, 4, 492–505.

Adolph, S., Hall, W., & Kruchten, P. (2011). Using grounded theory to study the
experience of software development. Empirical Software Engineering, 16(4),
487–513.

Ali, N. B., Petersen, K., & Schneider, K. (2016). Flow-assisted value stream
mapping in the early phases of large-scale software development. Journal of

Systems and Software, 111, 213–227.

Amaro, R. M. D., Pereira, R., & da Silva, M. M. (2022). Capabilities and practices
in devops: A multivocal literature review. IEEE Transactions on Software

Engineering.

Anderson, D. J. (2010). Kanban: successful evolutionary change for your technol-

ogy business. Blue Hole Press.

Andres, H. P., & Zmud, R. W. (2002). A contingency approach to software project
coordination. Journal of Management Information Systems, 18(3), 41–70.

Avison, D. (1996). Information systems development methodologies: a broader
perspective. In Working conference on method engineering (pp. 263–277).

162

REFERENCES 163

Aydin, M. N. (2007). Examining key notions for method adaptation. In Working

conference on method engineering (pp. 49–63).

Baddoo, N., & Hall, T. (2003). De-motivators for software process improvement:
an analysis of practitioners’ views. Journal of Systems and Software, 66(1),
23–33.

Bass, J. M. (2014). Scrum master activities: process tailoring in large enter-
prise projects. In 2014 ieee 9th international conference on global software

engineering (pp. 6–15).

Bass, J. M. (2016). Artefacts and agile method tailoring in large-scale offshore
software development programmes. Information and Software Technology, 75.

Bass, J. M., & Haxby, A. (2019). Tailoring product ownership in large-scale
agile projects: managing scale, distance, and governance. IEEE Software, 36(2),
58–63.

Bass, J. M., & Macarthy, R. W. (2020). Interview guide - devops (version 1).

University of Salford. Retrieved from https://doi.org/10.17866/

rd.salford.12349724.v1

Baumoel, U. (2005). Strategic agility through situational method construction. In
Proceedings of the european academy of management annual conference (Vol.
2005).

Beck, K. (1999). Embracing change with extreme programming. Computer,
32(10), 70–77.

Beck, K. (2000). Extreme programming explained: embrace change. addison-
wesley professional.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., & Thomas, D. (2001). Manifesto for agile software development twelve
principles of agile software. Zugriff am, 5, 2020.

https://doi.org/10.17866/rd.salford.12349724.v1
https://doi.org/10.17866/rd.salford.12349724.v1

REFERENCES 164

Beecham, S., Noll, J., Richardson, I., & Ali, N. (2010). Crafting a global teaming
model for architectural knowledge. In 2010 5th ieee international conference on

global software engineering (pp. 55–63).

Beecham, S., OLeary, P., Richardson, I., Baker, S., & Noll, J. (2013). Who are we
doing global software engineering research for? In 2013 ieee 8th international

conference on global software engineering (pp. 41–50).

Bergstra, J., Jonkers, H., & Obbink, J. (1985). A software development model for
method engineering. Esprit, 84, 84–94.

Boehm, B., & Huang, L. G. (2003). Value-based software engineering: a case
study. Computer, 36(3), 33–41.

Boehm, B., & Turner, R. (2004). Balancing agility and discipline: Evaluating and
integrating agile and plan-driven methods. In Proceedings. 26th international

conference on software engineering (pp. 718–719).

Boote, D. N., & Beile, P. (2005). Scholars before researchers: On the centrality of
the dissertation literature review in research preparation. Educational researcher,
34(6), 3–15.

Brinkkemper, S. (1996). Method engineering: engineering of information systems
development methods and tools. Information and software technology, 38(4),
275–280.

Brinkkemper, S., Saeki, M., & Harmsen, F. (1998). Assembly techniques for
method engineering. In International conference on advanced information

systems engineering (pp. 381–400).

Brown, A., Kersten, N., & Stahnke, M. (2020). State of devops report 2020.
Available from: puppet. com/resources/report/state-of-devopsreport, 16.

Bucher, T., Klesse, M., Kurpjuweit, S., & Winter, R. (2007). Situational method
engineering. In Working conference on method engineering (pp. 33–48).

Cameron, K. S., & Quinn, R. E. (2011). Diagnosing and changing organizational

culture: Based on the competing values framework. John Wiley & Sons.

REFERENCES 165

Cao, L., Mohan, K., Xu, P., & Ramesh, B. (2009). A framework for adapting agile
development methodologies. European Journal of Information Systems, 18(4),
332–343.

Charmaz, K. (2009). Shifting the grounds. Developing grounded theory: The

second generation, 127–154.

Chen, L. (2015). Continuous delivery: Huge benefits, but challenges too. IEEE

software, 32(2), 50–54.

Chen, L. (2017). Continuous delivery: Overcoming adoption challenges. Journal

of Systems and Software, 128, 72–86.

Chow, T., & Cao, D.-B. (2008). A survey study of critical success factors in agile
software projects. Journal of systems and software, 81(6), 961–971.

Clark, J. S., Porath, S., Thiele, J., & Jobe, M. (2020). Action research. New Prairie
Press.

Clarke, P., & O’Connor, R. V. (2012). The situational factors that affect the
software development process: Towards a comprehensive reference framework.
Information and software technology, 54(5), 433–447.

Cockburn, A. (2004). Crystal clear: A human-powered methodology for small

teams: A human-powered methodology for small teams. Pearson Education.

Conway, M. E. (1968). How do committees invent. Datamation, 14(4), 28–31.

Cope, D. G. (2014). Methods and meanings: credibility and trustworthiness of
qualitative research. In Oncology nursing forum (Vol. 41).

Creswell, J. W., & Creswell, J. D. (1994). Research design. Thousand Oaks, CA:
Sage.

Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantita-

tive, and mixed methods approaches. Sage publications.

Dearle, A. (2007). Software deployment, past, present and future. In Future of

software engineering (fose’07) (pp. 269–284).

REFERENCES 166

Debois, P. (2008). Agile infrastructure and operations: how infra-gile are you? In
Agile 2008 conference (pp. 202–207).

Dennehy, D., & Conboy, K. (2017). Going with the flow: An activity theory
analysis of flow techniques in software development. Journal of Systems and

Software, 133, 160–173.

Dı́az, J., Almaraz, R., Pérez, J., & Garbajosa, J. (2018). Devops in practice: an
exploratory case study. In Proceedings of the 19th international conference on

agile software development: Companion (pp. 1–3).

Dietrich, P., Kujala, J., & Artto, K. (2013). Inter-team coordination patterns and
outcomes in multi-team projects. Project Management Journal, 44(6), 6–19.

Dingsøyr, T., & Lassenius, C. (2016). Emerging themes in agile software de-
velopment: Introduction to the special section on continuous value delivery.
Information and Software Technology, 77, 56–60.

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile

methodologies: Towards explaining agile software development (Vol. 85) (No. 6).
Elsevier.

Dingsøyr, T., Rolland, K., Moe, N. B., & Seim, E. A. (2017). Coordination in
multi-team programmes: An investigation of the group mode in large-scale agile
software development. Procedia computer science, 121, 123–128.

Dove, R., & Turkington, G. (2008). Relating agile development to agile oper-
ations. In Conference on systems engineering research (cser), university of

southern california, redondo beach, april, www. parshift. com/files/psidocs/-

pap080404cser2008devopsmigration. pdf.

Duvall, P. M., Matyas, S., & Glover, A. (2007). Continuous integration: improving

software quality and reducing risk. Pearson Education.

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development:
A systematic review. Information and software technology, 50(9-10), 833–859.

REFERENCES 167

Dyck, A., Penners, R., & Lichter, H. (2015). Towards definitions for release
engineering and devops. In 2015 ieee/acm 3rd international workshop on

release engineering (pp. 3–3).

Engström, E., & Runeson, P. (2010). A qualitative survey of regression testing
practices. In International conference on product focused software process

improvement (pp. 3–16).

Erich, F. M., Amrit, C., & Daneva, M. (2017). A qualitative study of devops usage
in practice. Journal of Software: Evolution and Process, 29(6), e1885.

Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile modeling, agile software
development, and extreme programming: the state of research. Journal of

Database Management (JDM), 16(4), 88–100.

Essink, L. J. (1986). A modelling approach to information system development.
In Proc. of the ifip wg 8.1 working conference on information systems design

methodologies: improving the practice (pp. 55–86).

Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience
sampling and purposive sampling. American journal of theoretical and applied

statistics, 5(1), 1–4.

Fawcett, J. (1978). The relationship between theory and research: A double helix.
Advances in Nursing Science, 1(1), 49–62.

Firesmith, D. G., & Henderson-Sellers, B. (2002). The open process framework:

An introduction. Pearson Education.

Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customising agile methods to
software practices at intel shannon. European Journal of Information Systems,
15(2), 200–213.

Forsgren, N., Kim, G., & Labs, P. (2014). 2014 state of devops report.

Retrieved from http://puppetlabs.com/sites/default/files/

2014-state-of-devops-report.pdf

http://puppetlabs.com/sites/default/files/2014-state-of-devops-report.pdf
http://puppetlabs.com/sites/default/files/2014-state-of-devops-report.pdf

REFERENCES 168

Fowler, M., & Foemmel, M. (2006). Continuous integration. thought-works.
Inc.[Online: accessed in May 16, 2018 from http://www. martinfowler. com/....

html].

Fruhling, A. L., & Tarrell, A. E. (2008). Best practices for implementing agile
methods. IBM center for the Business government.

Galbraith, J. (1973). Designing complex organizations. Reading, Mass.

Gill, A. Q., Loumish, A., Riyat, I., & Han, S. (2018a). Devops for information man-
agement systems. VINE Journal of Information and Knowledge Management

Systems.

Gill, A. Q., Loumish, A., Riyat, I., & Han, S. (2018b). Devops for information man-
agement systems. VINE Journal of Information and Knowledge Management

Systems.

Ginsberg, M. P., & Quinn, L. H. (1995). Process tailoring and the the software
capability maturity model. SEI Joint Program Technical Report for the U.S.

Department of Defense.

Giray, G., & Tekinerdogan, B. (2018). Situational method engineering for con-
structing internet of things development methods. In International symposium

on business modeling and software design (pp. 221–239).

Glaser, B. G. (1978). Theoretical sensitivity. Advances in the methodology of

grounded theory.

Glaser, B. G. (1992). Basics of grounded theory analysis: Emergence vs. forcing.

1992, mill valley. CA: Sociology Press.

Glaser, B. G. (1998). Doing grounded theory: Issues and discussions. Sociology
Press.

Glaser, B. G., & Strauss, A. (1967). Grounded theory: The discovery of grounded
theory. Sociology the journal of the British sociological association, 12(1).

REFERENCES 169

Glass, R. L. (2003). Questioning the software engineering unquestionables. IEEE

Software, 20(3), 120.

Gonzalez-Perez, C. (2007). Supporting situational method engineering with iso/iec
24744 and the work product pool approach. In Working conference on method

engineering (pp. 7–18).

Gonzalez-Perez, C., & Henderson-Sellers, B. (2005). Templates and resources in
software development methodologies. Journal of Object Technology.

Goodman, D., & Elbaz, M. (2008). ” it’s not the pants, it’s the people in the pants”
learnings from the gap agile transformation what worked, how we did it, and
what still puzzles us. In Agile 2008 conference (pp. 112–115).

Gregor, S. (2006). The nature of theory in information systems. MIS quarterly,
611–642.

Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research.
Handbook of qualitative research, 2(163-194), 105.

Guckenheimer, S. (2018). What is devops? Retrieved from
https://docs.microsoft.com/en-us/azure/devops/learn/

what-is-devops

Gupta, M., George, J. F., & Xia, W. (2019). Relationships between it department
culture and agile software development practices: An empirical investigation.
International Journal of Information Management, 44, 13–24.

Gutierrez, G., Garzas, J., de Lena, M. T. G., & Moguerza, J. M. (2018). Self-
managing: An empirical study of the practice in agile teams. IEEE Software,
36(1), 23–27.

Haghighatkhah, A., Mäntylä, M., Oivo, M., & Kuvaja, P. (2018). Test prioritization
in continuous integration environments. Journal of Systems and Software, 146,
80–98.

https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops

REFERENCES 170

Hall, R. S., Heimbigner, D., & Wolf, A. L. (1999). A cooperative approach to
support software deployment using the software dock. In Proceedings of the

21st international conference on software engineering (pp. 174–183).

Harmsen, A. F., Brinkkemper, J. N., & Oei, J. H. (1994). Situational method

engineering for information system project approaches. University of Twente,
Department of Computer Science.

Harmsen, A. F., Ernst, M., & Twente, U. (1997). Situational method engineering.
Citeseer.

Hawryszkiewycz, I. (2002). Designing collaborative business systems. In Ifip

world computer congress, tc 8 (pp. 131–145).

Heath, H., & Cowley, S. (2004). Developing a grounded theory approach: a
comparison of glaser and strauss. International journal of nursing studies, 41(2),
141–150.

Henderson-Sellers, B., & Gonzalez-Perez, C. (2005). The rationale of powertype-
based metamodelling to underpin software development methodologies. In
Conferences in research and practice in information technology series.

Henderson-Sellers, B., Ralyté, J., Ågerfalk, P. J., & Rossi, M. (2014). Situational

method engineering. Springer.

Highsmith, J., & Cockburn, A. (2001). Agile software development: The business
of innovation. Computer, 34(9), 120–127.

Highsmith, J. A., & Highsmith, J. (2002). Agile software development ecosystems.
Addison-Wesley Professional.

Hoda, R., Noble, J., & Marshall, S. (2010). Using grounded theory to study the
human aspects of software engineering. Human Aspects of Software Engineering,
1–2.

Hoda, R., Noble, J., & Marshall, S. (2012). Developing a grounded theory
to explain the practices of self-organizing agile teams. Empirical Software

Engineering, 17(6), 609–639.

REFERENCES 171

Hoegl, M., & Weinkauf, K. (2005). Managing task interdependencies in multi-
team projects: A longitudinal study. Journal of Management Studies, 42(6),
1287–1308.

Hoppenbrouwers, S., Zoet, M., Versendaal, J., & Weerd, I. v. d. (2011). Agile
service development: a rule-based method engineering approach. In Working

conference on method engineering (pp. 184–189).

Humble, J. (2012). There’s no such thing as a devops team. Retrieved
from https://continuousdelivery.com/2012/10/theres-no

-such-thing-as-a-devops-team/

Humble, J., & Farley, D. (2010). Continuous delivery: reliable software releases

through build, test, and deployment automation. Pearson Education.

Hummel, M., Rosenkranz, C., & Holten, R. (2015). The role of social agile prac-
tices for direct and indirect communication in information systems development
teams. Communications of the Association for Information Systems, 36(1), 15.

Hüttermann, M. (2012). Devops for developers. Apress.

ISO. (2014). Software engineering - metamodel for development methodologies.
International Standardization Organization, Geneva.

Iyawa, G. E., Herselman, M. E., & Coleman, A. (2016). Customer interaction
in software development: A comparison of software methodologies deployed
in namibian software firms. The Electronic Journal of Information Systems in

Developing Countries, 77(1), 1–13.

Kalus, G., & Kuhrmann, M. (2013). Criteria for software process tailoring: a
systematic review. In Proceedings of the 2013 international conference on

software and system process (pp. 171–180).

Karlsson, F., & Ågerfalk, P. J. (2004). Method configuration: adapting to situa-
tional characteristics while creating reusable assets. Information and Software

Technology, 46(9), 619–633.

https://continuousdelivery.com/2012/10/theres-no-such-thing-as-a-devops-team/
https://continuousdelivery.com/2012/10/theres-no-such-thing-as-a-devops-team/

REFERENCES 172

Kersten, M. (2018a). A cambrian explosion of devops tools. IEEE Computer

Architecture Letters, 35(02), 14–17.

Kersten, M. (2018b). Mining the ground truth of enterprise toolchains. IEEE

Software(3), 12–17. doi: https://doi.org/10.1109/MS.2018.2141029

Kersten, M. (2018c). What flows through a software value stream? IEEE Software,
35(4), 8–11.

Kerzner, H. (1998). In search of excellence in project management. Van Nostrand
Reinhold.

Kim, G., Humble, J., Debois, P., & Willis, J. (2016). The devops handbook:: How

to create world-class agility, reliability, and security in technology organizations.
IT Revolution.

Kornyshova, E., Deneckère, R., & Salinesi, C. (2007). Method chunks selection
by multicriteria techniques: an extension of the assembly-based approach. In
Working conference on method engineering (pp. 64–78).

Kraut, R. E., & Streeter, L. A. (1995). Coordination in software development.
Communications of the ACM, 38(3), 69–82.

Krefting, L. (1991). Rigor in qualitative research: The assessment of trustworthi-
ness. American journal of occupational therapy, 45(3), 214–222.

Kromhout, B. (2017). Containers will not fix your broken culture (and other hard
truths). Queue, 15(6), 46–56.

Kruchten, P. B. (1995). The 4+ 1 view model of architecture. IEEE software,
12(6), 42–50.

Kumar, K., & Welke, R. J. (1992). Methodology engineeringr: a proposal for
situation-specific methodology construction. In Challenges and strategies for

research in systems development (pp. 257–269).

Lei, H., Ganjeizadeh, F., Jayachandran, P. K., & Ozcan, P. (2017). A statistical
analysis of the effects of scrum and kanban on software development projects.
Robotics and Computer-Integrated Manufacturing, 43, 59–67.

REFERENCES 173

Leidner, D. E., & Kayworth, T. (2006). A review of culture in information systems
research: Toward a theory of information technology culture conflict. MIS

quarterly, 357–399.

Leite, L., Lago, N., Melo, C., Kon, F., & Meirelles, P. (2022). A theory of
organizational structures for development and infrastructure professionals. IEEE

Transactions on Software Engineering.

Leite, L., Rocha, C., Kon, F., Milojicic, D., & Meirelles, P. (2019). A survey
of devops concepts and challenges. ACM Computing Surveys (CSUR), 52(6),
1–35.

Len, B., Jeffery, R., Wada, H., Weber, I., & Zhu, L. (2013). Eliciting operations
requirements for applications. In Proceedings of the 1st international workshop

on release engineering (pp. 5–8).

Len, B., Weber, I., & Zhu, L. (2015). Devops: A software architect’s perspective.
Addison-Wesley Professional.

Leppänen, M., Mäkinen, S., Pagels, M., Eloranta, V.-P., Itkonen, J., Mäntylä,
M. V., & Männistö, T. (2015). The highways and country roads to continuous
deployment. Ieee software, 32(2), 64–72.

López-Fernández, D., Diaz, J., Garcia-Martin, J., Pérez, J., & Gonzalez-Prieto,
A. (2021). Devops team structures: Characterization and implications. IEEE

Transactions on Software Engineering.

Luz, W. P., Pinto, G., & Bonifácio, R. (2018). Building a collaborative culture: a
grounded theory of well succeeded devops adoption in practice. In Proceedings

of the 12th acm/ieee international symposium on empirical software engineering

and measurement (pp. 1–10).

Luz, W. P., Pinto, G., & Bonifácio, R. (2019). Adopting devops in the real world:
A theory, a model, and a case study. Journal of Systems and Software, 157,
110384.

REFERENCES 174

Lwakatare, L. E., Karvonen, T., Sauvola, T., Kuvaja, P., Olsson, H. H., Bosch, J.,
& Oivo, M. (2016). Towards devops in the embedded systems domain: Why
is it so hard? In 2016 49th hawaii international conference on system sciences

(hicss) (pp. 5437–5446).

Lwakatare, L. E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkilä, V., Itkonen, J.,
. . . Lassenius, C. (2019). Devops in practice: A multiple case study of five
companies. Information and Software Technology.

Macarthy, R. W. (2022, Sep). Devopsimplementationmodel.

Retrieved from https://github.com/RuthMacarthy/

DevOpsImplementationModel

Macarthy, R. W., & Bass, J. M. (2020). An empirical taxonomy of devops
in practice. In 2020 46th euromicro conference on software engineering and

advanced applications (seaa) (pp. 221–228).

Macarthy, R. W., & Bass, J. M. (2021). The role of skillset in the determination of
devops implementation strategy. In 2021 ieee/acm joint 15th international con-

ference on software and system processes (icssp) and 16th acm/ieee international

conference on global software engineering (icgse) (pp. 50–60).

Machamer, P., & Silberstein, M. (2008). The blackwell guide to the philosophy of

science (Vol. 19). John Wiley & Sons.

Mäkinen, S., Leppänen, M., Kilamo, T., Mattila, A.-L., Laukkanen, E., Pagels,
M., & Männistö, T. (2016). Improving the delivery cycle: A multiple-case
study of the toolchains in finnish software intensive enterprises. Information

and Software Technology, 80, 175–194.

Malone, T. W., & Crowston, K. (1994). The interdisciplinary study of coordination.
ACM Computing Surveys (CSUR), 26(1), 87–119.

Mårtensson, T., Ståhl, D., & Bosch, J. (2018). Enable more frequent integration of
software in industry projects. Journal of Systems and Software, 142, 223–236.

Maxwell, J. A. (2012). Qualitative research design: An interactive approach. Sage
publications.

https://github.com/RuthMacarthy/DevOpsImplementationModel
https://github.com/RuthMacarthy/DevOpsImplementationModel

REFERENCES 175

McHugh, O., Conboy, K., & Lang, M. (2011). Agile practices: The impact on
trust in software project teams. IEEE software, 29(3), 71–76.

Merriam, S. B. (1988). Case study research in education: A qualitative approach.
Jossey-Bass.

Meyer, B. (2018). Making sense of agile methods. IEEE Software, 35(2), 91–94.

Mujtaba, S., Feldt, R., & Petersen, K. (2010). Waste and lead time reduction in a
software product customization process with value stream maps. In 2010 21st

australian software engineering conference (pp. 139–148).

Myers, M. D. (1999). Investigating information systems with ethnographic research.
Communications of the Association for Information Systems, 2(1), 23.

Myers, M. D., & Avison, D. (2002). Qualitative research in information systems:

a reader. Sage.

Nidumolu, S. R. (1996). A comparison of the structural contingency and risk-
based perspectives on coordination in software-development projects. Journal

of Management Information Systems, 13(2), 77–113.

Noll, J., Beecham, S., & Richardson, I. (2011). Global software development and
collaboration: barriers and solutions. ACM inroads, 1(3), 66–78.

Nybom, K., Smeds, J., & Porres, I. (2016). On the impact of mixing responsibilities
between devs and ops. In International conference on agile software development

(pp. 131–143).

of Government Commerce, G. B. O. (2002). Managing successful projects with

prince2. The Stationery Office.

Ohno, T. (1988). Toyota production system: beyond large-scale production. crc
Press.

Olsen, C., & St George, D. (2004). Cross-sectional study design and data analysis.
College entrance examination board, 26(03), 2006.

REFERENCES 176

Palvia, P., Midha, V., & Pinjani, P. (2006). Research models in information systems.
Communications of the Association for Information Systems, 17(1), 47.

Patton, M. Q. (2002). Qualitative research and evaluation methods. thousand oaks.
Cal.: Sage Publications, 4.

Perera, P., Bandara, M., & Perera, I. (2016). Evaluating the impact of devops
practice in sri lankan software development organizations. In 2016 sixteenth

international conference on advances in ict for emerging regions (icter) (pp.
281–287).

Petersen, K., & Gencel, C. (2013). Worldviews, research methods, and their
relationship to validity in empirical software engineering research. In 2013 joint

conference of the 23rd international workshop on software measurement and

the 8th international conference on software process and product measurement

(pp. 81–89).

Philips, Z., Claxton, K., & Palmer, S. (2008). The half-life of truth: what are
appropriate time horizons for research decisions? Medical Decision Making,
28(3), 287–299.

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., & Still, J. (2008). The
impact of agile practices on communication in software development. Empirical

Software Engineering, 13(3), 303–337.

Poppendieck, M., & Poppendieck, T. (2003). Lean software development: an agile

toolkit. Addison-Wesley.

Proulx, A., Raymond, F., Roy, B., & Petrillo, F. (2018). Problems and solutions of
continuous deployment: A systematic review. arXiv preprint arXiv:1812.08939.

Punter, T., & Lemmen, K. (1996). The mema-model: towards a new approach for
method engineering. Information and Software Technology, 38(4), 295–305.

Rembetsy, M., & McDonnell, P. (2012). Continuously deploying culture: Scaling
culture at etsy. In Velocity europe.

REFERENCES 177

Riungu-Kalliosaari, L., Mäkinen, S., Lwakatare, L. E., Tiihonen, J., & Männistö, T.
(2016). Devops adoption benefits and challenges in practice: a case study. In
International conference on product-focused software process improvement (pp.
590–597).

Robson, C., & McCartan, K. (2015). Real world research, [argosy university].

West Sussex, UK: Wiley.

Robson, C., & McCartan, K. (2016). Real world research: a resource for users of

social research methods in applied settings. Wiley.

Roche, J. (2013). Adopting devops practices in quality assurance. Commun. ACM,
56(11).

Rodrigues, J., Ruivo, P., & Oliveira, T. (2020). Mediation role of business value
and strategy in firm performance of organizations using software-as-a-service
enterprise applications. Information & Management, 103289.

Rodrı́guez, P., Haghighatkhah, A., Lwakatare, L. E., Teppola, S., Suomalainen, T.,
Eskeli, J., . . . Oivo, M. (2017). Continuous deployment of software intensive
products and services: A systematic mapping study. Journal of Systems and

Software, 123, 263–291.

Rolland, C. (1998). A comprehensive view of process engineering. In International

conference on advanced information systems engineering (pp. 1–24).

Rolland, C., & Prakash, N. (1996). A proposal for context-specific method
engineering. In Working conference on method engineering (pp. 191–208).

Rowe, M., & Marshall, P. (2012). The business case for collaborative

devops. Retrieved from https://www.ibm.com/developerworks/

community/blogs/

Ro¨stlinger A, G. G. (1994). “generic flexibility—towards a component-based view
of methods. In Department of computer and information science, linko¨ping

university, linko¨ping.

https://www.ibm.com/developerworks/community/blogs/
https://www.ibm.com/developerworks/community/blogs/

REFERENCES 178

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case
study research in software engineering. Empirical software engineering, 14(2),
131–164.

Saunders, M., Lewis, P., & Thornhill, A. (2019). Research methods for business
students eight edition. QualitativeMarket Research: An International Journal.

Schumate, S. (2004). Implications of virtualization (Tech. Rep.). Technical Report
2004. www. dell. com/downloads/global/power/ps4q04-20040152

Schuppenies, R., & Steinhauer, S. (2002). Software process engineering metamodel.
OMG group, November.

Schwaber, K. (2004). Agile project management with scrum. Microsoft press.

Schwaber, K., & Beedle, M. (2002). Agile software development with scrum

(Vol. 1). Prentice Hall Upper Saddle River.

Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill building

approach. john wiley & sons.

Senapathi, M., Buchan, J., & Osman, H. (2018). Devops capabilities, practices, and
challenges: Insights from a case study. In Proceedings of the 22nd international

conference on evaluation and assessment in software engineering 2018 (pp.
57–67).

Shahin, M., Babar, M. A., & Zhu, L. (2017). Continuous integration, delivery and
deployment: a systematic review on approaches, tools, challenges and practices.
IEEE Access, 5, 3909–3943.

Sharp, H., & Robinson, H. (2008). Collaboration and co-ordination in mature
extreme programming teams. International Journal of Human-Computer Studies,
66(7), 506–518.

Siqueira, R., Camarinha, D., Wen, M., Meirelles, P., & Kon, F. (2018). Continuous
delivery: Building trust in a large-scale, complex government organization. IEEE

Software, 35(2), 38–43.

REFERENCES 179

Slama, D., Puhlmann, F., Morrish, J., & Bhatnagar, R. M. (2015). Enterprise iot:

Strategies and best practices for connected products and services. ” O’Reilly
Media, Inc.”.

Smeds, J., Nybom, K., & Porres, I. (2015). Devops: a definition and perceived
adoption impediments. In International conference on agile software develop-

ment (pp. 166–177).

Society, T. B. C. (2012). Sfia view - devops skills. Retrieved from
https://sfia-online.org/en/tools-and-resources/

sfia-views/devops-skills-in-sfia

Ståhl, D., & Bosch, J. (2013). Experienced benefits of continuous integration
in industry software product development: A case study. In The 12th iasted

international conference on software engineering,(innsbruck, austria, 2013) (pp.
736–743).

Ståhl, D., & Bosch, J. (2014). Modeling continuous integration practice differences
in industry software development. Journal of Systems and Software, 87, 48–59.

Ståhl, D., Hallén, K., & Bosch, J. (2017). Achieving traceability in large scale
continuous integration and delivery deployment, usage and validation of the
eiffel framework. Empirical Software Engineering, 22(3), 967–995.

Stapleton, J. (2003). Dsdm: Business focused development. Pearson Education.

Stol, K.-J., Ralph, P., & Fitzgerald, B. (2016). Grounded theory in software
engineering research: a critical review and guidelines. In 2016 ieee/acm 38th

international conference on software engineering (icse) (pp. 120–131).

Sverrisdottir, H. S., Ingason, H. T., & Jonasson, H. I. (2014). The role of the product
owner in scrum-comparison between theory and practices. Procedia-Social and

Behavioral Sciences, 119, 257–267.

Sydow, J., Lindkvist, L., & DeFillippi, R. (2004). Project-based organizations, em-

beddedness and repositories of knowledge (Vol. 25) (No. 9). SAGE publications
Sage CA: Thousand Oaks, CA.

https://sfia-online.org/en/tools-and-resources/sfia-views/devops-skills-in-sfia
https://sfia-online.org/en/tools-and-resources/sfia-views/devops-skills-in-sfia

REFERENCES 180

Talwar, V., Milojicic, D., Wu, Q., Pu, C., Yan, W., & Jung, G. (2005). Approaches
for service deployment. IEEE Internet Computing, 9(2), 70–80.

Ter Hofstede, A. H., & Verhoef, T. (1997). On the feasibility of situational method
engineering. Information Systems, 22(6-7), 401–422.

Van de Ven, A. H., Delbecq, A. L., & Koenig Jr, R. (1976). Determinants of
coordination modes within organizations. American sociological review, 322–
338.

van Slooten, K., & Brinkkemper, S. (1993). A method engineering approach to
information systems development. In Information system development process

(pp. 167–186). Elsevier.

Vlietland, J., & van Vliet, H. (2015). Towards a governance framework for chains
of scrum teams. Information and Software Technology, 57, 52–65.

Wahaballa, A., Wahballa, O., Abdellatief, M., Xiong, H., & Qin, Z. (2015). Toward
unified devops model. In 2015 6th ieee international conference on software

engineering and service science (icsess) (pp. 211–214).

Wiedemann, A., Forsgren, N., Wiesche, M., Gewald, H., & Krcmar, H. (2019).
Research for practice: the devops phenomenon. Communications of the ACM,
62(8), 44–49.

Wiedemann, A., & Schulz, T. (2017). Key capabilities of devops teams and
their influence on software process innovation: a resource-based view. In 23rd

americas conference on information systems.

Williams, C. (2007). Research methods. Journal of Business & Economics

Research (JBER), 5(3).

Willis, J. (2010). What devops means to me. Retrieved from https://blog

.chef.io/what-devops-means-to-me

Yadav, R., Mittal, M., & Jain, R. (2018). Adoption of lean principles in software
development projects. International Journal of Lean Six Sigma.

https://blog.chef.io/what-devops-means-to-me
https://blog.chef.io/what-devops-means-to-me

REFERENCES 181

Yu, X., & Petter, S. (2014). Understanding agile software development practices
using shared mental models theory. Information and software technology, 56(8),
911–921.

182

APPENDIX A. ETHICS APPROVAL 183

Appendix A

Ethics Approval

APPENDIX A. ETHICS APPROVAL 184

Appendix B

Interview Guide

Coordination of Development and Operations Activities in Agile Software
Development: Semi-Structured Interview Guide

1. Background Notes I want to ask you about your experience of agile practices
and the coordination of work between development and operations in software de-
velopment process. The research involves interviews with people doing a range of
different roles and from different companies which may have contrasting strategies.

The purpose here is to try to understand the interactions and dependencies between
development and operations activities in organizations, so that we can try to learn
for the future. This is being done as part of a PhD research in the University of
Salford. I want to ask you the following questions and tape record your answers.
Can I switch on the recorder?

2. Organisational structure and role Identification

Could you please describe your organisation and its structure?

Please describe your current role?

185

APPENDIX B. INTERVIEW GUIDE 186

What are the other roles involved in your software development process?

Please describe the position of your team in relation to other teams in your organi-
sation.

3. Development and Operations Coordination

Please describe a software development project you were involved in recently?

What was the scope of the projects (budget? Number of people? Duration?)

What was your role in the project?

Can you please describe the work flow from development to delivery of the project?

How were tasks assigned on the project?

Please describe the software development tools used for the coordination of work
on the project?

Probing Questions

Build tools

• Automated testing tools

• Automated deployment tools

Development Frameworks

Please describe the manual activities involved in the project.

Could you please describe typical causes of delay in your projects?

How were incidents and unplanned work handled during the project?

APPENDIX B. INTERVIEW GUIDE 187

How was commit organised? (How was work coordinated on the same part of
codebase?)

What challenges did you face with the coordination of work on the project?

What do you think could have improved the coordination of work on the project?

What organisational factors (such as staff skills and budget availability) affected
the coordination of work on the project?

What infrastructure issues (such as hardware, operating systems and developmen-
t/test platform availability) affected coordination of work on the project?

If you could fix one thing about your current software development process, what
would it be?

4. Software Development Process

Please describe the development process your organisation practice? Probing
Questions

• Incremental development

• Sprints/iterations

• Daily Stand-ups

• Product demonstrations

• Retrospectives

• Configuration management

• CI/CD

• Continuous Deployment

APPENDIX B. INTERVIEW GUIDE 188

5. Code Deployment

Please describe your approach to code deployment.

Please describe the software technologies you are using.

Probing Questions

• RESTful APIs (web services)

• Deployment environment (Cloud /On-prem)

• Programming languages

• Database Technologies

• Legacy systems

6. Open-Ended Question

Is there anything else you think is relevant we have missed?

Is there anything else you think we should have asked?

7. Personal Details

What is your name?

What is your job title?

How long have you been working at your current organisation?

How long have you been working in the industry?

Do you know anyone else I could talk to about this study?

Can I talk to you again in a month’s time ?

APPENDIX B. INTERVIEW GUIDE 189

8. Note The interview guide will need to be tailored to specific respondents. We
do not need to ask someone who is not a developer of the build tools used in
their projects. Instead we might want to ask about their involvement in automated
deployment. Our approach is to develop a somewhat bespoke interview guide,
depending upon the role of the interviewee.

Appendix C

Consent Form

190

Computer Science and Software Engineering

Newton Building
University of Salford

Manchester
M5 4WT

UK
Email: r.w.macarthy@edusalford.ac.uk

Participant information and consent form

Thank you for agreeing to take part in an investigation into the patterns of work coordination between
development and operations in software development projects and collaboration. This is a PhD research

being carried out in the University of Salford. This Participant Information Statement and Consent Form
explains what will happen if you choose to take part in this evaluation, so you can make an informed
choice about whether or not to take part. Participation is voluntary.

What will I be asked to do if I participate? Meetings will normally be conducted by telephone or
Skype for up to 45 minutes and by direct observation of activities if giving the opportunity.

What will happen to the information I provide? The meeting will be recorded with your consent
(audio only) and transcribed. You have the option (below) to remain anonymous or allow your name
to be associated with the data you provide. Data will be stored securely for 7 years before being
destroyed, and will only be used by the team conducting the investigation at Computer Science and
Software Engineering at University of Salford. You can request a copy of the data. Data will be analysed
and may be used in a qualitative empirical study for a PhD research. If you would like to receive a copy
of the qualitative study when it is published, please indicate this below (however, note that the research
will be made public).

What if I want to withdraw from the study? If you do consent to participate, you may withdraw at
any time by contacting Ruth Macarthy. You are free to leave the interview discussion at any time. You
may also refuse to answer any questions that you do not wish to answer during the interview.

Who is conducting the study? The study is being led by Ruth Macarthy under the Supervision of Dr.
Bass of Computer Science and Software Engineering at University of Salford.

Please indicate your consent and sign overleaf.

Please tick all, if you agree:
 I have read the Participant Information Sheet and understand the purpose of the research
 I am over 18 years of age
 I freely agree to participate in this study as described and understand that I am free to

withdraw at any time during my interaction with the study.

Please tick one:

 I consent to being referred to by name in the qualitative empirical study and any other
publications relating to the study; or

 I consent to being referred to by my place of work and title in the qualitative empirical study
and any other publications relating to the study; or

 I consent to the information I provide being used for the purposes of the aforementioned study
only if it is fully de-identified (anonymized)

Optional:

 I would like to receive a copy of the qualitative empirical study when it becomes publicly
available

Name of Participant (please print):___

Signature of Participant:___

Date:___

Declaration by Researcher:
I have given a verbal explanation of the study, its activities and risks and I believe that the participant
has understood that explanation.

Researcher Signature:

Date: __

Appendix D

Participant Information Sheet

193

Coordination Of Development And

Operations Activities In Agile Software

Development

Participant Information Sheet

August 2019

Ruth Macarthy

Computer Science and Software Engineering

Participant Information Sheet

Page 2 of 4

1. Research Project Title

Coordination Of Development And Operations Activities In Agile Software Development

2. Invitation

You are being invited to take part in this research project. Before you decide to do so, it is

important that you understand why the research is being conducted and what it will involve.

Please take the time to read the following information carefully and discuss it with others if

you wish. Ask us if there is anything not clear or if you would like more information.

3. What is the Project’s Purpose?

The purpose here is to try to understand the interactions and dependencies between

development and operations activities in organizations. We will study industry best practices

and make informed recommendations to improve work coordination patterns in the software

development process for the future. This is being done as part of a PhD research in the

University of Salford.

4. Why Have I been chosen?

You have been chosen because you are a practitioner, or aspiring practitioner, with specialist

skills and knowledge in software development and delivery activities.

5. Do I have to take part?

It is up to you to decide whether or not to take part. If you do decide to take part you will be able to

keep a copy of this information sheet and you should indicate your agreement on the consent form.

6. What will happen to me if I take part?

You will be asked to participate in an interview about your experiences in software development
processes which we estimate will take 45 minutes.

7. What do I have to do?

Please answer the questions in the interview. You will be asked to give responses based on your

experience or your impressions.

8. What are the possible disadvantages of taking part?

Participating in the research is not anticipated to cause you any disadvantages or discomfort. The

potential physical and/or psychological harm or distress will be the same as any experienced in

everyday life.

9. What are the possible benefits of taking part?

Whilst there are no immediate benefits for research participants, it is hoped that this work will have

a beneficial impact on how work is coordinated between development and operations in a software

Participant Information Sheet

Page 3 of 4

development project. Results will be shared with those participants who request it on the consent

form, in order to inform your professional work.

10. Will my taking part in this project be kept confidential?

You will have the choice for your responses to be kept confidential, depending on the permission you

grant on the consent form.

I. You can be referred to by name in the qualitative empirical study and any other publications
relating to the study if you consent to; or

II. You can be referred to by your place of work and title in the qualitative empirical study and
any other publications relating to the study if you consent to; or

III. The information you provide for the purposes of the aforementioned study will be fully de-
identified (anonymized), if you wish.

11. Will I be recorded, and how will the recorded media be used?

Interview participants will be audio recorded during the interview. The audio recording will be

transcribed verbatim into a script describing your words. Audio recordings and transcripts will be kept

on password protected University of Salford servers These words will be analysed and maybe quoted

in reports and publications. The quotes will be kept anonymous or attributed to you or your affiliation

depending on the permission you grant on the consent form.

12. What type of information will be sought from me and why is the

collection of this information relevant for achieving the research project’s

objectives?

The questions will be about your opinions and current practices in relation to software development

activities. Your views and experience are just what the project is interested in exploring.

13. What will happen to the results of the research project?

Results of the research will be published. You will not be identified in any report or publication, unless

you have given us permission to do so on the consent form. Your institution will not be identified in

any report or publication, unless you have given us permission to do so on the consent form. If you

wish to be given a copy of any reports resulting from the research, please ask us to put you on our

circulation list.

14. Who is organising and funding the research?

This research is being conducted by Ruth W. Macarthy as a PhD study in the University of

Salford, with funding from Petroleum Technology Development Fund (PTDF).

15. Who has ethically reviewed the research?

The research has been reviewed and approved by the University of Salford Ethics committee

with reference number STR1819-51.

16. Contacts for further information

Participant Information Sheet

Page 4 of 4

Ruth Wakeni Macarthy
Computer Science and Software Engineering
Room 150, University of Salford

 Newton Building
 The Crescent

Manchester, M5 4WT

Mobile: +44 (0) 7521621425

email: r.w.macarthy@edu.salford.ac.uk

Dr Julian M. Bass CEng FBCS CITP SFHEA
Computer Science and Software Engineering
Room 218, University of Salford

 Newton Building
 The Crescent

Manchester, M5 4WT

Telephone (external) +44 (0) 161 295 2883

Telephone (internal) ext. 52883

email: j.bass@salford.ac.uk

 Prof Sheila Pankhurst
 Dean
 School of Environment and Life Sciences
 G41, University of Salford
 Peel Building
 The Crescent

Manchester, M5 4WT

Telephone (external) +44 (0)161 29 55171

Telephone (internal) ext. 55171

email: s.pankhurst@salford.ac.uk

Appendix E

Interview Transcript Sample

File: INT 3.MP3

Duration: 41:41

Date: 29/09/2019

Typist: Interviewer

Interviewer: So, I have the recorder on.

DvOps1: ok

Interviewer: Thank you for agreeing to participate in the study.

DvOps1: No problem

Interviewer: I would like to understand what your organisation does and how it
is structured. Could you describe your organisational structure and what your
organisation does?

DvOps1: OK, so, I currently work at ING. Probably familiar. It’s a big bank in

198

APPENDIX E. INTERVIEW TRANSCRIPT SAMPLE 199

Netherland but they also have different departments and also departments through
out the world. Em. . . they work, like the spotify model as we say it. So it’s
potentially tribes and all these emm. . . teams. So it’s. . . I’m part of the cloud team,
and this basically is a new team which was launched a couple of months ago. And
the goal of the team is to investigate the movement to the public cloud. As you
might be aware.. em. . . banks have regulators and regulators can be nasty. . . And
so whenever you host client data or whatever kind of data which is confidential. . .
em. . . . Regulators would tend to see that you .. come to the encryption and all
these parts. And the public cloud is perceived as not safe in this case. So we’re
trying to see which movement and tools we need to use in order to be able to use
the public cloud. Em. . . and what we’ve actually done is eh.. say ok, why don’t
we don’t we just say the public cloud is safe and and just deploy our services and
see what the regulators have to say. So we’re gonna turn it around and we’re just
gonna create this whole infrastructure environment into the public cloud and then
see which applications with different security levels we can host on this public
cloud environment. And this is will actually allow us to do faster development,
em.. you know create new apps. Be able to launch them faster because, eventually,
we do everything in codes, that’s our goal. And without creating the infrastructure
on-premises. So this is the goal of the team at this point. Is that clear?

Interviewer: Yes, it is. Thank you.

DvOps1: Ok

Interviewer: And um, can you describe how your team relates with other teams?
Like what is the relationship between your team and all the other teams in your
organisation?

DvOps1: Ok, this is also interesting because ING has a lot of teams .. a couple
of hundreds and so it’s achieved as em. . . I cannot say it’s hard, but we need to
make ING aware of the fact that we are creating this public cloud. And we kind of
have to just lobby people that we have. They go out to different teams and different
managers and tell them, hey listen. You know we have this cool thing. We work
with Kubernetes. We would like your team to be part of it. So it’s kind of con. . .

APPENDIX E. INTERVIEW TRANSCRIPT SAMPLE 200

we have these consultants within our team, that are part of our team, and they reach
out to other team managers and ask them if they are willing to participate into this
new public cloud . . . xx that we’re actually creating and trying to on-board them. So
what we do is to give them the right tools, we have this development environment
and tell them, ok, let’s see if you can use this pipeline, DevOps pipeline as we call
it in Azure and see if we can on-board your team into a containerized platform. So
basically, I think it’s kind of a lobby that we’re doing at the moment.

Interviewer: Ok, and these other teams, are they development teams?

DvOps1: Yes, they’re purely development teams. They create APIs, beacon APIs
or a full term applications or just parts of websites. It’s kind of different teams who
do software development.

Interviewer: Oh, ok. And what is your role on this team?

DvOps1: So, em.. my role on this team is, I am em. . . as a consultant responsible
for the automation and creation of the infrastructure part. So if you look at the
lowest level where you have network and security, as x.. tools like application
gateway, firewalls but also Kubernetes, as a cluster. I’m sure you’re aware of
Kubernetes and Docker containers?

Interviewer: Yes

DvOps1: Em.. so, this whole infrastructure stack we create by using terraform
xx in which we can use and deploy infrastructure as code. So, I create all the
terraform scripting and modules and I glue everything together. And we also build
pre-fab pipelines for our customers so, the pipeline yamls and everything. So, all
we want to do, all we want the teams to do actually, write their codes and put
it in a repository, hook up our pipeline yaml and then the application should be
container-aware of course, and then it should flow into our platform. So, this is
everything I’ve built together with 4 other people.

Interviewer: Wow, interesting. Em. . . how many people are on that team?

APPENDIX E. INTERVIEW TRANSCRIPT SAMPLE 201

DvOps1: If you’re talking about my team? I think we’re 5. 5 People. I think
5 technical people and the of course your managers and other guys more into
management. But in technical, I say em.. 5 techies. . . 5.

Interviewer: OK, so what are the roles of these other persons in the group?

DvOps1: Em. . . it’s combined. So basically because I’m external, so eventually, I
will go. So we do a lot of knowledge transfer but all 5 do the same. Of course we
have different tasks throughout the sprint that we have. So I’m more specialised in
terraform with other guys who work more on the pipeline stuff or we also use helm
for instance for helm charge. Em, so we divide the work a little bit but it should
be rotating. Everybody should understand and know what the other person does
eventually. So it’s.. so yeah we can exchange.

Interviewer: Ok, so are all these team members DevOps engineers or they are
developers?

DvOps1: No we don’t actually have developers in our team. So in our case. . .
it’s just DevOps. I. . . I’m not sure if I like the word DevOps but of course, it’s
the trend as we say now but us five people are responsible for creating this cloud,
public cloud solution. That’s how I wanna say it. And we’re trying to on-board
the software development teams, all these different teams who are actually writing
the codes, to be able to support them and host their applications on our platform.
So we’re the platform builders. X.. the cloud builders. Maybe that’s a better
eh. . . because of . . . eventually I do develop for myself as well, so I know how
the development process works and how you then .. (breaks.. phone rings). . . so
eventually, I understand the development process but in this case, we are just on
the infrastructure part and a little bit on the development part, it’s the pipeline part
that we create. . . yes.

Interviewer: Interesting. With regards to your interaction with Developers, have
you concluded any projects?

DvOps1: Eh. . . we’re actually busy with two development team, we’re on-

APPENDIX E. INTERVIEW TRANSCRIPT SAMPLE 202

boarding. . .

Interviewer: Ok

DvOps1: Eh. . . but what we try to do is, we try to give them the right tools. So that
basically means that we define the pipeline . . . we were talking about pipelines.
And the only thing that we actually want them to do is write the code and we
should know how to start your application. And they create the docker file which
comes with it. And we try.. from there we try to pick up the rest. So we try to
create the image automatically through DevOps xxx or the pipeline, we then host
it in our container registry. We then create the specific yamls to be able to install
and run this applications on Kubernetes and we also try to create the .. roles or the
virtual services used ..xx..xx..xx to be able to route the application. And we do this
by using helm. Eh. . . Helm is eh. . . helm charting. So we try to let them fill the
correct values, because helm uses values . . . files. . . Em, by explaining to the how
it works and trying to fit their application into this helm chart, we were then able
to actually deploy any application that we want. So this is the way that we try to
achieve it, yes.

Interviewer: Ok. If you don’t mind, I think I’ll understand it better if you explain
this using a project. So if you just take a project and explain from it’s inception to
when it’s live on the cloud environment.

DvOps1: So we recently took the list ad, it’s kind of a static page or a static website
with some information. And so we joined with the team and we told them how
we’re actually working. And together with them, we tried to, we need to adjust
the application because it was not container-aware. So, together with them, we
altered the code a little bit so it was container-ready. And the we also tried to fill
the application and the value file for them. And then basically, when that was done,
we created a pipeline in DevOps and then we just deployed the application so in...
yeah, those were the steps that we took in this case.

Interviewer: Ok, so you deployed the application, or the development team de-
ployed it?

APPENDIX E. INTERVIEW TRANSCRIPT SAMPLE 203

DvOps1: Eventually, in the first time, we did it ourselves, but when the development
pipeline is ready, they don’t need us anymore. Because then, they’ll be able to
change the value cells themselves and based on the values, they would get different
output but the whole development pipeline will be fixed and static. And they don’t
need to change it anymore, they don’t need us anymore.

Interviewer: Ok

DvOps1: Yeah Interviewer: So, when you’re done, your business with them is
ended?

DvOps1: Yes. In. . . in. . . in some way, yes. Of course, because it’s all new
technology, a lot of developers are not aware or not familiar with the way it works.
So what I see happening is when you’re trying to automate all these processes for
them, or actually say to them.. hey, listen. You don’t need to be aware of where
your application is running. All you have to do is fill this file and make sure your
application is docker-aware. We would do the rest. And it seems that in some
cases, they find this a little tricky because they’re actually out of control where a
lot of developers. . . they tend.. you know in the past they would ask for a virtual
machine with 10Gb of memory, I want 3 CPUs and I need 200Gb of disk space
and . . . to rollxxxx. So what we’re trying to do with this, we’re trying to take this
part away and say, listen, you’re a software developer, you write codes, we do the
rest. And of course there’s the gray area where you need to teach them how the
transition form codes to infrastructure works. I can see that whenever it’s clear,
they would eventually see that ok, we don’t have to mind, you know. It’s done
automatically for us. Which is pretty convenient because, we like to write code.
That’s what they do. And I think they should not be aware of the fact of how it
work or where it runs or how many memory it needs. Of course it important that
they write their code as optimal as possible, but I don’t think they should be. . .
they should be asking for virtual machines or resources. I think that’s part of the
DevOps team in this case, because we should understand developers a little bit and
everything that comes under it in operations. So, eh.. yes. . . it’s emm. . . a learning
curve they have to go through and they need to let go. Because they still ask for,

APPENDIX E. INTERVIEW TRANSCRIPT SAMPLE 204

can I get access to this cluster, can I. . . basically, that’s what we want to get rid of.
They shouldn’t have access anymore because they don’t need it.

Interviewer: So if the developers are done with one project and need to proceed to
another, what happens?

DvOps1: Umm. . . eh. . . of course it is out of our line-sight so, this basically
means it happens outside of our. . . our. . . spectrum, but I mean, they can just start
a new project and basically, we have them um. . . demo repository, which they
can pull, and then just inject their code, write the value for it and directly deploy.
Because what we do is. . . depending on the team they are part of, they have access
to a certain name-space in our Kubernetes cluster. So if they start a new project,
they use the demo repo, they write their code and the basically fill the yaml file,
the values file. And then they just use the same pipeline, only.. of course, with
a different repository and the application will be deployed in the same cluster, in
their own namespace.

Interviewer: Oh, ok. So who manages the application when the code is deployed.

DvOps1: Ok, good question. So what we have is.. we haven’t . . . we try to
facilitate them with an . . . xxx. . . so this is basically a second Kubernetes cluster,
which er. . . on all the working clusters, we have fluent-bit daemons running as a
daemon set. And we have Prometheus scrapers. So what we do, we try to collect
all metrics and all .xx.. where we have..x.. Kibana and . . . xx.. where we have
Prometheus extra, we have Kiali for meshing tracking and we’re trying, we’re
still developing this, so bear with me, because we’re also still in this research
phase, but we try to facilitate the with low output so they read all these loggings
that the application produces, it might be errors or whatever, but also the metrics
that they expose, they just expose the metrics endpoints and we have Prometheus
scrapers which scrapes all their metrics and they should be able to create their own
application dashboard. And so this is basically how we then try to visualize and
monitor their application.

Interviewer: OK, would you know the processes for the deployment of the applica-

APPENDIX E. INTERVIEW TRANSCRIPT SAMPLE 205

tions. Because you’re basically involved in the infrastructure part.

DvOps1: So, in azure, we have what is called DevOps, and Devops allows you to
create pipelines. And I can just see if I can open one of the pipelines here locally.
So basically, we pull in their code, because it’s all git or in the case, repo-based.

Interviewer: Ok

DvOps1: I’m just gonna open the repo here, let me see, my demo repo. So we have
this pipeline, So I’m just gonna open the pipeline as we have it now. So, we have
our own azure container registry, as in a repository outside the cluster. So what we
basically do is, we fetch the log in, . . . in the azure container registry. Then we
have some xx. . . scripting which is just a docker building. The docker tagging and
a docker pushing. Based on that. . . er. . . we run the helm installer, em. . . like I
said we use helm charts. Which is a description of the application, how it’s run,
what variables and how it’s started so we actually inject that within helm install or
actually in this case, we template them first. And then, what we do afterward is
we copy the artefacts so we can use them in a later state as well. We publish the
artefacts, and eh. . . because these templates are generated as yaml files, we can
then connect to Kubernetes to the cube API and deploy the yaml files so there’s
a deployment. Kubernetes deployment, Kubernetes services, they’re all part of
the output of the template and they’re just deployed to our cluster. So these are
actually the steps we take.

Interviewer: Um..hm. . .

DvOps1: Is that clear?

Interviewer: Yes, it’s clear but I’m just wondering what the developer has to do
when they’ll need to release a new feature or something..

DvOps1: Yeah. . . so basically, it’s hooked up to a commit. So, the DevOps
pipeline is as a hook. So whenever you commit to master in your git repository,
this hook is automated and initialised so basically, the pipeline starts running. So it

APPENDIX E. INTERVIEW TRANSCRIPT SAMPLE 206

will pull .. in the latest code, compile it, test it, create docker image. Push it to the
ACR, helm template, output yaml file and deploy the new deployment referring to
the latest image of the docker repository. That’s how it works.

Interviewer: Oh, ok

DvOps1: Yeah

Interviewer: And eh. . . are there any manual processes involved in this project?

DvOps1: No, eh. . . in this particular process, no. There is no manual intervention.
There is only one manual intervention at this moment and it’s the creation of the
service connection as they call it. So it’s a bit technical story, but umm. . . whenever
a new team on-boards, they would need their service account credentials to be
hooked into this service connection. So the Azure DevOps pipeline is able to
connect to our Kubernetes cluster. So this is a one-time manual process at the
moment but we’re trying to automate this as well.

Interviewer: Ok

DvOps1: Yeah

Interviewer: And do you have manual testing done?

DvOps1: Emm. . . no. The truth. . . not be the case eh. . . we encourage.. eh
actually. . . I think all developers should write their tests in an automated way.
So this can be part of the Devops pipeline. So whenever you build a software, if
it compiled or not, depending on what kind of code they write, they also should
compile their test with it and also should run their tests. And if the test fails, the
pipeline fails then they’re owner of the pipeline so they can see what fails.

Interviewer: Ok, so basically, you do not have anyone monitoring the quality of
the software being developed by specific groups of developers?

DvOps1: Oh we have different tooling for that. So we have coding tools which

APPENDIX E. INTERVIEW TRANSCRIPT SAMPLE 207

analyse codes for repetition. . . I know. . . I’m not really into that part but I know
there’s automated code testing

Interviewer: Ok

DvOps1: And ..but..we can make that part of this pipeline as well, so if there’s an
endpoint or whatever, we can just ask you if this code is any tech debt or whatever,
what’s the code’s standard or the coding em.. emm.. I cannot find the word for
it. . . but there’s eh.. the code coverage. So, there are these tools, we have eh..what’s
it called? Phonics. . . you have a name. . . which you can read or test your code
coverage and stuff. So there’s external tooling which you can use to eh. . . and
integrate into your pipeline. We don’t have that at the moment. But we sure could
do that. There’s no problem.

Interviewer: UM. . . Ok. Could you describe any typical delays you have in your
projects?

DvOps1: Delays that we have. . . ok yes. . . so yes we have some tech debt when it
comes to terraform. There’s been a major upgrade. . . so we need to upgrade all our
terraform scripting to meet the new version. 0.12 actually. It’s been out for a little
while now but um. . . umm.. we’re finally making the transition to the new version,
um. . . also we did a lot of testing on a different Kubernetes version. We still have a
service mesh which we need to test in the proper way. We’re now currently using
Istio but there’s a lot of other solutions as well like Linkerd but also .. is creating a
new service mesh as well, which is very good. So we’re still debating on what the
best solution is for our service mesh. So in this case, we do have some delays on
that part. Because it’s you know this movement is just going so fast, these tools
exploding but sometimes you just have to make a choice and say, ok we’re gonna
use this product the upcoming year and we can see afterwards, yes.

Interviewer: Ok. So what would you say is the major difference between your
team and all the other software development teams in your organisation.

DvOps1: Emm. . . Well, I mean the difference between the software development

APPENDIX E. INTERVIEW TRANSCRIPT SAMPLE 208

team and er. . . If you’re referring to the teams within Ing, I guess?

Interviewer: Yeah

DvOps1: It’s that we have the luxury of being greenfield so, we could actually
start from scratch, which is also very nice. And we also have er. . . have I guess the
luck that we’re not bound to the ING network, because we’re working in the cloud.
So that basically gives us a lot of freedom, so we’re not tied to rules as much as
some other software development teams are at the moment. So I guess that’s a big
difference for us. Which allows us to you know, think more out of the box. And we
have more freedom. ING also has a private cloud for instance. You can see that’s a
lot more harder, the have a lot more rules. . . and certain..xx. . . to be aware of. So
I guess, that might be the biggest difference at the moment, that we’re running as
public cloud.

Interviewer: So how do you integrate with legacy systems?

DvOps1: So. . . there’s a migration path and basically, this comes down to the
development team. Emm. . . so if the development team is willing to host their
application, which was a legacy application and wants to host it on the cloud, they
would have to do the work. So, we are not responsible for that. So we write the
tools and help them to migrate. But if there’s legacy emm.. for instance xxxx
which is bound to libraries that we cannot offer, eh. . . then they’re responsible and
is also probably the pressure of the bank that would come in play as well. So if
this application really needs to move forward, then they will have to free up the
developers to, you know, to re-write codes or make sure the code is container-aware.
So we are not integrated into that part of the process.

Interviewer: I know there are Devops teams with mixed responsibilities, and some
others that try to bridge the gap between development and operations. But I feel
your responsibilities is more like automated Ops. What do you think about that?

DvOps1: Yes, I guess, in some ways, it is. I think that a.. a. . . good view of what
we’re doing actually. So of course, we develop in our operation environment, so

APPENDIX E. INTERVIEW TRANSCRIPT SAMPLE 209

we do develop the whole infrastructure part with the AKS cluster automated but
eventually, yes it’s all automated so, we tend to.. because we either own ..xx. . . xxx..
so, this pipeline I described to you, which we take the code and we deploy it on
our system, we use the same pipeline, only different steps to deploy our own
infrastructure. So our whole infrastructure code is injected into our pipeline as well.
So we can just run the pipeline, and say create new infrastructure and it would
create the whole infrastructure with the application . . . with the AKS cluster or
Kubernetes cluster and everything that comes with it, with all the observabilities
of. . . with one push of a button in this case, the Azure development of DevOps
pipeline.

Interviewer: Yeah. So as you provision an automated infrastructure, for a particular
group, you really have nothing else to do with the group?

DvOps1: No..no. . . not in a way. Not in that way. Of course we try. . . in the
beginning, we try to onboard them and that basically means we also need to
look into their code, to help them but our responsibility does stop there. We not
responsible for providing nice-written and optimised codes.

Interviewer: If they’re to back up their codes, how does that work?

DvOps1: As in backups? What do you mean by that?

Interviewer: Like general backups, like the backups done for data centres.

DvOps1: Oh, sorry, back ups. Yeah. Um. . . so what we try and achieve is first,
we try to achieve the migration of stateless applications. This is or primary goal.
So we are trying to onboard teams which has as less state as possible. And if
there is state in some way, we do have a challenge. But what we try to do is if ti’s
database related, we try to use the azure provided databases, relational databases
for instance or whatever suits them best and we try to do as many manage service
as possible. Now this is where the trick comes, because if you take the regulators
and you have hosted data in the cloud. . . which kind of data is this? Is this no. is
this safe?... then you would just save this data? Of course the managed service also

APPENDIX E. INTERVIEW TRANSCRIPT SAMPLE 210

provides backup facilities, which we can then again automate with terraform. This
is definitely a must for us. . . that it should be managed in an automated way. Em..
we do still have the option of provisioning physical volumes. Kubernetes has the
option of doing physical volume claims to a cloud provider. And in this way, we
can based on the application, we could provision 2 disks and one backup disk in
one location and the other one in the other so, we can, you know synchronise data
in some way. But. . . I must say it’s still then a good communication between our
team and er.. the development team. So they need to make clear what their wish
are in this case, or if they wish to store data, what kind of data is it? How much
is it and eh. . . and we can provide them with a suitable solution, either through a
shared storage or a physical volume claim or something else. But for this moment,
now that we’re in the transition of actually onboarding teams, it’s stateless first.

Interviewer: Ok, interesting. What would you say are the challenges you faced
during this process?

DvOps1: Emm.. well, I think when you trying to build something from scratch,
you don’t have all the boundaries set yet, so it’s what happens is, also with all
these new tooling coming and. . . new versions, and em. . . maybe we run into some
.xx.. for instance, you. . . especially when stuff is new, you need to find out. . . xx..
because not everything is documented, and you cannot read everything. So I guess,
the best thing, the challenge is to set up an environment which is suitable for the
whole company and this is actually pretty hard because there’s different teams
with different wishes, and you soon realise that the environment you created is not
suitable enough or its too small or its, we’re missing this or we’re missing internal
DNS or we should em. . . or virtual xxx service should work in a different. So, it’s
kind of ummm. . . trial and error in some ways. Whereas the basis is fine but once
you try to extend you need to be aware of always looking to the core again. Does it
not break the core or whatever? So we need to redeploy cluster sometimes a couple
of times because we need to make additional changes so low in the code that it
basically means we need to redeploy the infrastructure. And that basically means
you also need to redeploy the application you are running on it. So yeah, We had
this challenge a couple of times. But I think, by recreating everything through

APPENDIX E. INTERVIEW TRANSCRIPT SAMPLE 211

pipelines, and making your code redeployable, you keep on testing this process
over and over again. So eventually, you should not be afraid of destroying stuff
because you know for a fact that you can recreate it.

Interviewer: Have you had any challenges with the other teams?

DvOps1: Em. . . yes. So this especially has to do with the fact . . . like I explained
that sometimes, they’re used to having a lot of access and we need to try to tell
them that you know, in this environment, it’s just not gonna happen. So they should
be aware of the fact that we’re taking away a lot of their access that they used to
have. But in return, providing them with tools, which allows them to easily deploy
on infrastructure. So, I think that’s also a problem that we need to raise them again,
or teach them, or make them aware. . . .there is benefit for the bank, so not for the
person but for the whole company and this is also a mindset that whenever you’re
working in a company, you’re part of the team. Of course you’re working there
for yourself or for your own development. But you should keep an eye on the
company’s perspectives not because you’re doing this for the company, you know,
and by doing this kind of tooling and using it and give them the tools that they
need, it’s actually easier for them to deploy. So sometimes we, it’s hard to explain
and make them aware of the fact that we’re not doing this to tease them, but we’re
doing this to make life easy for them. So I think that’s also a big challenge that
we’re facing at the monent with the teams. And also we have teams who are just not
ready to be containerised, so they’re still in eh, mmore monolithic application and
em.. many you’ld like to. . . legacy, and they’re just now making the step towards
containerization and you actually need to help these people also. . . how the process
works..explain to them that we have all kinds of security rules.. this. . . ports of
security.. how this pipeline works. I also feel that ther’s a knowledge gap as well,
sometimes.

Interviewer: Ok, em. . . in the event that you’re able to onboard all the teams in
ING, what would be the responsibility of your team after that?

DvOps1: Emm. I think my responsibility is to lock the door and go away. Eventu-
ally, emm. . . I think whenever this infrastructure is suitable for production, and

APPENDIX E. INTERVIEW TRANSCRIPT SAMPLE 212

we can run ING applications and there’s connectivity and all these stuff, I guess
my work will be done.. emm. . . I think there’s still . . . of looking of see if there
will be a management team, who’ll actually gonna manage these clusters, and the
. . . that we’re actually written so far. I’m not sure we will be responsible in the
future for the actual production environment so we. . . I’m not sure. . . they’re still
debating in ING as well what the best approach would be. But..I don’t think there’s
an easy answer to that. In some way, it would make sense for us to be responsible,
but in other ways, it’s also. . . we have teams who are standby and all these stuff..
so, um.. I think they’re still debating on that part.

Interviewer: And for the on-prem systems, do you have system admins?

DvOps1: Yes, yes we have different infrastructure teams, actually. So we’re the
first public cloud team but there’s a lot of infrastructure teams in ING as well, who
work on the. . . the private cloud and they have legacy systems within the ING. So
yes. . . w there’s a lot of overlap actually. So there’s a lot of skill sets available in
Finco1 but within different teams. Em.. so there’s actually. . . that would be an
interesting development because eventually, if the public cloud is allowed, there
would be a movement from internal to the cloud and I’m pretty sure that em.. some
people, some roles will disappear but teams would grow, especially the teams that
we’re working at the moment so, I do see a shift at some point. And this is has to
do with the fact that we need connectivity to the inside ING network. It’s a very
long process especially with security. But once we have that solidated and we are
allowed to do a lot of stuff and we’re fine, then yeah, we’ll probably see a move.
Yes. But eh. . . I’m. . . I might not be part of that because eventually I’m still into
consulting so I work externally but do see a bigger demand or move into the public
cloud because of the tooling.. because of the speed of the development. Probably
within one or two years, there would a lot different within ING.

Interviewer: If there’s something you can change, what would that be?

DvOps1: Well, that’s a good question. Well, em. . . the thing is I don’t think at this
moment there is anything to change because we have a greenfield situation and
that basically means that we set up the team and the environment as we want it. In

APPENDIX E. INTERVIEW TRANSCRIPT SAMPLE 213

our case, our team is pretty new. It’s been 5 or 6 months now, so we’re actually
able to do all the stuff that we like. So, it would be actually funny if I say to you, I
don’t like this because it would mean that I didn’t do my homework or didn’t do it
in a proper way.

Interviewer: How do you think developer perceive your team?

DvOps1: Emm.. I think they find it interesting because, you know what the funny
part is. . . when we created this environment, we spoke with the whole team and
management and I told them the first thing we have to do is onboard teams who are
looking forward, who want to make move, who want to be on the cloud, because
those are usually the people who have their applications ready for the cloud. They
want to have their application ready for the cloud to the time to market, the time to
deploy is rather fast because they want to. But if you have teams that are more in
the legacy environment, it would be a big chunk of work and it would be annoying
and would be you know, a lot of time or you know how all these things go, so
It’s very important to select the teams that are most willing, because they will
actually help you in succeeding. So this is a very important part to me. To select
the correct teams. So then, basically they’re willing to join you and participate in
this movement to the cloud.

Interviewer: Is there anything you think I have missed?

DvOps1: I don’t think so. . . not that I can think of at the moment. I’ve ex-
plained how the process. There’s also the fact that we have teams which are
their. . . .stationed in. . . for instance. . . now that’s like 200km, so there’s also this
communication part sometimes, we do a lot through slack. Em. . . it’s sometimes. . .
it’s most convenient or most ..if they’re just sitting next to you. I experienced that
could be particularly handy. And of course, there’s good video connections and
stuff. . . but I think the biggest ..x..is participating with the people. So, knowing
who you’re talking to, participating with them, and sitting together, looking at the
application, try to help them. And when doing this, you, of course it takes time,
you end up..the cooperation of the team, but eventually, you get the best result, I
think. I think that’s pretty clear to me as well. Whenever you sit together, you

APPENDIX E. INTERVIEW TRANSCRIPT SAMPLE 214

achieve the most. Let’s put it that way. But also, understaning towards each other,
to the teams, and the team also to the developers team, ops team, in this case, and
so I think em.. I think that’s something to point out in my experience. You need to
sit together, that works. But other than that, I don’t have much to add, I guess.

Interviewer: Is there anything else you would like to add? DvOps1: Not that I can
think of. Interviewer: Would you mind If I come back to you with question later,
maybe if I find I need to get clarification..

DvOps1: Sure. No problem, no problem..

Interviewer: ..in a few weeks or something

DvOps1: No problem, no problem..

Interviewer: Alright. And is there anyone else I can talk with about the study in
your organisation, say a developer?

DvOps1: Em. . . I can certainly ask. The thing is that. . . because I am on the. . . on
the pure infrastructure part of this process. . . . Other team members do, emm. . . .
The development part. So, I’m not actually .. familiar on a good level with the
developers but I can certainly ask.

Interviewer: Ok

DvOps1: And say I’ve done this interview.. about how DevOps team interact. . .
is somebody willing to do a small interview? I can certainly ask. Interviewer:
That would be great, thank you. Would you mind stating your name, where you
work and how long you’ve been there? DvOps1: My name is DvOps1 XX, I am a
DevOps Engineer, currently working at ING for the 5 months and I’ve been doing
well IT well of course because we always change this naming convention from
Ops to Unix to system admin to DevOps engineer. But I’ve been working in the IT
industry professionally since I was 21 and I’m now 39 so that’s 18 years.

Interviewer: Wow, this has been interesting. DvOps1: Thank you. Interviewer: I

APPENDIX E. INTERVIEW TRANSCRIPT SAMPLE 215

will switch off the recording now DvOps1: Ok

Appendix F

Participants’ Description

F.1 Phase 1 participants

DvOps1

DvOps1 is a DevOps engineer with Finco1. DvOps1 has over 18 years’ experience
in software development and had been practicing DevOps for over 4 years. The
participant has vast experience in Unix and Linux and has worked both as an engi-
neer (maintaining enterprise Unix and Linux systems), and a consultant for both
systems. DvOps1 is also a seasoned system architect. DvOps1 is an automation
expert and has consulted with organisations looking to implement technologies
like Kubernetes, AWS, Prometheus etc.

DvOps2

DvOps2 is a DevOps engineer with Finco2. DvOps2 has worked in the financial
industry for over 12, as an IT operation expert. The participant is an agile leader in
the organisation and a highly skilled Linux system administrator. DvOp2 has expert
level experience and is certified in technologies like terraform, containerisation,
object-oriented programming, and Kubernetes implementation. DvOps2 has a

216

APPENDIX F. PARTICIPANTS’ DESCRIPTION 217

strong development background and has worked as a web developer and software
engineer, before transitioning to IT operations and DevOps.

DvOps3

DvOps3 is a DevOps engineer with Finco1. DvOps3 has been in the software
development industry for over 20 years. The participant is an AIX expert and highly
skilled system administrator. DvOps3 has expert level experience in virtualization
and storage area network and has been a Unix consultant.

DvOps4

DvOps4 is a Senior DevOps engineer with Finco3. DvOps4 has worked 7 years in
the software development industry, 3 of which has been spent actively in DevOps-
inclined activities. DvOps4 led the DevOps movement in the organisation and
spearheaded the implementation of technologies Kubernetes, Terraform and AWS.
DvOps4 has a background in web development.

DvOps5

DvOps5 is a Network DevOps engineer with Finco6. DvOps5 is an expert level
practitioner in the software development industry, with over thirty-one (31) years’
experience. DvOps5 has over twenty (20) years’ experience working as a network
data and security architect. The participant is an expert in private/public cloud
technologies, as well as in network segmentation architectures. DvOps5 is a
DevSecOps advocate and a DevOps professional.

DvOps6

DvOps6 is a DevOps engineer with ITCo1. DvOps6 has been in the software
development industry for about 9 years, more than 6 of which has been spent in
cloud infrastructure architecture and IT operations. DvOps6 is an AWS associate
and serving at the technical team lead for the organisation, at the time of the
interview. DvOps6 has a background in software development and is a certified

APPENDIX F. PARTICIPANTS’ DESCRIPTION 218

project manager.

Dvr1

Dvr1 is a software developer with FinCo4. Dvr1 is an expert agile project manager,
working in the financial industry for about 7 years (3 of which is in a DevOps-aware
environment). Prior to this, Drv1 has worked as an enterprise software developer
and an embedded systems consultant. Dvr1 is highly skilled in Oracle DB and
serves as scrum master for his team.

Dvr2

Dvr2 is a software engineer and a full stack web developer with FinCo5. Dvr1
has been in the software development industry for about 3 years, all of which
involved DevOps practices. The participant is familiar with the implementation of
continuous integration and continuous delivery pipelines and participated in the
delivery of an integrated software development platform in his organisation.

Dvr3

Dvr3 is a software developer at RegCo1. Dvr3 has over 15 years’ experience of
working in the software development industry and has spent 2 years in a DevOps-
aware environment. The participant has a background in IT infrastructure mainte-
nance and administration. Dvr3 is highly skilled in network administration and is
an expert in cloud computing.

F.2 Phase 2 participants

DevCo1 CTO

DevCo1 CTO is the Chief Technology Officer of DevCo1, a software development
organisation. DevCo1 CTO is a forefront DevOps thought leader. The participant

APPENDIX F. PARTICIPANTS’ DESCRIPTION 219

has spent over 31 years in the industry, 9 of which is in DevOps. DevCo1 CTO
is an expert level professional in Devops and cloud adoption and was actively
involved in the transition to DevOps in his organisation. The participant has also
consulted for other organisations on DevOps.

FinCo7 Lead

FinCo7 Lead is a senior DevOps Engineer in FinCo7. FinCo7 Lead has practiced
in the software development industry for over 13 years, 8 of which has been in
DevOps. FinCo7 Lead the lead architectural decision maker and directly engi-
neered the design and building of a platform to support over 500 developers in the
organisation. The participant has a background in system architecture and has led
several DevOps initiatives.

MultCo1 DOps

MultCo1 DOps is the Engineering Manager in MultCo1. The participant has
spent 12 years working in software development industry. MultCo1 DOps has
been directly involved in DevOps implementation and practices for last 5 years.
MultCo1 DOps is an expert in cloud engineering and Linux system administration.
The participant has a background in IT infrastructure engineering and management

DevCo2 MD

DevCo2 MD is the Principal DevOps Consultant for DevCo2. DevCo2 MD is
an IT professional with over 32 (thirty-two) years in the industry, and 9 years
as a DevOps and continuous delivery consultant. DevCo2 MD has worked in
several organisations as head of software development, chief software architect,
and occupied other software development leadership positions. DevCo2 MD is a
well-known author in the field.

DevCo3 Lead

DevCo3 Lead is the Principal Architect for DevCo3. The participant is a highly

APPENDIX F. PARTICIPANTS’ DESCRIPTION 220

experienced senior technical manager and an expert in the delivery of automa-
tion solutions. DevCo3 Lead has spent over 17 (seventeen) years in the software
development industry. DevCo3 Lead is responsible for the development, imple-
mentation of DevOps practices and cloud management platform in the organisation.
DevCo3 Lead has also led DevOps adoptions in some other organisations.

DevCo4 CEO

DevCo4 CEO is the Principal Consultant for DevOps implementation in DevCo4.
The participant has about 33 (thirty-three) years’ experience in the software de-
velopment industry, 11 (eleven) of which they have been involved in DevOps
implementation and practices. DevCo4 CEO is a well-known author in DevOps,
SRE, QA, and DevSecOps, and an expert in continuous integration and continuous
delivery.

DevCo5 Lead

DevCo5 Lead is the lead DevOps engineer for DevCo5. DevCo5 Lead has spent
over 20 (twenty) years in the software development industry, 9 of which is in the
implementation of DevOps practices. DevCo5 Lead is an expert in site reliability
engineering has experience across system administration and enterprise service
management. The participant is also experienced in network and cloud engineering.

FinCo8 TM

FinCo8 TM is the Technical Manager for FinCo8. The participant has about 29
(twenty-nine) years’ experience in the software development industry, and has
been directly involved in DevOps implementation and practices for the last 9
years. FinCo8 TM is highly skilled across SD core areas such security, telephony,
client/server, and database administration.

FinCo9 Lead

FinCo9 Lead is the Global DevOps Lead for FinCo9. FinCo9 Lead has 17 (seven-

APPENDIX F. PARTICIPANTS’ DESCRIPTION 221

teen) years’ of software industry experience in delivery, consulting and manage-
ment of IT products and services, 8 of which FinCo9 Lead worked as a software
engineer and DevOps expert. The participant serves is responsible for the imple-
mentation of DevOps as well as continuous integration and continuous delivery
(CI/CD) in the organisation.

DevCo6 DOps

DevCo6 DOps is a Senior DevOps Engineer in DevCo6. DevCo6 DOps is an
expert in big data and database technologies and has been involved in numerous
digital transformations. The participant has over 15 (fifteen) years of IT experi-
ence in high performance computing, computer architecture, cloud migration and
software product delivery. DevCo6 DOps has been actively involved in DevOps
implementation and continuous improvement for over 5 years.

ITCo1 Dvr

ITCo1 Dvr is a software Developer with ITCo1. ITCo1 Dvr participated actively
in the DevOps implementation in the organisation. The participant has about 8
years’ experience software testing, web application and software development.

DevCo8 Lead

DevCo8 Lead is the Lead Site Reliability Engineer in DevCo8. The participant has
over 12 years’ experience in software development and delivery. DevCo8 Lead
is directly involved in the delivery of DevOps in DevCo8 and is contributing to
continuous improvement of the software delivery practices in the organisation.

DevCo9 Chief

DevCo9 Chief is the Chief DevOps consultant for DevCo9. The main responsibility
of the participant is to help the organisation successfully implement DevOps. At
the time of the interview, the organisation had implemented the concept and
making continuous improvement. DevCo9 Chief is a DevOps coach and an award-

APPENDIX F. PARTICIPANTS’ DESCRIPTION 222

winning speaker on the subject. DevCo9 Chief has been involved in several digital
transformations, with 9 years’ experience in DevOps implementation.

DevCo10 Chief

DevCo10 Chief is the Chief DevOps Consultant of DevCo10. The participant
over 24(twenty-four) years’ experience in the software development industry,
performing several roles. DevCo10 Chief is a thought leader in continuous delivery
and technology team organisation for fast flow and agility. DevCo10 Chief is an
expert the delivery of online services, IoT, and embedded systems. DevCo10 Chief
has a background in network engineering, software engineering and architecture.

DevCo11 Head

DevCo11 Head is the Head of Software Development for DevCo11. DevCo11 Head
has over 22 years’ experience in IT product and service delivery. The participant
is an expert in large-scale software platform development, SRE, continuous de-
livery, and DevOps. DevCo11 Head has led several agile transformations and is
responsible for the DevOps implementation in DevCo11.

ITCo1 DvOps2

ITCo1 DvOps2 is a DevOps Engineer with ITCo1. The participant was directly
involved with the DevOps implementation of the organisation. ITCo1 DvOps2
has about 6 years’ experience in DevOps. ITCo1 DvOps2 is highly skilled in
technologies like containerisation, object-oriented programming, and Kubernetes
implementation.

DevCo7 Eng

DevCo7 Eng is a DevOps Engineer with DevCo7. The participant is responsible
for the implementation of DevOps practices and strategies for continuous integra-
tion/continuous delivery of Product Teams on Cloud Platform, in the organisation.
DevCo Eng is highly skilled in cloud migration, Azure, AWS, and automation.

APPENDIX F. PARTICIPANTS’ DESCRIPTION 223

DevCo7 Eng has a background in IT infrastructure management and Linux system
administration.

	Introduction
	Problem Context
	Research Motivation
	Aim, Objectives and Research Questions
	Aim
	Objectives
	Research Questions

	Research Contribution
	List of Publication
	Structure of Thesis

	Literature review
	Introduction
	Software Development Methodologies – Coordination Strategies for Development Activities
	Socio-Technical Nature of Software Development
	Agile Software Development
	Scrum
	Extreme Programming
	Lean Software Development
	Kanban
	Dynamic Software Development Method (DSDM)
	Agile Roles
	Agile Ceremonies
	Agile Artefacts

	Continuous Integration - an Emerging Software Development Practice

	Tailoring Software Development Practices
	Method Engineering
	Situational Method Engineering

	IT Operations
	Continuous Delivery - an Emerging IT Operation Practice

	Coordination of Work between Development and IT Operations in Software Development
	DevOps – A Development-to-Deployment Coordination Strategy
	The Nature of DevOps
	The Impact of DevOps

	Tailoring in DevOps Implementation
	Summary

	Research Design
	Introduction
	Research Model
	Research Philosophy
	Research Logic
	Methodological Choice
	Research Strategy
	Research Time Horizons

	Research Purpose and Research Outcome
	Research Approach
	Phase 1 - Exploring DevOps Implementation in Practice
	Research Sites
	Data collection
	Recruiting Participants
	Data Transcription

	Data Analysis: Based on Grounded Theory
	Open Coding
	Constant Comparison Method
	Memoing and Sorting
	Saturation

	Phase 2 - DevOps Implementation strategies and Elements of influence
	Research Sites
	Data collection - Theoretical Sampling
	Recruiting Participants
	Data Transcription

	Data Analysis: Based on Grounded Theory
	Open Coding
	Constant Comparison Method
	Memoing and Sorting

	Phase 3
	Model Creation Process

	Model Evaluation
	Evaluation Site
	Model Evaluation Structure

	Pre-Workshop Engagement with DevCo9

	Taxonomy of DevOps Implementation in Practice, Benefits, and Challenges
	Introduction
	Description of DevOps
	DevOps as a Culture
	DevOps as a Job Description

	Approaches to DevOps
	Developers-Ops mode
	Developers-Outsourced Ops mode
	Developers-DevOps mode
	DevOps bridge team mode

	Taxonomy of DevOps approaches
	DevOps Teams’ Responsibilities
	Boundaries of Responsibilities

	DevOps Practices
	Continuous Integration, Continuous Delivery (CI/CD), and Tooling
	Collaboration and Knowledge Sharing

	Benefits of DevOps Adoption
	Improved delivery speed and more frequent releases
	Better Collaboration
	Software Quality improvement
	Faster feedback Loop
	Reliability and Repeatability of Deployments

	Challenges of DevOps Adoption
	Unclear Definition
	Changing Technology stack
	Undefined and complex skillset
	Determination of Appropriate DevOps infrastructure Platform
	Resistance to change
	Requirement changes
	Provisioning hardware in on-premises platforms
	Unidentified Dependencies
	Poor Code Quality

	Summary

	Strategies for DevOps Implementation: The Roles of Skillset and Automation
	Introduction
	Diagnostic Assessment
	Strategies For DevOps Implementation
	Platform Strategy
	Platform Infrastructure Engineering
	Required Skillset and Capabilities

	Greenfield Application Strategy
	Considerations of Greenfield Application Strategy
	Required Skillset and Capabilities

	Monolithic Decomposition
	Considerations for Monolithic Decomposition
	Required Skillset and Capabilities

	Process Improvement
	Cultural Improvement
	Advocacy
	Considerations for Advocacy Strategy

	Skillset And DevOps Implementation Strategies
	Individual Technical Skills Acquisition
	Organisational Staff Training

	 Automation In DevOps Implementation Strategies
	Data Migration
	Infrastructure Provisioning
	Configuration Management
	Test automation

	Summary

	DevOps Strategy Determination Model Creation
	Introduction
	An Examination of the role of Skillset in DevOps Strategies
	An Examination of the role of Automation in DevOps Strategies
	Theories Generated from Data Analysis
	Devops Strategy Determination Model Creation
	Similarities between DevOps Strategies and Method Engineering

	Introducing SIDSEM – A Situational DevOps Strategy Engineering Model
	Component parts of Proposed model
	Strategy Administration and Strategy Base
	Selection and Assembly of Strategy Fragments
	 Project environment and characterisation
	Selecting appropriate strategy fragments
	Assembling selected fragments

	Process Automation
	Automation candidate selection
	Process Automation Guidelines

	Metrics Collection/Continuous Improvement

	Summary

	DevOps Strategy Engineering Model Evaluation
	Introduction
	SIDSEM Focus Group Workshop with DevCo9
	Focus Group Workshop Findings
	Pattern OF Work Coordination
	Project Characterisation
	Automation
	Metrics and Continuous Measurement

	Discussion on the model: Focus Group View
	Relatability
	Suitability
	Clarity

	Call to action: Model implementation Recommendations
	Focus Group Suggestion: Model Artefact Repository
	Practical Instantiation of the DevOps Strategy Model – SIDSEM
	Repository Structure
	Strategy Base
	Project Structure
	Strategy Selection and Assembly
	Process Automation
	Metrics Collection and Knowledge-sharing

	Discussion
	Introduction
	Answering Research Questions (RQs)
	RQ1: How do practitioners describe and implement DevOps in practice?
	RQ1a - What are practitioners’ perceptions of DevOps definition and description?
	RQ1b - How are DevOps functions different from IT Operations and development teams’ functions?
	RQ1c: How is DevOps implemented in practice?
	RQ1d: What strategies are employed in DevOps implementation?

	Research Question 2: “How can organisations tailor DevOps implementation to suit their organisational context?”
	RQ2a - What elements influence the approach taken by organisations to implement DevOps?
	RQ2b: How can DevOps implementation be tailored to suit on organisational context?

	Contribution to Theory
	Contribution to Practice
	Limitations of the Study
	Confirmability
	Dependability
	Internal Consistency
	Transferability

	Conclusion
	Summary of Thesis
	Reflection
	Future Work

	References
	Ethics Approval
	Interview Guide
	Consent Form
	Participant Information Sheet
	Interview Transcript Sample
	Participants' Description
	Phase 1 participants
	Phase 2 participants

