
Cloud Deployment Patterns: Migrating a Database

Driven Application to the Cloud using Design

Patterns
A.A. Adewojo, J.M. Bass and K.Hui, I.K. Allison

Abstract— Cloud computing provides scalable and reliable

computing services that can be beneficial to software

organizations that intend to migrate their existing or new

applications to the cloud. However, migration is potentially

complex, so cloud computing deployment patterns are

proposed to support the migration process. This research

compares the format, structure and notations of previous

object oriented design patterns with a recent cloud computing

design pattern. Firstly, the gaps in cloud computing design

patterns catalogue are identified. Secondly, we present a

template for creating pattern catalogue for cloud deployment

patterns. This template was derived from a widely accepted

and most highly cited design pattern catalogue and we applied

this template to the shared component pattern, a variant of

multi-tenancy pattern. Finally, we demonstrated the shared

component’s pattern validity by applying it to the data model

of a database driven desktop application that was migrated to

the cloud. The result shows that: (i) there is an improvement

in the structure and clarity of the shared component pattern

catalogue; and (ii) Information conveyed to software

developers is enhanced.

Index Terms— SaaS; Cloud Computing; Deployment

Patterns; Cloud Migration

I. INTRODUCTION

Global software engineering researchers and practitioners

have rightly focused on distributed models of software

development [1] [2] [3]. We argue here that the development

of software services for worldwide deployment presents a

significant challenge for practitioners of global software

engineering.

 Cloud services centralize deployment, maintenance and

evolution but cater for a worldwide user audience [4]. Cloud

services are classified into three namely: Software as a

Service (SaaS), Platform as a Service (PaaS) and

Infrastructure as a Service (IaaS) [5] [6]. SaaS releases

application to customers as a service [7], these services are

accessed via the internet and consumers are charged for only

the quantity of software, its functionalities and time used [5].

PaaS provides development platforms as a service. It makes

provision for customizing and deploying applications on the

infrastructure [5].
Manuscript received April 3, 2015, revised June 20, 2015. This work was

supported by the Scottish Funding Council who funded the Scottish cloud

horizon project, the Technology Strategy Board and WML UK who

provided funds for the conference expenses.

A.A. Adewojo is a researcher with the School of Computing Science and

Digital Media, Robert Gordon University, Aberdeen, Scotland. Phone:

+441224262575; e-mail: a.a.adewojo@rgu.ac.uk

J.M. Bass is a senior lecturer with the School of Computing Science and

Digital Media, Robert Gordon University, Aberdeen, Scotland. e-mail:

j.m.bass@rgu.ac.uk

K.Hui is a lecturer with the School of Computing Science and Digital

Media, Robert Gordon University, Aberdeen, Scotland. e-mail:

k.hui@rgu.ac.uk

I.K. Allison is the Dean, School of Engineering and Computing

University of the West Scotland, Paisley, Scotland, email:

ian.allison@uws.ac.uk

IaaS provides computing infrastructure in the form of

virtual machines as a service to customers [7]. Consumers

can enjoy flexibility of creating, managing, deploying and

customizing their servers to to suit their needs. Cloud also

computing provides scalable, reliable and ubiquitous

computing representing a paradigm shift in computing that

has a potential of transforming IT industry [8]. Cloud

computing has gained much popularity both in academic and

industrial world; hence prompting large organizations and

startups to either move their on-premise applications to the

cloud or build a cloud compliant application [9] [10].

However, this migration is potentially complex so cloud

computing deployment patterns are proposed to assist these

organizations.

Several design patterns are advocated to help make good

design decisions, capturing best practices on how system

applications should be designed [11]. The benefits of using

these patterns include development of reusable and

compliant software systems [12]. Interoperability, portability

and manageability of software systems are specific benefits

of using cloud design patterns [9].

Cloud deployment patterns play a major role in

architectural restructuring and migration of on-premise

software applications to the cloud [11]. Current cloud

computing deployment patterns lack details which make

them difficult to use. Furthermore, this lack of detail hampers

deployment pattern selection.

We address this issue by comparing previous object

oriented software design patterns catalogue [13] with recent

cloud computing deployment patterns catalogue [11]. The

format, structure, and graphical notations were the main basis

of comparison. We used the object oriented design patterns

as the baseline for comparison [13]. This is because it has a

consistent format of describing patterns and is one of the

most highly cited design patterns catalogues.

The contribution of this research is an enhanced cloud

deployment pattern description for the shared component

pattern. The benefits of the enhanced shared component

pattern are: that they are more systematically presented,

easier to implement, with more logical headings and detailed

pattern description. This will help software developers to

make right design decisions as fast as possible [13].

The paper is structured as follows: a description of related

work on design patterns is done in section 2. Section 3

describes the research method used to implement this

research. Section 4 introduces shared component pattern.

Section 5 describes how the shared component pattern was

improved. Section 6 describes the case study application that

was used to validate the pattern. Section 7 discusses how it

was implemented and Section 8 summarizes the work done

mailto:a.a.adewojo@rgu.ac.uk
mailto:j.m.bass@rgu.ac.uk
mailto:k.hui@rgu.ac.uk

and thoughts on future work. Finally, the appendices contain

the enhanced pattern.

II. RELATED WORK

In this section, we discuss existing work on design

patterns, pattern languages, cloud computing principles and

how these relate to cloud deployment patterns.

Several parts constitute design patterns such as a recurrent

problem, its proposed solution, factors that might affect the

problem or solution, and rationale behind the solution.

However, a recurrent problem in software design is the main

motivator of a software design pattern and a formal

approach that generalizes the solution to this problem is a

key factor to a successful design pattern.

To identify and get acquainted with the standardized

format of design patterns, pattern languages, and pattern

catalogue, we reviewed the following literatures: Design

patterns: elements of reusable object-oriented software by

[13]. They defined pattern language and its applicability to

object oriented software system. They used a systematic

approach to catalogue 23 different object oriented design

patterns. These patterns are widely and consistently used in

building object oriented system to date. Coad [14] presented

seven different patterns for object oriented analysis (OOA)

and object oriented design (OOD). Each pattern had an

example that illustrates how to use it, also guidelines on how

to apply each of them were provided. Martin [15] described

software architectures and how design patterns can either

positively or negatively affect the software application.

They identified rigidity, fragility, immobility and viscosity

as major symptoms of rotting design.

Because these patterns are specific to object oriented

design, there is a need to review literatures on cloud basic

properties, their architectural needs, and design patterns that

apply to them. Khorshed et. al [16] describes cloud

computing as a system whose data center’s resources are

delivered as services using virtualization technologies via

the internet to provide elastic, on-demand and instant

services to its customers. Armbrust et. al [17] identified

utility computing, scalability, multi-tenancy, flexibility,

manageability, portability as key properties of cloud

computing. Based on these principles and their

requirements, we reviewed how design patterns in cloud

computing are captured to help improve on the identified

features of cloud computing. In [11], the basic properties of

cloud computing were described and how these properties

can be used in our IT infrastructure. Based on these

properties they captured best practices on solving recurrent

problems in architecting applications for the cloud and

migrating existing applications to the cloud. Wilder [18]

explored cloud patterns that are useful for architecting

cloud-native applications and that can be used to overcome

specific challenges that can be encountered in cloud

application development. For each of the pattern covered in

the book, there is a primer that precedes it. Primer gives a

broad understanding of why there is or might be a need for

the preceding pattern. This book does not catalogue patterns

because the authors argue that each pattern impact multiple

architectural concerns, hence it cannot be cleanly

catalogued. Having looked at these literatures, object

oriented patterns by [13] and cloud computing patterns by

[11] inspired us to improve the shared component pattern; a

cloud deployment pattern in line with best practices from the

software design pattern literature.

III. RESEARCH METHOD

The sequential mixed method approach [19] was used to

devise our research process. This will inform the priority of

data collection strategy, data analysis, and theoretical

perspective of our research. It comprised an inductive

development of enhanced cloud deployment pattern and an

application case study. The theoretical aspect explores and

compared existing design patterns with cloud deployment

patterns available from the literature. The format, structure,

graphical notations and applicability of these patterns are

studied and compared in-line with best practices to develop

an enhanced pattern format for the multi-tenancy patterns.

Case study strategy is used to gather and analyze

information. The case study approach investigates an

observable circumstance in its real-life context [20]. The

aim of observing in real-life context is to provide an analysis

of the context and processes involved so that the theoretical

issues being studied can be well understood [21] and

because evidence is gotten from a real-life setting of the

case [22].

For our case study, we selected a small business software

application. This software application is used to produce

business processes. It maximizes a company’s efficiency and

resources by providing an automated and concise way of

defining and communicating what the company does. Its

potential users range from company managers to employees

who are in the business support unit. This application

however has some significant limitations, in its lack of

scalability and resource sharing. Hence, we chose this

application because the multi-tenancy principle is of utmost

importance to it. We applied the newly developed cloud

deployment pattern, and tested it with a load tester called

LoadUI [23] and by different users. The results establish that

the new patterns implementation meets the needs of the

application.

IV. SHARED COMPONENT AND CLOUD

DEPLOYMENT PATTERNS

The multi-tenancy pattern describes how SaaS application

component can be shared between different tenants, the

challenges of sharing same instance of software and the

solution to these challenges [11] [24]. It is one of the five

essential cloud properties [11] [24] that supports resource

sharing in cloud deployed SaaS application. Shared

component, tenant-isolated component and dedicated

component are the three levels of multi-tenancy patterns

captured by [11]. In this paper, we focus on the shared

component pattern, the first level of the multi-tenancy

pattern. It is the basic minimum requirement for resource

sharing in a SaaS application. It minimizes resource usage

however; this is at the risk of data and processes isolation

[11][6].It is used to provide functionality to different tenants

without maintaining a notion of tenants itself, hence, tenants

can influence each other while this functionality is being

accessed [11].

When developing a cloud native application, it is

important to consider components of the applications, and

cloud infrastructure that can and will be shared with other

applications or other cloud instances. To make the software

robust and reusable, it is expedient that right design patterns

be employed. However, a precise description of this is

needed to make an efficient use of it. It is in response to this

that we have proposed an enhanced shared component

pattern.

V. ENHANCED SHARED COMPONENT PATTERN

Our research observed gaps in the description of cloud

deployment pattern by [11]. To address this, we enhanced the

shared component pattern to conform to consistent and

widely accepted design pattern format. This improvement is

based on what we have learnt from revised literatures, our

proposed template and best practices in cataloguing a pattern.

Table 1 shows the existing cloud deployment pattern

headings, the object oriented pattern headings, the gaps we

need to fill and the proposed template.

Table I. PATTERN HEADINGS COMPARISON AND

TEMPLATE

Cloud

Patterns

OOP Patterns Restructured

Pattern

- Intent Intent

- Alias Motivation

- Motivation Applicability

- Applicability Structure

- Structure Participants

- Participants Collaboration

s

- Collaborations Consequences

- Consequences Implementati

on

- Implementation Sample Code

- Sample Code Known Uses

Known uses Known uses

Related

patterns

Related patterns (

This does not apply to

all patterns)

Related

patterns

Context

Solution

Result

Variations

(This does not

apply to all

patterns)

Driving

question

The enhanced shared component pattern now includes

intent, motivation, applicability, structure, participants,

collaborations, consequences, implementation and sample

code. However, some contents of these headings can be

found in the original cloud computing patterns definition by

[11] but because they are not distinctly spelled out, users can

not follow them precisely. The newly enhanced pattern

description for Shared Component and its detailed content

are elaborately described in appendix 1. The enhanced shared

component pattern benefits from a standardized and formal

approach of describing patterns; this will then help upcoming

developers to efficiently use this pattern and also

communicate using well-known names for software

interactions.

In the next section, we apply the shared component pattern

to a case study application. This is to validate its applicability

in cloud deployed applications.

VI. CASE STUDY

The case study application is a business process

management (BPM) system that runs on a desktop

application intended to be migrated to the cloud. Because it

is a desktop application, it cannot be migrated to the cloud

as it is, so a web based prototype application of the software

was built and deployed on Amazon Web Services (AWS).

This effectively turns the application into a SaaS. The goal

of this design is to allow the key features of a cloud native

application such as maintainability, data accessibility,

scalability, multi-tenancy, and interoperability [11].

Appropriate design principles have been used in-line with

quality concerns such as performance, modifiability, and

usability of the system [25]. Amongst these are loose

coupling, modularization, separation of concerns and

abstraction [25]. These principles are implemented via these

patterns: Model-View-Controller (MVC), Service-Oriented

Architecture (SOA), Representational State Transfer

(REST), and cloud deployment patterns. MVC was used to

decompose this system into three components: data storage,

application server, and user interface component. SOA was

used to present its data logic and application server

component as set of services. REST was used to deliver

these services so as to promote interoperability. Shared

component pattern and scalability were used to improve

resource sharing and user’s accessibility to the system. The

web application architecture is shown in Fig.1.

Group

Data

Data

Data

L
o
a
d

B
a
la

n
ce

r

VM1

VM2

VM3

Load

Balancer

HTTP Client

HTTP Client

HTTP Client

HTTP Client

Replicated DB

Fig. 1. Web Application Architecture

The web application architecture functions thus: A load

balancer intercepts all incoming requests from thin clients

and distributes them to an appropriate VM instance. These

clients communicate with the web server via HTTP

protocol. The VM contains both the application server and

myDomain = “allDomain”; // assigns the

domain name

sdb.batchPutAttributes(new

BatchPutAttributesRequest(myDomain,

createSampleData())); // a batch

addition of data to simpleDB is done

at this stage

//createSampleData() is a function to

add all the parts of a process to a

linked list

 }

the web-server. The web server handles the HTTP protocol,

passes request to an appropriate program that is able to

handle the request and in response sends a dynamic HTML

page for viewing in the web browser. The application server

provides access to business logic for use by the client

application programs. A load balancer then distributes data

that needs to be stored to available data storage. These

storage spaces are replicated geographically to avoid

problems caused by failure of the storage space.

A no-SQL storage device – SimpleDB by Amazon, which

is accessed via a RESTful API [26] is used as the storage

space, thus promoting SOA and REST architectures. The

different web services runs on a virtual machine (VM) and

the VM are easily replicated on demand, thus promoting

scalability. Scalability is also improved because the

application can run at least in part or parallel and in effect

allows resources to be shared efficiently, which is a key

feature of SaaS application [24]. This loosely coupled

architecture makes the system flexible enough to run

different components on different cloud vendors.

VII. DISCUSSION

The shared component pattern was implemented in the

data storage component of the case study application. The

data storage component was designed to allow multiple

customers access a single instance of SimpleDB; however

this is at the cost of no isolation of data and processes. It

was implemented as follows: A single domain was used to

store all companies’ data. However each item in a domain is

uniquely identified by the company’s id. This means

different companies share the same domain. This approach

offers the highest degree of sharing, but at the risk of data

privacy and security. The code snippet below show how this

is implemented.

Fig. 2. Code snippet to implement Shared Component

pattern

The shared component pattern has been validated because

we are able to successfully implement it in our case study

application.

VIII. CONCLUSIONS AND FUTURE WORK

Choosing the right cloud deployment pattern is a key

determinant in building a reusable and compliant SaaS

system in software engineering. To aid this process, we

presented an enhanced template for describing the shared

component pattern, and we also improved the clarity and

organization of the shared component pattern in line with

design pattern best practice. The shared component pattern

has been enhanced to include an elaborate and systematic

description of the pattern. This includes Logical headings

and detailed expression of each heading.

The Shared Component pattern minimizes resource

overheads by making efficient use of critical components.

Tenants are each allocated a quota of the shared resource.

However, sharing components could compromise privacy,

performance and security. This is an area stakeholder and

developers need to agree on before commencing to use this

pattern.

We argue that our enhanced shared component pattern

will help those learning to implement this pattern by

reducing the length of time [13] it takes them to understand

the implications of using it. It will also provide a common

language where they can communicate using well

understood names for software interactions.

We also demonstrated the applicability of the shared

component pattern as a resource sharing architectural

property of a SaaS application in our case study. A

successful implementation of it validates this.

The next stage of our study is to apply the proposed

template to improve the tenant-isolated and dedicated

component pattern catalogue. The Dedicated Component

pattern provides exclusive access to application components

that provide critical functionality; this is at a higher cost in

terms of resource overhead and monetary cost. The Tenant-

isolated component pattern represents a compromised

implementation between the Shared Component and

Dedicated Component approaches. It involves some sharing

of resources with intermediate levels of performance,

security, privacy and resource overheads.

APPENDIX

A. Intent

Allow multiple tenants to access a component of the

application and leverage economies of scale [11]

B. Motivation

To address a large number of customers and in turn

leverage economies of scale [11]

C. Applicability

Use shared components when:

Web services are used for authentication and user rights

management that are within the scope of one company [11]

D. Structure

The database is created once because tenant shares the

database. Tenants also share the table and each row is

identified by the tenant and row id because there will be

many tables and rows in this database. This does not

guarantee security and privacy of data, but it utilizes

resources efficiently and reduced cost of database

connections. This is shown in figure 3.

+AddDB()

+DeleteDB()

-SysDBName

sharedDB

+AddTable()

+DeleteTable()

+UpdateTable()

-SysTableName

sharedTable

+AddRow()

+DeleteRow()

+UpdateRow()

-TenantID

tenantRowItem

+End11
+End2*

-End31
-End4*

Fig. 3. UML diagram for Shared Component pattern

E. Participants

This defines a database and lets user add tables and rows.

Multiple user data can be represented in different row of a

table.

F. Collaborations

Key value storage pattern [11]

G. Consequences

The functionality provided by a shared component is

unaware of the actual tenant for which request is being

executed. Hence, the behavior of one tenant may affect other

tenants. Also instances of a shared component can be scaled

out depending on the overall workload and the set limit.

This in turns reduces the commissioning and

decommissioning process [11]

H. Implementation

This allows components to be shared by multiple tenants

without much restriction on identifying the tenant. The

following issues should be considered when there is a need

to use a shared component pattern [7]:

1) Tenant Influence: Influences between tenants that

may occur when sharing components have to be avoided.

2) Tenant Requirements: other requirements of

tenants that disallows sharing of resources

I. Sample Code

Fig. 4. Sample Code for Shared Component DB Creation

J. Known Uses

National Weather Service provided by the National

Oceanic and Atmospheric Administration (NOAA). This

provides a web service as a shared component interface that

can be integrated in applications [11]

K. Related Patterns

Tenant-isolated and dedicated patterns are related patterns

that can be used if sharing of application component is

unsuitable for tenants. However if shared component pattern

is used, the following patterns may be relevant: management

configuration, periodic workload, private clouds and

hypervisor [11]

ACKNOWLEDGMENT

We acknowledge the owners of the case study software

application. A.A. Adewojo is grateful to S.A. Arekete for the

feedbacks while writing this paper.

REFERENCES

[1] C. Ebert, Global Software and IT: A Guide to Distributed

Development, Projects, and Outsourcing. Hoboken, N.J.: Wiley-

Blackwell, 2011.

[2] M. Y. Vardi, "Globalization and Offshoring of Software Revisited,"

Commun ACM, vol. 53, pp. 5-5, may, 2010.

[3] J. D. Herbsleb and D. Moitra, "Global software development,"

Software, IEEE, vol. 18, pp. 16-20, 2001.

[4] R. Moreno-Vozmediano, R. S. Montero and I. M. Llorente, "Key

Challenges in Cloud Computing: Enabling the Future Internet of

Services," Internet Computing, IEEE, vol. 17, pp. 18-25, 2013.

[5] S. Zhang, H. Yan and X. Chen, "Research on Key Technologies of

Cloud Computing," Physics Procedia, vol. 33, pp. 1791-1797, 2012.

[6] P. Mell and T. Grance, "The NIST definition of cloud computing

(draft)," NIST Special Publication, vol. 800, pp. 145, 2011.

[7] R. Dargha, "Cloud computing: From hype to reality: Fast tracking

cloud adoption." in Icacci, 2012, pp. 440-445.

[8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A.

Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica and M.

Zaharia, "Above the clouds: A berkeley view of cloud computing,"

EECS Department, University of California, Berkeley, Feb. 2010.

[9] G. Cretella and B. Di Martino, "An Overview of Approaches for the

Migration of Applications to the Cloud," vol. 7, pp. 67-75, 2014.

[10] P. Jamshidi, A. Ahmad and C. Pahl, "Cloud Migration Research: A

Systematic Review," Cloud Computing, IEEE Transactions on, vol. 1,

pp. 142-157, 2013.

CREATE DATABASE [SysDBName] // Create DB

for all tenants

CREATE TABLE [SysDBName].[SysTableName](

TenantID datatype, TenantColData1

datatype, TenantColData2 datatype,…) //

Create Table for all tenants

Statement sta = conn.createStatement();

statement.executeUpdate("INSERT INTO

SysTableName " + "VALUES

(TenantID,'TenantData1', 'TenantData2'),

(TenantID2,'TenantData3', TenantData4'),

(TenantID3,'TenantData5','TenantData6'),

(TenantID4,'TenantData7','TenantData8'))

" where TenantID = tID); //Add Data

based on tenant and row Id

conn.close();//close connection

A.

[11] C. Fehling, F. Leymann, R. Retter, W. Schupeck and P. Arbitter, Cloud

Computing Patterns

Fundamentals to Deisign, Build, and Manage Cloud Applications.

London: Springer, 2014.

[12] F. Palma, H. Farzin, Y. Gueheneuc and N. Moha, "Recommendation

system for design patterns in software development: An DPR

overview," in Recommendation Systems for Software Engineering

(RSSE), 2012 Third International Workshop on, 2012, pp. 1-5.

[13] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:

Element of Reusable Object-Oriented Software. Holland: Addison-

Wesley, 1995.

[14] P. Coad, "Object-oriented Patterns," Commun ACM, vol. 35, pp. 152-

159, sep, 1992.

[15] R. C. Martin, "Design principles and design patterns," .

[16] M. T. Khorshed, A. B. M. S. Ali and S. A. Wasimi, "Monitoring

insiders activities in cloud computing using rule based learning," in

Trust, Security and Privacy in Computing and Communications

(TrustCom), 2011 IEEE 10th International Conference on, 2011, pp.

757-764.

[17] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin and I. Stoica, "A view of

cloud computing," Commun ACM, vol. 53, pp. 50-58, 2010.

[18] B. Wilder, Cloud Architecture Patterns. O'Reilly, 2012.

[19] J. W. Creswell, Research Design: Qualitative, Quantitative, and Mixed

Methods Approaches. London: Sage, 2002.

[20] R. K. Yin, Applications of Case Study Research. Thousand Oaks, CA:

Sage, 2003.

[21] C. Cassell and G. Symon, Essential Guide to Qualitative Methods in

Organizational Research. Sage, 2004.

[22] S. Sarker and A. S. Lee, "Using a positivist case research methodology

to test a theory about IT-enabled business process redesign," in

Proceedings of the International Conference on Information Systems,

Helsinki, Finland, 1998, pp. 237-252.

[23] (12/02/2015). LoadUI - The Home of Load Testing | Open Source

Load Testing Tool [Web testing, Server monitoring]. Available:

http://www.loadui.org/;.

[24] C. Bezemer and A. Zaidman, "Challenges of reengineering into multi-

tenant SaaS applications," Delft University of Technology, Software

Engineering Research Group, 2010.

[25] L. Bass, P. Clements and R. Kazman, Software Architecture in

Practice. Boston, MA, USA: Addison-Wesley Longman Publishing

Co., Inc, 2013.

[26] Amazon Web Services, Cloud Computing: Compute, Storage,

Database Available: http://aws.amazon.com/;

http://www.loadui.org/;

